
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 19, 2017

Rate-adaptive BCH codes for distributed source coding

Salmistraro, Matteo; Larsen, Knud J.; Forchhammer, Søren

Published in:
Eurasip Journal on Advances in Signal Processing

Link to article, DOI:
10.1186/1687-6180-2013-166

Publication date:
2013

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Salmistraro, M., Larsen, K. J., & Forchhammer, S. (2013). Rate-adaptive BCH codes for distributed source
coding. Eurasip Journal on Advances in Signal Processing, 2013, [166]. DOI: 10.1186/1687-6180-2013-166

http://dx.doi.org/10.1186/1687-6180-2013-166
http://orbit.dtu.dk/en/publications/rateadaptive-bch-codes-for-distributed-source-coding(737d7a43-84af-4d55-9aa3-f2b7aa5f73cf).html


Salmistraro et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:166
http://asp.eurasipjournals.com/content/2013/1/166

RESEARCH Open Access

Rate-adaptive BCH codes for distributed
source coding
Matteo Salmistraro*, Knud J Larsen and Søren Forchhammer

Abstract

This paper considers Bose-Chaudhuri-Hocquenghem (BCH) codes for distributed source coding. A feedback channel
is employed to adapt the rate of the code during the decoding process. The focus is on codes with short block
lengths for independently coding a binary source X and decoding it given its correlated side information Y. The
proposed codes have been analyzed in a high-correlation scenario, where the marginal probability of each symbol, Xi
in X, given Y is highly skewed (unbalanced). Rate-adaptive BCH codes are presented and applied to distributed source
coding. Adaptive and fixed checking strategies for improving the reliability of the decoded result are analyzed, and
methods for estimating the performance are proposed. In the analysis, noiseless feedback and noiseless
communication are assumed. Simulation results show that rate-adaptive BCH codes achieve better performance than
low-density parity-check accumulate (LDPCA) codes in the cases studied.

Keywords: Distributed source coding; Rate-adaptive error-correcting codes; Rate-adaptive BCH codes; BCH codes

1 Introduction
In this paper, we address the use of Bose-Chaudhuri-
Hocquenghem (BCH) codes in distributed source cod-
ing (DSC) with feedback. In recent years, DSC [1,2] has
gained increasing interest, e.g. for distributed video cod-
ing (DVC) [3-6]. The coding is referred to as Slepian-Wolf
(SW) coding and is based on the SW theorem [1]. The
relation between SW coding and syndrome decoding of
error-correcting codes was observed by Wyner in [7].

Applying and designing practical SW coding schemes of
finite block length pose challenges. Turbo and low-density
parity-check (LDPC) codes have been applied and studied,
e.g. in [8] using block lengths of 104 and 105 bits, but this
may be too long for some practical applications.

We shall consider SW coding of shorter blocks within
an architecture, where the decoder can provide feedback
to the encoder. Therefore, we shall compare the pro-
posed codes with low-density parity-check accumulate
(LDPCA) codes [9]. We shall focus on the case where
each symbol to be coded, Xi, is strongly correlated with
the side information Y, and thus the conditional entropy
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H(X|Y ) is low. We shall analyze the case where the dif-
ference between Xi, and the corresponding symbol in the
side information, Yi, is modelled as a Bernoulli process
having (a small) error probability, p = P(Xi �= Yi).

In DSC, using short block length may be of interest, e.g.
in the case of delay restrictions relative to the bit rate or for
adaptive coding. Context-based adaptive coding as used,
e.g. in conventional image and video coding may, in prin-
ciple, adapt after every symbol. Using short code lengths
in DSC, it is possible to obtain decoded bits at a fine gran-
ularity, allowing, in turn, the parameters used to model
the source to adapt and/or converge faster, when per-
forming adaptive DSC. In transform domain DVC [6], bit
planes of DCT coefficients are coded: for QCIF resolution
this means 1584 source bits in each bit plane to encode,
and it may be desired to adapt with even finer granular-
ity in an adaptive DSC architecture. Distributed coding
of strongly correlated sources was treated in [10], where
arithmetic codes were used in place of LDPC or Turbo
codes. However, in the reported results, the bit error rate
was not reduced much when compared with simply select-
ing the most likely values of Xi given the corresponding
side information, Y.

In the case of feedback-free DSC coding [3,4,11], the
code has to be designed to cope with the relatively large
variation in number of errors in case of short blocks. As
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we also demonstrate in the result section, the performance
of a feedback-free non-rate-adaptive code is limited by
the block length and for short- and medium-length codes
clearly inferior compared with the performance of its rate-
adaptive counterpart. In the context of non-rate-adaptive
codes, quasi-arithmetic codes for DSC have been inves-
tigated in [12], and in the field of real-number codes,
BCH-DFT codes [13] have been proposed.

In general, a rate-adaptive code is an error-correcting
code having the capability to vary its strength (i.e. increase
or decrease the number of parity symbols) in order to
adapt to the number of errors in the given block. In our
case, rate adaptation is performed incrementally and con-
trolled by the decoder by means of a feedback channel.
This is a quite common assumption in LDPCA and Turbo
code-based DVC [5,6]. BCH codes with feedback chan-
nel have also been used in [14] in order to perform the
quantum key reconciliation step in the quantum key dis-
tribution protocol. In this system, the rate of the BCH
code is fixed and it is decided based on the noise on
the quantum channel. The feedback is used to allow the
receiver to inform the sender whether the quantum key
has been correctly reconciled, and therefore, it does not
need to be discarded. Nevertheless, the feedback channel
is not used for rate adaptation purposes.

