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The consequences of balanced harvesting
of fish communities

Nis S. Jacobsen, Henrik Gislason and Ken H. Andersen

Centre for Ocean Life, DTU AQUA, Charlottenlund Castle, 2920 Charlottenlund, Denmark

Balanced harvesting, where species or individuals are exploited in accord-

ance with their productivity, has been proposed as a way to minimize the

effects of fishing on marine fish communities and ecosystems. This calls

for a thorough examination of the consequences balanced harvesting has

on fish community structure and yield. We use a size- and trait-based

model that resolves individual interactions through competition and preda-

tion to compare balanced harvesting with traditional selective harvesting,

which protects juvenile fish from fishing. Four different exploitation

patterns, generated by combining selective or unselective harvesting with

balanced or unbalanced fishing, are compared. We find that unselective

balanced fishing, where individuals are exploited in proportion to their pro-

ductivity, produces a slightly larger total maximum sustainable yield than

the other exploitation patterns and, for a given yield, the least change in

the relative biomass composition of the fish community. Because fishing

reduces competition, predation and cannibalism within the community,

the total maximum sustainable yield is achieved at high exploitation rates.

The yield from unselective balanced fishing is dominated by small individ-

uals, whereas selective fishing produces a much higher proportion of large

individuals in the yield. Although unselective balanced fishing is pre-

dicted to produce the highest total maximum sustainable yield and the

lowest impact on trophic structure, it is effectively a fishery predominantly

targeting small forage fish.

1. Introduction
The ecosystem approach to fishing has increased the interest in managing

fisheries impacts at the level of fish communities and ecosystems [1,2], but so

far, it is unclear exactly how this can be done. This relates not only to the

proper definition and use of the concept of maximum sustainable yield

(MSY) in a multi-species management context [2], but also to how exploita-

tion patterns might be changed to better achieve fisheries and conservation

objectives simultaneously. Recently, it has been suggested that both objectives

can be achieved if species and individuals are exploited in relation to their

natural productivity, the so-called balanced harvesting [3,4].

The theoretic rationale behind balanced harvesting is inspired by classic

‘surplus production’ theory, which predicts that the fishing mortality leading to

MSY is proportional to natural mortality [5–7]. In an unexploited situation, natu-

ral mortality is equal to production per unit of biomass [8], and it is therefore

expected to scale to body mass raised to the power of 20.25 [9]. The natural con-

clusion is that the largest yield from an ecosystem can be achieved if all species are

fished proportional to their theoretical productivity, and hence that small species

should be fished more intensely than large species. However, there are two com-

plicating issues: first, most fish have large size differences between offspring and

adults, and it is therefore relevant to ask whether productivity is measured at the

stock level (as in classic surplus production theory) or at the level of individuals

(as in [10,11]). Current single-species MSY management strives to enforce fishing

mortality and size selectivity to maximize production in a manner that may be

termed ‘balanced selective’ fishing, where juvenile fish are protected from fishing

and adults are fished in proportion to their productivity. An exploitation pattern

where each individual is exploited in proportion to its productivity challenges the

& 2013 The Author(s) Published by the Royal Society. All rights reserved.
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predominant belief among fisheries scientists that MSY is

achieved when juveniles are protected [12,13]. Second, changes

in the abundance at higher trophic levels affect the productivity

of lower trophic levels: when the fishing mortality on one

trophic level goes up, the predation mortality on the lower

trophic level goes down, and consequently that trophic level

may tolerate a higher fishing mortality. This replacement of

natural mortality by fishing mortality was actually one of the

rationales behind balanced harvesting [14], and has the conse-

quence that the fishing mortality producing MSY is different

in the multi-species and single-species cases [15]. An evaluation

of balanced versus unbalanced harvesting therefore requires a

community perspective where changes in trophic interactions

owing to fishing are fully accounted for [11].

