Technical University of Denmark

Sample preparation for food chemistry analysis

Rasmussen, Rie Romme

Publication date: 2013

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA): Rasmussen, R. R. (2013). Sample preparation for food chemistry analysis Kgs. Lyngby: DTU Food. [Sound/Visual production (digital)]. Seminar om prøveforberedelse (Systembiologi), Kgs. Lyngby, Denmark, 23/04/2013

DTU Library Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

_________ __{2.71,8281,8284

Sample preparation for food chemistry analysis

Rie Romme Rasmussen MSc, PhD, Chemist

 $f(x+\Delta x) = \sum_{i=0}^{\infty} \frac{(\Delta x)^i}{i!} f^{(i)}(x)$

DTU Food National Food Institute

National Food Institute

Focus on public health:

- human nutrition - food safety - food technology - environment and health -

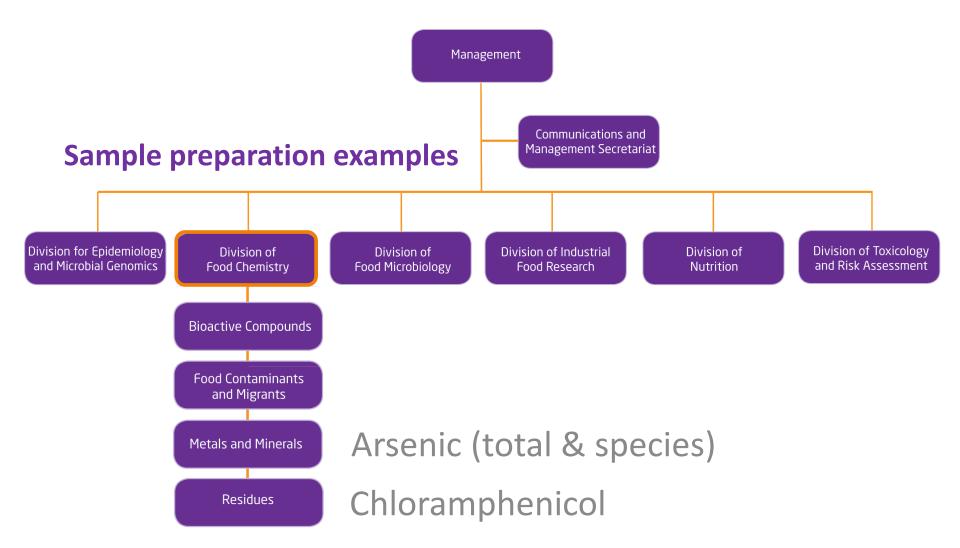
Food products throughout the entire food chain:

- primary agricultural production
- industrial and home processing
- evaluating the impact on human health

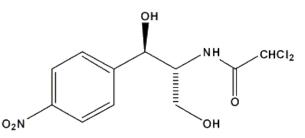
Scientifically based risk assessments and advices

