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Noise is the main obstacle for the realization of fault-tolerant quantum information processing and
secure communication over long distances. In this work, we propose a communication protocol relying
on simple linear optics that optimally protects quantum states from non-Markovian or correlated noise.
We implement the protocol experimentally and demonstrate the near-ideal protection of coherent and
entangled states in an extremely noisy channel. Since all real-life channels are exhibiting pronounced
non-Markovian behavior, the proposed protocol will have immediate implications in improving the
performance of various quantum information protocols.
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A future quantum information network will consist of
quantum communication channels that connect different
nodes of the network [1]. These quantum links could either
be used for establishing a secret key between nodes, and
thereby allowing for unconditional secure communication,
or they could be used for communication of quantum
information between quantum processors. The transmis-
sion of quantum information can be carried out either by
sending the quantum states directly through the quantum
links or by establishing entanglement between the nodes
and subsequently using teleportation for transferring the
quantum states [2]. The transmitted quantum information
can be conveniently described by quantum states of
two-level systems, that is, qubits, but a vast number of
real world realizations relies on modes of the electromag-
netic fields described by quantum systems of continuous
variables [3-5].

All these quantum communication schemes, however,
will be ultimately limited in their performance by the noise
that inevitably invades all realistic communication chan-
nels. Such noise may eventually lead to a lack of security in
quantum key distribution and to errors in directly trans-
mitted quantum states. To combat the detrimental noise of
the channel, various strategies have been proposed, includ-
ing noise-robust quantum key distribution protocols [6—8],
entanglement distillation protocols, and error correcting
codes [2,9—17]. The complexity of these schemes strongly
depends on the type of noise in the channel. It has been shown
that if the noise is additive Gaussian, and the information
carrying states are Gaussian, then neither entanglement dis-
tillation nor quantum error correcting codes can be realized
by simple Gaussian operations [18-21]. On the other hand,
for non-Gaussian error models (such as random attenuation
and phase diffusion), simple Gaussian operations suffice to
correct the errors in Continuous variable (CV) systems
[17,22-26]. However, in many conventional communication
systems, the error model is Gaussian, and thus it appears
that one is faced with the complexity of implementing
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experimentally challenging non-Gaussian operations for
enabling fault-tolerant quantum communication [27,28].

In the above-mentioned no-go theorems, the Gaussian
noise is assumed to be uncorrelated. However, with the
miniaturization of solid state systems and the increasing
speed of optical communication, the noise in today’s com-
munication systems inevitably exhibits correlations in time
and space [29,30], and thus it will be relevant to consider
channels with correlated noise. In this case, the no-go theo-
rem does not apply. Here, we propose a simple encoding and
decoding technique based on linear optical transformations
that ideally protects arbitrary quantum states from Gaussian
noise in correlated quantum channels. The protocol works in
particular for Gaussian quantum states, and thus, perfect
Gaussian error correction with Gaussian transformations
is possible due to the correlations of the channel noise. We
implement the protocol for coherent and entangled states of
light, thereby characterizing the protocol for the two main
communication approaches: direct communication and
teleportation based communication. Correlated noise in
quantum communication was initially considered for qubits,
leading to the concept of a decoherence-free subspace
[31-33], but recently a few theoretical studies have also
addressed correlated noise in bosonic channels using similar
strategies [34-37].

Our error-protecting scheme is depicted in Fig. 1 for the
case of two partially correlated channels with classical
noise which could either represent two spatially separated
channels with spatial correlations or two consecutive uses
of a single channel with temporal correlations (correspond-
ing to a non-Markovian channel). The channels are noisy,
and a part of the noise is described by the perfectly corre-
lated complex random variables &; and &, [38]. To
describe an asymmetry of the correlated classical noise
among the two channels, we assume &; = ,/g;v¢ and
&, = ,/g,v¢, where the magnitude of the classical excess
noise contributions is given by the factors g; >0
and g, >0, and v, is the complex random variable

© 2013 American Physical Society
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FIG. 1 (color online). Schematic of the proposed error correct-
ing scheme for the protection of an arbitrary quantum state
against correlated noise. The scheme is divided into three differ-
ent steps associated with the encoding, noise addition, and
decoding. The insets serve as an illustration of the function of
the protocol on a coherent state. They are ensemble measure-
ments of the coherent state quadratures as a function of time at
different positions of the protocol. The input state exhibits
quantum noise limited fluctuations, but after the noisy channel,
the state evidently contains excess noise. This is then removed
at the correction stage, where the noise is clearly separated from
the pure quantum state.

