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Phonon excitation and instabilities in biased graphene nanoconstrictions
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We investigate how a high current density perturbs the phonons in a biased graphene nanoconstriction coupled
to semi-infinite electrodes. The coupling to electrode phonons, electrode electrons under bias, Joule heating, and
current-induced forces is evaluated using first principles density functional theory and nonequilibrium Green’s
function calculations. We observe a strongly nonlinear heating of the phonons with bias and breakdown of the
harmonic approximation when the Fermi level is tuned close to a resonance in the electronic structure of the
constriction. This behavior is traced back to the presence of negatively damped phonons driven by the current.
The effects may limit the stability and capacity of graphene nanoconstrictions to carry high currents.
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Graphene has emerged as a highly attractive material for
future electronic devices.1,2 It can sustain current densities
six orders of magnitude larger than copper and is foreseen
to be a versatile material with numerous applications in
nanoelectronics, spintronics, and nanoelectromechanics.3 In
graphene nanoconstrictions (GNCs) the current is passed
through a short ribbon4,5 at the narrowest point. Constrictions
and nanoribbons provide semiconducting interconnects in
graphene nanocircuitry,6,7 and is a central building block
of graphene-based nanoelectronics. Related structures include
graphene antidot lattices,8,9 which can be viewed as a periodic
network of constrictions. Current state-of-the-art experiments
indicate that these may be “sculpted” in monolayer graphene
with close to atomic precision to a width of a few benzene
rings.10

Clearly, for GNCs of this size the current density can locally
be very high, and it is important to address their stability and
performance under bias.11 Experimental results for electron
transport,12,13 local heating by Raman spectroscopy,14–16 and
infrared emission,17 have been published for GNCs. Recently,
it has been argued that several current-induced forces and
excitation mechanisms driven by these, besides Joule heating,
can play a role in the stability of nanoconductors.18–21 In partic-
ular, energy nonconservative “wind”/“waterwheel” forces may
transfer energy to the phonons in parallel with the well-known
Joule heating. However, it is not easy to directly infer these
mechanisms from experiments in most cases. On the other
hand for graphene, the structural response to a high bias can
be studied by in situ transmission electron microscopy, making
graphene nanoconductors a good test bed for current-induced
phenomena.22–24 In particular, a gate electrode can be used
to control Fermi level and electronic states involved in the
transport, and thereby the current-induced excitation.

In this Rapid Communication, we calculate the current-
induced phonon excitation in a small hydrogen-passivated
GNC (Fig. 1) using parameters obtained from density func-
tional theory (DFT). We find a highly nonlinear heating of
the GNC due to the deterministic current-induced forces, as
opposed to the Joule heating by random forces. In particular,
for certain phonon modes in the GNC the nonequilibrium
electronic friction force turns into an amplification for voltages

beyond a threshold voltage. These amplified modes will
dominate the dynamics and lead to a breakdown of the har-
monic approximation beyond the voltage threshold.20,21 The
nonequilibrium negative friction was theoretically predicted
for low conductance tunneling transport through asymmetric
molecules21,25 driven by population inversion between two
molecular states. Here the highly conducting GNC dis-
plays negative friction at finite bias due to a more generic
mechanism, which we trace back to a different coupling to
the electronic states involved in the phonon emission and
absorption processes.

In Fig. 1(b) we see how the electron transmission of the
GNC for energies around the charge neutral Fermi energy
(EF = 0) is dominated by two resonance peaks originating
from states presenting localized current along the edges (first
peak) and through the center (second peak) of the GNC,
respectively. Resonances occur due to the diffraction barrier
at abrupt interfaces in graphene.13,26 The calculated localized
voltage drop and high current across the GNC is shown in
Figs. 2(a) and 2(b). By employing a gate voltage (Vg) we
may tune EF to a highly conducting peak and consider the
phonon excitation close to the resonance. We will focus on
the constriction gated to the second peak which is mostly
unaffected by the boundary conditions in the electrodes (k-
point sampling),27 and exhibits little dependence on the applied
bias (Va) [cf. Fig. 2(c)].

