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Isogeometric Shape Optimization in Fluid Mechanics

Peter Nørtoft · Jens Gravesen

Abstract The subject of this work is numerical shape

optimization in fluid mechanics, based on isogeometric

analysis. The generic goal is to design the shape of a 2-

dimensional flow domain to minimize some prescribed

objective while satisfying given geometric constraints.

As part of the design problem, the steady-state, incom-

pressible Navier-Stokes equations, governing a laminar

flow in the domain, must be solved. Based on isogeo-

metric analysis, we use B-splines as the basis for both

the design optimization and the flow analysis, thereby

unifying the models for geometry and analysis, and,

at the same time, facilitating a compact representation

of complex geometries and smooth approximations of

the flow fields. To drive the shape optimization, we use

a gradient-based approach, and to avoid inappropriate

parametrizations during optimization, we regularize the

optimization problem by adding to the objective func-

tion a measure of the quality of the boundary para-

metrization. A detailed description of the methodology

is given, and three different numerical examples are con-

sidered, through which we investigate the effects of the

regularization, of the number of geometric design vari-

ables, and of variations in the analysis resolution, initial

design and Reynolds number, and thereby demonstrate

the robustness of the methodology.
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1 Introduction

Numerical shape optimization in fluid mechanics is the

art of using computers to find “best” shapes in engi-

neering problems involving flows, based on some no-

tion of “goodness” (Mohammadi and Pironneau 2010),

and applications ranges from, e.g., microfluidic protein-

folding devices (Ivorra et al 2006) to airplane wings

(Painchaud-Oullet et al 2006). Isogeometric analysis

is a recently proposed computational methodology for

solving engineering problems (Hughes et al 2005; Cot-

trell et al 2009). It unites the analysis powers from fi-

nite element analysis (FEA) in terms of solving partial

differential equations with the powers from computer

aided design (CAD) in terms of geometric modeling.

The focus of this study is the use of isogeometric analy-

sis for numerical shape optimization in fluid mechanics.

From a fluid mechanics point of view, isogeomet-

ric analysis is appealing in particular due its ability to

represent complex geometries in few variables (Bazilevs

and Hughes 2008), and because of the inherent high reg-

ularity of the flow fields (Akkerman et al 2010). From a

shape optimization point of view, isogeometric analysis

serves as a natural framework, due to its ability to rep-

resent complex shapes in few design variables, and its

tight connection between analysis and geometry mod-

els. This means that an accurate representation of the

geometry can be maintained throughout the optimiza-

tion, and there is no need of communication between

FEA and CAD models (Wall et al 2008).

In recent years, isogeometric analysis has success-

fully been applied to various shape optimization prob-

lems in mechanical engineering. Numerous studies within

structural mechanics have been made, using either NURBS

control points (Wall et al 2008; Cho and Ha 2009),

NURBS control points and weights (Nagy et al 2010a,b;

Qian 2010; Nagy et al 2011), or T-splines control points
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(Ha et al 2010; Seo et al 2010b) as design variables.

NURBS-based isogeometric shape optimization using

a boundary integral method has also been studied (Li

and Qian 2011). Applications of isogeometric shape op-

timization also include studies of vibrating membranes

(Nguyen et al 2011), and of photonic crystals (Qian

and Sigmund 2011), and worth mentioning are also re-

cent applications of isogeometric topology optimization

within structural mechanics (Seo et al 2010b,a; Hassani

et al 2012).

An inherent challenge in numerical shape optimiza-

tion is to maintain a high quality of the computational

mesh as the shape of the domain changes during opti-

mization (Mohammadi and Pironneau 2004; Bletzinger

et al 2010). This also applies in an isogeometric ap-

proach. Here, the shape is given by control points, and

in this setting, care has to be taken to avoid clustering

and folding over of these control points during optimiza-

tion, which in turn may lead to singular parametriza-

tions (Wall et al 2008; Nagy et al 2011).

The aim of this work is twofold. Firstly, we present

numerical investigations of how to apply isogeomet-

ric analysis as a framework for shape optimization in

fluid mechanics, illustrating how the method may be

used both as analysis tool to solve the Navier-Stokes

equations, and as design tool to guide an optimization

procedure through analytically computed gradients of

objective and constraint functions, using B-spline con-

trol points as design variables. Secondly, to ensure ap-

propriate parametrizations during the optimization, we

construct a measure for regularization of the shape op-

timization problem, and based on a benchmark opti-

mization problem, in which we design a pipe bend to

minimize the pressure drop of the flow through it, we

investigate how this regularization measure influences

the optimization process and the optimal design. To

investigate the robustness of the isogeometric shape op-

timization methodology, we apply it to two additional

optimization problems in fluid mechanics. Firstly, to

investigate the effect of the number of design control

points, we design a body at rest in a circular fluid con-

tainer with rotating boundary to obtain a uniform pres-

sure distribution along its boundary, a design problem

which happens to have a known solution. Secondly, to

investigate the effects of variations in analysis mesh,

initial design, and Reynolds number, we design a body

traveling at constant speed through a fluid to minimize

the drag, a classical shape optimization problem in fluid

mechanics.

The outline of the paper is as follows: Section 2 in-

troduces the generic shape optimization in fluid me-

chanics studied in the paper, and in Section 3 we present

its isogeometric implementation. The regularization tech-

nique is investigated in Section 4, after which two ap-

plications of the methodology are presented in Section

5. Finally, in Section 6, conclusions are drawn and a

brief outlook is given.

2 Shape Optimization Problem

We consider a viscous, incompressible, isothermal, steady

flow at low to moderate Reynolds numbers in a 2-dimensional

domain Ω as depicted in Figure 1. The fluid is assumed

ΓN

ΓD

Γ ′Ω

u velocity
p pressure
ρ density
µ viscosity

Fig. 1 Setup of the generic shape optimization problem in
fluid mechanics

to be Newtonian with constant density ρ and viscos-

ity µ, and the state of the fluid is characterized by its

velocity u = u(x) = (u(x) v(x) )T and its pressure

p = p(x), where x = (x y )T are the spatial coordi-

nates. We assume that no external body forces act on

the system. For the boundary Γ , we assume that the

domain is open along the Neumann part ΓN , and that

the flow field u is given along the Dirichlet part ΓD,

independently of the shape. The flow is then governed

by:

ρ(u · ∇)u−∇p+ µ∇2u = 0 (1a)

∇ · u = 0 (1b)

u |ΓD = u∗ (1c)

(µ∇ui − p ei ) · n |ΓN = 0. (1d)

Here, Equations (1a) and (1b) are the Navier-Stokes

equation and the incompressibility condition, respec-

tively, governing the flow in the domain interior Ω,

while Equations (1c) and (1d) are the Dirichlet and the

Neumann boundary conditions, respectively, where u∗

is the given velocity field. Also, ei is the orthonormal

basis in R2, i = 1, 2 is the component index, and n is

the outward unit normal.

The aim of the optimization is to design the shape

of a specified part Γ ′ of the boundary of the domain to

minimize a prescribed objective function, with a con-

straint on the area of the domain. The specific form of

the objective function will be explained further below.
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The goal is thus to solve the following generic shape

optimization problem:

minimize
Γ ′

C(u(x, Γ ′), p(x, Γ ′), Γ ′) (2a)

such that Amin ≤ A(Γ ′) ≤ Amax (2b)

Lmin ≤ L(Γ ′) ≤ Lmax, (2c)

where Γ ′ is the design boundary, Equations (2a) and

(2b) are the objective and the area constraint functions,

respectively, Equation (2c) establishes additional linear

constraints as dictated by the geometry and the physics

of the specific problem, and the velocity u(x, Γ ′) and

the pressure p(x, Γ ′) solve the governing equations (1).