We shall consider a system with feedback as in [9] where
LDPCA coding is used, but here we shall use BCH coding
in a rate-adaptive manner (RA BCH). Syndromes (blocks
of syndrome bits) are requested one by one through the
feedback channel, and the requests are stopped when a
sufficiently reliable decoded result is reached, see Figure 1.
To increase the reliability, a check of the decoded result
may be requested and performed based on additional
syndromes of the RA BCH code or cyclic redundancy
checking (CRC). The main motivations of the study on
RA BCH codes is the relatively low efficiency of LDPCA
(and Turbo) codes when using a short packet length in a
high-correlation scenario and the fact that the analysis of
the performance of the RA BCH codes is simpler. An ini-
tial study on RA BCH codes was presented in [15], where
we proposed a model for RA BCH codes: we demon-
strated that BCH codes were able to outperform LDPCA

codes in the high-correlation scenario, and we validated
the correctness of the results of our model. Neverthe-
less, the model we proposed was based on some rough
approximations; in particular, the checking process of the
results was only crudely modelled. Secondly, we did not
provide a complete theoretical model for the hierarchical
check procedure, and we did not analyze other possible
checking procedures for RA BCH codes. In this work, we
provide a review of the basic concepts presented in [15],
and we present new models based on a detailed analysis of
BCH performance and report new results in order to bet-
ter analyze, demonstrate, and evaluate the features of our
system.

In this work, we will demonstrate that our RA BCH
codes are able to outperform LDPCA codes if p < 0.04
(H(X|Y ) < 0.24). When using efficient side information
generation methods in DVC, e.g. OBMC or optical flow-
based systems [16], the most significant bit planes of the
coded coefficients have error rates comparable with those
in our scenario when low-motion sequences are analyzed.
For example, for the Hall Monitor, sequence is coded
using side information produced by optical flow, and the
maximum error rate among the first three bit planes of
the first five DCT coefficients is p = 0.038. In some of
the cases, it is less than 0.01. In [16] it has been noted
that in low-motion sequences there is a consistent gap
between the performance of an ideal code and the real
performance of the LDPCA code. Our system could be
considered as part of a Wyner-Ziv decoder in order to
reduce the gap for the easy-to-decode (most significant)
bit planes in low-motion sequences. It should be noted
that we do not think that our codes can substitute LDPCA
(or Turbo) codes generally in DVC, but we think that a
hybrid system, using both BCH and LDPCA codes, cho-
sen accordingly to the correlation of the bit planes, can
improve the performance of current DSC architectures.
For example, in [17] the authors presented a DVC codec
able to perform rate decision at the decoder, achieving
superior performance through the use of different coding
modalities: skip, arithmetic, and intra-coding. We think
that our codes could be used in a similar way. The pro-
posed scheme can also be used for other DSC scenarios,

Encoder:
syndromes 
calculator

DecoderXX X

Y

Syndromes

Feedback Channel

^

Figure 1 The addressed scenario with transmission and feedback channels.
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e.g. in cases such as the one examined in [14], where LDPC
codes require very long block lengths and the correlation
is so high that the RA BCH codes are an efficient solution
for many of the considered cases.

The rest of the paper is organized as follows: In Section 2
RA BCH coding and distributed decoding is presented.
Section 3 presents expressions for analyzing the perfor-
mance. In order to increase the reliability without heavily
affecting the rate, Section 4 extends the scheme by an
extra CRC check over multiple blocks decoded using RA
BCH. Simulation results are presented in Section 5.

2 Rate-adaptive BCH codes
We consider a specific version of SW coding [1] employ-
ing RA BCH codes over a communication system with
error free transmission and error-free feedback channel.
We shall describe SW coding using linear block codes in
the next subsection and thereafter describe the adaptive
algorithm using BCH codes which belong to the class of
linear codes.

2.1 Slepian-Wolf coding with linear block codes
A block, X, of length l bits from the source sequence is
encoded using the parity check matrix of a linear code,
and it is decoded with the help of side information, Y,
which is correlated with X. Let E denote the difference
between X and Y where all the calculations are done
bitwise modulo 2. This is expressed by

Y = X + E. (1)

We proceed using the formulation in [7]. A syndrome,
sX(s), is calculated at the encoder using the parity check
matrix H(s), where s is an index to indicate the adaptive
code rate to be introduced later:

sX(s) = H(s)X. (2)

As in [9] and commonly in DVC literature, sX(s) is
assumed to be received without errors. Based on this
syndrome and the side information Y, we first calculate

sR(s) = sX(s) + H(s)Y = H(s)E. (3)

The decoder [7] (ideally) performs a maximum-likelihood
decoding of sR(s) to find the estimate Ê which is used to
find an estimate of X, denoted as X̂

X̂ = Y + Ê. (4)

Since the code is of finite length, errors in Ê cannot be
completely avoided. We consider the case that the differ-
ence E is an independent and identically distributed (i.i.d.)
Bernoulli process with error probability p, given the side
information Y. We analyze the performance assuming that
X (and Y ) are equiprobable i.i.d. In this case, the likeli-

hood may be expressed by the Hamming distance, and
thus, the decoding performance of the instance above fol-
lows from the usual performance analysis for linear block
codes [18,19].

2.2 Rate adaptation
The block coding scheme described above may be made
rate adaptive using an increasing number of rows in H(s),
thus providing incremental redundancy. This requires
that the error-correcting code is chosen from a family
of codes where the H matrix is extensible with more
rows while the previous rows are kept, i.e. where more
syndrome bits may be produced, without changing the
previous ones. In this way, when more syndrome bits are
requested by the decoder, the already received bits can be
reused in the next decoding attempt, see Figure 1.

BCH codes [18] form such a family and allow simple
algebraic decoding. We shall describe how to use them in
a rate-adaptive way. The length of the blocks X and Y is
l ≤ 2M − 1 for an integer M. Let α be a primitive element
in GF(2M). For fixed s and a given syndrome, sX(s), the
BCH code is sure to correct t(s) errors if α, α2, . . . , α2t(s)

are roots of the codewords regarded as binary polynomi-
als. The syndrome (2) is calculated in blocks of bits, which
we hereafter name syndromes, and each of these is cal-
culated in GF(2M) as X(αi) = ri(αi), where ri(z) is the
remainder of X(z) divided in GF(2) by mi(z), the minimal
polynomial for αi. For binary BCH codes, for some val-
ues of i, syndromes do not increase the error-correcting
capability; therefore, there is only a need to know the
other syndromes which we call independent syndromes.
We denote the number of bits in ri(αi) as m(s) ≤ M. The
structure of BCH codes makes them suited for rate adap-
tation as the number of syndromes is freely selectable up
to the maximum number of syndromes.