authorities and industry

International and national reference laboratory

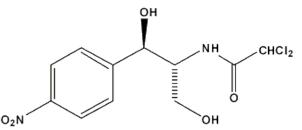

chemical and microbial food safety

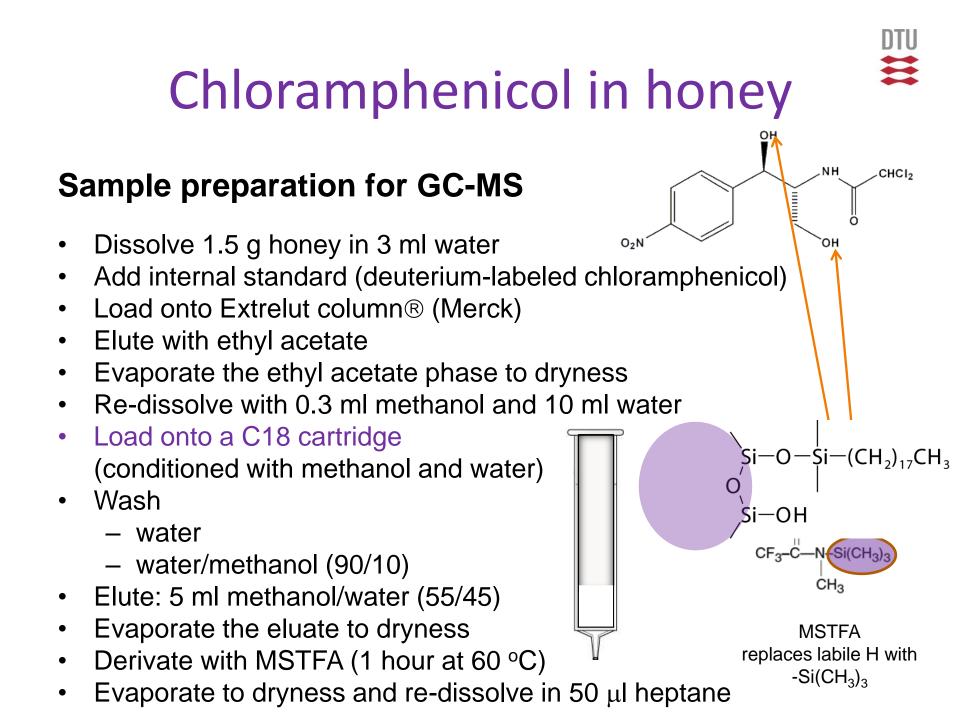
Part of the national food safety contingency plan



National Food Institute

Approx. 400 employees in six divisions:

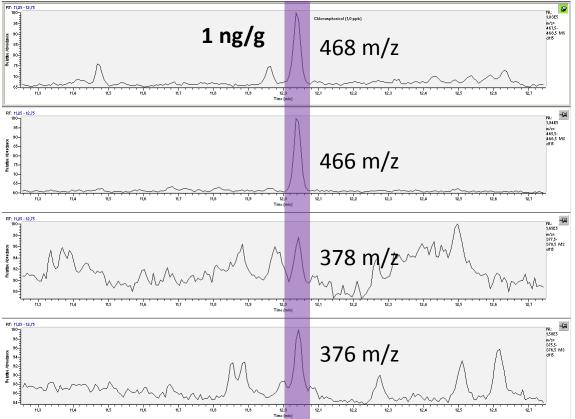

Chloramphenicol



- Broad spectrum antibiotic
- Pharmaceutical prescribed for e.g., eye inflammation
- Severely toxic to bone marrow and the blood stem cells
- Banned in agricultural production in EU
- Analytical challenges; Chlorampenicol in honey
 - High sugar content
 - EU regulated at a low level (0.3 ng/g MRPL)
 - Verification method
 - GC-MS (4 ions required)
 - LC-MS-MS (1 precursor and 2 daughter ions required)

Sample preparation for GC-MS

- Dissolve 1.5 g honey in 3 ml water
- Add internal standard (deuterium-labeled chloramphenicol)
- Load onto Extrelut column® (Merck)
- Elute with ethyl acetate
- Evaporate the ethyl acetate phase to dryness

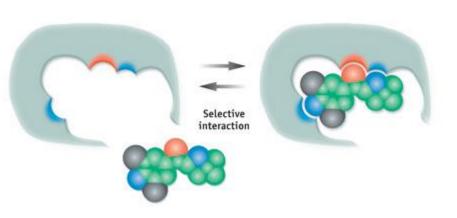


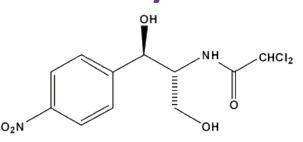
GC-MS

Temperature ramped separation on a 5% diphenyl column, negative chemical ionisation