We will consider three different quantities as the

cost function C in Equation (2a): the difference in mean

pressure between two boundary segments γ+ and γ−,

the pressure variation along a boundary segment γ, and

the aerodynamic drag on a boundary segment γ. These

are given by:

C∆p =

∫
γ+
p ds

Lγ+
−

∫
γ−
p ds

Lγ−
, (3a)

C∇p =

∫
γ

(
∇p · t

)2
ds, (3b)

Cd =

∫
γ

(
− pI + µ

(
∇u+ (∇u)T

))
n ds · eu, (3c)

respectively, where Lγ =
∫
γ

ds denotes the length of

the segment γ, t is the unit tangent vector, eu the con-

stant unit vector along a specified direction, and I the

identity matrix. The context in which these three dif-

ferent cost functions may appear will be exemplified in

Sections 4, 5.1, and 5.2, respectively.

3 Isogeometric Method

In this section, we explain how B-spline based isogeo-

metric analysis may be applied to the shape optimiza-

tion problem (2)–(3). The reader is referred to, e.g.,

(Piegl and Tiller 1995) for a thorough treatment of B-

splines and NURBS (Non-Uniform Rational B-splines),

(Donea and Huerta 2003) for an introduction to finite

element analysis of Navier-Stokes flows, (Cottrell et al

2009) for a thorough treatment of isogeometric analysis,

(Nielsen et al 2011) for an introduction to its applica-

tion to Navier-Stokes flow, and (Wall et al 2008) for an

introduction to its application to shape optimization.

3.1 B-splines and NURBS

The building blocks of the method are B-splines and

NURBS. To set the scene, and for later reference, we

briefly revise the basic concepts of these functions.

Univariate B-splines N q
i : [0, 1] → R are piecewise

polynomials defined recursively from a polynomial de-

gree q ∈ N and a knot vector Ξ = {ξ1, . . . , ξm} with

ξi ∈ R for i = 1, . . . ,m:

N 0
i (ξ) =

{
1 if ξi ≤ ξ < ξi+1

0 otherwise
(4a)

for q = 0, and

N q
i (ξ) =

ξ − ξi
ξi+q − ξi

N q−1
i (ξ) +

ξi+q+1 − ξ
ξi+q+1 − ξi+1

N q−1
i+1 (ξ)

(4b)

for q = 1, 2, . . . with i = 1, . . . ,m − q − 1. We use the

unit parametric domain ξ ∈ [0, 1], and we assume open

knot vectors, i.e., the boundary knots have multiplicity

q + 1 with ξ1 = ξ2 = . . . = ξq+1 = 0 and ξm = ξm−1 =

. . . = ξm−q = 1.

Bivariate tensor product B-splines Pq,ri,j : [0, 1]2 → R
are defined from the univariate B-splines above:

Pq,ri,j (ξ, η) = N q
i (ξ)Mr

j(η), (5)

where N q
i is the ith univariate B-spline with degree q

and knot vector Ξ1 = {ξ1, . . . , ξm} in the parametric di-

mension ξ, and Mr
j is the jth univariate B-spline with

degree r and knot vector Ξ2 = {η1, . . . , ηn} in the para-

metric dimension η.

Bivariate NURBS Rq,ri,j : [0, 1]2 → R are defined

from the bivariate B-splines above, and the weights

W = {w1,1, . . . , wN,M} with wi,j ∈ R for i = 1, . . . ,m−
q − 1 and j = 1, . . . , n− r − 1:

Rq,ri,j (ξ, η) =
wi,j Pq,ri,j (ξ, η)

m−q−1∑
k=1

n−r−1∑
l=1

wk,l Pq,rk,l (ξ, η)

. (6)

The construction of bivariate B-splines from a set

of polynomial degrees and knots vectors is illustrated

in Figure 2. This type of function will serve as basis for

the subsequent analysis and optimization.

3.2 Geometry Parametrization

Using bivariate tensor product NURBS Ri as defined

above, we construct a parametrization X : [0, 1]2 → R2

of the physical domain Ω, cf. Figure 3:

X = (x y )T =

Ngvar∑
i

XiR
g
i , (7)

whereXi = (xi yi )T ∈ R2 are control points, and Ng
var

is the number of terms in the expansion. The super-

script g indicates that the functions refer to given knot
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Ξ
2 =
{0, 0, 0, 0, 1/2, 1, 1, 1, 1}

r
=

3

Ξ1
=
{0,

0,
0,

0,
1,

1,
1,

1}
q =

3

ξ1

ξ2

P or N

Fig. 2 Construction of a bivariate tensor product B-spline
(surface) from two univariate B-splines (lines in bold) of given
polynomial degrees and knot vectors (crosses and circles)

vectors, polynomial degrees and control weights specific

for the geometry, and the subscript i denotes a single

vectorized index corresponding to the two indices used

in Equation (6). The boundary of the flow domain is the

image of the parameter boundaries: Γ = X(∂[0, 1]2).

X

[0, 1]2

y

x

η

ξ

Ω

Fig. 3 Parametrization of the flow domain

For any scalar variable, including in particular the
pressure p and both of the velocity components u1 and

u2, we will consider it both as a function f on physical

space Ω, and as a function f on parameter space [0, 1]2.

The gradient ∇ ≡ ( ∂/∂x ∂/∂y )T in physical space Ω

is related to its counterpart ∇ ≡ ( ∂/∂ξ ∂/∂η )T in pa-

rameter space [0, 1]2 by the following relation:

∇f = JT∇f ⇐⇒ ∇f = J−T∇f, (8)

where Ji,j = ∂xi/∂ξj is the Jacobian matrix of the

parametrization.

3.3 Flow Analysis

The governing equations (1) are solved numerically by a

standard Galerkin approach based on B-splines as test

and weight functions.

Approximations of the velocity u : [0, 1]2 → R2 and

pressure p : [0, 1]2 → R are constructed using bivariate

tensor product B-splines Pi as defined above:

u =

Nu
dof∑
j=1

ujPuj +

Nu
var∑

j=Nu
dof+1

ujPuj , (9a)

p =

Npvar∑
j=1

p
j
Ppj . (9b)

Here, uj = (uj vj)
T ∈ R2 and p

j
∈ R are control coeffi-

cients, andNuvar andNp
var are the number of terms in the

expansions for the velocity and pressure, respectively.

The superscripts u and p indicate that the functions

refer to given knot vectors and polynomial degrees that

are specific for the velocity and pressure, respectively,

and the subscript j denotes a single vectorized index

corresponding to the two indices used in Equation (5).

To ease the subsequent notation for strong enforcement

of Dirichlet boundary conditions, the ordering of the

terms in the velocity expansion (9a) is chosen such that

the first Nudof functions vanish on the Dirichlet bound-

ary ΓD, whereas the last Nufix = Nuvar −Nudof functions

do not.