We shall, as usual, decode the BCH codes using
bounded distance decoding, i.e. correct up to t(s) errors,
whereas a maximum-likelihood decoder would have been
more powerful. Rate adaptation through the use of the
feedback channel allows to counterbalance the coding
loss due to having a short block length. For decoding,
we use the Berlekamp-Massey algorithm [18] to deter-
mine the error locator polynomial since it operates on
the syndromes for increasing powers of α just as the rate
adaptation. The next step in the decoding determines the
errors from the roots in the error locator polynomial,
and this result may be evaluated to assess its acceptabil-
ity. Thus, the rate adaptation algorithm may be stopped if
the result is acceptable. If a new independent syndrome
is needed (i.e. the result is not acceptable), it is requested
from the encoder, and the Berlekamp-Massey algorithm
may continue from the stopping point since all previous
syndromes are already included in the current result. A
similar approach for adapting BCH codes was used to
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do error correction in an adaptive ARQ communication
system by Shiozaki [20]. This approach also assumes
error-free syndromes, but the calculations involved are
unnecessarily complex and no analysis of the (adaptive)
BCH is provided.

The index s indicates the number of independent syn-
dromes known at a certain step in the rate adaptation. We
will also refer to s also as the state of the system.

2.3 Checking strategies
The bounded distance decoding of s independent syn-
dromes may have two different results if the actual num-
ber of errors is higher than t(s). If the actual error pattern
E does not come closer than t(s) to any codeword, the
decoder declares a decoder failure and the rate-adaptive
scheme just continues by requesting a new independent
syndrome. If the error pattern is at most t(s) from another
non-zero codeword, we have a decoder error and the error
pattern is wrongly accepted. For Reed-Solomon codes,
the probability that a received vector with more than t(s)
errors is erroneously decoded is known to be close to
1/t(s)! [21]. A similar argument may be used for the prob-
ability of decoding error for a BCH code. Thus, if t(s) is
reasonably high, there is no need for further testing of the
reliability, but for smaller t(s), a test for reliability has to
be added. We suppose that the BCH decoder has initially
accepted a given decoded word as correct, employing s
syndromes: now we add a procedure to check it. We shall
detail the three coding strategies we analyze.

The most common way of addressing the problem is to
use additional CRC check bits [11] after the BCH decoder
has accepted a decoded word. If the CRC check fails, the
BCH decoder is forced to start again. We refer to this
approach as Fixed CRC check. This is also used in, e.g.
DVC codecs [6]. It has to be noted that in common com-
munication systems a CRC check is usually employed to
check the correctness of a decoded block, and in case of
failure, the block is requested again by the receiver if this
is possible. In the rate-adaptive case, the CRC check is
used to allow the decoder to improve the reliability of the
decoded result through the request of other syndromes
when the CRC check rejects the decoded string.

Since the reliability of the decoded sequence varies
greatly with respect to the state s in which the decoder
is, we can employ the knowledge of state s of the decoder
(known at the encoder by means of the feedback) to use
extra bits to perform the checking, i.e. we perform a strong
check (requiring more bits) if t(s) is low but a weaker
check, or even no check, (requiring fewer or no bits) if
t(s) is high enough. We can perform the check using more
syndromes or CRC bits.

In this scenario, we can request a CRC check, which in
strength is matched with the desired resulting reliability
and the reliability of the result at the time of the request.

We denote the number of extra bits required to check the
result as c(s) which is a nonincreasing function (c(s) ≥
c(s+1)). The reliability is improved by (about) 2−c(s) when
using a CRC check [22]. In case of a decoder error at s′, the
c(s′) bits used for the checking are stored and used for the
next result the BCH decoder accepts. Hence, in general,
the number of bits used to check a result when the system
is in state s ≥ s′ is greater than or equal to c(s). We call
this approach Variable CRC check (see Appendix).

When performing the check through the request of
extra syndromes, we can simply request δ(s) extra syn-
drome(s) (whose transmission requires c(s) bits) and let
the Berlekamp-Massey algorithm continue one or more
steps: if the result is not consistent with the extra check
syndrome(s), the RA BCH decoder is forced to start the
decoding process again. If the check fails, a new error pat-
tern may be calculated based on the syndromes already
available, including the checks, and if needed, extra check
syndromes may be requested. We call this third solution
Syndrome check method.

To summarize, we investigate and analyze three differ-
ent checking strategies to be performed after a word has
been accepted by the BCH decoder:

• Fixed CRC check: request a fixed amount of CRC
check bits to check the result (analysis in Section 3.1)

• Variable CRC check: request a variable amount of
CRC check bits to check the result; the strength of
the CRC check is matched with the reliability of the
decoded result (analysis is in the Appendix)

• Syndrome check: request a variable amount of
syndrome bits to check the result; the number of
syndromes is related to the reliability of the result
(analysis is in Section 3.2)

It is quite straightforward to notice that in the two
latter cases, the algorithm deciding the value of δ(s) or
c(s) dictates the performance of the code. In this paper,
the parameters of the algorithm are specified by a set of
thresholds T = {T0, T1, T2, T3, Tmax} where T0 < T1 <

. . . < Tmax. The decision on the strength of the check is
based on comparing the state s with the thresholds. We
will refer to T to as the strategy.

Since decoding with few syndromes is rather unreliable,
we start with T0 syndromes and thereafter one syndrome
at a time is requested. We may also impose a maximum
number of syndromes Tmax, e.g. if we want to limit the
number of requests/syndromes for practical reasons. A
general comment is that, using conventional CRC, once
we have checked for a given s and rejected the decoding,
we cannot back off later to a check with fewer bits. Using
the Syndrome check approach, in case the check at s′
rejects the decoded result, the syndromes at s′ are reused
for decoding and new (usually fewer) extra syndromes are
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required for the later check, allowing the system to back
off in practice. The function we employ to calculate δ(s) is

δT(s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3 if T0 ≤ s ≤ T1,
2 if T1 < s ≤ T2,
1 if T2 < s ≤ T3,
0 if T3 < s ≤ Tmax.

