

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 19, 2017

The Requirements Domain for Laboratory Software Infrastructure. RTLabOS: Phase I –
Deliverable 1.1

Kosek, Anna Magdalena; Heussen, Kai

Publication date:
2013

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Kosek, A. M., & Heussen, K. (2013). The Requirements Domain for Laboratory Software Infrastructure.
RTLabOS: Phase I – Deliverable 1.1.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Online Research Database In Technology

https://core.ac.uk/display/18494346?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/the-requirements-domain-for-laboratory-software-infrastructure-rtlabos-phase-i--deliverable-11(c93fc243-4b7b-4e7d-92ae-7c86ca97c182).html

RTLabOS: Phase I DRAFT (October 22, 2013)

The Requirements Domain for
Laboratory Software Infrastructure
RTLabOS: Phase I – Deliverable 1.1

Anna Magdalena Kosek, Kai Heussen
Technical University of Denmark

October 22, 2013

Deliverable 1.1: Domain Study page 1 of 15

RTLabOS: Phase I DRAFT (October 22, 2013)

Contents

1 Introduction 3
1.1 Purpose . 3
1.2 Scope . 4

2 The Laboratory Environment: Stakeholder Preferences and Requirements from Ac-
tivities 4
2.1 Stakeholders . 4
2.2 Lab Users . 5
2.3 Activities . 6
2.4 Other Non-technical Factors . 7

3 Software Tools 9
3.1 Analysis and Development Tools . 9
3.2 Lab Related Tools . 11
3.3 Additional System Integration Tools . 12

4 Conclusion 13

Appendix A: Open Source Projects 15

Deliverable 1.1: Domain Study page 2 of 15

RTLabOS: Phase I DRAFT (October 22, 2013)

1 Introduction

Laboratories in a Smart Grid context are moving toward further integrated systems, where the
complexity and software intensity of technologies is increasing. A cornerstone of effective and
state of the art work in this field is the software infrastructure to operate the lab and support
its key activities.

Many software technologies that support lab related activities, such as analysis and devel-
opment, experimentation and testing, demonstration and education, are available today, and
tailored solutions are in use in each laboratory. In practice, the complexity of (often changing)
requirements and increasing capabilities, as well as the weight of legacy systems need to be
balanced. Whereas some convergence in interoperability and standardization can be observed,
the testing and development needs that are to be supported by research laboratories in the
electric power domain are advancing to address full systems integration.

As opposed to hosting a static, single-vendor solution, research labs need to offer the flexibility
to support integration of multiple vendors and the capability to offer an experiment-managing
infrastructure on top of the subject of testing. To maintain a software infrastructure in such a
setting that is state-of-the-art, affordable, free of vendor lock-in, flexible and configurable, easy
to use, extensible and evolvable, all at once may be an impossible expectation.

In face of this challenge, we may ask: What are the key features that drive specific solutions?
Can we identify common interfaces, architectural patterns, or good practices across laboratories?
Are there shared requirements that could benefit from cross-laboratory collaborations?

The goal of RTLabOS: Phase I is to identify the requirements and key features for a next
generation of smart grid lab software support. The following vision defines a direction for this
development:

RTLabOS vision The vision of RTLabOS is a supportive, real-time, cross-location laboratory
software infrastructure for development and testing of topology independent and system-wide
controls. Such an infrastructure will allow for seamless integration of simulated and physical
components, and support open-platform- and standards-oriented development of solutions
that can easily be deployed in the real world, enabling simulation and experiments with all
relevant time-scales. Designed with all phases of experimental development in mind, it will
offer support starting from experimental set-up and configuration, through online supervision
and monitoring, to the tracking of relevant data-sets from various sources. It will be based
on a software architecture that strikes the balance between ease of access, meaning low-entry
threshold and simple configuration, and the flexibility needed for laboratory software which is
under constant development.