Required identification RT & 2 ion-ratios not obtained

 \rightarrow LC-MS/MS




Sample preparation for LC-MS/MS

- Dissolve 1.0 g honey in 1 ml water
- Add internal standard (deuterium-labeled chloramphenicol)
- Load onto a <u>molecular imprinted polymers</u> (MIP) cartridge (conditioned first with methanol and then with water)

Extensive wash

- 5% acetonitrile in 0.5% acetic acid
- 1% ammonia
- 20% acetonitrile in 1% ammonia
- Water
- 5% acetonitrile in 0.5% acetic acid
- Dry column with vacuum
- Elute with methanol
- Evaporate the eluate to dryness
- Re-dissolve in 500 μl 10% methanol

LC-MS/MS

Kolonne: C-18 Inertsil ODS2 (2 x 150 mm, 3 µm) Gradient elution:

A: 10 % methanol / 90 % 0.001 M acetic acid

B: 100 % methanol

1 precursor and 2 daughter ions:

320.90 > 152.15 primary 320.90 > 257.15 secondary 325.93 > 157.18 internal standard

 \odot

Detection capability = 10 times less than the required 0.3 ng/g

Arsenic in seafood

Arsenic is a metalloid present in

hydrogen 1	soils, groundwater, surface water, air and foods														helium 2			
Н	sons, groundwater, surrace water, an and roous														He			
1.0079	4															4.0026		
lithium 3	beryllium 4													carbon 6	nitrogen 7	oxygen 8	fluorine 9	neon 10
Li	Be	Be													Ň	Ô	Ē	Ne
6.941	9.0122													12.011	14.007	15,999	18,998	20.180
sodium 11	magnesium 12												aluminium 13	silicon 14	phosphorus 15	sulfur 16	chlorine 17	argon 18
Na	Mg													Si	P	S	01	1000
12 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -															entrol and	100000000	CI	Ar
22.990 potassium	24.305 calcium		scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	26.982 gallium	28.086 germanium	30.974 arsenic	32.065 selenium	35.453 bromine	39.948 krypton
19	20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098 rubidium	40.078		44.956	47.867	50.942	51.996	54.938	55.845	58.933	58.693	63.546	65.39 cadmium	69.723 indium	72.61	74.922	78.96	79.904	83.80
37	strontium 38		yttrium 39	zirconium 40	niobium 41	molybdenum 42	technetium 43	ruthenium 44	rhodium 45	palladium 46	silver 47	48	49	tin 50	antimony 51	tellurium 52	iodine 53	xenon 54
Rb	Sr		Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
85.468	87.62		88.906	91.224	92.906	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
caesium 55	barium 56	57-70	lutetium 71	hafnium 72	tantalum 73	tungsten 74	rhenium 75	osmium 76	iridium 77	platinum 78	gold 79	mercury 80	thallium 81	lead 82	bismuth 83	polonium 84	astatine 85	radon 86
	121-12212		1.000	221999993222			The second second		0.3%	12-22 AV				14-16 (A)				0-1102.7
Cs	Ba	*	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	- 11	Pb	Bi	Po	At	Rn
132.91 francium	137.33 radium		174.97 lawrencium	178.49 rutherfordium	180.95 dubnium	183.84 seaborgium	186.21 bohrium	190.23 hassium	192.22 meitnerium	195.08 ununnilium	196.97 unununium	200.59 ununbium	204.38	207.2 ununguadium	208.98	[209]	[210]	[222]
87	88	89-102	103	104	105	106	107	108	109	110	111	112		114				
Fr	Ra	* *	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq				
[223]	[226]		[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[277]		[289]				

*Lanthanide series	lanthanum 57	58	praseodymium 59	60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
Plant L., "Add Change and as the set of a set of a set of the s	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	dl	Dy	Но	Er	Tm	Yb
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
CONTRACTOR OF THE OWNER	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
* * Actinide series	89	90	91	92	93	94	95	96	97	98	99	100	101	102
2010/2014 Control 2019 - Provinsi State 1	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

Total arsenic

- Sample homogenisation
 - Ultra turrax
 - Kitchen mill

Contamination:

Dust and steel contain some trace elements. Apply titanium knives and a LAF bench.