The velocity basis functions Puj and the pressure

basis functions Ppj in Equation (9) live on the param-

eter domain [0, 1]2. To evaluate them on the physical

domain Ω, we may compose them with the inverse of

the geometry map, i.e., Puj ◦X−1 and Ppj ◦X−1, respec-

tively. As usual in the Galerkin method, we insert the

discretized fields in the governing equations (1), multi-

ply Equation (1a) by test functions among Pui ◦X−1 for

i = 1, . . . , Nudof , Equation (1b) by test functions among

Ppi ◦X−1 for i = 1, . . . , Np
dof , and simplify the result us-

ing integration by parts and insertion of the Neumann

boundary condition from Equation (1d). Hereby, we ob-

tain the discretized weak or variational formulation. By

interchanging the order of summation and integration,

rearranging terms, and finally pulling all integrals back

to parameter space, the following system of non-linear

equations in the control coefficients is obtained:µK1 + ρC1(u) 0 −GT
1

0 µK2 + ρC2(u) −GT
2

G1 G2 0

u1

u2

p


= −

µK?
1 + ρC?

1 (u) 0

0 µK?
2 + ρC?

2 (u)

G?
1 G?

2

[u?1
u?2

]
, (10)

or simply M(U) U = F , with

Kk,i,j =

∫∫
[0,1]2

∇TPuki J−1 J−T ∇Pukj det
(
J
)

dξ, (11a)

Ck,i,j =

∫∫
[0,1]2

Puki uT (u)J−T ∇Pukj det
(
J
)

dξ, (11b)
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Gk,i,j =

∫∫
[0,1]2

Ppi e
T
k J
−T ∇Pukj det

(
J
)

dξ, (11c)

Kk =
[
Kk K

?
k

] (
N
uk
dof × (N

uk
dof+N

uk
fix )
)
, (11d)

Ck =
[
Ck C

?
k

] (
N
uk
dof × (N

uk
dof+N

uk
fix )
)
, (11e)

Gk =
[
Gk G

?
k

] (
Npdof ×(N

uk
dof+N

uk
fix )
)
. (11f)

Here, u(u) is given by Equation (9a), starred matri-

ces correspond to basis functions with support on the

Dirichlet boundary ΓD, and starred coefficients are the

corresponding coefficients that must be specified a pri-

ori to enforce the Dirichlet boundary condition in Equa-

tion (1c) strongly. Equation (10) may be solved by, e.g.,

an iterative Newton-Raphson method.

3.4 Optimization

We employ an iterative, gradient-based, non-linear op-

timizer to find a design that minimizes the cost func-

tion (2a) and satisfies the constraints (2b) and (2c). For

sufficiently high Reynolds numbers, a gradual approach

may be required in which the design successively is op-

timized for an increasing value of Re. Optimizing the

design for a given Re, the boundary parametrization is

adjusted in small steps until the design converges. In

each if these design steps, the interior parametrization

is firstly updated, after which the governing flow equa-

tions are solved, as described in Section 3.3 above, and

the solution stored for subsequent use. To asses the qual-

ity and admissibility of the current design, the objective

and constraints are then evaluated, and finally, to guide

the optimization process in adjusting the current design,

gradients of the cost function and the constraints with

respect to the design variables are evaluated.

3.4.1 Design Variables

The control pointsXi entering the geometry parametri-

zation in Equation (7) are the natural geometric “han-

dles” on the flow domain, and these are therefore used

as design variables for the shape optimization routine.

A parametrization and its control net are sketched in

Figure 4. The design variables of the optimization are

the coordinates of the control points in Figure 4a that

determine the shape of the design boundary Γ ′ in Fig-

ure 4b. As also shown in Figure 4a, control points fall

into three categories: The design control points are “ac-

tively” moved around in the search for the optimal

shape of the design boundary, the linked control points

are “passively” following the movement of the design

control points to parametrize the domain interior as

described below, while the fixed control points remain

unaltered to keep the fixed part of the boundary un-

changed.

a

b

Γ ′

Fig. 4 a: Three types of control points: design (•), linked
(•), and fixed (•). b: Image of isoparametric lines

3.4.2 Interior Parametrization

As the shape of flow domain is changed in the optimiza-

tion process, the parametrization of its interior must

be adequately updated. Referring to Figure 4, in the

isogeometric framework this amounts to specifying the

location of the interior control points as the location

of the design control points are changed. This interior

parametrization problem is a fundamental challenge in

isogeometric analysis (Cohen et al 2010; Xu et al 2011).

We choose to base the parametrization of the interior

on the so-called Winslow functional, which is a useful

measure for construction of conformal maps. Below, we

briefly summarize the main points of the methodology,

and refer the reader to (Gravesen et al 2010; Nguyen

et al 2011) for details.

Initially, the interior control points are determined

as the ones that minimize the Winslow functional, i.e.

make the parametrization “as conformal as possible”,

while keeping the boundary constant and ensuring a

valid parametrization det(J) > 0. In each design step,

the interior control points are then found as those that

minimizes the 2nd order Taylor expansion of the Winslow

functional based on the initial control net. The first or-

der optimality condition for the quadratic Taylor se-

ries expansion then yields a linear problem in the in-

terior control points. In addition, the validity of the

parametrization is checked in each step by examining

if det(J) > 0. If this condition is fulfilled, the opti-

mization continues. If it is not fulfilled, the optimiza-
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tion stops, and the interior control points are found as

the solution to the initial minimization problem as de-

scribed above. The solution is then used as linearization

point for the Taylor expansion of the Winslow func-

tional, and the optimization is restarted.

3.4.3 Function Evaluation

To asses the quality and admissibility of a given de-

sign, the objective and constraint functions in Equa-

tions (3) and (2b) are evaluated in each step, based

on the computed solution to the governing flow equa-

tions (10). Using the parametrization of the geometry

in Equation (7) and the discretizations of the flow and

pressure fields in Equation (9), we collect the control

points in two (Ng
var× 1 ) vectors x and y, and the con-

trol coefficients in one
(

(Nu
var +Nv

var +Np
var)×1

)
vector

U = (u1, u2, p). The mean pressure difference between

two boundary segments γ+ and γ−, the pressure varia-

tion along a boundary segment γ, the aerodynamic drag

on a boundary segment γ, and the area of the domain

Ω, as defined in Equation (3) and (2b), may then be

computed as:

C∆p = PT p, (12a)

C∇p = pTD p (12b)

Cd = FT U , (12c)

A = xTAy, (12d)

respectively. Here, the following vectors and matrices

have been defined:

P = Pγ+ −Pγ− (13a)

Pγi =
1

Lγ

1∫
0

Ppi ‖γ̇‖ dξ, (13b)

Di,j =

1∫
0

(
tT J−T ∇Ppi

)(
tT J−T ∇Ppj

)
‖γ̇‖ dξ,

(13c)

F =

µF1,1 µF1,2

µF2,1 µF2,2

−F3,1 −F3,2

 eu, (13d)

F1,1,i =

1∫
0

(
2eT1 ne

T
1 + eT2 ne

T
2

)
J−T∇Pui ‖γ̇‖ dξ,

(13e)

F2,1,i =

1∫
0

eT2 ne
T
1 J
−T∇Pvi ‖γ̇‖ dξ, (13f)

F3,1,i =

1∫
0

eT1 nP
p
i ‖γ̇‖ dξ, (13g)

F1,2,i =

1∫
0

eT1 ne
T
2 J
−T∇Pui ‖γ̇‖ dξ, (13h)