1.1 Purpose

This report is part of the state of the art and requirements analysis which aims for an
understanding of the basic trade-offs driving lab software choices, as well as to avoid a conceptual
lock-in to existing laboratory software systems. The purpose of this document is to define a
common basis for classifying the challenges addressed by one way or another of conceiving a
lab software infrastructure.

Within this report, the basic notions of the user requirements and the supported software
are outlined.
This report forms a background for the RTLabOS Survey (Deliverable 1.2).

Deliverable 1.1: Domain Study page 3 of 15

RTLabOS: Phase I DRAFT (October 22, 2013)

1.2 Scope

The scope of this report is the domain of the power system laboratory software infrastructures
for development and testing of control strategies. In this report we focus on relevant lab users,
activities and software tools.

In particular, we aim to identify practical aspects of conducting experiments in several lab
facilities, possibly enabling remote access and monitoring. The domain of lab experiment can
be divided into several parts:

• stakeholders - owners and operators of the lab
• users - using and contributing to the lab,
• activities - that can be performed in the lab,
• software tools- to use, maintain and observe the lab.

Section 2 focusses on the stakeholders and activities, Section 3 presents overview of lab software
tools types. This report presents a domain study and provides basic concepts and terms for
survey in [6] and survey questionnaire in [7].

2 The Laboratory Environment: Stakeholder Preferences and
Requirements from Activities

The requirements of the lab software infrastructure ultimately depend on the use of the lab, its
purpose and users requirements. To provide orientation, this chapter aims to structure these
non-technology aspects of the requirements. The different parties interested in labs are mapped
in Section 2.1, the focus on the Section 2.2 is on the actual lab users; the possible lab use
and activities are presented in Section 2.3. Finally, the finally some overarching requirements
aspects are addressed in Section 2.4.

2.1 Stakeholders

Stakeholders are all parties involved in proposing, planning, funding, hosting, operating and
using a lab facility. The interests of these stakeholders are reflected in the way funding for a
lab is strucured and which aspects of operation are prioritised.

Figure 1: Stakeholders of a lab facility.

Deliverable 1.1: Domain Study page 4 of 15

RTLabOS: Phase I DRAFT (October 22, 2013)

Funding parties Funding parties of the lab can include government institutions, investors,
companies, universities.

Owners Ownership of a lab can be shared among different parties. Typically the owner is an
institution that hosts the lab facility, for example university, national laboratory, or a company.

Operating responsible The entity responsible for operation of the lab, typically making
decisions about the lab are the steering committee and the board of advisors.

Users The group of actual users of the lab; this category is further discussed in Section 2.2.

2.2 Lab Users

The requirements derived from actual lab use depend the specific role and interest of the user
group. Let’s consider the groups of stakeholders using lab facilities and map their interests, as
presented in Figure 2.

Figure 2: Different parties using lab facilities.

The lab users are classified into six groups. The group description and their main interests
are described below.

1. Academic users are mainly focused on research and education. The lab can be used to
perform experiments, test new algorithms, control and optimization methods and gather
data for analysis. Educational use of lab can include demonstrations and lab use for
academic courses and student projects. Whereas flexibility is a key interest for research
purposes, in particular the education perspective promotes ease of access and re-use.

2. Students can use lab as a basic of their projects or academic courses, for gathering
data, learning methods, exploring new algorithms and ideas. In labs with equipment
students can familiarize themselves with operation and safe use of machines. Modern
equipment, competent and available research and educational staff are most desired by
this stakeholder.

3. Technical support maintains and monitors equipment in lab facilities. Technical support
can also offer help to other lab uses by performing testing and validation. For technical
support staff, robustness, overview and repeatability of procedures are priority values.

Deliverable 1.1: Domain Study page 5 of 15

RTLabOS: Phase I DRAFT (October 22, 2013)

4. Vendors and supply industry users are mainly focused on testing products and
validating their operability, as well as lab demonstration of developed products. Intellectual
property issues need to be addressed such as data storage and transfer. Unique capabilities,
repeatability of tests and an efficient business process for testing techniques are salient
lab features for this stakeholder group.