To address the phonon excitation in the presence of current
we employ the semiclassical generalized Langevin equation
(SCLE).19,20,28,29 The SCLE describes the Joule heating,
current-induced forces, and coupling to electrode phonons in
the same formalism. For the mass-scaled ion displacements
(Q) the SCLE reads

Q̈(t) = −KQ(t) −
∫ t

�r (t − t ′)Q(t ′)dt ′ + f(t). (1)

Here K is the force constant matrix. The couplings to the
electron and phonon baths are described by the retarded
phonon self-energies �r = �r

e + �r
ph, and the random noise

force, f(t), accounts for the Joule heating.28 We consider
the retarded self-energy due to the interaction between the
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FIG. 1. (Color online) (a) Transport setup illustrating the hy-
drogen passivated GNC between two semi-infinite graphene leads.
The left eigenchannel at zero bias and E ≈ −0.58 eV (colored
according to phase, red-white-blue from −π to π ). (b) � point
and the k-averaged transmission function (E = 0 corresponds to the
Dirac point). (c) Bond currents at the two peaks (�) marked in the
transmission plot (E ≈ −0.12 eV and E ≈ −0.58 eV).

phonons and the electronic current,

�r
e(ω) = iπ Re �(ω) − π Im �(ω)

+πH{Re �(ω′)}(ω) + iπH{Im �(ω′)}(ω), (2)

(a) (b) 

(c)
a 

FIG. 2. (Color online) (a) Real space potential drop (Va =
0.5 eV) integrated along the out-of-plane direction (in the region
with nonvanishing electronic density). (b) IV characteristics for the
GNC gated to different chemical potentials. Gating to a peak lowers
the resistance at low Va . (c) Transmission curves (shifted vertically)
for different applied bias (EF = 0).

which is given by the interaction-weighted electron-hole pair
density of states, �, and its Hilbert transform (H).30 The
four terms in this expression yield the electronic friction,
nonconservative wind, renormalization, and Berry forces
in nonequilibrium conditions, respectively.19 Especially for
the nonequilibrium electron system, � = ∑

α,β �αβ , with
contributions from left/right leads (α = L,R),

�αβ(ω) ≡ 2
∫

dε

4 π2
Tr[MkAα(ε + ω)MlAβ(ε)]

× [nF (ε + ω − μα) − nF (ε − μβ)]. (3)

Here Mk is the coupling to phonon mode k, Aα is the
electronic spectral density for states originating from lead α

with chemical potential μα , and nF is the Fermi distribution.
The spectral density for the noise, f , including the Joule
heating, is given by

Sf (ω) = −π
∑
α,β

�αβ(ω) coth

(
ω − (μα − μβ)

2kBT

)
.

Importantly, we include the full electronic and phononic
structures of the graphene electrodes, and go beyond the
constant/wide-band approximation (WBA) for the electronic
structure. This is essential for our results of the phonon exci-
tation when the graphene system is gated close to electronic
resonance. We determine all parameters entering the SCLE
above in the presence of current using first principles DFT
and nonequilibrium Green’s functions (DFT-NEGF).27,31–33

We restrict the el-ph interaction to the GNC region where the
current density is high, and evaluate the electronic spectrum
at finite bias, but neglect the small voltage dependence of K

and Mk .
We note that the GNC device region in the present

calculation encompasses a basis of 1336 orbitals for the
electronic subsystem [matrix size in Eq. (3)]. Thus in order to
efficiently compute � in Eq. (3) beyond WBA we first limited
the basis. We employed an expansion of the retarded Green’s
function and Aα in the eigenspace of H + 
0(EF ), H being
the electronic Hamiltonian and 
0(EF ) the lead self-energies,
which vary slowly with energy.34 We have found it sufficient
to limit this basis to 200 states within the interval [−7,6] eV
around EF . Secondly, we computed � by parallel execution
over the ω and Va parameters. The phonon self-energies
describing the semi-infinite graphene leads was calculated on
the basis on a zero-bias finite difference calculation. Detailed
information is given in the Supplemental Material.35

From Eq. (1) we can obtain the nonequilibrium retarded
phonon Green’s function,

Dr (ω) = [Da(ω)]† = [(ω + iη)2 − K − �r (ω)]−1, (4)

and the excitation in terms of the average kinetic energy of the
phonons,

Ekin =
∫ ∞

−∞

dω

2π
ω2Tr[Dr (ω)Sf (ω)Da(ω)]. (5)