F2,2,i =

1∫
0

(
2eT2 ne

T
2 + eT1 ne

T
1

)
J−T∇Pvi ‖γ̇‖ dξ,

(13i)

F3,2,i =

1∫
0

eT2 nP
p
i ‖γ̇‖ dξ, (13j)

Ai,j =

∫∫
[0,1]2

( ∂Rgi
∂u

∂Rgj
∂v
− ∂Rgi

∂v

∂Rgj
∂u

)
dξ, (13k)

where •̇ ≡ ∂ • /∂ξ denotes the derivative with respect

to the boundary parameter ξ, and Lγ =
∫ 1

0
‖γ̇‖ dξ

is the length of the boundary. The parametric speed

‖γ̇‖ ≡
√
ẋ2 + ẏ2, the unit tangent vector t ≡ γ̇/‖γ̇‖,

and the outward unit normal vector n are found by dif-

ferentiating the restriction of the geometry parametri-

zation in Equation (7) to the boundary with respect

to the parameter ξ. These vectors and matrices are in

general sparse, P , D, and F in particular, since only

a few of the basis functions have support on the design

boundary.

3.4.4 Gradient Evaluation

The optimization is driven by gradients of the objec-

tive and constraint functions defining the optimization

problem. These sensitivities are measures of how the de-

sign variables affect the objective and constraint func-

tions. We calculate the sensitivities analytically by a

simple direct differentiation of the discretized versions

of the functions in Equation (12) with respect to the

coordinates of the control points that act as our design

variables, and we then evaluate these gradients based on

the computed solution to the governing flow equations

(10). We collect the design variables in one vector χ,

such that χ = (x1 . . . xN y1
. . . y

N
), where (xk yk )

are the coordinates of the kth control point, and we let

•′ ≡ ∂ •/∂χk denote the partial derivative with respect

to the kth design variable. For the objectives and the

constraint in Equation (12) we have:

C ′∆p = P ′Tp+PTp′, (14a)

C ′∇p = pTD′ p+ 2pTD p′, (14b)

C ′d = F ′TU +FTU ′, (14c)

A′ = yTAx′ + xTAy′. (14d)
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The derivatives of x and y in Equation (14d) are

trivial. The derivatives of the objective matrices/vectors

P , D, and F in Equations (14a)—(14c) may be found

by differentiation of the integrands in Equation (13).

For P we find:

P ′γi =

(
〈 Ppi ‖γ̇‖ 〉
〈 ‖γ̇‖ 〉

)′
=
〈 Ppi ‖γ̇‖′ 〉 〈 ‖γ̇‖ 〉+ 〈 Ppi ‖γ̇‖ 〉 〈 ‖γ̇‖′ 〉

〈 ‖γ̇‖ 〉2
, (15)

where we have defined 〈•〉 ≡
∫ 1

0
• dξ, and used the fact

that all basis functions are independent of the design

variables. Here, the derivative of the parametric speed

‖γ̇‖ may be found from Equation (7):

‖γ̇‖′ =
(√

ẋ2 + ẏ2
)′

=
ẋ ẋ′ + ẏ ẏ′

‖γ̇‖

=

{
ẋ
‖γ̇‖ Ṙ

g
k for k = 1, . . . , N

ẏ
‖γ̇‖ Ṙ

g
k for k = N + 1, . . . , 2N

. (16)

Equivalent approaches may be taken for the matrices

D and F in Equation (13).

The derivative of the solutionU in Equations (14a)—

(14c) may be found by solving the linear equation sys-

tem obtained by differentiation of Equation (10):

(M +D)U ′ = F ′ −M ′U , (17)

where

D = ρ

D1,1 D1,2 0

D2,1 D2,2 0

0 0 0

 , (18a)

Di,j,k,` =

∫∫
[0,1]2

Puik
(
eTj J

−T ∇ui(u)
)
Puj` det

(
J
)

dξ .

(18b)

The matrix J = M + D also appears in the itera-

tive Newton-Raphson method employed for solving the

governing flow equations. For the sensitivity analysis,

however, we only need to evaluate it once in each de-

sign step, based on the converged solution. The deriva-

tive of the system matrix M and vector F in Equation

(17) may be found by differentiation of the integrands

in Equation (11). For K we find:

K ′k,i,j =

∫∫
[0,1]2

∇TPuki J
−1′J−T∇Pukj det

(
J
)

dξ

+

∫∫
[0,1]2

∇TPuki J
−1J−T

′∇Pukj det
(
J
)

dξ.

+

∫∫
[0,1]2

∇TPuki J
−1J−T∇Pukj det

(
J
)′

dξ. (19)

Here, the derivative of the determinant and of the in-

verse of the Jacobian matrix may be found by simply

writing them out explicitly in terms of x and y and

subsequently differentiating this as in Equation (16),

or alternatively from the relations J−1′ = J−1 J ′ J−1

and det(J)′ = det(J) tr(J−1J ′), along with differenti-

ation of Equation (7):

J ′ =



[
Rgk;ξ R

g
k;η

0 0

]
for k = 1, . . . , N

[
0 0

Rgk;ξ R
g
k;η

]
for k = N + 1, . . . , 2N

, (20)

where •;s ≡ ∂ • /∂s. Equivalent approaches may be

taken for the matrices C and G in Equation (11).

Finally, to account for the update of the interior

parametrization, as a result of the induced movement of

the linked control points when the design control points

are moved , the full sensitivity is computed as •̃′ =

•′ +
∑
i

χli
′ ∂
∂χli

, where the summation is over linked de-

sign variables, or

∇̃d = ∇d +W∇l, (21)

where the subscripts d and l refer to design variables

and linked variables, respectively. The matrix Wi,j =

∂χli/∂χ
d
j relates the linked control points to the design

control points.

3.5 Implementation Details

The flow chart in Figure 5 sketches the most signifi-

cant steps in solving the shape optimization problem

in Equation (2) based on isogeometric analysis. In the

initialization phase, we perform as many calculations as

possible that are independent of the parametrization. In

particular, all basis functions and their derivatives are

evaluated in the Gauss quadrature points once and for

all. Although more memory demanding, this approach

greatly reduces the computational expenses, compared

to evaluating the functions on the fly in each optimiza-

tion step. The construction of a good initial parametri-

zation is also vital for the optimization.

The optimization process includes an outer loop over

increasing Reynolds number. As mentioned above, this

is only necessary when designing shapes in higher Reynolds

number flows. The entire process outlined in the flow

chart may be embedded into a loop over increasing re-

finement of geometry and/or analysis. The optimization

is performed using the SNOPT optimization package

(Gill et al 2008). Standard settings for SNOPT are used,

except for the step size limit which, when set relatively
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Start

Initialization

read input file

setup basic quantities

evaluate basis functions

initialize design + param.

Parametrization

update interior control points

evaluate parametrization

if invalid parametrization:

minimize Winslow fun.

linearize Winslow fun.

restart optimization

Optimization

loop: over Reynolds number

loop: until design converges

evaluate parametrization

solve governing equations

evaluate obj. + con.

evaluate gradients

end

end

Flow Analysis

build linear matrices

initialize/reuse solution

loop: over Reynolds number

loop: until sol. converges

build non-linear matrices

solve system

update solution

end

end

Finish

Fig. 5 Flow chart for the optimization process (left) with
details of the parametrization and analysis procedures (right)

low at, e.g., 5% of the characteristic length scale of the

problem, has been found to significantly improve the

convergence by avoiding too large jumps in the design

space. For validation purposes, the analytically com-

puted gradients are initially checked against finite dif-

ference estimates.