corresponding to the classical fluctuations from the
environment. Assuming the transmission of the channels
to be 71, the Bogoliubov transformations for the channels
are

ay = ma, + V1 — i, + Jg1ve, (1)
&12 = ﬁflz + 1 - 7]132 + \@Uc, (2)

where &’1’2 and 4, are the annihilation field operators
associated with the output and input modes, and 7,
represent the uncorrelated thermal fluctuations (which,
for a zero-temperature channel, is identical to the loss-
induced vacuum fluctuations). For circumventing the
noise, we follow the encoding and decoding strategy
illustrated in Fig. 1. The channel inputs are prepared by
combining the input signal (b;,) with an auxiliary vacuum
state (13aux) on a beam splitter and subsequently introducing
a relative phase shift of 7 between the two resulting states.
The encoding transformation can be written as (d;, d,) =
(\/T;bAin — 1= TebAaux’ =1 = Tel;in - \/T:bAaux)s where
T, is the transmissivity of the encoding beam splitter.
The decoding transformation is the reverse of the encoding
transformation and thus represented by the transformations
(bout’ ba{lux) = (\/T_d&ll - \/1 - Td&IZ’ _\/1 - Td[l\ll - \/T_d&l2 >
where T, is the transmissivity of the decoding beam
splitter. By choosing T, = T, = g,/(g; + g»), the input-
output relation for the entire scheme is

A A 8 . 81 4
bout = /Mbin + 1 — 7 v — Uy |,
ou = /b \/81 + & &1t &
3)

which corresponds to a purely lossy but noiseless channel
for any values of g; and g, (for the zero-temperature
channel). The correlated classical noise of the environment
has therefore been completely separated from the signal;
the noise will leave one output of the beam splitter,
whereas the signal will leave the other output. Even if
the two channels are partially uncorrelated, our scheme is
perfectly removing the correlated part of the noise without
amplifying the uncorrelated part. For a general treatment of
the protocol, see the Supplemental Material [39].

It is important to note that the error-protecting protocol
is universal; i.e., it is valid for any input quantum state and
for any statistics of the correlated noise. In the following,
we investigate our protocol experimentally for coherent
and CV entangled states in a correlated Gaussian noisy
environment, but the protocol would likewise work for
two-dimensional qubit systems or non-Gaussian systems
of higher dimensions.

The experimental realization of the scheme is illustrated
in Fig. 2. The prepared quantum states—coherent and
entangled states—are residing at the sideband frequencies
of £4.9 MHz relative to the carrier frequency of the
optical mode. Coherent states are produced by a pair of
electro-optic modulators, whereas the entangled states are
generated by interfering squeezed beams on a balanced
beam splitter.

We realize the two channels in two orthogonal polariza-
tion modes, thereby simulating correlated polarization
noise. In this basis, the input state is simply encoded by
the use of a single half-wave plate which simulates a
variable beam splitter and introduces a relative phase shift
of 7. Gaussian noise of the environment is generated by
traversing a bright beam through a pair of electro-optical
modulators that are driven by two independent electronic
Gaussian noise sources. The noise is then subsequently fed
into the two channels via an asymmetric beam splitter
(99/1) at which it is coupled with the signal. The distribu-
tion of the noise among the two orthogonal polarization
modes is carried out with a single half-wave plate. All
quantum states of the experiment are completely charac-
terized using three pairs of homodyne detectors (see
Ref. [39] for details).