A central piece of empirical evidence supporting balanced

harvesting consists of studies of fisheries along African lakes

demonstrating that non-regulated fisheries predominantly

targeting smaller individuals had little impact on the size

structure of the local fish communities [14,16]. Apart from

these studies, the impact of balanced harvesting has mainly

been explored through model predictions. Simulations with

Ecosim models have shown that increasing the exploitation

rate of small species generates less change in biomass distri-

bution across trophic levels than increasing exploitation rate

equally across species [17]. Garcia et al. [3] compiled results

from a series of Ecosim and ATLANTIS models, and concluded

that unselective harvesting was superior to selectively fishing

fewer ecosystem components. The unselective pattern was

better in terms of total yield and biomass, and produced

fewer local population extinctions. Many of the models used

in these simulations did not resolve the size structure of the

species or did so using only few life stages and assuming

food-independent growth from one stage to the next. It can

therefore be questioned how well these simulations reflect

the outcome of unselective harvesting.

Simulations of unselective balanced harvesting, where

each individual is fished in proportion to its productivity,

require a finely resolved or continuous size structure. Such

simulations have only been performed with single-species

size-spectrum models where it was found that targeting

only small individuals caused less disruption to the size

spectrum than targeting larger individuals, and that fish-

ing according to productivity resulted in higher resilience

[10,11]. Because unselective balanced harvesting implies a

higher fishing intensity on small than on large individuals,

we expect the size composition of the catch to differ from

that of the traditional size-selective fisheries. A catch com-

posed largely of small individuals may be desirable (e.g. as

in some artisanal fisheries [14]), while it may be less so in

industrial fisheries for human consumption, where larger

individuals, regardless of species, typically return a higher

price per weight. It is therefore relevant to extend the descrip-

tion of balanced harvesting beyond total yield and total

biomass [3,10,18].

Our aim is to systematically examine how exploitation

affects catch and community structure by comparing balanced

versus unbalanced and selective versus unselective exploitation

patterns. To this end, we use a size-based fish community

model that fills the gap between the single-species size spectra

and the community models [19–21]. The model provides a

mechanistically based description of fish community dynamics,

taking account of both intra- and interspecific competition and

predation. Compared with traditional single-species models,

predator–prey interactions and food-dependent growth

are fully resolved, making the model suitable for long-term

projections of an entire community. In contrast to previous pub-

lications on balanced harvesting, our model resolves the full life

history of the individual fish from egg to adult. These attributes

allow to us to explore community responses of exploitation

of varying sizes and species in much greater resolution than

previously carried out.

To precisely define the terms balanced/unbalanced and

selective/unselective fishing, we use four exploitation patterns

and use these to address total yield, size composition of yield

and biomass distribution at the community level. The patterns

differ with respect to whether or not fishing mortality is scaled

with productivity (balanced or unbalanced), and whether

or not juveniles are protected (selective and unselective).

We thus compare the outcome of: (i) selective unbalanced fishing,

a pattern that is a good approximation to the current exploi-

tation of the North Sea fishes, where juveniles are protected

and adults are fished with approximately equal mortality

across groups [22]; (ii) unselective unbalanced fishing, where all

individuals are exploited with the same fishing mortality irre-

spective of whether they are juveniles or adults; (iii) selective
balanced fishing, where juveniles are protected from fishing

and adult fishing mortality scales with productivity at the

population level; and (iv) unselective balanced fishing, which

is the ‘ideal’ balanced pattern where each individual is

exploited relative to its productivity. For a given total yield,

we ask which exploitation pattern results in less change in

the distribution of biomass across the community. We also

compare the size composition of the catch and show that

although balanced fishing causes less change in the structure

of the community, it generates a substantial reduction in the

average size of fish being caught.

2. Methods
(a) Trait-based size-spectrum model
We use the size-spectrum model developed by Andersen &

Beyer [19] to estimate the equilibrium yield and biomass for

each of the four exploitation patterns at different levels of fishing.