On the analysis side, we use an iterative Newton-

Raphson method to solve the governing non-linear Equa-

tion (10), gradually increasing the Reynolds number

when this is high. In the field approximations, bi-quartic

tensor product B-splines are used for the velocities and

bi-cubic tensor product B-splines for the pressure, both

C2 across knots (Buffa et al 2011; Nielsen et al 2011).

The finer analysis mesh (the layout of the velocity and

pressure knots) is obtained by inserting knots in the

coarser geometry mesh (the layout of the geometry knots).

All evaluations are performed on the finer analysis mesh.

Dirichlet boundary conditions are enforced strongly, while

homogeneous Neumann boundary conditions are en-

forced weakly. All integrals are evaluated numerically

using Gaussian quadrature.

4 Regularization

To improve the result of the shape optimization, the

design space in which we look for solutions should be

as large as possible. A natural way to ensure a large

design space is to use many control points as design

variables, although the inclusion of weights as design

variables could also be considered (Qian 2010; Nagy

et al 2010a,b, 2011). As the number of design control

points go up, more complex shapes can be designed.

This comes, however, on the cost of numerical chal-

lenges, a well-known issue from finite element methods

(Bletzinger et al 2010). These challenges, and solution

strategies to remedy them, are discussed in this section.

Ξ1 = { 0 0 0 0 1
15
. . . 14

15
1 1 1 1 }

Ξ2 = { 0 0 0 0 1
2

1 1 1 1 }

a b

c d

r

Γ ′A0

r
4

inlet

outlet

Fig. 6 Pipe bend with minimal pressure drop: design prob-
lem setup (a), initial control net (b), initial parametrization
(c), and initial pressure contours and flow streamlines (d)

For the purpose of illustration, we consider a con-

crete example of the shape optimization problem (2)-

(3a), and use this as benchmark for the following tests

of the regularization technique. The problem is outlined

in Figure 6a. The aim is to design the shape Γ ′ of a

pipe bend (dashed) to minimize the pressure drop from

the inlet boundary to the outlet boundary, keeping the

shape of the inlet and the outlet (solid) fixed, and with

an upper bound on the area of the pipe.

We assume a parabolic horizontal velocity profile

on the inlet boundary, that the velocity vanishes along

the side walls, assuming no-slip conditions, and that

the domain is open along the outlet boundary. We take

the length scale as r = 1, the velocity scale as U =

max(‖uinlet‖) = 1, the density as ρ = 1, and the vis-

cosity as µ = 1, assuming appropriate units are used,

which yields a Reynolds number of Re = 1 for the ini-

tial problem. The analysis is done using a total of 5,367

degrees–of–freedom.

We parametrize the pipe bend as a bi-cubic tensor

product B-spline surface, and let the initial design con-

nect the inlet and outlet by an approximate quarter an-

nulus. The initial control net, the corresponding para-

metrization, and the resulting pressure distribution and

streamlines of the flow through it are depicted in Figure
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6b–d. We use 20 control points as design variables, 10

on each of the two boundaries segments to be designed,

and we allow these to move freely in both spatial di-

mensions, except for the four end control points, which

are only allowed to move along the direction of the in-

let/outlet, to keep a handle on these. As upper bound

on the area, we use the initial value, i.e., Amax = A0,

and we relax the lower bound, i.e., Amin = −∞. Since

the lengths of the inlet and outlet boundaries are con-

stant, the sensitivities in Equation (15) are greatly sim-

plified.

4.1 The Challenge: Clustering of Control Points

Applying the isogeometric machinery from Section 3 to

the shape optimization problem outlined above results

in the optimization history depicted in Figure 7. From

step1 0 to 15, the design control points align at first,

thereby connecting the inlet and the outlet by a more or

less straight segment, and decreasing the pressure drop

to ∼ 74%. This design reduces the length of the pipe,

in intuitive accordance with the Poiseuille law. At step

44, sharper corners at the inlet and outlet are formed,

but from step 44 and onwards, the shape changes only

slightly, and the decrease in the pressure drop is accord-

ingly small. The location of the control points, however,

and the resulting parametrization change appreciably,

though. The control points cluster and eventually fold

over, resulting in an invalid parametrization after 67

steps from which the method cannot proceed.

0 10 20 30 40 50 60 70
0.7

0.8

0.9

1

Step 15 Step 44 Step 67

Step

C
∆
p

C
∆
p
0

Fig. 7 Pipe bend with minimal pressure drop: objective
function as a function of optimization step (bottom), and
three snap shots of the control net and the associated para-
metrization (top)

The problem seems to arise in the second of two

qualitatively different stages of the optimization: In the

first stage, the optimizer finds an “optimal” shape, and

1 In SNOPT terminology, steps refer to function calls.

the objective function decreases significantly. In the sec-

ond stage, the optimizer searches for an “optimal” para-

metrization of the shape, and the objective function de-

screases only slightly. This second stage, however, is a

numerical artifact, in which the optimizer exploits the

flaws in the numerical procedure, so to say, and tries

to align the errors in such a way, that the numerical

estimate is minimized, although the true value is not.

This is the challenge in a nut-shell: when optimizing the

location of many control points (for a sufficiently uncon-

strained problem, and with a sufficiently tight conver-

gence criterion), they may cluster, spuriously yielding

slightly lower values of the objective function on the

cost of significantly worse parametrizations and less ac-

curate analysis, which may eventually lead to a collapse

of the method. The clustering of control points is a well-

known issue in isogeometric shape optimization (Wall

et al 2008; Nagy et al 2011). Related numerical prob-

lems in finite element based shape optimization, and

regularization techniques to address them, are also well-

described (Bletzinger et al 2010). Below, we firstly give

a brief review of some alternative ways out of the cur-

rent problem, before proposing the regularization ap-

proach, in an isogeometric framework.

4.2 Some Alternative Solution Strategies

The first natural point of focus, when looking for reme-

dies for the current problem, is on the optimization

routine. A quick fix is simply to stop the optimization

immediately after the first “shape” stage, and before

the onset of the second “parametrization” stage. This

could be achieved by relaxing the existing convergence

criterion, or by defining some other relevant measure.

However, since this approach only cures the symptoms

of the problem, and not the cause of it, and due to

the risk of prematurely stopping the optimization, this

quick fix is, in our view, also a dirty fix.

Turning away from the optimization routine, we may

focus on the problem formulation instead. An obvi-

ous solution to the problem is to reconsider the design

degrees–of–freedom. As the control points align, an am-

biguity is introduced, since movements of the control

points along the line does not change the shape, but

does change its parametrization, and thus also the nu-

merical estimates of the integrals, and hence the ob-

jective function value, making the problem inherently

ill-posed. One could then simply argue that for this par-

ticular design problem, say, four design control points

on each boundary suffice. However, this is an a posteri-

ori type of reasoning that we would like to avoid. More

interesting is the idea of making this estimation of the
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necessary number of design variables dynamic, i.e., in-

serting and removing design control points on the fly

during the optimization (Seo et al 2010b). The imple-

mentation of a flexible number of design variables in an

optimization procedure, however, is far from trivial.