(5)

As can be seen, in the results to be presented, the max-
imum number of extra syndromes δM = 3. In order to
have a more compact notation, we make the dependence
on T implicit, denoting δT(s) simply as δ(s). In the case of
variable CRC, we define c(s) = Mδ(s), while in the case
of Syndrome check, in general, c(s) ≤ Mδ(s). To sum-
marize, a RA BCH DSC codec is specified by the length,
l = 2M − 1, of the RA BCH code and the strategy, T, used
to decide the values of c(s).

3 A model for the performance of rate-adaptive
BCH codes

Developing a model to predict the performance of a code,
with parameters l and T given p, is important not only for
performance analysis but also for optimizing the strategy
of the code with respect to p. We can devise a simple esti-
mate of the code length by noticing that whereas m(s) ≤
M in general, in most cases m(s) = M. Secondly, we can
also notice that when having few errors, t(s+1) = t(s)+1;
therefore, for correcting one more error, we need up to
M more bits, which implies that in order to correct Ne
errors (i.e. Ne ones in E), we need approximately MNe bits,
which leads to concluding that, on average, plM bits are
needed to correct errors (plus an overhead for checking)
because E[Ne] = pl. Below, we shall present more accu-
rate estimations. We introduce a compact notation for the
probability of having more than k ∈ N errors: Pe(> k) �
P(Ne > k). To simplify the expressions, in the next part
of this section, we introduce e(s) as the expected number
of errors beyond t(s) given that there are more than t(s)
errors:

e(s) =
∑l

e=t(s)+1 eP(Ne = e)
Pe(> t(s))

= pl − ∑t(s)
e=0 eP(Ne = e)

Pe(> t(s))
,

(6)

we introduce PE(s) as the probability of an erroneous
decoding with s syndromes, and using an argument from
[21] developed for fixed-rate codes, we get a heuristic
bound, which we use as an estimate

PE(s) ≈
∑t(s)

e=0
(l

e
)

2N(s) Pe(> t(s)), (7)

where N(s) (= ∑s
s′=1 m(s′)) is the total number of bits in

the s independent syndromes.

The probability of having more than t(s) errors and
thereby not having the correct result after bounded dis-
tance decoding is expressed by Pe(> t(s)). The argument
presented in [21], which we use to express (7) is based
on the assumption that, when there are more than t(s)
errors, the error pattern, E, is completely random. There-
fore, we may apply a combinatorial analysis. The ratio in
(7) relates the possible decoder errors, i.e. cases with up to
t(s) Hamming distance to a wrong codeword of the BCH
code to the total number of possible syndromes. There
are NÊ distinct error patterns, which may be output as
accepted by the code. Actually one of these is the correct
pattern, E. To reflect this, the expression should be multi-
plied by the ratio of the number of possible patterns which
are decoder errors (NÊ − 1) and divided by NÊ , but we
assume (NÊ − 1)/NÊ ≈ 1.

We approach the analysis of the RA BCH decoding pro-
cess by defining two probabilities PB(s) and PA(s). Let
PA(s) denote the probability of not ending the decoding
(not accepting a previously decoded result) given that s
syndromes are employed, and let PB(s) denote the proba-
bility of requesting s syndromes. For each state s between
T0 and Tmax, we calculate these two probabilities and use
them to calculate the estimated expected bit error rate
(BER) contribution b(s) and the estimated expected rate
contribution r(s) related to state s. Finally, the estimated
total BER can be calculated as

B =
Tmax∑
s=T0

b(s), (8)

and the estimated total rate can be calculated as

R =
Tmax∑
s=T0

r(s). (9)

We are going to present models to analyze the three
check methods we previously introduced. Based on m(s),
we define mT (s) as the contribution to the rate given that
we passed from state s − 1 to s:

mT (s) =
⎧⎨
⎩

m(s) if s > T0,∑T0

k=1
m(k) if s = T0.

(10)

Finally, we need to estimate the expected number of
errors given that we are accepting a result:

eB(s) = max {2t(s) + 1, eM(s)} , (11)

where eM(s) is the estimation of the number of errors in
the (wrongly) decoded word if t(s) < pl. In this case, it is
possible that the wrongly decoded error pattern corrects
some bits which are in error. This number can be approx-
imated by e(s)t(s)/l. Hence, the number of original errors
is decreased to e(s) − e(s)t(s)/l, but t(s) − e(s)t(s)/l new
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errors are introduced. Summing the two contributions, we
obtain the estimate

eM(s) = e(s)
(

1 − 2t(s)
l

)
+ t (s) . (12)

In the case of t(s) > pl, we use 2t(s) + 1 in the estimate
(11) since it is the minimum distance between two valid
words of the code, one of which is the correct error pat-
tern and the other is the wrongly decoded error pattern.
Summarizing, given a code with block length l = 2M − 1
and a strategy T and for a given p, we want to analyze the
performance by estimating the rate and the BER.

3.1 Rate-adaptive BCH codes using Fixed CRC check
In the case of the more conventional Fixed CRC check
c(s) = C, ∀s, after each new syndrome is received, the
result (if not a decoding failure) is checked with the CRC
and accepted only if the CRC check succeeds. If the CRC
check does not succeed, a new syndrome is requested. In
this scenario, T0 = 1 and T1 = T2 = T3 = Tmax. We
will use the thresholds in the formulas in this section in
order to have a general formulation which can be used in
the successive sections. We can start with modelling PA(s)
which is the probability of having more than t(s) errors
reduced by the probability of accepting a wrong result:

PA(s) = Pe(> t(s)) − PE(s)2−C

D(s)
, (13)

where

D(s) =
{

1 if s = T0,
Pe(> t(s − 1)) if s > T0.