5. Utilities use labs for pre-deployment testing and characterization of new technologies and
to support exploration of future technology development, including, equipment, controls
and operator support tools.

6. Certification bodies use labs for testing equipment for compliance with standards
and regulations; also the generation of experience feeding into the development of new
standards can be of interest to this stakeholder.

2.3 Activities

Lab use can be divided into eight activities: demonstration, experimentation, testing and
validation, time series acquisition, decision support and tool development, maintenance and
monitoring of equipment, controller development and deployment, and system engineering, as
presented in Figure 3.

Figure 3: Different activities in lab use.

Demonstration A lab can be used to demonstrate an existing solution that can be deployed in
the near future, or a proof-of-concept in the controlled lab environment. The purpose in either
case is demonstration of capabilities and features of the solution on a realistic but controlled
lab set-up with use of equipment that represent operations in the real system.

Experimentation For the laboratories in consideration here, the main purpose is to support
scientific research and thus to accommodate experiments for testing ideas. Within the (typically
narrow) scope of such experimentation, usability and configurability by the academic and

Deliverable 1.1: Domain Study page 6 of 15

RTLabOS: Phase I DRAFT (October 22, 2013)

research staff with minimum dependency on specialist technical staff is desired. Experiment
logging, user and operator interfaces are needed to the extend that they facilitate the execution
of experiments.

Testing and validation A lab can be used to perform testing and validation of commercial
products that are off-the-shelf or near-market, testing if devices comply with regulations and
standards; work as expected individually and in combination with other equipment.

Time series acquisition Time series of the operation of a lab equipment can be gathered for
a statistical analysis, a visualization, can be an input to controllers and be a basis for creating
and validating models. In order to develop models of lab components, time series of the unit
operation must be available along with information of unit control configuration and operating
state. The lab software infrastructure can also facilitate time series- and model-sharing and
reuse.

Decision support and tool development Tools for operators, grid monitoring and operation
need to be a part of the software infrastructure supporting a lab facility. These tools are used
on the one hand for operation of the lab itself and demonstration purposes, but they can also
be subject of research activities themselves.

Maintenance and monitoring of equipment Scripts can help automating the maintenance
of hardware equipment. In case of software maintenance a remote access and monitoring tools
can be present. Tools enabling advanced units monitoring, able to run maintenance scripts for
equipment fault detection, is needed for smooth and safe operation of lab facilities.

Controller development and deployment Controls development requires research in control
design methods, new control structures, novel controllers and control policies, testing and tuning
of controllers for deployment. Tools for controller development, deployment, execution and
testing are needed to support academic staff and students (for example simulation models of
different levels of refinement, controllable assets). This also include development of a design
cycle, process planning, and tools for combing simulation models with controllers and lab
equipment (co-simulation. hardware-in-the-loop, software-in-the-loop).

System engineering For labs with many power system units, system integration research,
development and testing work can be performed. The software infrastructure supporting this
activity can provide tools for system architecture design, and provide library of tools for system
integration (for example common interfaces and protocols, deployment of supervisory controllers,
monitoring and data collection). System engineering can also be associated with coupling of
simulation environments.

2.4 Other Non-technical Factors

From the requirements perspective, Sections 2.2 and 2.3 provided some categories for pri-
oritizing lab requirements. Further distinction criteria can be conceived to map out the
activity-centric features of lab software infrastructure. In this section additional dimensions
of activities presented in Section 2.3 are considered, including: complexity of experiments,
software implementation effort, complexity and change, interoperability and communication.

Deliverable 1.1: Domain Study page 7 of 15

RTLabOS: Phase I DRAFT (October 22, 2013)

Complexity of experiments The software infrastructure can support different complexity of
the system or a set-up of the experiment. The size of the experiment or a demonstration is
one dimension: starting form a component test to larger system integration and aggregation
experiments. Along the same lines, one should consider the complexity of the system under test:
starting from a homogeneous set of units to heterogeneous, cross-layer, cross-domain systems
(for example co-simulation, hardware-in-the-loop).