Preserving the number of control points, but putting

constraints on their movement in the design space, poses

yet another alternative. We could, for instance, con-

strain the design control points to move only along

specified directions. In this approach, it is our duty as

designers to specify “good” directions along which the

control points can move, ensuring both sufficient flex-

ibility in the design while avoiding bad parametriza-

tions. Along the same line of thinking is the concept of

putting bounds on the design variables, see e.g. (Cho

and Ha 2009), thus limiting the optimizer to search for

a minimum in the vicinity of the initial guess only. In

any case, the design space shrinks in these approaches,

and the success of the optimization heavily depends on

the designers choice in initial condition and constraints

on the movement of the control points. A somewhat re-

lated, but much more flexible approach, is to introduce

a more general constraint on the design variables. A

popular choice is to put a lower bound on the distance

between control points (Wall et al 2008), and although

this approach does take care of the tendency of control

points to cluster, it still closes the door to parts of the

design space, like the sharp corners that appear at the

inlet and the outlet of the pipe bend in Figure 7. An-

other choice is to prescribe an upper bound on a single,

global measure of the shape change (Nagy et al 2011)

during the optimization, thereby significantly reducing

the number of constraints. Finally, very recently a reg-

ularization scheme based on a shape gradient method
has been applied in an isogeometric setting (Azegami

et al 2012).

4.3 Boundary Regularization

To avoid the problem of clustering control points and

the associated fatal parametrization, and as a conceptu-

ally quite different alternative to the above methods, we

suggest to use another well-known trick by regularizing

the optimization problem (Mohammadi and Pironneau

2004, 2010). A similar method has also been used in

an isogeometric context (Nagy et al 2010). More specif-

ically, we suggest to add a term to the objective function

that, by measuring the quality of the parametrization,

prevents the undesired phenomenon. In this approach,

the regularized objective function C̃ is written as:

C̃ = C + ε̃R, (22)

where C is the true physical objective, here expressing

the pressure drop in the pipe bend, R is the artificial

regularization objective, and ε̃ > 0 specifies the weight

of the regularization term. The aim of the optimization,

when using the regularized objective, is twofold: we are

not only searching for the design that minimizes the

pressure drop, but also for the shape whose parametri-

zation makes the numerical approximation of it more

reliable. Thereby, we embed the construction of a good

parametrization into the design optimization, and we

are thus targeting the very cause of the problem.

The method poses two challenges: Firstly, it neces-

sitates the construction of a quality measure R of the

parametrization, and secondly, it requires the specifica-

tion of its relative importance ε̃ in the optimization.

γ

Fig. 8 Illustration of the focus of boundary regularization

For the quality measure, the focus of this study is on

boundary regularization, as sketched in Figure 8. This

addresses the quality of parametrization of the design

boundary, which is clearly compromised in the fatal op-

timization history in Figure 7. We will assume that a

good boundary parametrization, all other things being

equal, has a constant parametric speed. Motivated by

this, we define the measure as the norm squared of the

parametric acceleration along the design boundaries, in-

tegrated in parameter domain:

R =

∫ 1

0

‖γ̈‖2 dξ, (23)

where •̈ ≡ ∂2 • /∂ξ2 denotes the second order deriva-

tive with respect to the boundary parameter ξ. In dis-

cretized form, it reads:

R = xTRx+ yTRy, (24a)

Ri,j =

∫ 1

0

R̈gi R̈
g
j dξ. (24b)

By minimizing this measure, we bring the boundary

parametrization closer to a constant-speed parametri-

zation, and boundary regularization thus leads the opti-

mizer towards a better boundary parametrization. The

measure is computationally cheap to implement, since

the matrix R only involves integrals of the second order
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derivatives of the (univariate) basis functions, and since

it is quadratic in the design variables, the sensitivities

may be straightforwardly computed.

An important challenge in the methodology is the

specification of a suitable weight ε̃ of the regularization.

This challenge is similar in nature to the one associated

with specifying a suitable minimal distance between

control points (Wall et al 2008), or a maximal shape

change norm (Nagy et al 2011). The specification may

be partly facilitated by estimating the initial ratio be-

tween the physical objective C0 and the regularization

objective R0:

ε̃ =
|C0|
|R0|

ε, (25)

assuming R0 6= 0, and that this ratio does not change

too much with the design. Taking ε = 1 yields iden-

tical initial numerical values for the physical and the

regularization terms in Equation (22). Usually, a value

ε � 1 is therefore anticipated. The smaller the ε, the

closer we get to the original optimization problem, but,

on the other hand, the more we weaken the regulariza-

tion and its stabilizing influence on the parametrization

and the convergence.
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Fig. 9 Pipe bend with minimal pressure drop: regularized
optimization history (bottom), and snap shots of the control
net and the associated parametrization (top)

We apply the regularized isogeometric shape opti-

mization method to the current design problem, thus

minimizing the regularized pressure drop (22)–(23) through

the pipe bend using the weight ε = 10−2. The opti-

mal design is reached after 64 steps, at which point the

pressure drop is decreased to 74.5%. The optimization

history is shown in Figure 9. Here, it is worth notic-

ing that the optimal design is quite close to the design

from which the original formulation drifts off, cf. Fig-

ure 7, that the difference in the minimal pressure drop

between the designs is small, and, most importantly,

that the parametrization is much better in this regu-

larized formulation, thereby making the analysis more

reliable. The effect of the regularization is clearly seen

from the intermediate design in step 19, to the con-

verged design in step 64. The control points spread out

along the line, and the concentration of control points

is shifted away from the straight central part, towards

the curved parts at the inlet and the outlet. This is also

where the geometry, and hence the flow analysis, is most

challenging, due to the presence of sharp corners that

form as a result of coalescing control points. The result-

ing pressure field and streamlines are shown in Figure

10. The optimized design is very similar to the topol-

ogy optimized design with minimal energy dissipation

(Gersborg-Hansen et al 2005).

Fig. 10 Pipe bend with minimal pressure drop: optimized
pressure contours and flow streamlines

To examine the effect of the regularization in greater

detail, we solve the problem for a range of regulariza-

tion weights ε ∈ [10−3, 10−1]. Figure 11 shows how

the optimized pressure drop, the required number of

steps, and the optimal design vary with the regular-

ization weight. When the regularization is strong, the

optimization converges quickly to a smoother design

with a higher pressure drop. As the regularization is de-

creased, more steps are required to reach designs with

locally higher curvature and smaller pressure drops. A

stagnation point in the pressure drop curve is observed,

associated with the formation of the sharp corners at

the inlet and the outlet, such that the optimized pres-

sure drop only falls off slightly for ε ≤ 3 · 10−2. In addi-

tion, the number of steps is likewise relatively constant

for 3 · 10−3 ≤ ε ≤ 3 · 10−2. A regularization weight in

this range thus seems appropriate in this example. The

results, however, are not critically sensitive to the value

used, cf. Figure 11.

We conclude this section by mentioning that a range

of other regularization measures could be considered.

Among these, we have found that similar effects as

those presented above may be obtained by minimizing
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Fig. 11 Pipe bend with minimal pressure drop: optimized
pressure drop and required number of steps as a function of
regularization weight ε (bottom), and optimal design for three
values of ε (top)

the scalar product of the tangent and the acceleration,

the variance of the Jacobian determinant, or the vari-

ance of the parametric speed, all evaluated along the

design boundary. Furthermore, the regularization mea-

sures could alternatively be implemented as constraints,

but such investigations have been outside the scope of

this study.