DTU

Total arsenic

- Sample homogenisation
- Microwave assisted extration
 - Strong acid (65 % v/v HNO_3)
 - High pressure and temperature

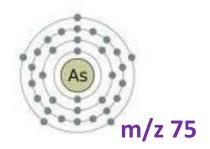
Only small samples size (organic material)

Glass can release arsenic. Apply high quality quartz vessels. Store samples and solutions in plastic containers

Total arsenic

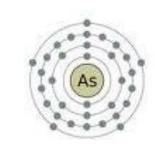
Inductively Coupled Plasma Mass Spectrometry

 \rightarrow Dilute conc. extract with water (to ~2 % v/v HNO₃)


- Add internal standard mix (corrects for sensitivity drift)
- High sensitivity
- ☺ High purchase and running costs

Inductively coupled (argon) plasma is 6000-8000 °K

- Desolvation
- Vaporisation
- Atomisation
- Ionisation



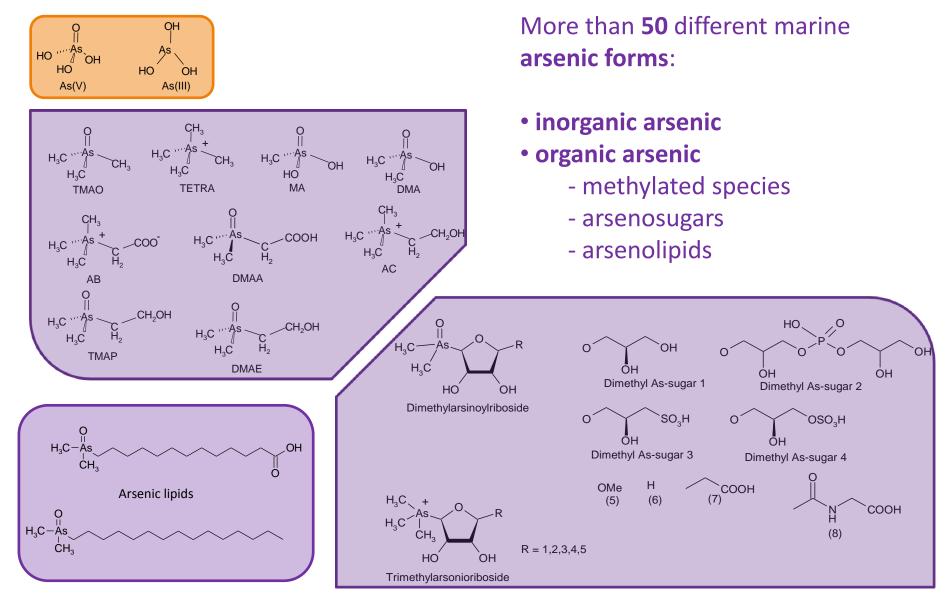
ICP-MS

Element specific detection

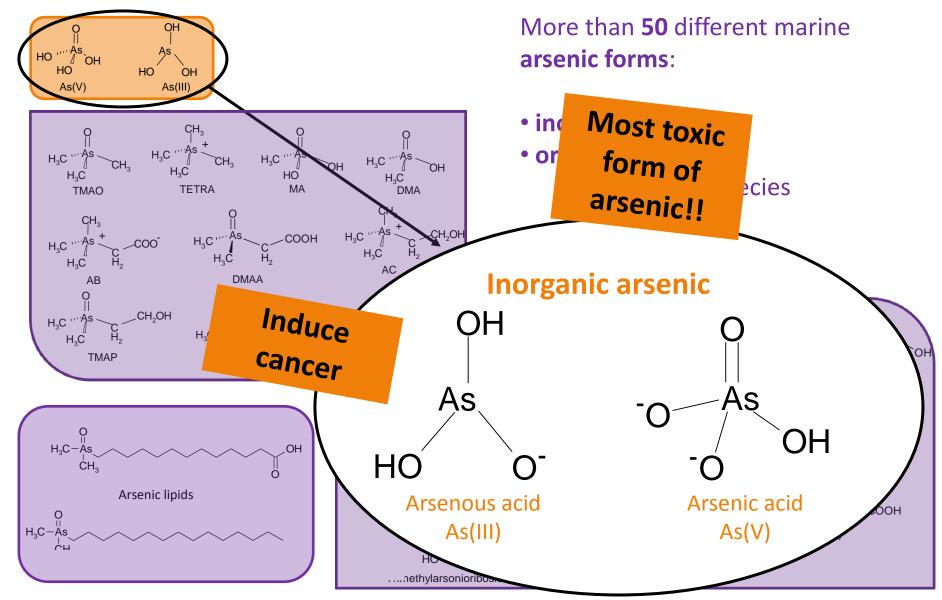
Total arsenic

DTU

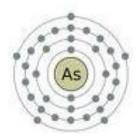
- Continuous Flow Vapor Generation System