The model is based on individual-level processes—encounters,

growth, mortality and reproduction—and represents the fish

bi
om

as
s 

de
ns

ity
 (

m
–3

)

weight, w (g) 
1 g 10 g 100 g 1 kg 10 kg

10–8

10–7

10–6

10–5

10–4

10–3

Figure 1. The fish biomass density spectrum in the unfished state. The thick
line is the community spectrum, and the thin black lines show 20 ‘species’
with different asymptotic body weights.
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Table 1. Equations governing the model. Ni(w) is the abundance density of individual fish with weight w from species i with asymptotic size W1 i .

description equation no.

community

conservation equation
@NiðwÞ
@t
þ @giðwÞNiðwÞ

@w
¼ �miðwÞNiðwÞ M1

community spectrum NcðwÞ ¼
P

i
NiðwÞ þ NRðwÞ M2

food consumption

lognormal food preference curve f
wp

w

� �
¼ exp

�ðlnðw=ðwpbÞÞÞ2

2s2

" #
M3

encounter rate EðwÞ ¼ gwq
ÐmaxðW1Þ

0
Nc(w)f

wp

w

� �
wdwp M4

consumption f ðwÞhwn ¼ EðwÞ
EðwÞ þ hwn

hwn M5

somatic growth and reproduction

available energy EaðwÞ ¼ af ðwÞhwn � kswp M6

allocation of energy c
w

W1

� �
¼ H

hmW1

w

� �
w

W1

� �1�n

M7

somatic growth giðwÞ ¼ EaðwÞ 1� c
w

W1;i

� �� �
M8

egg production R p:i ¼
1

2w0

ðW1;i

w0

EaðwÞc
w

W1;i

� �
NiðwÞdw M9

density dependence R ¼ Rmax :i
R p:i

R p:i þ Rmax :i
M10

max. recruitment Rmax:i ¼ kr (af0hwn
0 � kswp

0 )W2n�q�3þa
1;i ðW1;i � W1;i�1Þ M11

mortality

predation mortality mp(wp) ¼
ÐmaxðW1Þ

w0

f
wp

w

� �
(1� f (w))gwqP

i
NiðwÞdw M12

background mortality mb ¼ m0W n�1
1 M13

starvation mortality
msðwÞ ¼

0 af ðwÞhqn . kswp

kswp � af ðwÞhwn

jw

8<
: af ðwÞhqn � kswp

M14

selective unbalanced fishing Fðw;W1Þ ¼ F0H
w

hF W1

� �
M15

unselective unbalanced fishing F ¼ F0 M16

(Continued.)
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community as a continuum of ‘species’ with increasing asymptotic

body weights. In the computational implementation, the conti-

nuum is represented as a discrete number of asymptotic weight

classes, which are referred to as ‘species’ for the sake of simplicity.

A species i in the model is characterized by its asymptotic body

weight, W1, and its population by its size distribution Ni(w). The

results from the model are independent of the number of species

as long as this is larger than 10. In our simulations, we used

20 species in the range from 10 to 30 000 g (figure 1).

The model rests on two main assumptions: (i) fish eat other

fish that are smaller than themselves, and (ii) individual fish

can be described exclusively by their individual and asymptotic

body weights. The individual-level processes and the scaling

from individuals to Ni(w) are described in detail in [21] and sum-

marized in table 1 with parameters defined in table 2. Here, we

provide a general overview of the model.

In the model, each individual is described by its asymptotic

body weight, W1, and by its individual weight, w. Using mechan-

istically based submodels for growth, mortality and reproduction,

the model calculates the number of individuals in each species’s

weight-group, Ni(w). All processes are subject to a conservation

equation (M1), where growth and mortality accounts for the

change in the number of fish and biomass within a given size

class. In order to grow, an individual must encounter and ingest

food. Food is selected from the entire size spectrum (M2) using a

lognormal prey size preference (M3). The food encountered by a

predator is the product of available food and a size-specific

search rate (M4). The amount of encountered food consumed is

limited by the maximum rate of food processing hwn and modelled

with a Holling type II functional response (M5).

