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Abstract—Exploiting the flexibility in distributed energy re-
sources (DER) is seen as an important contribution to allow high
penetrations of renewable generation in electrical power systems.
However, the present control infrastructure in power systems is
not well suited for the integration of a very large number of
small units. A common approach is to aggregate a portfolio of
such units together and expose them to the power system as a
single large virtual unit.

In order to realize the vision of a Smart Grid, concepts
for flexible, resilient and reliable aggregation infrastructures are
required. This paper presents such a concept while focusing on
the aspect of resilience and fault tolerance. The proposed concept
makes use of a multi-level election algorithm to transparently
manage the addition, removal, failure and reorganization of units.
It has been implemented and tested as a proof-of-concept on
the distributed smart grid test bed SYSLAB at the Technical
University of Denmark.

I. INTRODUCTION

Power grids in many countries are facing the challenge
of integrating an increasing amount of fluctuating power
production from renewable resources. This creates a need for
additional flexibility in the operation of the grid; in particular,
the provision of power system services from distributed en-
ergy resources (DER) has been a strong focus of smart grid
research in recent years. A significant part of the potential for
this additional flexibility lies in small DER units, including
demand-side units at the household level. In order to provide
a useful contribution to system services, the response of many
of these small units will have to be coordinated. This calls for
communication and control solutions which are able to scale
to a large number of units. A common approach to achieve
this is the use of a hierarchy of aggregators which combine
a portfolio of controllable units into a single representation
at one or multiple levels. A well-known example of a control
concept using aggregation is that of virtual power plants (VPP)
[1].

Many DER units allow their operating pattern to be
modified without compromising their primary function; this
flexibility may be used to support the operation of the grid.
The range of services to be provided depends on the capabil-
ities of the unit and include frequency control services such
as primary frequency response or contribution to regulating
power, voltage support, peak shaving, power quality control
or MVAr control at the feeder level. Aggregation may offer
services to different entities in the power system, including
transmission system operators (TSO), distribution system op-
erators (DSO) or balancing responsible parties (BRP), either
through bilateral contracts or as part of a market-based setup.
Aggregation schemes offering direct service provision can be

found in several projects such as PowerHub [2] or FENIX
[1]. Aggregation in connection with service markets is e.g.
proposed by the ADDRESS project [3]. One of the main
weaknesses of these existing schemes is their static hierarchy;
if one of the key nodes in the system fails, the aggregator may
fail as a whole.

Reliability and resilience are key requirements for aggrega-
tion systems; power system services have both monetary value
and an impact on system stability. If the aggregators and their
communication relations are static and inflexible, single points
of failure will exist. A related problem is how to keep track
of the aggregated units and maintain stable operation, in an
environment where units are added and removed on a regular
basis and where units may fail permanently or temporarily.
This paper proposes a dynamic aggregation concept which
addresses both issues. Unit addition, removal and failure
are handled automatically and transparently. The dynamic
assignment of concentrators on multiple levels increases the
resilience and reliability of the system.

Exploiting the potential for redundancy offered by dis-
tributed architectures for systems with high reliability re-
quirements are a subject of ongoing research. One area of
application for this type of research is in wireless multi-hop
sensor networks. Sensors, particularly environmental sensors
outside of buildings, are often battery-constrained, and any
data collection system will have to anticipate the failure of
sensors and temporary or permanent failure of communication
subpaths. A data routing protocol for wireless sensor network
is presented in [4], where data collectors, aggregators and sinks
are chosen dynamically through leader election. Other related
research efforts target reliable multicast message delivery [5],
in particular for multimedia streaming applications [6]. In [5],
an election algorithm is used to dynamically select a node
responsible for maintaining communication between several
sub-networks. In [6], dynamic election of a local directory
server is demonstrated. However, the authors are not aware
of any previous work attempting to directly transfer these
concepts in the domain of aggregation in power systems, and
succeeding with an implementation.

In section II of this paper we present the considerations
behind the design of the proposed system, including the ag-
gregation concept and issues related to fault tolerance. Section
III continues with a discussion of a concrete implementation
of this concept. Section IV describes setup and results from
proof-of-concept testing on a physical smart grid test bed.



II. DESIGN CONSIDERATIONS

A. Aggregation concept

In this paper we consider a portfolio of DERs able to
provide a specific service by decreasing or increasing their
active power production or consumption. These DERs may be
grouped into one or more aggregates in order to jointly provide
a service. The grouping may be based on location, DER type
or other criteria.