5 Applications

In the following, we apply the isogeometric shape opti-

mization methodology for fluid mechanical design prob-

lems to two additional numerical examples: Section 5.1

studies a design problem based on Taylor-Couette flow

and investigates how the optimization is affected by the

number of geometric design variables, while Section 5.2

studies the minimal drag body design problem, and in-

vestigates how the optimization responds to variations

in the analysis resolution, initial design and Reynolds

number.

5.1 Body with Uniform Pressure Distribution

We consider the shape optimization problem (2)-(3b)

outlined in Figure 12a. The aim is to design the bound-

ary Γ ′ of a body of given area A0, placed in a cir-

cular fluid container of radius r whose outer bound-

ary rotates at a constant rate, to make the pressure

distribution along Γ ′ as uniform as possible, i.e., to

minimize the pressure variation C∇p along Γ ′. From

symmetry considerations, the pressure is constant along

the boundary when a disk is placed in the center. Fur-

thermore, analytical solutions to the governing Navier-

Stokes equations for this so-called Taylor-Couette flow

problem is well-known from the literature. A circle en-

closing the specified area and with its center in the cen-

ter of the container is therefore a solution to the shape

optimization problem. In the following, we investigate

how well the isogeometric shape optimization method-

ology is able to reproduce this.
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Fig. 12 Body with uniform pressure distribution: design
problem setup (a), initial control net, knot vectors, and non-
unitary weights (b), initial parametrization (c), and initial
pressure field (d)

To represent the outer perimeter as an exact cir-

cle, which is of paramount importance when specify-

ing boundary conditions, we parametrize the geometry

using quadratic NURBS, while ordinary B-splines are

used elsewhere. As initial design, we use a square placed

in the middle, which is an intentionally bad initial de-

sign. The control net, knot vectors and weights are

shown in Figure 12b, and the corresponding parametri-

zation is visualized in Figure 12c. The patch is attached

to itself along the dashed line, resulting in an addi-

tional C0-continuity here. The velocity field is specified

as purely tangential along the outer, moving perimeter,

and as vanishing on the inner, steady boundary, as-

suming no-slip conditions. Since full Dirichlet boundary

conditions are prescribed for the velocity field, we set

the pressure to zero in an arbitrary point. We take the

initial area as A0 = 2, the radius of the outer perime-

ter as r = 2, the velocity scale as U = 1, the density

as ρ = 1, and the viscosity as µ = 1, assuming again

appropriate units, which again yields a Reynolds num-

ber of Re = 1. The initial pressure field is depicted in

Figure 12d. In this, the C0-continuities are invisible to

the naked eye. We take the constraint on the area as

the initial value, i.e., Amax = Amin = πr2 − A0, and a

one-step approach is employed for the Reynolds num-
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ber. To resolve the rotational symmetry, the left-most

control point is allowed only to move horizontally. It

turns out that this problem is sufficiently constrained

to prevent control points from clustering, and we may

solve it without regularization.

a b c

Fig. 13 Body with uniform pressure distribution: optimized
control net (a), parametrization (b), and pressure field (c)
for 36 design control points

We consider three consecutive refinements of the

coarse geometry described above, obtained by uniform

knot refinement along the tangential direction, thereby

representing the design boundary Γ ′ by 8, 12, 20, and

36 control points, respectively. We keep the analysis

mesh fixed, using a total of 5,715 degrees–of–freedom.

We solve the design problem for each of these four geo-

metric models, using in turn the optimized coarser de-

sign as initial design for the finer optimization. The re-

sults for the finest geometry approximation are shown

in Figure 13. The optimal design is reached in a total of

1032 steps, and the pressure variation is decreased by

a factor of ∼ 1013. The optimal control net is shown in

(a), the corresponding parametrization in (b), and the

corresponding pressure distribution in (c). The pressure

field along the optimized boundary is significantly more
uniform than the initial one shown in Figure 12d, and

the optimized boundary is seen to approximate a circle

very accurately.

To examine more closely the effect of enlarging the

design space by the use of more design control points,

Figure 14a shows the pressure distribution along the op-

timized boundary when using 8, 16, 20, and 36 design

control points. Also shown, in Figure 14b, is a compar-

ison of the lower part of the optimized design bound-

aries to the exact circle. As is evident from the figure,

the more control points we use, the more uniform the

pressure distribution we obtain, and the better the ap-

proximation to the exact circle we find. This is quan-

titatively supported by the numerical values listed in

Table 1, showing that, as more design control points

(1st column) are used, both the pressure variation (2nd

column), and the discrepancy of the design boundary

from the circle of radius r0 =
√
A0/π (3rd column) tend

towards zero. Here, we have estimated the discrepancy

of the design boundary from the circle of radius r0 by

0 0.2 0.4 0.6 0.8 1

−0.1

0

0.1

N = 8

N = 12

N = 20

N = 36

circle

a

b

s/Lγ

p

Zoom 1

Zoom 2

Zoom 3

Fig. 14 Body with uniform pressure distribution: compari-
son of pressure distributions along the optimized boundaries
(a), and comparison of the optimized boundaries to the exact
circle in three zooms (b)

Table 1 Body with uniform pressure distribution: compari-
son of objective function, discrepancy from the exact circle,
and number of steps for different numbers of design control
points

Ndesign C∇p/C∇p0 εcircle Nsteps

8 8.1 · 10−4 6.3 · 10−2 131
12 5.1 · 10−5 3.7 · 10−3 127
20 3.3 · 10−6 2.5 · 10−4 344
36 1.4 · 10−17 2.1 · 10−5 430

the measure:

ε2circle =

∫
γ

(
x2 + y2

r2
0

− 1

)2

ds.

With 36 design control points, this error is 2.1 · 10−5.

5.2 Body with Minimal Drag

We consider the shape optimization problem (2)-(3c)

outlined in Figure 15a. The boundary Γ ′ of a body

with given minimal area A0 traveling at constant speed

U through a fluid is designed to minimize the drag Cd
it experiences as the fluid flows past it.

Symmetry is assumed around the line along which

the body travels, and only the upper half of the prob-

lem is considered. To facilitate the implementation of

boundary conditions, and to achieve some local refine-

ment close to the body, this half space is modeled us-

ing two patches, as shown in Figure 15b (top). The

computational domain extends 20r upstream, 20r side-

wards, and 40r downstream, as depicted in Figure 15b
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Fig. 15 Body with minimal drag: design problem setup (a),
initial control net, initial parametrization, domain dimen-
sions, boundary conditions, and knot vectors (b and c), and
initial pressure contours and flow streamlines for Re = 1 (d)

(bottom). The governing equations are solved in the co-

moving inertial system in which the body is at rest. For

the boundary conditions, we assume no-slip along the

design boundary Γ ′, that the flow is undisturbed along

the upstream truncation boundary, that the downstream

truncation boundary is open, and that the fields are

symmetric around the lower truncation boundary, as

sketched in Figures 15b-c (top). The flow speed, the

density and the viscosity are set to U = 1, ρ = 1

and µ = 1, respectively, assuming again appropriate

units, and the design boundary Γ ′ is initialized as an

approximate half circle of radius r = 1, as depicted in

Figure 15c (top). This corresponds to a Reynolds num-

ber of Re = 1. Cubic B-splines are employed for the

geometry parametrization, and the analysis uses a to-

tal 25,452 degrees–of–freedom. The initial control net

is shown in Figures 15b-c (bottom). We use 11 design

control points, and take A0 = π as lower bound on the

area of the body, i.e., Amax = AΩ − A0/2, where AΩ
denotes the area of the computational domain Ω, and

Amin = −∞. The end control points are allowed only

to move horizontally and symmetrically, to ensure that

the domain is appropriately defined, and to resolve the

translational symmetry of the problem. To prevent the

control net from folding over at the leading and trail-

ing edges in particular, boundary regularization with

weight ε = 10−2 is employed.