Software implementation effort The infrastructure needs to provide tools that shorten
development time and decrease the software development effort. Easy deployability of controllers,
experiment set-up, including tools enabling interoperability, hardware/software co-simulation
tools.

Complexity and Change The processes and modules that are building blocks of the software
infrastructure supporting labs operation, can be loosely structured or highly formalized. The
development of such formal building blocks is often driven by internal organization needs.
Formal structures reduce complexity, however, their maintenance also requires significant
resources in face of frequent change. Formal building blocks or structures can be developed
with respect to:

• Re-use of models made in different tools, by providing model translators or interfaces.
• Re-use of controllers, controllers compatibility (possibility to merge many controllers in a

single system), common interfaces for control (interfaces between aggregations in many
levels and interfaces to operated units).

• Data interoperability, consistency, cataloging and storing.
• Standardization of simulation tools, their interoperability with different simulation or

hardware tools.
• Data harmonization and merging, data compatibility, meta-data representation and

classification (e.g. describing data validity).
• Common formats for data sharing and re-use, common data model translators.
• Formalized process for experiment set-up and maintenance, possibly automated.
• Ability to include new and remote assets, remote control, including data services (e.g.

weather forecast service).
• Access control to assets, authorization, authentication and security.

Interoperability and Communication The functionality provided by software infrastructure
covers several layers of application, from basic process communications and PLC programming,
planning and decision support. Interoperability of software is often tied to a specific layer or
from one layer to the next. In a laboratory context, the focus of research on a particular layer
determines what type of solution is preferred: existing software components, new software
off-the-shelf or developed as part of several projects, etc. An example of an automation
architecture consisting of different layers is presented in Figure 4. Another related layer model
is the current standardization work regarding the Smart Grid Architecture Model (SGAM).

• Upper Layer: ’business IT’, including information management
• Scheduling and planning
• SCADA and Operator support
• Substation control level
• Component and asset control

Deliverable 1.1: Domain Study page 8 of 15

RTLabOS: Phase I DRAFT (October 22, 2013)

Figure 4: Automation architecture layers with exemplification of associated standards. In a laboratory
context the research focus will determine at which layer fixed solutions are preferred and
where in-house solutions play a role. Source: Thomas Strasser, AIT

• asset protocols (e.g. RS.232)
Relevant aspects to be considered in the context of interoperability and communication of the

software infrastructure for labs are: relevant protocols and standards,definition of the scope of
the laboratory, design and implementation focused on standards compared to custom interfaces
and protocols, future standards and trends to be considered. These aspects has to be defined
in the requirements of the RTLabOS software infrastructure, only selected solutions can be
implemented, but the overview of the existing standards and their usability for a lab software
infrastructure need to be assessed.

3 Software Tools

In this chapter examples of types of software tools that can be used together with the RTLabOS
software infrastructure are described. These software tools are grouped into tools with an
indirect relation to the lab (such as analysis and modeling tools), and directly lab-related
tools. The researcher tools are mainly used for setting up, executing, observing and analysing
experiments, and lab use tools consider monitoring, maintenance and operability of the lab
infrastructure.

3.1 Analysis and Development Tools

The software tools associated with this section have an indirect association with the physical lab.
Such tools are focussed to support the primary activities of research-oriented staff. This includes

Deliverable 1.1: Domain Study page 9 of 15

RTLabOS: Phase I DRAFT (October 22, 2013)

use of models, algorithms and control, decision-support and visualization tools, simulation
software, collaboration tools, data analysis and merging tools, and code management and
development environments.

Models Models are important part of working with simulation and hardware-in-the-loop.
Publicly available or custom models from electrical, mechanical, economical, meteorological
domains should be easily accessed, and deployed in the chosen environment. Models should
be stored in a common repository, available to all authorized parties. Models can come form
public repositories, commercial products, projects and academic courses. Tools enabling easy
reuse of existing models in experiments and simulations brings a desirable functionality for
researchers and students.