- Atomic Absorption Spectrometer

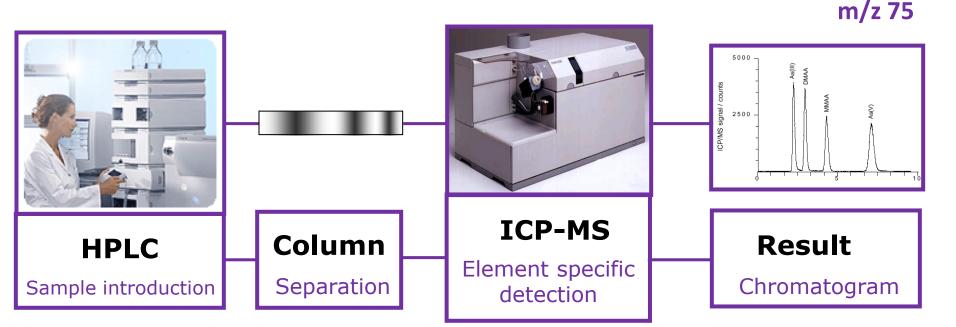

Instrument settings

- Electrical heated cell (900° C)
- Element specific lamp for As
- Wave length (193.7 nm)
- Slit width (0.5 nm)


Gaseous arsenic hydrides is transported by argon gas to the cell → Atomisation reaction → Atomic absorption of arsenic

HG-AAS total arsenic

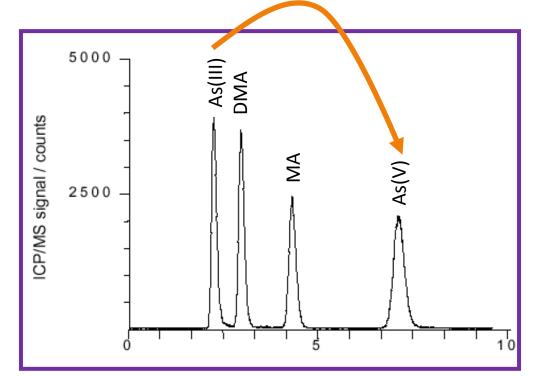

- Marine organisms can bioaccumulate arsenic (As)
- Major part of arsenic exists as organic arsenic in seafood
- As toxicity is species specific, inorganic arsenic (iAs) is most toxic
- iAs causes cancer & skin lesion
- Comprehensive As speciation data for food items missing
- <u>Inorganic As</u> and <u>not total As</u> in food should be determined for better risk assessment


• Sample extraction aim

High extraction efficiency, no interconversions between inorganic As and organo As species

HPLC-ICP-MS (anion exchange column)