Aggregation can be performed using one or multiple stages
in order to scale to a larger number of aggregated units.
Here, we limit the scope to the special case of a two-level
aggregation hierarchy. Each DER unit is being dynamically
assigned to one of several local controllers (LC) which acts
as the first level aggregator for the unit. The LCs are then
further aggregated by a single supervisory controller (SC).
The supervisory controller is responsible for managing the
overall service provided by the aggregation system (figure 1).
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Fig. 1. Proposed layout of a two-level aggregation. Level 2 represents the total
aggregation supervised by SC, level 1 aggregations group DERs supervised
by LC.

In order to increase the resilience of the system, all DER
units possess the capability to act as a LC, as a SC or in both
roles simultaneously. In case either the active SC or one of
the active LCs fails, one of the remaining units is assigned in
its place and the aggregation relations are updated to reflect
the new situation. This reassignment must be implemented in a
decentralized way; were it to be decided by a central authority,
it would remove the extra redundancy gained by the dynamic
role assignment and only replace one single point of failure
with another one.

B. Fault tolerance

The objective of the dynamic aggregation and fault toler-
ance mechanisms is to increase the resilience of the aggrega-
tion system. This can be achieved by making the system sup-
port different types of transparency. Transparency, as defined
by Tanenbaum [7], is a characteristic of ”a distributed system
that enables to present itself to users and applications as if
it were only a single computer system [...]”. Various types
of transparency can be distinguished, among them failure,
replication, concurrency, location and mobility transparency.
Location transparency allows resources to be accessed without
knowledge of their location. Relocation transparency enables
moving resources while in use. Replication transparency hides
that a resource is replicated. Concurrency transparency ensures
that a resource can be shared by several competing users.
Failure transparency enables concealment of failures [7].

For the system discussed in this paper, failure transparency
is an obvious goal to be achieved. Replication transparency
hides the dynamically changing topology of the aggregation
hierarchy from the service user. Concurrency may be a desired
feature if e.g. services delivered to a BRP aggravate congestion
issues in a distribution grid. Location transparency may or may
not be desirable, depending on whether the service delivered
depends on location, such as e.g. in a voltage control scheme.
Mobility transparency is not addressed in this paper but could
be relevant in connection to services provided by electric
vehicles.

C. System architecture

All DER units are paired with a gateway node which
maps the specific properties and capabilities of the unit onto
a service-based communication interface and data model. In
this way, the gateway separates the details of local fieldbus
communication and device-specific control from the global
task of aggregating multiple DERs. All gateway nodes col-
laborate to build and maintain an aggregation hierarchy. These
two functions are located in two software modules: A service
provision module and a hierarchy builder module (figure
2). The service provision module is responsible for offering
different services to the power system. Different DERs may
offer different sets of services at different times.
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Fig. 2. Components of the presented system architecture.

The hierarchy builder modules across all nodes are respon-
sible for negotiating their position and role in a single-level or
multiple-level aggregation tree consisting of one supervisory
controller (SC) at the root of the tree, local controllers (LC)
managing individual branches and regular nodes at the leaf
positions. Because each node must possess the capability to
perform either of these three functions, each hierarchy builder
module has fully-featured SC and LC components that are
activated or deactivated depending on the role of the node in
the aggregation tree. The SC acts as a single point of access for
the activation of a service by service consumers. Node roles at
each level are negotiated by leader election (see section III-B).
This functionality is located in an election submodule.

III. IMPLEMENTATION

The following section provides additional detail on how
the above design can be implemented in practice.



A. Unit roles

Depending on the aggregated service and DER commit-
ment, a DER can fulfill one or several of the following roles
in the proposed architecture: Passive unit, service provider,
service committer, service executer, local controller or super-
visory controller.

• A DER is a passive unit, when it is able to join
an aggregation, but does not currently provide one
of the aggregated services. Aggregators could either
ignore passive units or include them in the aggregate
as an uncontrollable unit for the purpose of monitoring
its state as part of the system state. The present
implementation uses the first option and does not
include passive units in the aggregate.

• A service provider is a DER which is able to join
an aggregation and to provide a specific service to the
aggregator. Aggregators may chose to exclude service
providers from the aggregate, for example based on
their location.

• If a DER is accepted to provide a service in an aggre-
gation, it becomes a service committer. A committed
DER is still operating autonomously on its internal
controller, but it is ready to change its behaviour
based on external commands or setpoints from the
aggregator.