Data for analysis Tools to access, select and import data are needed for a lab software
infrastructure. Automated translation from different data types to a common format can
speed up the data analysis stage. Tools to analyze, plot and combine results can be helpful for
visualization, monitoring of an experiment or a demonstration, and data analysis.

Algorithms and control Many of researchers work only with control algorithms, a infrastruc-
ture for easy testing and simulation of algorithms is required to help evaluate their behaviour
in the controlled system. Tools to deploy these algorithms in the lab are also needed for tests
with actual power system components, communication network and users. Software infrastruc-
ture for deploying controllers is able to create containers where controllers can be deployed.
Distributed controllers can be interconnected and deployed on different machines. Controllers
can access other software infrastructure tools (e.g. database systems) and output data to
GUIs and visualizations. Software infrastructure can provide interfaces between controllers and
equipment, and also simulation tools involved in an experiment.

Decision-support and visualization tools Many lab activities are more efficiently executed
when the operation of the power system or its components can be observable. Visualization
tools helps in setting up and running the experiment, in the demonstration process - showing
how the solution behaves in the lab environment.

Software licenses If a commercial software is used, software licences should be stored in a
common space and easily accessed by the users.

Simulation software Simulations are mainly use to shorten the time of development of
algorithms, before lab tests and field tests. Simulations can be also used for up-scaling, models
of the power system components can substitute for units that are lacking in the lab (software-
in-the-loop). The co-simulation concept uses many simulations to simulate a complex domain,
for example influences between power system, communication and user domains.

Development environment Simulation software and tools for deployment of controllers and
algorithms can be considered development environment, where control and aggregation concepts
can be tested and further developed with use of software and lab facilities.

Deliverable 1.1: Domain Study page 10 of 15

RTLabOS: Phase I DRAFT (October 22, 2013)

Information access and document management Some information in the lab should be
shared and easily accesible, for example time series from renewables, unit configuration. All
data from commercial tests or demonstrations should be kept confidential, and be stored in a
secure database or repository.

Code management The lab software can also be the subject of research or experiment. If
there is many developers working on a single software solution, a version control system is
required, to track all changes. Version control software offers tools for code management, change
and developer tracking and offers roll-back options. Additional tools to maintain software can
be installed, for example bug trackers or scrum agile software development frameworks.

Collaboration tools A demonstration or an experiment can be conducted in a cooperation
between several parties: researchers, companies or students. Information share, common
experimet access gateways, monitoring and visualisation tools can be useful to jointly maintain
and execute tests and conduct research. For new users of the lab wikis and how-tos are needed
to familiarize themselves with the lab operation.

3.2 Lab Related Tools

In this section the domain relevant aspects of lab related tools are listed and functionality
is clarified. Such tools support activities including experimental setup and configuration,
on-line supervision and monitoring, and tracking of relevant data-sets from various sources.
Selected topics considering lab related tools are: SCADA system, GUIs for monitoring and lab
management,equipment and components, data aquisition and storage infrastructure,

SCADA system SCADA (Supervisory Control And Data Acquisition) enables monitoring,
control and data aquistition from all lab facilities. Centralised SCADA gathers all information
and send control commands to all supervised units form a single computer or a cluster (example:
ABB SCADA is installed in the Intelligent Control Lab in PowerLabDk [8]). A distributed
SCADA system is deployed in several computers, configuring and gathering data from a single
or a group of DERs and exposing an interface to control the power system unit (or units)
remotely (example: A distributed SCADA system is SYSLAB software, developed by DTU and
deployed mainly in SYSLAB laboratory in Risø Campus of PowerLabDk [8]).

GUIs for monitoring and lab management Visualising the power grid and its components
helps in maintenance of the equipment and can be a crucial part of the decision support an
operator software tools; often it is an integrated aspect of a SCADA system.

