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Abstract: The spectral width of parametric gain peaks due to degenerate four-wave mixing
is investigated numerically in large-mode-area hybrid photonic crystal fibers. The width is var-
ied for a maintained pump wavelength and gain maximum position by tailoring the dispersion.
© 2013 Optical Society of America

OCIS codes: (190.4380) Nonlinear optics, four-wave mixing; (060.5295) Photonic crystal fibers.

1. Introduction

Control of the group velocity dispersion (GVD) is the key to control the spectral position of the maximum parametric
gain due to a four-wave mixing (FWM) process in silica fibers. For power scaling of the process a large mode area
(LMA) is needed, which can make the GVD control troublesome, since the material dispersion dominates in large core
fibers. In this work a double-clad hybrid LMA photonic crystal fiber is considered, with an inner cladding consisting
of airholes and Germanium-doped silica rods (Ge-rods). An illustration of the fiber is seen in Fig. 1a. The Ge-rods
give rise to a photonic bandgap (PBG) effect, and adjustment of the airhole diameters allow for single mode guidance
in a LMA core. The diameter of the Ge-rods on one side of the core, ds, is reduced with respect to the diameter on the
other side of the core, dl, providing control of blue- and red spectral edge of the PBGs [1]. In Fig. 1b the calculated
GVD parameter (D) of the fundamental mode (FM) polarized along the Ge-rods is shown for different values of dl,
while ds is kept constant at 6 µm. The ratio dl/ds is varied from 1 to 1.2336 in steps of 0.0117. Near the edges of the
PBGs the GVD grows strongly, giving rise to large values of normal and anomalous dispersion, providing control of
the GVD independently of core size. In Fig. 1b a zoom near the zero dispersion wavelength (ZDW) is also seen. By
altering dl it is possible to tune ZDW in a range of 10 nm.

(a) (b) (c)

Fig. 1: (a) Illustration of the double-clad hybrid large-mode-area photonic crystal fiber with an airclad as the outer
cladding. (b) Group velocity dispersion in the transmission band for the hybrid photonic crystal fiber for a range of
dl/ds = 1, ...,1.2336 in step sizes of 0.0117. A zoom near the zero dispersion wavelength is also shown. (c) Overlap
integrals of the fundamental mode polarized along the Germanium-doped silica rods with the core region (solid lines,
y-axis on the left) and group velocity dispersion parameters (dashed lines, y-axis on the right) for dl/ds = 1 and
dl/ds = 1.2336. Furthermore a Gaussian distribution at 1056 nm illustrates the pump wavelength.
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2. Tailoring the parametric gain

Degenerate FWM is a third order nonlinear process. In the process two pump photons are annihilated and one signal
and idler photon are created. For the process to take place energy conservation and phase matching must be fulfilled.
The parametric gain of the FWM process can be calculated from a set of coupled differential equations [2,3]. Overlap
integrals of the interacting pump-, signal-, and idler- fields are included in these equations. The propagation constants
and field overlap integrals needed to calculate the parametric gain have been calculated with a full-vector modal solver
based on the finite element method.
The spectral position of the maximum parametric gain depends on the dispersion profile. In Fig. 1b it was shown
how the spectral position of ZDW can be changed by adjustment of the Ge-rod diameters. However, the slope of
the dispersion profile at the bandedges also changes and thus the phasematching condition. In the following a pump
wavelength of 1056 nm will be considered for two different scenarios. The scenarios are illustrated in Fig. 1c, where the
two extrema of dl/ds are considered, 1 and 1.2336, respectively. For the dl/ds = 1 the pump is located in the anomalous
dispersion regime, D = 51ps/(nm·km), and for dl/ds = 1.2336 the pump is located in the normal dispersion regime,
D = −65ps/(nm·km). In Fig. 2a and Fig. 2b calculated parametric gain curves (solid lines) with 0.1 nm resolution
and pump peak power of 8kW are shown for the two scenarios. Furthermore the overlap integral of the fundamental
mode polarized along the Ge-rods with the core region is plotted (dashed line) to illustrate the positions of the gain
peaks with respect to the transmission bandedges.

From Fig. 2a and Fig. 2b it is clearly demonstrated that the dispersion profile can be tailored to obtain a broader
gain peak. Furthermore, the signal wavelength is better confined in the transmission band for dl/ds = 1 than for
dl/ds = 1.2336. Larger overlap integrals of signal, idler and pump fields are therefore obtained for dl/ds = 1, leading
to an increase in maximum gain. However, the maximum gain is positioned at 1063.5 nm and 1068.9 nm for dl/ds = 1
and dl/ds = 1.2336, respectively. The tailoring thus also has an impact on the maximum gain position.

In Fig. 2c the parametric gain has been calculated for the ratio dl/ds = 1, but now ds is increased with 0.1 µm, to
shift the red edge of the transmission band and thereby the spectral position of the maximum gain. In this case, the
maximum gain is positioned at 1068.9 nm and GVD for the pump wavelength is given by D = 8ps/(nm·km).

In conclusion, we have shown how the spectral width of the parametric gain peaks can be increased by tailoring of
the GVD, for a maintained pump wavelength and spectral position of the maximum gain. The spectral position of the
ZDW can be adjusted, by adjustment of the spectral position of the bandedges, controlled through the Ge-rod sizes. A
large spectral width of the parametric gain peak will make the parametric gain less sensitive to size fluctuations along
the fiber length, which can be detrimental in practice.

(a) (b) (c)

Fig. 2: Calculated parametric gain (solid line, y-axis on the left) for a pump wavelength of 1056 nm and overlap integral
of the fundamental mode polarized along the Germanium-doped silica rods with the core region (dashed line, y-axis
on the right). (a) Pump wavelength is positioned in the anomalous dispersion regime, dl/ds = 1, ds = 6.0 µm. (b)
Pump wavelength is positioned in the normal dispersion regime, dl/ds = 1.2336, ds = 6.0 µm. (c) Pump wavelength
is positioned in the anomalous dispersion regime, dl/ds = 1, ds = 6.1 µm.
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