• A DER becomes a service executer if one or more
of the services it offers becomes activated by the
aggregator.

B. Bully Algorithm

In this paper a distributed systems election algorithm is
used to choose a coordinator to play a distinct role among
nodes and avoid a single point of failure in the aggregation. A
node can participate in an election if it is capable of performing
a coordinator role. In the Bully algorithm proposed by Garcia-
Molina [8], considered the most popular distributed system
election algorithm, the choice of a coordinator is based on a
process number, i.e. a unique ID such as the MAC address of
the device. After a coordinator has been chosen, all other nodes
continuously monitor if the coordinator is still available by
sending heartbeat messages. If the coordinator fails to respond
before a specified timeout, the coordinator is assumed to have
failed and a new election round is triggered.

The Bully algorithm can be implemented as a finite state
machine (FSM), detailed information about the FSM can be
found in [8]. The implementation used for the paper makes
use of eight states: The algorithm is started in INIT state.
If no coordinator is known, or if the previous coordinator is
assumed to have failed, the node enters NO COORDINATOR
state and broadcasts a proposal to start a new election to all
other nodes with a higher process number than itself and enters
ELECTION state. If there is no response to this request within
a time time T’, the node switches to NO RESPONSE state
and proclaims itself coordinator by broadcasting to all nodes
with a lower process number than itself before switching to
COORDINATOR state. If on the other hand a response to the
election message is received, the node halts in WAIT state
for a defined time T” to see if another node with a higher

process number would claim to be coordinator. If this happens,
it saves the process number of the new coordinator, switches
to REGULAR state and continues its operation. If there is no
coordinator message after time T”, the node broadcasts for a
new election and switches again to ELECTION state.

In a system with n nodes, in the worst case scenario, when a
node with the lowest process number starts an election, O(n2)
messages are sent [9].

C. Two-level Bully algorithm

It is possible to nest multiple instances of the Bully algo-
rithm in order to achieve a multi-layer system. Two level Bully
Algorithm consist of several steps executing bully algorithm
for different groups. In the initial state all DERs are assigned
a location tag, dividing the aggregation into level 2 groups,
for reference see figure 1. Every group from level 2 elects a
coordinator using the Bully algorithm. Once a coordinator is
chosen it is assigned with a local control tag and included
in a local controller group. Members of this group initiate a
bully election to choose a single supervisory controller. After
a bully algorithm is executed a unit can be in one of two
states: regular and coordinator, where only one unit can be
in the coordinator state. After the two level bully algorithm is
executed, a unit can be in any of three states: regular, local
controller or supervisory controller, where only one unit can
be in the supervisory controller state.

The aggregation process presented in this paper is executed
in two election steps and adopts bottom-up approach, electing
leaders from lower group first, then choosing higher leaders
from leaders in groups below. The aggregation forms a hier-
archy tree that can be reconfigured in case of any unit failure
with help of two level bully algorithm.

D. Failure of a DER node

A failure of any DER can affect the aggregation and disturb
service provision. Hierarchy builder module is responsible
for recognizing the failure and reorganize the aggregation to
continue its operation with as little disturbance as possible.
Bully algorithm for leader election is used to form the ag-
gregation structure and reconfigure in case of a failure with
use of the election module. The election module reports to
hierarchy builder module every time a new configuration is
assembled. The hierarchy builder module informs LC and SC
about changed configuration or activates and deactivates SC
and LC components depending on the election outcome for
the local DER.

As described in this section presented architecture allows
controllable DERs to play six roles in the aggregation process.
Four of these roles: service committer, service executer, LC
and SC are roles involved in the operation of the aggregation.
In case of failure of different roles, the aggregation need
to be reconfigured and lost roles need to be reassigned. A
disappearance of a DER is first recognized by the election
module due to a missing heartbeat signal. When a failure is
recognized and confirmed the election module starts a new
election. Independently of the DER role a new leader election
must be executed, because the faulty DER might have been
a leader in one of the aggregation levels. The reaction of the
hierarchy builder module is presented in Table 1.



TABLE I. FAILURE OF A DER ROLE AND REACTION OF THE
HIERARCHY BUILDER MODULE.