Data aquisition and storage infrastructure Data acquisition requirements in a laboratory
often exceed those from the field use. With a dedicated DA system, detailed evidence from
experiments and tests can be collected, which also entails massive amounts of data to be
handled. Data from measurement units need to be stored in an easily accessible and consistent
repository or database. Data storage structure (text, binary files, database) need to chosen and
implemented. Data about the experiment run, user and operator, can also provide information
about activities happening in the lab.

Deliverable 1.1: Domain Study page 11 of 15

RTLabOS: Phase I DRAFT (October 22, 2013)

Equipment and components control Controlling and monitoring equipment can be difficult
to manage without suitable machine-to-machine interfaces. Such control requires simple, device-
level interfaces that also support remote control and data acquisition tools, for example SCADA,
are needed to support all lab activities.

3.3 Additional System Integration Tools

The tools presented in this subsection are advanced lab tools that are not required but can
be interesting for the lab environment, mentioned here system integration tools cover: co-
simulation and HIL coupling and interconnection, remote access to equipment and simulation,
data merging, experiment booking and permissions, platform for deploying controllers are not
required for standard lab operation but are required for advanced work with system integration

Co-simulation and HIL coupling and interconnection Lab software infrastructure should
be able to track all simulations and equipment available for experimentation. Interfaces to
equipment and simulations need to enable coupling, lab software infrastructure can provide
means of translation between one interface or another (in sense of data model or message format
translation). Co-simulation tools:

• mosaik - co-simulation orchestrator [3],
• FMI (Functional Mock-up Interface) proposing standardized interfaces for cyber-physical

co-simulation [4],
• Ptolemy tool for simulating concurrent, real-time, embedded systems[5].

Remote access to equipment and simulations Equipment and simulations could be re-
motely configurable, started/stopped and controlled, data can be piped to an application or
saved in a database using secure remote access.

Data merging and model translation tools Data formats, models, units and time-stamping
vary between different systems. A way of translating and merging data to provide structured
experiment data and transparent knowledge-sharing can be achieved by such tools.

Consistent experiment booking, permissions and data tagging A tool or infrastructure
that integrates the process from managing the booking of lab elements, managing authorization
and authentication, as well as associating recorded data with tags that relate to the relevant
data.

Platform for deploying controllers Platform is able to create containers where controllers
can be deployed. Distributed controllers can be interconnected and deployed on different
machines. Controllers can access other platform tools (e.g. database systems) and output data
to GUIs and visualizations. Platform can provide interfaces between controllers and equipment
and simulation tools involved in an experiment.

Advanced configuration management Lab configuration can be done manually, but for
more advanced experiments or demonstrations automatic configuration can be a useful tool.
These tools may include: storing experiment configuration, automatic system reconfiguration,
for example with use of ontology driven models, generic models, data fusion or techniques from
artificial intelligence.

Deliverable 1.1: Domain Study page 12 of 15

RTLabOS: Phase I DRAFT (October 22, 2013)

Service-oriented tool access Number crunching services, forecasts, GIS services, real-time
grid data and state-estimation, load-forecasting and weather services, are all examples of
data-related services that require bundling of specific data types with dedicated computation
services. A software infrastructure that enables convenient API-based access to such services is
certainly advanced.

Multi-agent system driven lab platforms Agent-oriented programming is an advanced
software paradigm that associates a higher level of a autarky with software components, which
can be useful to enhance adaptability, robustness and integration between lab components. As
a strong programming paradigm, it also entails an overhead of programming concepts that users
need to adopt. To develop multi-agent system already existing platforms can be used. Example
of existing platforms are for example: open-source Jade, [1], commercial Jack [2]. Multi-agent
simulator for co-simulation, with interface to mosaik [3] co-simulation coordiantor tool.

4 Conclusion

The domain of power system laboratory infrastructure encompasses a wide variety of aspects,
arguably including aspects of power systems and those of running a research laboratory. The
key to lab software support would thus be to focus tools on the specific needs and ombinations
of lab activities rather than to aim for a generic solution.