(14)

For s > T0, D(s) takes into account that there are more
than t(s−1) errors because we have arrived at state s; oth-
erwise, the results would have been accepted in a previous
state. D(s) = 1 when we have no knowledge of the past,
i.e. when s = T0. The expression for PB(s) for this system
is

PB(s) =
{

PA(s − 1)PB(s − 1) if s > T0,
1 if s = T0

(15)

since we can arrive at state s from state s − 1 due to a
decoding failure or to an error revealed by the CRC check.
Now we can estimate the expected contribution to the
BER, b(s):

b(s) = PB(s)
PE(s)2−CeB(s)

D(s)
, (16)

and the expected rate contribution, r(s):

r(s) = mT (s)PB(s) + CTmax(s), (17)

where

CTmax(s) =
{

C if s = Tmax,
0 otherwise

(18)

since we need to take into account the rate contribution of
the CRC check only once because it does not depend on
the state s of the decoder.

3.2 Rate-adaptive BCH codes using Syndrome check
The analysis of the proposed RA BCH scheme is based on
an accurate analysis of the possible situations at each syn-
drome request. There are two types of requests: normal
syndrome request and check request. As we can see from
the rate adaptation algorithm depicted in Figure 2, up to
δ(s) extra checks are performed after decoding with s syn-
dromes. We call this process a check procedure starting
in s. After every check request, the decoder verifies if the
new syndrome satisfies the next step of the Berlekamp-
Massey algorithm. If the new syndrome is not compatible
with the previously decoded result, the check procedure is
stopped, and the latest check is regarded as a normal syn-
drome request and checked with a new check procedure
if needed (i.e. if it is not a decoding failure).

First of all, we shall redefine the estimation of PA(s):

PA(s) = Pe(> t(s)) − PE(s)
D(s)

. (19)

We shall define PF(s, i), 0 ≤ i ≤ δ(s) as an estimate of the
probability of failure in detecting that the decoded word
is wrong using i extra syndromes given that using i − 1
extra syndromes, it was not possible to detect the error.
We assume that this probability can be approximated by

PF(s, i) =
{

�(s, i)�(s, i)ϒ(s, i) if 0 < i ≤ δ(s),
PE(s) if i = 0,

(20)

where

�(s, i) = Pe(> t(s + i))
Pe(> t(s + i − 1))

, (21)

�(s, i) = 2N(s+i−1)

2N(s+i) (22)

ϒ(s, i) =
∑t(s+δ(s))

k=t(s+i−1)
P(Ne = k)∑t(s+δ(s))

k=0 P(Ne = k)
. (23)

For i �= 0, (20) is expressed using three terms (21-23);
�(s, i) (21) is the probability of having more than s + i
errors given that we have more than s + i − 1 errors. This
knowledge comes from the fact that we made a mistake in
the previous check. Increasing the number of syndromes
from s + i − 1 to s + i increases the strength of the code;
this phenomenon is expressed using the ratio between
the number of words belonging to the code when using
s + i − 1 syndromes and s + i syndromes (22). These
two terms can be derived from the same heuristic reason-
ing used for (7). The last term (23) is a correction factor.
Consider the sphere having centre in the correct word
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Figure 2 The algorithm for RA BCH with Syndrome check decoding.

and radius t(s + δ(s)). We use the volume (weighted by
the error probability) of the shell (from t(s + i − 1) to
t(s + δ(s))), we still have to explore, as numerator. This
correction factor takes into account that the previous two
terms overestimate the error probability as the system not
only has to make consecutive errors but also identical
errors.

We can now analyze the cases leading the system to
attempt to decode in state s. The first is when, starting in
state s − 1, the decoding fails in s − 1; this probability can
be expressed as

p0(s) = PB(s − 1)PA(s − 1). (24)

It can also be that in state s an extra check fails. This
check procedure could have been started in s − i, if
δ(s − i) ≥ i. Let PS(s, i) denote the probability of revealing
an error in state s, given that the latest normal syndrome
request was in state s−i and that we have requested i extra
check syndromes:

PS(s, i) =
( i−1∏

k=0
PF(s − i, k)

)
(1 − PF(s − i, i)). (25)
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Let pi(s) denote the estimate of the probability of arriv-
ing in state s due to failure in the extra check procedure
using i extra syndromes:

pi(s) =
⎧⎨
⎩

PB(s − i)
D(s − i)

PS(s, i) if δ(s − i) ≥ i,

0 otherwise.
(26)

Finally, combining (24)-(26) gives

PB(s) =
δM∑

k=0
pk(s), s > T0. (27)

The initialization of PB(s) is PB(T0) = 1, and PB(s) = 0
if s < T0. Using (7) and (20)-(27), we can analyze the con-
tributions of each state to the total rate and to the total
BER. Let PT (s) denote the probability of failing all the
extra checks:

PT (s) =
⎧⎨
⎩

∏δ(s)

k=1
PF(s, k) if δ(s) > 0,

1 otherwise.
(28)

The probability of ending the decoding process in state
s, taking into account the extra checking, is expressed by

PQ(s) = D(s) − Pe(> t(s)) + PE(s)PT (s). (29)

Let F(s) denote the rate contributions coming from
intermediate states, i.e. states traversed during a check
procedure which reveals an error:

F(s) =
δ(s)∑
i=2

(
PE(s)(1 − PF(s, i))�(s)

i−1∏
k=1

PF(s, k))

)
,

(30)

where �(s) = ∑i−1
k=1 m(s+k). The contribution of the rate

for the state s is r(s) and it is defined as

r(s) =
PB(s)

(
mT (s) +

(∑δ(s)
k=1 m(s + k)

)
PQ(s) + F(s)

)
D(s)

.