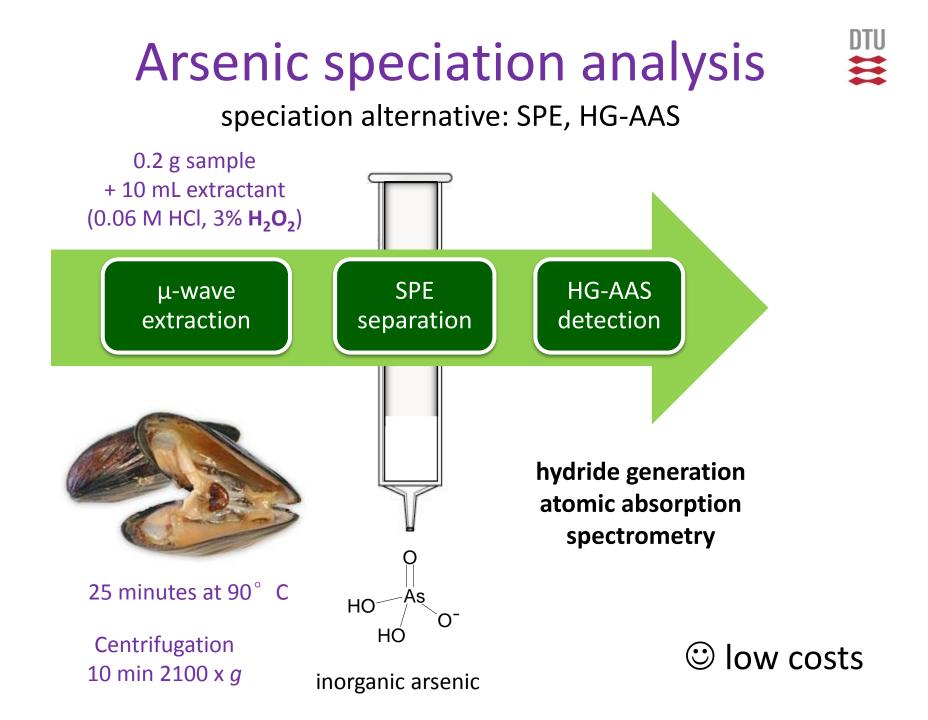
☺ Species have different properties (pKa values)
 ☺ ICP-MS → high purchase and running costs



• Sample preparation aim

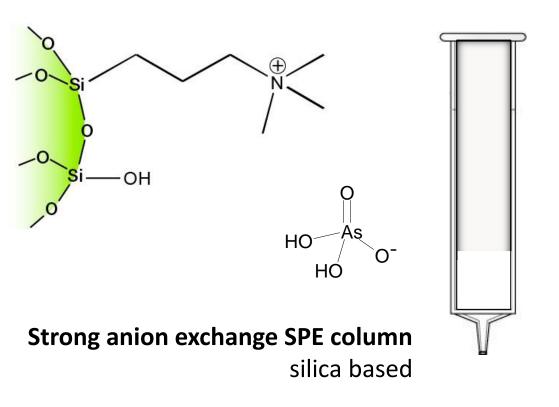
Isolate inorganic arsenic in one fraction