The food consumed is used on standard metabolism, somatic

growth and reproduction. The available energy is what remains

after consumption is assimilated and standard metabolism kswp

is subtracted (M6). As a mature individual approaches its asymp-

totic weight, an increasing fraction of the available energy is

allocated to reproduction (M7) and this reduces its somatic

growth (M8). Growth and reproduction in the model are therefore

linked and food-dependent. The particular allocation to reproduc-

tion (M7) is chosen such that a constant ratio between consumption

and maximum consumption results in a growth pattern similar to

a von Bertalanffy curve [21]. When the individual matures, energy

is allocated to egg production (M9). Eggs hatch to become larvae

using a Beverton–Holt-like density-dependent recruitment func-

tion (M10), where the maximum recruitment, Rmax:i, depends on

the equilibrium solution of the model (M11) [19].

Natural mortality comes from three different sources: pre-

dation mortality, background mortality and starvation mortality.

Predation mortality is proportional to encounters (M12). Back-

ground mortality is implemented to prevent the build-up of large

individuals at zero fishing, and is assumed to scale with asymptotic

weight (M13). Starvation mortality is only present when feeding is

less than required to cover standard metabolism (M14).

To sustain the smallest individuals in the fish community, a

dynamic background spectrum of edible plankton is provided. We

model the spectrum as a semi-chemostat resource with a carrying

capacity determining the total production of the system (M20).

(b) Fishing mortalities
Fishing is imposed as four conceptually different exploitation

patterns (figure 2). The patterns differ with respect to their size

selectivity within and across species. Further, the exploitation

patterns are divided into ‘balanced’ and ‘unbalanced’ types of

fishing. Selective fishing refers to exploitation patterns where

juveniles are protected from fishing and individuals are recruited

to the fishery as they approach some fraction of their asymptotic

weight. Selection is modelled by a sigmoidal function that switches

smoothly from 0 to 1 at the size hFW1 (M19). In balanced fishing,

individuals or species are exploited in accordance with their

productivity as determined by metabolic scaling rules (i.e. scaling

fishing mortality with individual or asymptotic body weights with

exponent 20.25) [9,25]. Unbalanced fishing allocates F equally

over all asymptotic weights or sizes. This gives four different fish-

ing combinations: selective unbalanced fishing, (M15; figure 2a),

unselective unbalanced fishing (M16; figure 2b), selective balanced

fishing (M17; figure 2c) and unselective balanced fishing (M18;

figure 2d). All exploitation patterns are subject to a lower cut-off

size where the smallest individuals are recruited to the fishery.

Each fishing pattern is scaled with a fishing intensity, F0. As total

fishing mortality at size is a product of selectivity and fishing inten-

sity, comparison of the absolute fishing mortality, F, between the

patterns is complicated and should be approached cautiously.

To facilitate qualitative comparison, we have nevertheless scaled

the fishing intensities such that the fishing mortality of an arbitrary

‘medium’-size, fully mature fish weighing wm ¼ 444 g is the same

for all exploitation patterns (see dotted lines in figure 2).

We describe the state of the system using three indicators:

total yield, spawning stock biomass relative to the unexploited

situation and size composition of the yield. The yield in the

system is calculated as Y ¼
P

i

ÐW1;i
wr

Fi(w)Ni(w) w dw, where wr

is the body size at recruitment to the fishery, and the sum runs

over all W1 species in the model. We calculate yield and ecosys-

tem state when fishing intensity is gradually increased from 0 to

3 yr21 for each of the four exploitation patterns.

Table 1. (Continued.)

description equation no.

selective balanced fishing Fðw;W1Þ ¼ F0
W1

wm

� ��0:25

H
w

hF W1

� �
M17

unselective balanced fishing FðwÞ ¼ F0
w

wm

� ��0:25

M18

size-selection function HðzÞ ¼ ð1þ z�10Þ�1 M19

resource spectrum

resource production
dNRðwÞ

dt
¼ r0w p�1[kw�l � NRðwÞ]� mpðwÞNRðwÞ M20
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3. Results
The largest MSY from the community is generated at a fish-

ing intensity around 1.0 in the unselective balanced fishing

scenario, and is approximately 40% higher than the MSY

produced by selective balanced harvesting, but only margin-

ally larger than that of the two remaining scenarios (figure 3).