(31)

Scrutinizing (31), we can see the various contributions to
the rate at state s: PB(s)mT (s) is the contribution coming
from the fact that we are in the state s, and

∑δ(s)
k=1 m(s+k) is

the contribution coming from the extra check which is not
taken into account in the successive rate contributions,
multiplied by the probability (PQ(s)) of the two events
which lead to the termination of the decoding process: the
failure PE(s)PT (s) and the probability of having a number
of errors less than or equal to the correcting power of the
code, but having more errors than the correcting power of
the previous state D(s) − Pe(> t(s)). Finally, the contribu-

tion to the BER from the state s is b(s), which is expressed
by

b(s) = PB(s)PE(s)PT (s)
eB(s + δ(s))

D(s)
. (32)

Summing the contributions (8-9) of r(s) (31) and b(s)
(32) gives the estimated performance of the RA BCH code.

4 Hierarchical check of rate-adaptive BCH codes
The reliability of the decoded result is a central issue in
DSC. Increased reliability can be achieved at the expense
of a higher rate. In order to decrease the BER without
heavily effecting the rate, we proposed [15] the use of a
hierarchy of checks, the first one being performed at block
level, as described in Section 3.2, and the other(s) at a
higher macroblock level where a macroblock is the union
of f blocks. In this way, using an additional check of c bits
on the macroblock, the cost sustained from each block is
reduced to c/f bits at the expense of higher latency.

We implement and analyze only one level of the hier-
archical structure. After decoding f blocks using the Syn-
drome check RA BCH-based system, a CRC spanning
the macroblock is generated and it is used to check the
decoded results. If the CRC check is not satisfied, an extra
syndrome is requested for each of the individual blocks
in turn, one at a time, until a block decodes to a different
sequence than before. Thereafter, the c-bit CRC check is
performed again. This continues until the c-bit CRC check
is satisfied.

The model uses the contributions b(s) (32) and r(s)
(31) calculated as described in Section 3.2. For the hier-
archical CRC, let bH(s) and rH(s) denote the BER and
rate estimated contributions, respectively. bH(s) may be
derived from b(s) using the same argument introduced in
Section 2.3:

bH(s) = 2−cb(s). (33)

For what concerns rH(s), we first estimate P�(s) which is
the probability of starting a hierarchical check procedure
in state s:

P�(s) = PB(s)(1 − 2−c)

D(s)
PE(s)PT (s), (34)

and then we can calculate rH(s) which is the rate contri-
bution coming from the retransmissions required by the
hierarchical check, plus the rate r(s):

rH(s) = r(s)+ fMP�(s)
Tmax∑

k=s+δ(s)+1
(1−2−c)

PE(k)

Pe(> t(k − 1))
.

(35)

It has to be noted that rH(s) takes into account the
full extra contributions on the whole macroblock coming
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from errors of the current block. Since we are interested
in average performance, we can add rH(s) to the rate esti-
mation of the current block. In this way, the contributions
to the current block coming from errors in other blocks in
the total estimation of the rate are also included.

Finally, the rate and BER estimations (RH and BH ,
respectively) are

BH =
Tmax∑
s=T0

bH(s), (36)

and

RH =
Tmax∑
s=T0

rH(s) + c/f . (37)

5 Experimental results
In this section, we present our numerical calculations and
simulations in order to validate our theoretical analysis.
We compare our methods with LDPCA codes. All the
simulations have been conducted using 107 blocks or 107

macroblocks in the case of hierarchical CRC check. We
experimented with three rate-adaptive BCH codes with
length l = 255, 511, 1023. We focused on a high correla-
tion (low entropy) scenario; hence, we chose low values
of p.

Among all the possible strategies, some can be ineffi-
cient, i.e. there are strategies having the same (or higher)
rate but still achieving worse BER than another strategy. In
order to identify the best strategies, a (linear BER) convex
hull optimization is performed over the estimated perfor-
mance of strategies, selecting the set of the strategies T as
the points forming the convex hull.

We first discuss the results for the Syndrome check-
based rate-adaptive BCH codes, which will be simply
referred to as RA BCH codes in the first part of the
section. Figures 3 and 4 depict how the codes behave when
changing p. In general, one can expect that the longer the
code, the higher the efficiency. In the high-correlation sce-
nario, with short block length, for lower values of p, longer
block lengths are more efficient, but for higher error prob-
abilities, shorter block lengths are preferable. We used the
model presented in Section 3.2, (31-32), and an actual
LDCPA decoder [9] to determine the interval in which at
least one of the addressed RA BCH codes, evaluated by
the model, outperforms a LDCPA code having a length of
1584. For the RA BCH codes, the strategy having the low-
est rate out of the set giving a BER not exceeding that of
the LDPCA has been chosen. Figure 3 depicts these results
when not using CRC check for the LDPCA code, while
in Figure 4, an 8-bit CRC check was used for the LDPCA
code. In Figure 3, the three RA BCH codes are reported,
while in Figure 4, we only depict the optimal rate over
the RA BCH codes class, for each value of the conditional
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Figure 3 RA BCH code performance compared with an LDPCA
code with no CRC check. BCH codes have the same or better BER
than LDPCA at each H(X|Y) point.

entropy H(X|Y ) (per bit) we evaluate. As it can be seen
for lower error probabilities (lower conditional entropy),
the best-performing code is the longest one. As we have
previously said, in order to correct the errors, plM bits are
required on average (plus check bits). The minimum (and
ideal) number of bits on average is lH(X|Y ). Comparing
the two terms gives M ≈ H(X|Y )/p, and it can be noticed
from the graphs that the M of the optimal code is well
approximated by M = 1 + H(X|Y )/p. The discrepancy
can be due to the inability of the RA BCH code to reach
the entropy coming from the overhead due to the check.
The ratio H(X|Y )/p in the analyzed scenario is a decreas-
ing function, motivating the behaviour of the codes. It
may be noted that an H(X|Y ) between 0.25 and 0.3 corre-
sponds to (maximum) compression factors of 3 − −4. For
compression at these factors and above, corresponding
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Figure 4 Optimal RA BCH performance compared with an LDPCA
code with 8-bit CRC check.
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to reasonably compressible material, the well-selected RA
BCH performs better than LPDCA with block length of
1584, even though the RA BCH block lengths are shorter.
For the highest compressible point tested ( p = 0.005), the
LDPCA almost requires twice as many bits as the RA BCH
of length 1023.