DER
role

election module hierarchy
builder module

LC and SC

SC Reconfigure level 2,
report the change of
configuration to the
hierarchy builder
module

If DER elected
for SC activate
the SC compo-
nent

Restart SC

LC Reconfigure disturbed
group from level 1,
reconfigure level 2,
report failure to
hierarchy builder
module

If elected for LC
activate the con-
trol

Restart LC and send a control
signal from SC to LC

Service
comit-
ter

Reconfigure disturbed
group from level 1,
report to hierarchy
builder module

Report to
LC and SC
components

SC updates topology descrip-
tion and correct calculations,
SC sends control signals to LC,
LC sends control signals to
DERs

Service
provider

Reconfigure disturbed
group from level 1,
report to hierarchy
builder module

Report to SC and
LC components

SC updates topology descrip-
tion and corrects calculations,
SC dispatch new service acti-
vation commands to LC, LC
sends control signals to DERs

When the node providing the supervisory controller role
disappears from the aggregation, a new SC needs to take
over. The election algorithm is re-run in the level 2 group.
Likewise, a local controller failure will trigger an election in
the associated level 1 group. When a new LC has been elected,
it joins the level 2 group and thereby triggers a level 2 election.
If a regular DER node fails, i.e. a node with neither LC or SC
duties, an election is held only in the affected level 1 group.
Subsequently, this may also cause a re-election in the level 2
group. If the failing node has been acting as a service provider,
LC and SC must recalculate their aggregation in order to reflect
the changed DER portfolio.

IV. PROOF OF CONCEPT

In order to demonstrate the viability of the concept, a
physical experiment was conducted using the SYSLAB facility
at the Technical University of Denmark’s Ris campus.

A. Experimental set-up

SYSLAB is a research facility for intelligent, active and
distributed power systems. The current setup is spread across
four substation sites on the Ris campus. A 400V, 3-phase grid
with a total of 16 busbars serves as the electrical backbone
of the facility. A large variety of DER units are connected to
the grid at different sites: wind, solar and diesel generation,
energy storage systems and a different types of loads. Among
the latter are controllable buildings, electrical vehicles and
various load simulators. The power system is able to run grid-
connected or isolated. All components of the grid - DER units
and substation equipment - are equipped with an intelligent
node. A distributed software platform is deployed on the nodes
and provides SCADA functionality, control interfaces and a
container for embedding controllers [10]. The SYSLAB infras-
tructure can be used for experiments with either centralized and
decentralized approaches to control. For the purpose of demon-
strating the aggregation concept, ten DER nodes are used:
Three PV systems and seven controllable loads, connected to
the grid at three different substations as shown in figure 3.
One of the loads (PFH) is an office building with 10kW of
controllable electrical heating load. Six other buildings (SH1

through SH6) are real-time hardware-in-the-loop simulations
based on a thermal model of the first building. The power
demand of these simulated buildings is applied to the physical
grid through controllable load simulators connected at the
respective points in the grid. The three PV systems with grid-
tie inverters have a rated power of 10kW, 10kW and 7kW
respectively.

SH1

PV1

SH2

SH3

PV2

SH4

PFH

PV3

SH5

SH6

Utility grid

950m 700m 250mMP1 MP2 MP3

Fig. 3. Power system setup for the experiment, including PV systems (PV),
physical building (PFH) and simulated houses (SH1-6)

In order to separate the dynamic aggregation problem from
that of power system control, the experiment described in
this paper focuses on demonstrating the dynamic aggregation
part. The supervisory and local controllers are represented as
empty containers without any actual capability to influence the
operation of the DER units or the state of the grid. However,
the geographically distributed execution environment and the
details of the deployment would be the same if a grid controller
was running inside the containers.

B. Results

The ten DER nodes used in the experiment are distributed
between three node groups according to the grid substation
they are connected to: A, B and C (see figure 3). The corre-
sponding host names of the nodes - which are subsequently
used to identify them - are listed in the following table:

Group A Group B Group C
syslab-02 syslab-10 syslab-v02
syslab-03 syslab-v13 syslab-ui5
syslab-04 syslab-21

syslab-22
syslab-24

For example, syslab-02 is the host name of the node con-
trolling the PV system PV1, connected to the first substation
and consequently a member of group A.

Figure 4 shows the state of the system over time. Before
the experiment, all nodes have been assigned to a single default
group and are configured to participate in a single-level elec-
tion algorithm. At timestamp zero, a reconfiguration command
is sent to each node: They are now assigned to one of the
three groups and are ordered to build a two-level aggregation
hierarchy by electing local and supervisory controllers. The
states of the two levels of the election algorithm are shown as
separate tracks in the figure. Additionally, the dotted red line
together with the ”LC” and ”SC” labels indicates which nodes
have been assigned local or supervisory controller roles as the
result of the election.