In Fig. 1, we present the time traces recorded with a
homodyne detector for the input coherent state, the noise-
affected states of the channel, and the output states. It is
evident from these traces that the noise of the channels is
removed in the decoding station as a result of the coherent
linear beam splitter interaction. A quantitative study of the
cancellation of excess noise is presented in Fig. 3 for
coherent states. Here, we plot the measured quadrature
noise and fidelities between input and output states as a
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FIG. 2 (color online). Schematic of the experimental setup. N
The error correcting part is inside the shaded box, which con- o, 067 %
tains two inputs and two outputs: The inputs are for the input o} \‘
quantum state and for noise addition, whereas the two outputs s \ o: Corrected
are associated with the two outputs of the protocol. The quantum AN o: Non Corrected
states at the inputs are either coherent states or entangled states. , e
Coherent states are prepared at the sideband frequencies of o e ——
+4.9 MHz using a pair of modulators, amplitude (AM) and I S e
phase modulators (PM), whereas the entangled states are gen- 0.0, n > = e o

erated by interfering two squeezed beams on a balanced beam
splitter (BBS). The squeezed beams are produced by optical
parametric amplifiers (OPA1 and OPA2) which are pumped by
laser beams at 532 nm (denoted as “Pump”’) and stabilized with
“seed” beams at 1064 nm. When coherent states are used as
inputs to the protocol, the OPAs are not operational, and thus the
coherent states produced in front of OPA2 are bypassing the
squeezing operation and injected directly into the protocol.
Correlated noise in the two channels is produced by an auxiliary
beam that traverses a pair of noise-controlled modulators and is
subsequently injected into the scheme. For verification, high-
efficiency homodyne detectors (HD) are used: HD2 and HD3 are
measuring the two outputs of the protocol, whereas HD1 is used
for the characterization of entanglement. PBS, polarizing beam
splitter; HWP, half-wave plate; DAQ/SP, data acquisition or
signal processing; and LO, local oscillator.

function of the channel noise with and without correction.
Figure 3(a) represents the experimentally obtained varian-
ces for the realization corresponding to slightly asymmet-
ric channels (g,/g, = 0.61) with optimized encoding and
decoding beam splitter settings: 7, = T; = 0.38. For this
realization, the fidelities are displayed in Fig. 3(b). All data
are compared to an incoherent (classical) correction pro-
tocol, where the quantum state is sent through one of the
channels and the other channel (which contains correlated
noise) is measured to correct the state. This incoherent
strategy is independent on the amount of correlated noise,
as is the case for the coherent strategy [39]. We clearly see
that the coherent approach beats the incoherent approach
for all channel realizations.

Added Noise [SNU |

FIG. 3 (color online). Demonstration of error correction
coding of a coherent state in an extremely noisy environment.
(a) Relative noise variance (normalized to shot noise) of the
quantum state is plotted against the channel excess noise for the
case of slightly asymmetrically correlated noise with a ratio of
g1/g> = 0.61. Amplitude and phase quadratures are represented
by open and closed circles, respectively, and the results before
and after correction are shown. The noncorrected quantum states
were measured by setting T, = 1, whereas the corrected states
were measured with 7, = 0.36. In (b), we plot the fidelity
between the input coherent state and the output corrected and
uncorrected states. The theoretical predictions (obtained using
the theory outlined in Ref. [39]) are represented by the dashed
lines, and the solid and dotted green lines correspond to the two
different incoherent strategies, depending on the a priori infor-
mation about the channels. We use the solid line as our bench-
mark, since in that case, the a priori channel information is
similar to that needed for the implementing the coherent strategy
[39]. The shaded parts therefore represent the regions at which
the classical strategy is beaten. The small deviation from ideal
performance at large added noise is due to the nonideal mode
matching at the correcting beam splitter. The theoretical line
corresponds to a mode mismatch of 1% (corresponding to a
visibility of 99.5%). The statistical error bars are smaller than
the dots.

Next, we investigate the survival of entanglement in our
correlated noisy channel. One half of a CV entangled state
is sent through the noisy channel using the encoding-
decoding protocol, and the resulting output is measured
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with homodyne detection. The second half of the entangled
state (which was not sent through the channel) is also
measured, and we compute the correlations in terms of
variances of the joint quadratures: {((£; — £,)?) and ((p, +
P2)?), where % and p represent the amplitude and phase
quadrature of modes 1 and 2, obeying the relation [£, p]=i.
According to the criterion of Duan et al. [40] and Simon
[41], entanglement is then present if (£, — £,)%) + {(p, +
P,)?) < 2. The results of these measurements are displayed
in Fig. 4. The vertical line corresponds to the point at which
a single channel can no longer be used for entanglement
distribution. However, we clearly see that by the implemen-
tation of the error correcting code, the dual channel can be
used for deterministic entanglement distribution for at least
up to 35 Shot Noise Units (SNU) of excess noise.