Referring to the configuration described above, we

firstly investigate how variations in initial design and

analysis resolution affect the optimization convergence

and results. From the baseline configuration (a), we

consider two experiments with the initial design per-

turbed (b–c), and two experiments with the analysis

resolution perturbed (d–e), keeping all other parame-

ters fixed in each experiment. The initial designs for

these five different configurations are shown in Fig-

ure 16a, and their characteristics are summarized in

columns 1–3 of Table 2. The optimization results are

Table 2 Body with minimal drag for different initial de-
signs (Start) and analysis resolutions (Nvar): Number of steps
(Nstep), length (L), and height (H) of the optimized designs

Exp. Start Nvar Nstep L/2 H/2

a circle 25,452 65 1.81 0.62
b square 25,452 46 1.75 0.62
c ellipse 25,452 80 1.80 0.62
d circle 11,802 83 1.80 0.62
e circle 44,286 99 1.82 0.62
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d

e
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b

Fig. 16 Body with minimal drag for different initial designs
and analysis resolutions. a: Initial design boundary (top) and
control points (bottom). b: Optimized design boundary (top)
and control points (bottom)

shown in Figure 16b, and the main features are summa-

rized in columns 4–6 of Table 2. From these, we notice

that the optimized designs are quite similar, both when

the initial design is perturbed, and when the analysis

resolution is perturbed. Considering the configurations

all together, the largest relative difference in the opti-

mal length of the body is ∼ 4% from configuration b to

configuration e. The number of design steps, however,

varies considerably. Here, the finer the analysis reso-

lution, the more design steps are used. For variations

in the initial design, the picture is more blurred. The

remarkably few steps used in configuration b is likely

due to the absence of updates of the interior parametri-
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zation during the optimization, which is done once in

the other configurations. Considering the configurations

all together, the number of design steps varies by more

than a factor of 2 from configuration b to configuration

e.

Referring again to the baseline configuration de-

scribed above, we now investigate how the optimal de-

sign depends on the Reynolds number, by adjusting the

viscosity µ. We solve the shape optimization problem

for four consecutive Reynolds numbers Re ∈ {1, 10, 40, 100},
based on the initial baseline design, using again the op-

timized design of the lower-Re problem as initial de-

sign for the higher-Re problem. After a total of 65 +

69 + 60 + 65 = 259 design steps, the optimization con-

verges. To illustrate how the design varies with the

a

b

Initial

Re = 1

Re = 10

Re = 40

Re = 100

(upstream) (downstream)

Fig. 17 Body with minimal drag for different Reynolds num-
bers: initial and optimized shapes (a), and optimized pressure
contours and flow streamlines for Re = 100 (b)

Table 3 Body with minimal drag for different Reynolds
numbers: length (L), height (H), widest location (xw), and

relative decrease in drag r = (Cinitial
d −Coptimal

d )/Cinitial
d for

the initial and optimized shapes

Re L/2 H/2 xw r

Initial 1.00 1.00 0.00 -
1 1.81 0.62 0.03 7.7%
10 2.37 0.49 -0.01 2.3%
40 2.81 0.41 -0.29 1.2%
100 3.10 0.38 -0.52 0.4%

Reynolds number, the initial and the four optimized

shapes are compared in Figure 17a, and the character-

istics of the shapes are summarized in Table 3. A con-

siderable change in the design is seen as the Reynolds

number is increased: for low values, a body shaped like

a rugby ball is optimal, while for higher values, a more

slender design is optimal, with a slightly thicker up-

stream part than downstream part. The latter relates

well to the increase in the significance of the form drag,

and the decrease in the significance of the skin fric-

tion drag, as Re increases. The pressure and flow fields

around the optimized shape for Re = 100 are depicted

in Figure 17b.

In the present context, minimizing the drag on the

body is equivalent to minimizing the energy dissipation

in the flow past it (Mohammadi and Pironneau 2010),

and we may compare the results for these two types

of problems. Firstly, for Reynolds number Re = 1, the

angles of the leading edge (upstream) and the trail-

ing edge (downstream) compare well to the theoreti-

cally predicted value of 90◦, while for higher Reynolds

numbers, the present shapes are clearly more cusped

(Pironneau 1973, 1974). For Reynolds number Re = 1,

the present shape compare well qualitatively to the nu-

merical results obtained in (Katamine et al 2005), while

for Reynolds numbers Re > 1, they differ significantly

from their ovoid with the upstream part slimmer than

the downstream part. Consistently better qualitative

correspondence is found with the numerical results in

(Kim and Kim 1995), although the present shapes are

slightly longer, thinner, and more ovoid than their el-

liptic shapes.

6 Conclusions

In this work, we have applied isogeometric analysis to

shape optimization problems in fluid mechanics. The

numerical method uses NURBS and B-splines from com-

puter aided design both as analysis tool in a finite-

element-like manner to solve the governing steady-state,

incompressible Navier-Stokes equations in two spatial

dimensions, and as design tool to find optimal shapes

by adjusting the control points using a gradient-based

numerical optimization package.

Using the integral of the norm squared parametric

acceleration along the design boundary as a measure of

the quality of the boundary parametrization, we have

established a cheap, flexible and efficient regularization

technique to avoid inappropriate parametrizations dur-

ing optimization, by simply adding it to the objective

function. The regularization embeds the construction of

a good parametrization into the design optimization,

allowing the designer to search for shapes in a large
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design space, with little a priori knowledge on the op-

timal design. Its greatest challenge lies in the choice of

the regularization weight.

To emphasize the robustness of the proposed method-

ology, we have used it in three different numerical ex-

amples: first a pipe bend was designed to minimize the

pressure drop of the flow through it, then a body at rest

in a circular fluid container with rotating boundary was

designed to obtain a uniform pressure distribution along

its boundary, and finally a body traveling at constant

speed through a fluid was designed to minimize the drag

from the flow past it. Through the first example we dis-

cussed some advantages and challenges for the bound-

ary regularization technique. Through the second ex-

ample we showed that progressively better approxima-

tions of a known solution was achieved when more de-

sign control points were used. Through the third exam-

ple we demonstrated that practically identical shapes

were obtained for different initial designs and analysis

resolutions, whereas significantly different shapes were

obtained when varying the Reynolds number.

This work serves as a proof–of–concept of isogeo-

metric shape optimization as a viable numerical method

for accurate design of complex shapes in engineering

problems within fluid mechanics. Future studies within

the field could address flows with higher Reynolds num-

bers, extensions to three spatial dimensions and non-

stationary conditions, fluid-structure interactions, local

mesh refinements, regularization measures, and meth-

ods for parametrization of the domain interior during

design of the domain boundary, to name but a few rel-

evant subjects.
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