In Figure 5, we present a complete analysis for p =
0.01, reporting models and actual performance of the pro-
posed method, and our RA BCH codes are compared
against well-known rate-adaptive and fixed-rate alterna-
tives. The performance for LDPCA codes with lengths
of 1584 and 396 without CRC check and with an 8-bit
CRC check, as well as the performance for fixed-rate
BCH and LDPC, codes are reported. We present the per-
formance of the three chosen RA BCH codes and the
corresponding estimated performance based on the pre-
sented model. The rate-adaptive BCH with length 1023
performs the best. Also, RA BCH 511 and RA BCH with
hierarchical check have good performance. They all per-
form significantly better than LDPCA 396 and 1584, being
significantly closer to H(X|Y ) than these. Furthermore, it
may be seen that our model is able to predict the simulated
performance of the decoder with high accuracy. We also
report the performance of the hierarchical check adding
a higher level check to the strategies of the 511 BCH
code. The increase of the reliability is high compared with
the increase in the rate, making the hierarchical check

an interesting solution if higher latency can be accepted.
For the hierarchical check, we used the same strategies
as for the normal RA BCH codes, and we performed
(linear BER) convex hull optimization over the parame-
ter set f ∈ {2, 4, 6, 8}. The strength of the CRC check
used is 8 bits. The model presented in Section 4 is able
to predict the behaviour of the code. The hierarchical
check increases the latency; hence, in a sense, it is like
using a longer block length. Therefore, we report the per-
formance for a LDPCA code having a block length of
4800 (and data increment of 75 bits), which is close to
the longest analyzed macroblock length 511 × 8 = 4088
(the code having block length 4800 has been produced
using the same approach of [9,23]). We also present, as
a term of comparison, a theoretical BER bound for a
fixed-rate error-correcting code of length 1023: as we
can see, the rate-adaptive BCH codes are able to outper-
form this bound. The bound is based on Theorem 33 in
[19], which allows the calculation of an upper bound for
achievable block error rate. We adapted the bound assum-
ing that non-decodable codewords have a BER which is
twice as high as the input BER; this will tend to over-
estimate the BER since decoding errors do not always
double the number of errors. Comparing with the fixed-
rate (BCH and LDPC) codes, the rate-adaptive codes
perform, as expected, significantly better, especially hav-
ing a much faster decrease in BER. For these results, the
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Figure 5 Analysis and comparison of the code performance for p = 0.01.
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achievable theoretical bound for a fixed rate seems to
coincide with the performance of LDPCA. Again, we can
note that the best RA BCH codes have significantly better
performance.

In Figure 6, the performance of a Fixed CRC-based
rate-adaptive BCH code for p = 0.04 is presented. CRC
strengths C = M and C = 2M are used. In this case,
the best Syndrome check-based RA BCH code is able to
outperform the best available Fixed CRC check-based RA
BCH code. In particular for p ≥ 0.015, the Fixed CRC ver-
sion of a code is unable to compete with its variable check
syndrome version. Secondly, we have also validated our
model developed in Section 3.1, which is able to predict
the behaviour of the code. We also present the perfor-
mance comparison between the codes having a length of
255 when using Variable CRC check and Syndrome check.
We can see that Syndrome check outperforms the Vari-
able CRC check system. It can be seen that the Syndrome
check is also able to provide more flexibility. This is due
to the fact that when using Syndrome check we can be
more aggressive: if the check rejects the decoding con-
sidered, we can reuse the bits requested for checking to
decode, but in the same situation, when using the Vari-
able CRC check we cannot go back, and we will use a very
strong CRC check in future decoding attempts. Obviously,

this leads to less robust strategies (the strategies lead-
ing to higher BER) for the Syndrome check approach,
but when examining strategies having comparable BER,
Syndrome check is superior for what concerns the
rate.

Since the best-performing solution among the ones pre-
sented is the Syndrome check-based RA BCH code, the
reliability of the model for this code is summarized in
Table 1. The performance of the model for p ≤ 0.04 was
analyzed since the BCH codes outperform the LDPCA
code for such probabilities (Figures 3 and 4) for the range
of code lengths considered.

As can be seen from Figure 5, the model is less precise
with respect to the prediction of the BER, while the rate is
usually well predicted; in the studied scenarios, the max-
imum difference between simulated and estimated rates
was less than 0.04%. In order to summarize all the numer-
ical results, a measure of the reliability of the prediction of
the models is proposed: the mean absolute BER difference
for a given code and a given error probability denoted as
	(l, p).

	(l, p) = 1
|T |

∑
T∈T

|BS(l, p, T) − B(l, p, T)|
BS(l, p, T)

, (38)
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Figure 6 Performance for RA BCH codes with fixed and Variable CRC for p = 0.04. Fixed and Variable CRC check-based rate-adaptive BCH
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comparison.
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Table 1 Evaluation of BER model accuracy �(p, l)
l Syndrome check-based model �(p, l)

p = 0.01

255 0.2395

511 0.0920

1023 0.0951

p = 0.015

255 0.2064

511 0.0759

1023 0.1609

p = 0.02

255 0.0989

511 0.1092

1023 0.4271

p = 0.025

255 0.1076

511 0.1239

1023 0.1057

p = 0.03

255 0.0305

511 0.0545

1023 0.0229

p = 0.035

255 0.0772

511 0.0798

1023 0.0623

p = 0.04

255 0.0586

511 0.3445

1023 0.0145

where BS(l, p, T) is the BER estimated by simulations and
B(l, p, T) is the BER calculated using the model proposed
in Section 3.2.