The residual excess noise after correction (evident in
Figs. 3 and 4) stems from noise contributions that did not
interfere at the decoding beam splitter as a result of the
imperfect mode matching at the noise-injecting beam
splitter. Despite this small imperfection, we still show
transmission of quantum states through an extremely noisy
channel to a degree that allows for the generation of a
secure key and the implementation of quantum teleporta-
tion. In addition to proving the channel’s capability of
transmitting entangled states, the results also indicate that
the scheme is universal: Since a CV entangled state can be
used to prepare an arbitrary state through state projection,

Inseparability [dB ]
L
.

0 10 20 30 40 50
Added Noise [SNU]

FIG. 4 (color online). Demonstration of error correction
coding of continuous variable entangled states in an extremely
noisy and symmetric channel. The inseparability number is
plotted against the added channel noise relative to the shot
noise limit (which is represented by the solid horizontal line).
The vertical dashed line represents the entanglement breaking
line associated with the point at which any input state will be
unentangled if error correction is not used. It is evident that the
coherent strategy keeps the state entangled (associated with the
shaded region) for up to about 35 SNU of added noise, that is, far
beyond the entanglement breaking point. The theory curve
(dashed) takes into account the slight 1% mode mismatch at
the decoding beam splitter, which then explains the increase of
the two-mode squeezing variance as a function of the added
noise. The statistical error bars are smaller than the dots.

the survival of entanglement unambiguously proves the
faithful transmission of a generalized state.

Protection of quantum states in correlated noisy environ-
ments is of practical relevance. One important example is
the non-Markovian noise introduced by a standard optical
fiber as a result of the effect of guided acoustic wave
Brillouin scattering (GAWBS) [42]. The time scale of
this noise is determined by the size of the fiber core,
and in a standard fiber, the bandwidth is around 1 GHz.
Therefore, for communication rates exceeding 1 GHz,
consecutive pulses will contain correlated noise, which
can be canceled using our protocol. It has also been shown
that part of the GAWBS noise is depolarized, leading to
correlations between orthogonal polarization modes, as
illustrated in Fig. 5. To simultaneously overcome both
noise sources, we propose an extended version of our
protocol, as shown schematically in Fig. 5. The quantum
state is divided into four channels: two channels are sepa-
rated in time and two in polarization. Pairwise correlations
between the four pulses occur due to polarized and depo-
larized GAWBS. A schematic of the separation and corre-
lation is shown in Fig. 5(b). In this realistic noise model,
we protect the quantum states by adding 7 phase shifts to
two of the pulses with respect to the two others. After noise
addition, the signal is then perfectly separated from the
noise by following the linear interference strategy shown

(@)
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Encoding Noise channel Decoding
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inpuf] output
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FIG. 5 (color online). The four-channel error correction coding
scheme. (a) Illustration of the pairwise noise correlation pattern
in an optical fiber. As a result of guided acoustic wave Brillouin
scattering in the fiber, noise correlations (marked with arrows)
arise in time as well as in the polarization during pulse propa-
gation. (b) Scheme for error correction of the correlated noise in
fibers. The four pulses in (a) are represented by four channels in
(b), and the noise correlations are marked by links between the
channels and are color coded according to the colors in (a).
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in Fig. 5 [39]. If noise correlations exist in other degrees
of freedom, it is possible to extend the protocol further.
Our developed method for noise protection therefore holds
great promise for combating noise in real optical fiber
systems as well as in miniaturized systems where spatial
correlations exist.

In summary, we have proposed a universal scheme
for protecting arbitrary quantum states in a noisy non-
Markovian environment. The proposal has been investi-
gated experimentally using coherent states and entangled
states of light affected by correlated Gaussian noise. Using
a simple linear optical encoding and decoding scheme, we
have demonstrated the near-ideal recovery of pure quan-
tum states from a highly noisy environment. The scheme
can be easily extended to encompass four correlated noise
channels, which is of relevance for protecting quantum
states in realistic optical fibers. This method has the po-
tential to extend the distance for quantum communication
and at which a secret key can be generated.

The work was financed by the Danish Agency for
Science, Technology, and Innovation (Sapere Aude
Projects No. 10-093584 and No. 10-081599). R.F.
acknowledges financial support from Grant No. P205/12/
0577 of the Czech Science Foundation and the European
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