 \rightarrow Measure arsenic with the cheap HG-AAS detector



Trick

Convert As^{III} to As^V for higher anion properties by an oxidant


SPE separation by anion exchange

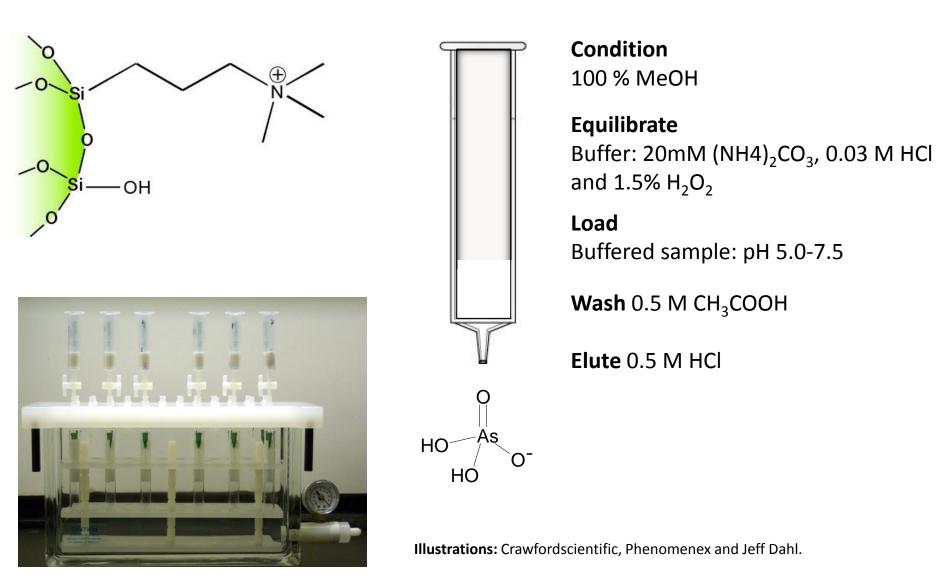
HPLC (anion exchange) -ICP-MS

SPE protocol

Separation of As species

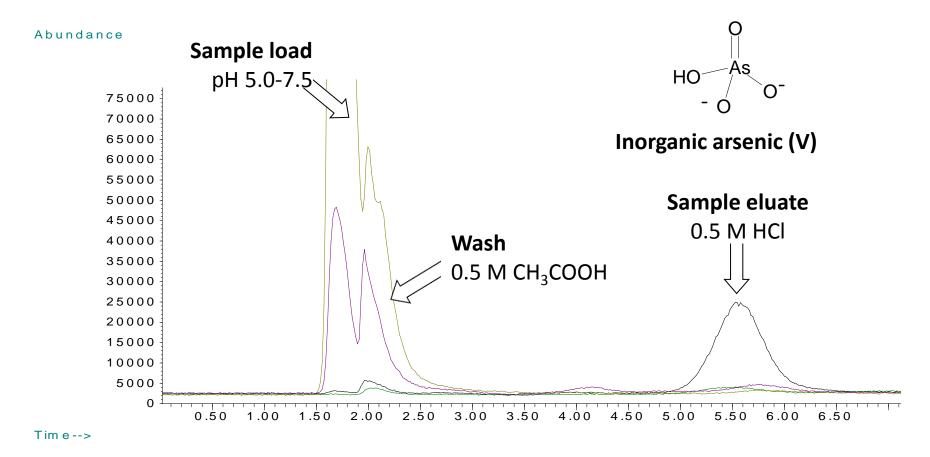
The **charge** of the arsenic species depends on pH

@ pH = 6 iAs(V) is negatively charged


Load of pH buffered sample

Sequential elution

Separation of inorganic As from organo As species by SPE


SPE protocol

Separation of As species

Arsenic in SPE eluates

load, wash and sample fraction

Figure. HPLC-ICP-MS chromatogram of fish protein (TORT-2) 3 SPE fractions separated on an anion exchange column (ION-120 part nr. ANX-00-6550, 120x4.6 mm), 40 mM carbonate pH 10.3.