The phonon density of states (DOS) is given by
−2/πω Im[Dr (ω)]. The DOS is affected both by the coupling
to electrons, in particular giving rise to nonequilibrium forces,
as well as coupling to the electrode phonons. In Fig. 3(a)
we show the phonon DOS at applied bias of Va = 0 and

161401-2
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(a) 

(b) 

FIG. 3. (Color online) (a) Dashed (full) lines show the phonon
DOS of the GNC with (without) electronic current. An unstable
“runaway” mode appears for an applied bias of Va ≈ ±0.5 V as a
negative DOS peak. (b) Heating (change in average kinetic energy per
atom due to current) of the GNC at 300 K. Full line: Result including
all current-induced forces. Dashed line: only fluctuating force (Joule
heating) and zero-bias electronic friction. Dot-dashed line: The
wide-band approximation without coupling to the electrode phonon
bath. Dotted line: Full calculation neglecting the nonconservative
wind and Berry-phase forces.

Va = 0.5 V. Most importantly, the DOS becomes negative at
a particular phonon frequency (ω ≈ 170 meV), corresponding
to a negatively damped mode, denoted “runaway”. From
Eq. (5) the runaway gives rise to a divergence in the current-
induced change of Ekin(heating) of the GNC at Va ≈ 0.4 V
[see Fig. 3(b)]. This signifies an instability in the harmonic
approximation, where the high excitation is likely to lead to
dramatic effects such as contact disruption.18

The instability can be traced back to the bias dependent
electronic friction, and disappears when this is kept at its
zero-bias value. We further note that for Va above ∼0.3 V
the deterministic current-induced forces lead to a qualita-
tively different heating compared to that of Joule heating
only. Figure 3(b) furthermore shows how the damping due
to electrode phonons is crucial: The heating increases by an
order of magnitude if the electrode-phonon bath is neglected.
Moreover, if we neglect the damping due to the phonon bath we
observe runaway starting already at Va ≈ 0.15 V, increasing
to more than 15 runaway modes at Va ≈ 0.4 V, both due to
the effects of negative friction and nonconservative forces.18

The nonconservative wind and Berry-phase forces are found
to be on the same order of magnitude for the runaway mode.
Even though they do not themselves lead to the first runaway
condition they lower the runaway threshold.

We will now in detail analyze the origin of the runaway.
We focus on the modes contributing to the phonon DOS peak
around the runaway, ω0 ≈ 170 meV. They can be found as

(a) 

(b) 

Runaway mode 

IETS mode 

Runaway mode IETS mode 

Va [V] 

FIG. 4. (Color online) (a) Two degenerate modes (“runaway”/
“IETS”) at Va = 0.4 V with ω0 ≈ 170 meV. The runaway mode
breaks the left-right symmetry due to the coupling to the nonequilib-
rium electrons and becomes unstable at finite bias. The IETS yields
the largest inelastic signal in the current. (b) Inverse Q factor (loss)
as a function of bias for the modes.

the eigenvectors of K + Re �r (ω0). The two main modes are
displayed in Fig. 4. The “IETS mode” exhibits the largest
inelastic tunnel spectroscopy signal (IETS) in the electronic
current and largest noise Sf,ii(ωi), while the “runaway mode”
is the first mode that turns unstable with increasing Va . In
Fig. 4 we show the inverse quality factor 1/Q = −2 Im(ω)

Re(ω) =
1/Qph + 1/Qel(Va) (energy loss/period) for the two modes as
a function of Va . The Qph factor is relatively big, especially
for the runaway mode, due to low phonon DOS around ω0.
The runaway corresponds to amplification 1/Q < 0, while
1/Q > 0 remains for the IETS mode despite a strong decrease
with bias.

It is instructive to view the runaway in terms of phonon
absorption/emission processes in a simple master equation for
the phonon number N ,

Ṅ = B(N + 1) − AN, (6)

where A(B) are the rates for absorption (emission). From
Fermi’s golden rule we find the emission,

B = −2π
∑
αβ

nB(h̄ω0 + μα − μβ)�βα(ω0),

and A is obtained by a replacement ω → −ω. Only a single
scattering state |ψL/R〉 contributes toA andB. Expressed in the
single flux-normalized eigenchannel, and assuming kBT 	
h̄ω0 < eVa , we have

B ≈
∫ μL

μR+h̄ω0

|〈ψL(ε)|M|ψR(ε − h̄ω0)〉|2 dε

2π
,

(7)

A ≈
∫ μL

μR−h̄ω0

|〈ψL(ε)|M|ψR(ε + h̄ω0)〉|2 dε

2π
.