Fig. 4. Representation of the state of each node in the aggregation scheme during the experiment. The colors correspond to the eight possible states of the
Bully algorithm on each of the ten nodes. The lower track (index 1L) for each node represents the state of the first level election. The upper track (index 2L)
represents the state of the second level election. The dotted red lines mark the nodes which have been elected to LC or SC during a particular period of time.

In the configuration period every node is expected to
reconfigure several times: start operation, change level and
group in level 1. For example 1L state of the node syslab-02
turns into INIT three times, first when the node is initialized at
1 second, next when a group is assigned at second 2, ten after
second 7, when the level is assigned. It can be seen that, due
to differences in processor speed, not all nodes react equally
fast.

In case of a disappearance of a coordinator, units partici-
pating in the same group react by choosing next coordinator
among themselves. In the second two of the experiment syslab-
04 1L state changes from COORDINATOR to INIT state,
removing a controller from the group A. Node syslab-03 takes
over the responsibility in less than 2 seconds, as shown in
figure 4.

About 13 seconds into the experiment the aggregation
reaches a steady state. The delay in reaching a steady state
in the aggregation appears due to slow response of some
nodes. For example, node syslab-10 is the last one to finish its

reconfiguration, with a delay of about 7 seconds compared to
node syslab-21.

The results presented in figure 4 can only reflect a partial
behavior of the aggregation, showing state of the aggregation
topology while nodes were reconfiguring. Change of a state
in one node effects behavior of other nodes, so when a
leader was lost, another responsible unit was immediately
chosen. The overall state of the state comes into steady state
when individual node behavior is stabilized. The results from
the performed experiments are showing practical behavior
of a small aggregation, performing dynamic reconfiguration
and fault recognition and tolerance, while sustaining control
hierarchy.

1) Performance measurement: The experiment was run
multiple times with different numbers of participating nodes,
in order to extract two measures of performance: number of
messages sent between nodes before reestablishing a steady
state after a disturbance, and the time required to reach steady
state. The number of participating nodes was varied between



2 and 21.

In order to compare the classical Bully algorithm and the
two-level extension proposed in this paper, identical experi-
ments were conducted for a system with only one aggregation
level, where all nodes share the same group.

Fig. 5. Number of election messages exchanged between nodes for one-level
and two-level algorithms, as a function of the number of nodes.

Figure 5 compares the performance of the one-level and
two-level algorithms based on the number of election mes-
sages, shown for different number of nodes. In both cases some
messages have been excluded from these calculations, such as
the check and ack-check messages used to start a re-election in
case a node fails to respond. These messages are only present
during the steady state of the system and should therefore not
be counted as a measure of effort to reach the steady state.
As shown in figure 5 the two-level algorithm performs fewer
elections. This is one of the expected benefits of the two-level
system and can easily be explained since only nodes from the
same group respond to the failure of a node.

Fig. 6. Time to reach steady state for one-level and two-level algorithms, as
a function of the number of nodes.

Figure 6 shows that the settlement time for the one-level
algorithm increases rapidly with the number of nodes. This
result is not unexpected considering the exponential growth in
the number of messages (figure 5). The settlement time for the
two-level algorithm increases also with the number of nodes,
but much slower.

V. CONCLUSION AND FUTURE WORK

This paper presents a distributed and fault tolerant dynamic
aggregation concept for the provision of grid services from
DER units. The proposed architecture consists of two main
modules: a service provision module and a hierarchy builder
module, each of which are executing locally at each DER unit.
The dynamic aggregation hierarchy is formed using a multi-
level election algorithm. The performance of a system has been
tested as part of a proof-of-concept implementation on a Smart
Grid test bed.

The two-level election algorithm performs better than its
single-level counterpart with respect to the number of messages
exchanged and the time to settle. This promises improved
scalability and faster adaptation to changing conditions. Even
for the two-level case however, the number of messages
begins to grow superlinearly above a certain number of nodes.
It may be possible to at least partially mitigate this effect
by appropriate partitioning of the communication network:
Meaningful failover is still possible even if the election process
is partially localized, for example based on the point of grid
connection of a DER unit. Among other issues, this will be
the subject of future work.

As a next step, it is planned to add actual control functions
to the local and supervisory controller containers. Of particular
interest in this context is the performance and uninterrupted
function of controllers while a re-election takes place in part
of the aggregation hierarchy.
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