Given the categorization provided here, identification of such needs should be possible using
a survey on power systems laboratories, considering jointly, their currently applied software
technology and the drivers that lead to their use.

Finally, the taxonomy of lab related software not only provides an overview, It also serves as
inspiration for development opportunities.

Deliverable 1.1: Domain Study page 13 of 15

RTLabOS: Phase I DRAFT (October 22, 2013)

References

[1] Jade - java agent development framework, 1999.

[2] Jack by aos autonomous decision-making software, 2009.

[3] mosaik by OFFIS Institute for Information Technology, 2011.

[4] Functional Mock-up Interface (FMI) by Modelica Association Project, 2012.

[5] Ptolemy II by UC Berkeley, 2012.

[6] Kai Heussen. RTLabOS D1.2 Survey. Technical report, Department of Electrical Engineering,
Technical University of Denmark, 2013.

[7] Kai Heussen and Evgenia Dmitrova. RTLabOS D1.2 Survey Questionnaire. Technical
report, Department of Electrical Engineering, Technical University of Denmark, 2013.

[8] Anna Magdalena Kosek. RTLabOS D1.3 PowerLabDK description. Technical Report
RTLabOS D1.3, Department of Electrical Engineering, Technical University of Denmark,
2013.

Deliverable 1.1: Domain Study page 14 of 15

RTLabOS: Phase I DRAFT (October 22, 2013)

Appendix A: Open Source Projects

It is apparent that a large number of open source initiatives aim to provide free and dependable
tools needed in a laboratory and research environment. To provide an impression of this work,
here an unsorted list of open source projects in the context of SCADA systems development:

• HMI
– http://sourceforge.net/directory/science-engineering/hmi/freshness:recently-updated/

• Modeling and Simulation
– http://sourceforge.net/projects/gridlab-d/?source=directory
– http://sourceforge.net/projects/modelio-open/?source=directory
– http://sourceforge.net/projects/modeliouml/?source=recommended
– http://sourceforge.net/projects/jmcad/?source=directory

• Interfaces
– http://sourceforge.net/projects/pyvisa/?source=directory
– http://sourceforge.net/projects/openopc/?source=directory OpenOPC for Python
– http://sourceforge.net/projects/opycua/?source=directory OPyCua (Prealpha) OPC

UA communication stack written in python
• SCADA

– http://sourceforge.net/projects/openscada/?source=directory
– http://www.openapc.com/ OpenAPC – Open Advanced Process Control
– http://sourceforge.net/projects/tango-cs/?source=directory

http://www.tango-controls.org/
– http://sourceforge.net/projects/sardana/?source=directory
– http://sourceforge.net/projects/indigoscada/?source=directory
– http://sourceforge.net/projects/seer2/?source=directory
– Overview: http://sourceforge.net/directory/science-engineering/scada/freshness:recently-

updated/
• Test and Measurement

– http://sourceforge.net/directory/science-engineering/testmeasure/freshness:recently-
updated/

• Technology
– http://sourceforge.net/projects/opencvlibrary/?source=directory
– http://sourceforge.net/projects/mrpt/?source=directory http://www.mrpt.org/
– http://sourceforge.net/directory/science-engineering/ai/intelligent-agents/freshness:recently-

updated/
In related fields of data analysis, programming and simulation, the list would be even longer.

As an excerpt, here three open source tools that are so well established in their field that they
are an easy match for their commercial counterparts.

• the Eclipse project
• R for statistical computations
• Octave for matrix-oriented programming
• MatPower for Power Flow calculations and OPF

The key benefits from open source, and the wider field of open API developments in
this field are the dependability of transparent code and possibility for contributing special-
purpose libraries, which for researchers serve the double-purpose of simplifying their work and
communicating their results to a large community.

Deliverable 1.1: Domain Study page 15 of 15