HG-AAS detection

arsenic in sample eluate

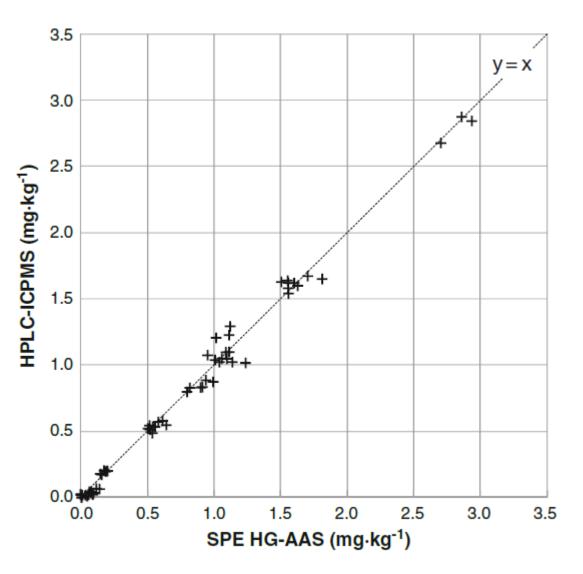
Pre-reduction: As(V) → As(III)
Mix sample eluate with KI and ascorbic acid, 3

M HCl <u>60 min incubation</u>

Add more 3 M HCI
 Another 60 min incubation

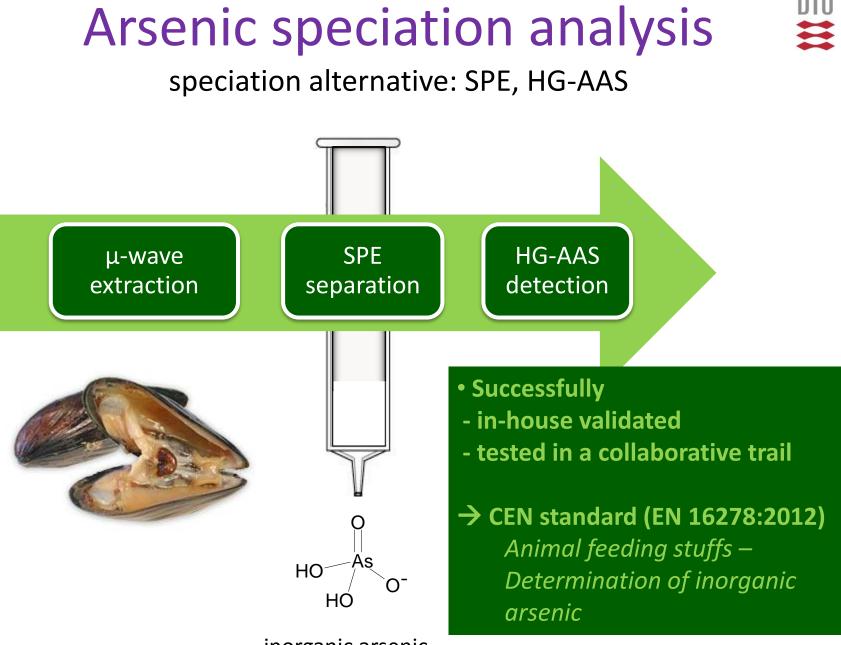
Hydride generation reagents HCI (4.7 M) NaBH₄ / NaOH (0.5 % w/v)

Instrument settings: Electrical heated cell (900° C) Element specific lamp for As Wave length (193.7 nm) Slit width (0.5 nm) Hydride generation atomic absorption spectrometry



Thermo Scientific

HG-AAS total arsenic in eluate


Arsenic speciation analysis

Inorganic arsenic (As[∨]) by two different methods: •HPLC-ICP-MS •SPE HG-AAS

In total 72 blank, spiked and natural incurred marine samples were analysed.

No significant difference (P<5%)

inorganic arsenic

Sample preparation @ DTU Food

• Cartridges examples

- Extrelut

Replacement for traditional liquid-liquid extraction, removed also water

– C18

Retains apolar compounds. Removed only part of interfering compounds (chloramphenicol in honey by GC-MS)

Molecular imprinted polymers (MIP)

Compound specific, extensive wash possible, low detection capability obtained (chloramphenicol in honey by LC-MS/MS)

Strong anion exchange

Retain negatively charged compounds, sequential elution, inorganic arsenic isolated in one fraction

Thank you for your attention!

DTU

Ξ