These results are fairly robust to change in the lower cut-off

size of fishing (see electronic supplementary material). At

low fishing mortalities, all exploitation patterns cause trophic

cascades owing to the decline in spawning stock biomass of

the largest species (figure 4). The trophic cascades make

species with an asymptotic weight of approximately 1 kg

reach higher spawning stock biomasses than in the unexploited

situation, while the largest species collapse (defined as a spawn-

ing stock biomass less than 20% of its unexploited value) already

at relatively low fishing mortalities, except in the selective

balanced fishing scenario where smaller species crash. The com-

munity structure generally responds differently to the selective

(figure 4a,c) and unselective scenarios (figure 4b,d). Selective

fisheries reduce the spawning stock biomass of fish with an

asymptotic size around 200 g, most pronounced in the selective

balanced harvesting case. For the unselective fisheries, this is

less evident. In spite of the amount of species collapsing at the

approximate same fishing intensity in all scenarios, further

increases in fishing intensity generate a more gradual reduction

in biomass in the selective scenarios than in the unselective. The

unselective scenarios furthermore exhibit a ‘fishing down the

food web’ type of response, where increasing overall fishing

mortality gradually removes species from the large end of the

size spectrum.

Considering the relative change in the spawning stock

biomass for different species, unselective balanced fishing

causes the least change from the unexploited situation at

exploitation levels corresponding to 50% and 80% of the lar-

gest MSY (figure 5). For the other three types of fisheries, the

spawning stock biomasses of the largest species are reduced

more. Interestingly, the unselective fisheries do not produce

lower total spawning stock biomasses (i.e. spawning stock

biomass of all species) than the selective fisheries, even

though juveniles are fished. The selective balanced fishery

generates very low abundances for some groups at 50% of

the largest MSY, and cannot produce 80% of the maximum

yield. At the high exploitation rates, the size structure is trun-

cated by all exploitation patterns, with unselective balanced

fishing causing the least truncation.

The size composition of the yield depends strongly on the

exploitation pattern used (figure 6). At a fishing intensity pro-

ducing half the largest MSY, selective exploitation produces

the highest fraction of large individuals in the yield. Unselective

unbalanced fishing also produces approximately the same yield

over the 10–1000 g body weight range, but for the larger fish,

the yield gradually declines with body weight. The yield from

the unselective balanced fishing is dominated by individuals

weighing between 10 and 100 g, and few large fish are

caught. Increasing the total fishing mortality to produce 80%

of the maximum yield provides a similar picture, but with a

much reduced yield of large individuals. At the higher fishing

mortalities producing 80% of the maximum total yield, the

unselective fishery includes only small fish in the catch.

4. Discussion
The simulations show how maximum yield and fish community

structure respond to different exploitation patterns. The

response is driven by the direct effects of fishing mortality on

the exploited populations, and by compensatory changes in

Table 2. All parameters in the model.

parameter value definition

foraging

b 100 preferred predator – prey

weight ratio [23]

s 1.3 width of selection

curve [20]

g 29.2 g2q yr21 search volume factor [21]

q 0.8 search volume

exponent [19]

physiology

h 20 g12n yr21 max. consumption factor

n 0.75 max. consumption

exponent [20]

hm 0.25 size at 50% maturation

relative to W [20]

a 0.6 assimilation efficiency [20]

ks 2.4 g12p yr21 standard metabolism

factor

p 0.75 standard metabolism

exponent [24]

1 0.1 gonad efficiency [21]

a 0.66 expected mortality/

growth ratio

m0 2 g12n yr21 background mortality

factor

j 0.1 fraction of energy reserves

used for reproduction

resource

k,kr 0.005 gl21 m23 carrying capacity of

background spectrum

l 2.05 resource community

exponent

r0 4 g12p yr21 resource community

growth factor

fishing

hF 0.05 fraction of W1 to

recruitment for trawl

selectivity

wr 10 g size at recruitment to

fishery

wm 444 g size at which F ¼ F0 for

all fishing patterns

F0 free fishing intensity
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growth, recruitment and predation within the community.

When fishing reduces the abundance of predators, their prey

will suffer less predation mortality. This will, relatively speak-

ing, increase prey abundance and may lead to trophic

cascades if the effect spreads across several trophic levels.