Here we did not include the intraelectrode terms (�LL/RR) in
A since these vary only slightly with Va for the runaway mode.
The phonon absorption rate decreases while the emission
rate increases as the bias exceeds the mode frequency [see

161401-3
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Va [V] 

(a) 

(Absorp�on) (Emission) 

(b) 
+vF -vF 

-vF 

+vF 
F 

L 

R -
+

FIG. 5. (Color online) Nonequilibrium friction mechanism.
(a) Phonon absorption/emission (A/B) rates for the runaway mode.
Note that B = 0 for Va < ω0. When Va > ±0.4V emission exceeds
absorption, B > A. Inset: at resonance scattering states giving the
main contribution to the interaction integrals. The radius shows the
absolute value |ψ(x,y)| of the eigenstate, while the color indicates
the sign of the real part. (b) Runaway occurs for the mode with the
largest emission and lowest phonon friction (ηph). Squares indicate
modes with a significant electron friction (ηel). These modes all have
A,B coefficients with the same behavior as the first runaway mode.
Inset: resonance between two graphene leads at certain filling (red
dashed line) and bias voltage. An incoming scattering state (left green
dot) at resonance (dashed line) can either absorb (+ω0) to a state with
lower DOS close to the π -π∗ crossing or change to a state with higher
DOS by emission (−ω0).

Fig. 5(a)]. The electronic friction is given by the difference
A − B = −2π

∑
αβ �αβ(ω). This difference manifests itself

in how the Q factor varies with bias for the runaway

mode. The state symmetry changes significantly with energy
[Fig. 1(c)]. Thus we expect that a given phonon will yield very
different emission and absorption matrix elements due to the
symmetry. The symmetry of the scattering state ψ∗

L(EF ) is
almost unchanged from going up in energy (absorption) [see
ψR(EF + ω0) in the inset of Fig. 5(a)], while the symmetry
of ψR(EF − ω0) differs significantly from this. In particular,
the el-ph matrix element of the runaway mode yields very low
absorption and high emission due to the selective symmetry
of this phonon mode. The large phonon frequencies and linear
DOS of graphene strengthens this symmetry breaking. The
negative electronic friction is found for several modes and
seems to be a generic phenomena in graphene nanostructures.

In Fig. 5(b) we illustrate how each mode shows up in
a parameter space of the phonon friction and B/A. The
dominating runaway mode shows up at high B/A and low
phonon friction. The other modes with a nonvanishing negative
electron friction are also displayed. All these modes have A,B
coefficients with the same generic behavior as the first runaway
mode [Fig. 5(a)]. In the general case where one has a resonance
between graphene leads [inset of Fig. 5(b)], the wave incoming
at resonance will absorb to an eigenstate close to the Dirac
crossing. Hence it will have low DOS and a dissimilar phase.
On the contrary emission leads to an eigenstate with larger
DOS and similar phase. This holds true for states dominated
by the interlead contributions. Compared to the runaway mode
the IETS mode has low emission-absorption ratio due to high
intraelectrode terms �LL/RR and a higher phonon damping.

We conclude that negative friction can appear for certain
phonons in realistic systems such as graphene nanoconstric-
tions in the presence of electrical current. The negative friction
effect is here rooted in the high phonon energies which lead to
markedly different symmetry of the electronic states involved
in emission and absorption and thus different matrix elements
and rates. Therefore, it is a generic nonequilibrium effect.
Two-dimensional systems like graphene, where a gate can
be applied, make an exciting test bed for probing effects of
electronic current on the atomic scale.
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21J.-T. Lü, P. Hedegård, and M. Brandbyge, Phys. Rev. Lett. 107,
046801 (2011).

22X. Jia, M. Hofmann, V. Meunier, B. G. Sumpter, J. Campos-
Delgado, J. M. Romo-Herrera, H. Son, Y.-P. Hsieh, A. Reina,
J. Kong, M. Terrones, and M. S. Dresselhaus, Science 323, 1701
(2009).
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