In this work, we focused on a high-correlation scenario
p ≤ 0.04 (H(X|Y ) ≤ 0.24), but we also assessed the
performance of our code for p = 0.1 (H(X|Y ) = 0.47)
in order to assess the robustness of the proposed code
in terms of the ability of the proposed codes (including
checking strategy) to perform reasonably well outside the
error interval they have been developed for. We define, for
this purpose, a rate loss metric:


g = 100 × RBCH − RLDPCA
RBCH

, (39)

where RLDPCA is the normalized rate of the LDPCA code
and RBCH is the normalized rate of the BCH code, both

obtained by simulations and not the model. For the BCH
codes, we chose l = 255, and for the LDPCA codes, we
chose l = 396, 1584 with an 8-bit CRC check. In this case,
the LDPCA codes outperform, in terms of the normal-
ized rate, the BCH code by 
g = 7.6% and 
g = 10%,
respectively, for similar BERs. Using the same metric for
p = 0.005 and comparing the RA BCH having l = 1023
with the LDPCA code having l = 1584 and an 8-bit CRC
check, we obtain 
g = −58%. It has to be noted that for
low-correlation scenarios our system is not able to outper-
form the LDPCA codes, but based on the relatively small
loss at p = 0.1, we note that in case of, e.g. varying values
of p, the RA BCH codes do provide robustness outside the
interval for which it performs better than LDPCA.

Our new model is also able to provide more accurate
performance estimates than the model presented in [15]
for a given strategy in almost all the cases. The improved
accuracy is high: for example, one of the best cases is for
p = 0.01, l = 255: the estimated BER by the proposed
model for a given strategy is 1.85 × 10−7, while the simu-
lated performance of the real decoder is BER = 2.20×10−7,
and the model of [15] predicted BER = 8.89×10−7. Among
the tested scenarios, the model of [15] is able to obtain
better accuracy than the proposed one only in a few cases,
but even in these cases, the results of the proposed model
are still sufficiently accurate. The worst of these cases is
l = 1023, p = 0.035: for the strategy having the high-
est difference, the BER is 9.36 × 10−6, the estimated BER
by [15] is 9.16 × 10−6, and the predicted BER using our
proposed model is 8.21 × 10−6.

The adaptive BCH and the LDPCA approach may also
be compared with respect to complexity. Two aspects are
interesting: the encoder and the decoder complexity.

The BCH encoder produces syndromes of (mostly) M
bits and each of them may be produced with l division
steps with an M degree polynomial. The number of syn-
dromes needed is variable on average around pl, so the
number of operations is growing as plMl. For the LDPCA
encoder, approximately the same number of syndrome
bits should be produced, and if it is implemented as an
ordinary matrix multiplication, the number of operations
becomes the same. Actually, the number of operations
could be reduced using the sparse nature of the parity
check matrix since it depends on the number of edges in
the bipartite graph for the code which grows with l, but
overall, we estimate the encoder complexity to be similar
for the two approaches.

The BCH decoder uses a few operations to perform the
next step in the Berlekamp-Massey algorithm for each
received syndrome, but then a search for roots in the
error locator has to be done. The complexity is propor-
tional to l and to the current number of syndromes, and
it is done each time a new syndrome is requested. The
LDPCA decoder uses the approach of [9] and performs
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100 iterations for each new set of syndrome bits. The com-
plexity is difficult to estimate, but in our implementation
which was not optimized in any way, the execution time
of the BCH decoder was around 16 times less than that of
the LDPCA decoder for a typical case: p = 0.04, l = 1023,
LDPCA 1584 as benchmark. In order to account for the
different lengths, in this comparison, we normalized the
decoding time of both codes by their respective lengths.

6 Conclusions
In this work, we propose and analyze the concept and use
of rate-adaptive BCH codes for DSC. We demonstrated
that these codes can outperform the rate-adaptive LDPCA
codes when employed in a high-correlation scenario using
short block lengths. Checking strategies are applied in
order to increase the reliability of the decoded results.
We presented and analyzed an adaptive strategy together
with the RA BCH and, for comparison, both a fixed and
an adaptive CRC. Finally, we devised and tested models
which were able to correctly predict the performance of
the codes. These models are employed to find the optimal
code and check strategy knowing only the probability p.
Furthermore, the reliability of our scheme was increased
using a hierarchical CRC, which consists of a CRC span-
ning more blocks in order to divide the cost of a check
between the them, obtaining a good trade-off between
the reliability and increase of the rate at the expense of
increased latency.

Appendix
Rate-adaptive BCH codes using Variable CRC check
When dealing with the Variable CRC check approach, we
can use an approach similar to the one we have seen in
the Fixed CRC check, but now the number of CRC check
bits used for each state s is variable. In fact, c(s) bits are
required only if no CRC bits have been requested in the
past states; hence, we can now define Cavg(s) as the aver-
age number of bits used to check an acceptable decoded
solution when in state s and �(s) as the average reliability
improvement due to the CRC check in state s.

In this case, formulas (13), (16), and (17) in Section 3.1
can be adapted, keeping PB(s) (15) unchanged:

PA(s) = Pe(> t(s)) − PE(s)�(s)
D(s)

(40)

b(s) = PB(s)
PE(s)�(s)eB(s)

D(s)
, (41)

r(s) = PB(s)

×
(

mT (s)+ D(s) − Pe(> t(s))+PE(s)�(s)
D(s)

Cavg(s)
)

.

(42)

Now the main problem is to find estimates for �(s) and
Cavg(s). We can start by defining PR(k|s), which is the
probability of requesting a CRC check in state k, T0 ≤ k ≤
s given that the result in state s is acceptable, and hence,
it should be checked by a CRC. If c(s) = 0 but a CRC
has already been requested in a past state k, the check is
carried out as well. First of all, we need to estimate the
probability of a decoding error in state k given that we are
checking a decoding in state s, PEc(k|s):

PEc(k|s) =
{

L(s) if T0 ≤ k < s,
L(s) + (1 − Pe(> t(s))) otherwise,

(43)

where

L(s) =
∑t(s)

e=0
(l

e
)

2N(s) . (44)

Finally, we have

PR(k|s) =
k∏

i=T0

(1 − PEc(i|s)), (45)

with PR(k|s), we can calculate �(s):

�(s) =
s∑

k=T0

2−c(k) PR(k|s)∑s
i=T0 PR(i|s) (46)

and Cavg(s):

Cavg(s) =
s∑

k=T0

c(k)
PR(k|s)∑s

i=T0 PR(i|s) . (47)
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