Such cascades occur in all four scenarios, but are most pro-

nounced when fishing is selective. As the abundance of

predators is reduced, the release from predation makes it poss-

ible to fish the remaining individuals harder than expected from

single-species fish stock assessments, where the fishing mor-

tality producing MSY typically would be around 0.3 yr21 for

larger species [26]. Due mainly to reduction in predation mor-

tality, the MSY is generated at much higher levels of fishing

mortality, where a high yield is achieved at the expense of a col-

lapse of the largest species.

Traditional single-species fisheries models often predict

that fishing on juveniles should be reduced or eliminated in

order to better exploit the growth potential of the individuals

and thus increase yield [1,12]. Our results show that selective

fishing reduces the MSY from the community and does not

preserve the distribution of biomass across species as well

as unselective fishing. If the management objectives are to

achieve MSY and maintain the unexploited distribution of

biomass across species as well as possible, then unselective

balanced fishing is more effective than the other fishing strat-

egies (figures 3–5). However, compared with selective

unbalanced fishing the yield from unselective balanced fish-

ing is composed of small individuals and species, which

may not find as profitable a market as the larger fish

caught by selective harvesting (figure 6).

Our results are in line with other recent modelling studies

which also predict balanced unselective fishing to generate

higher yields than traditional fishing patterns [3,4,27]; how-

ever, our analysis reveals that several fishing patterns

(including unbalanced fishing) have almost the same maxi-

mum yield and that the yield in the balanced case will

consist of fairly small fish. In all fishing patterns, low-trophic-

level individuals account for a large part of the catch, which

explains similarities in total yield. The targeting of small

species (‘forage fisheries’) is in conflict with recent publications

where it is argued that small fish species should be exploited at

levels well below those producing MSY [28–30]. Those results

emerge because exploitation of forage fish species not only

affects the species themselves, but also affects top predators

such as the seabirds and marine mammals predating upon

them [29,31].

One aspect of harvesting that we do not address is to which

degree fishing creates or amplifies temporal variability in abun-

dance of fish. Law et al. [10] show that balanced harvesting

reduces variability in a single-species context. Community-

level simulations have shown that selective fishing increases

variability [32]; however, this was done with a model that

did not resolve life-history diversity. It has since then been

shown that excluding life-history diversity creates artificially

high temporal variability [33], so these results should be

revisited, preferably in the context of balanced harvesting.

(a) Modelling approach
The model contains the most important biological processes and

interactions taking place in a fish community and predicts the

consequences of changing its trophic structure. However, like

many other fish stock models, it relies on a stock–recruitment

function with a weak mechanistic foundation. The function is

included to stabilize the model and prevent competitive exclu-

sion [34]. Ecosystem models need one or several controlling

processes to generate coexistence of a larger number of species.

Specific examples are ratio-dependent functional response [35],

fi
sh

in
g 

in
te

ns
ity

, F
0 

(y
r–1

) 
 

1 g 10 g 100 g 1 kg 10 kg
0

0.5

1.0

1.5

2.0
(a) (b) (c) (d )

1 g 10 g 100 g 1 kg 10 kg

weight, w (g) weight, w (g) weight, w (g) weight, w (g)

1 g 10 g 100 g 1 kg 10 kg 1 g 10 g 100 g 1 kg 10 kg

selective unselective selective unselective

unbalanced unbalanced balanced balanced

Figure 2. The four different exploitation patterns used in the model with F0 ¼ 0.8 yr21 at a size of 444 g (dotted line). (a,b) The unbalanced exploitation patterns
for (a) selective fishing and (b) unselective fishing. (c,d) The two balanced fishing scenarios, for (c) selective and (d) unselective fishing. For all four exploitation
patterns, a lower cut-off is imposed at 10 g.

fishing intensity, F0 (yr–1)

yi
el

d/
m

ax
(y

ie
ld

)

0 0.5 1.0 1.5 2.0 2.5 3.0

1.0

0.8

0.6

0.4

0.2

Figure 3. The yield from the four different exploitation patterns. Grey (black)
lines are selective (unselective) fishing. Dashed (solid) lines indicate that the
fishing is balanced (unbalanced; figure 1). The horizontal dotted lines are
50% and 80% of the maximum yield of the unselected balanced exploitation
pattern. The highest total yield is from unselective balanced fishing. The
unbalanced fisheries have approximately equal yields, both peaking at
high fishing intensities. Selective balanced fishing gives the lowest yield.

rspb.royalsocietypublishing.org
Proc.R.Soc.B

281:20132701

6

 on December 9, 2013rspb.royalsocietypublishing.orgDownloaded from 

http://rspb.royalsocietypublishing.org/
http://rspb.royalsocietypublishing.org/


stock–recruitment relationships [36], prey switching [37] or

food webs with more weakly linked components [21,38]. The

implemented stock–recruitment relationship is characterized

by two things: the slope at the origin that controls the degree

of density dependence, and maximum recruitment. The slope

at the origin is an emergent property of the model as it is deter-

mined by the food-dependent egg production [26]. Maximum

recruitment is defined as a declining function of W1 (M11),

and the specific functional form is determined from the equili-

brium solution of the model [19]. This functional form has

been independently verified from food-web model simulations,

which do not use a stock–recruitment function [21]. The only

free parameter is thus the total recruitment in the system kr,

but the dynamics of the system are fairly insensitive to changes

in this parameter [39].

We used metabolic scaling as an indicator of relative

productivity in our calculations rather than as a dynami-

cally calculated productivity. Productivity is essentially a rate

(dimension ¼ time21), and specific ways to calculate it have

been proposed [25]. Law et al. [10] defined productivity at the

individual level by making fishing mortality proportional to

the somatic growth rate of an unexploited population. Another

measure of individual productivity would be to consider the

biomass production rate, which depends on consumption

and predation mortality [40]. In both cases, productivity is a

dynamic property that is difficult to measure in nature because

it depends on the density of predators and prey. Theoretically,

the unexploited productivity would obey metabolic scaling

rules, which we have applied in our simulations.

Our implementation of the Andersen and Beyer model

uses parameter values reflecting the life history of an average

fish, without differentiating between fast- and slow-growing

species, or between species with high and low reproductive

output. It is not suited to predict the consequences of fishing

on slow-growing, late-maturing species with large offspring

size and low fecundity, such as sharks and rays, which are

likely to be particularly sensitive to fishing [41]. The model

describes the response of fish communities to perturbations

and we expect similar responses if the simulated exploitation

patterns were applied to concrete species and systems. Further

progress is needed in the parametrization of size-structured

models to investigate consequences of balanced harvesting in

applied management of marine ecosystems.

5. Conclusion
We have applied a trait- and size-based model to assess the

impacts of fishing on fish communities and yield. Our results

show that unselective balanced harvesting is more likely to
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preserve the structure of fish communities than unbalanced

fisheries, but with a major reduction in the average size of

the fish being caught.

Implementing balanced harvesting in traditional indus-

trial fisheries would require increased targeting of smaller

ecosystem components and elimination of current minimum

mesh size regulations [42]. The exploitation patterns used in

this study reflect fishing mortalities that should be enforced

at the management level. The resulting fisheries could, how-

ever, turn out to be less profitable in markets where large

fish often return a higher price per kilogram than small fish.

In many richer countries, the demand for small fish for

human consumption is low. In these countries, balanced har-

vesting may result in a change towards industrial fisheries

for production of fish meal and oil or for providing feed to

the aquaculture industry, at the same time as the yield of

wild caught high value fish for human consumption is

reduced. In developing countries dominated by artisanal fish-

eries, and where consumers are willing to buy and use small

fish for human consumption, balanced harvesting may be

easier to implement [14].

Although balanced harvesting is an interesting concept, we

agree with Maxwell et al. [43] when they conclude that its prac-

tical implementation and ecological and socio-economic

consequences need to be further studied before it can be used

as a general principle to guide the rational exploitation of fish

communities in the context of ecosystem-based management.
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