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ABSTRACT 

 

Porous La0.6Sr0.4CoO3-δ thin films were fabricated by pulsed laser deposition for being used as a cathode 

for micro solid oxide fuel cell applications as MEMS power generators. Symmetrical La0.6Sr0.4CoO3-δ/yttria-

stabilized zirconia/La0.6Sr0.4CoO3-δ free-standing membranes were fabricated using silicon as a substrate. A 

novel large-area membrane design based on grids of doped-silicon slabs. Thermo-mechanical stability of 

the tri-layer membranes was ensured in the intermediate range of temperatures up to 700ºC. In-plane 

conductivity of ca. 300 S/cm was measured for the cathode within the whole range of application 

temperatures. Finally, area specific resistance values below 0.3 Ω·cm2 were measured for the 

cathode/electrolyte bi-layer at 700ºC in the exact final micro solid oxide fuel cell device configuration, thus 

presenting La0.6Sr0.4CoO3-δ as a good alternative for fabricating reliable micro solid oxide fuel cells for 

intermediate temperature applications. 
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INTRODUCTION 

 

Miniaturization of solid oxide fuel cells (SOFCs) has been recently proposed as a promising alternative 

for powering portable devices [1,2]. The micro SOFC (µSOFC) concept is based on the development of ultra-

thin electrolytes supported on low thermal mass structures [3–9]. This combination keeps the main 

benefits of SOFC technology, i.e. high specific energy per unit mass and volume, efficiency and fuel 

flexibility, while overcoming its major drawbacks, namely, high operating temperatures and long and high-

power-consumption start-up processes. Different designs have been reported in the literature, most of 

them based on free-standing electrolyte membranes supported on silicon-based substrates. The integration 

of SOFCs in micro electromechanical systems (MEMS) technology becomes crucial to achieve the desired 

miniaturization while ensuring high reproducibility, cheap mass production and electronics compatibility. 

In this sense, big efforts have been devoted to the development of optimized membrane designs, i.e. 

maximizing the membrane active area while ensuring structural and thermomechanical stability, in order to 

enlarge the total power achievable per single device. Opposed to original simple squared membrane 

designs with a limited maximum size [3], recent works focus on the fabrication of membranes with 

enlarged areas reaching several mm2. First Rey-Mermet et al. [10] and lately Ramanathan et al. [4] used 

dense Ni grids as robust support for fabricating membranes with a maximum area of 25 mm2. This way, a 

maximum power output multiplied by a factor of x30 has been achieved. A second alternative for 

increasing the active area was reported by Su et al. [7]. It consists on the fabrication of corrugated 
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membranes with surface utilization increased by 30% to 64%. This allows almost doubling the maximum 

power of the µSOFC.  

Great performances have been reported by µSOFCs based on thin film free-standing YSZ electrolytic 

membranes, both using the basic squared designs and the large-area ones. YSZ membranes present 

thermo-mechanical stability through the whole intermediate temperature range (up to 700ºC), and reach 

the target value usually established for the Area Specific Resistance (ASR=0.15 Ωcm2, [11]) at temperatures 

as low as 400ºC [6,12]. However, despite the good performance achieved by the thin electrolytes 

themselves and the promising works reported on µSOFC devices (a maximum power density of 1037 

mW/cm2 was reported by Kerman et al. [13]), the quick degradation shown by the typically implemented 

metallic electrodes [3,14] at operating temperatures  still hinders the way to the commercialization of 

µSOFC devices [15–17]. A difficult balance between two opposite phenomena is required for the 

development of reliable metallic-based thin film electrodes, namely: (i) the promotion of thin film 

dewetting with temperature, in order to form a porous film and enlarge the triple phase boundary (TPB) 

length without losing the connectivity; (ii) the limitation of the dewetting process that makes the thin films 

unstable at operating temperatures. This last phenomenon leads to the agglomeration of the metal during 

operation yielding the formation of isolated metallic islands, with the loss of in-plane percolation and/or 

dramatic reduction of active area. Fast degradation of metallic thin films implemented on µSOFC 

configurations have been already reported by Ramanathan et al. [4,13,18]. 

As a consequence of this, the implementation of more reliable and stable thin film ceramic-based 

electrodes into µSOFC systems seems to be the next natural goal for the µSOFC community. Indeed, some 

attempts have been already reported on the development of pure oxide-based electrodes for fabricating 

fully-ceramic µSOFC, based on state-of-the-art materials on bulk SOFC systems working as cathodes [19–

27] or anodes [28]. However, only few results have been reported on µSOFC performance using ceramic 

electrodes [29–32]. 
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Lanthanum strontium cobaltite (LSC) is one of the most extended and studied cathode materials for 

SOFCs, especially when working in the intermediate range of temperatures. Reactivity issues between LSC 

and yttria-stabilized zirconia (propensity to form insulating La2Zr2O7 or SrZrO3 phases in the cathode/YSZ 

interface [33–35]) together with the large mismatch in the thermal expansion coefficient of LSC vs. YSZ 

(TECLSC = 23 ppm/K; TECYSZ = 11 ppm/K [36–38]) limit its applicability at high operating temperatures or in 

devices involving high T fabrication steps (T>700ºC). In this sense, alternative electrolytes or barrier 

diffusion layers are sometimes introduced between the electrolyte and the cathode for reducing these 

effects but still degradation by detachment is present [39–41]. The implementation of the LSC layer in 

porous thin film form has been recently proposed as a good solution for this particular problem showing 

very promising results in the intermediate range of temperatures (T<700ºC) [21–23,42]. It is important to 

notice here that either increasing the density of LSC thin films (internal lattice strain fields involved, [43–

46]) or lowering the pO2 [47] can induce Sr segregation and mid-term quick degradation.  

In this work, porous thin films of La0.6Sr0.4CoO3-δ were fabricated and tested as cathodes in free-standing 

membranes of dense yttria-stabilized zirconia working as an electrolyte. Porous electrode and dense 

electrolyte were deposited by Pulsed Laser Deposition (PLD) by using different deposition conditions. The 

all-PLD-deposited symmetrical cells (LSC/YSZ/LSC) were supported on a novel large-area free-standing 

membrane design [48–50]. This new membrane design is based on the use of a grid of doped silicon slabs 

as support. Opposed to the previous strategies (based on metallic grids), the here-presented strategy is 

fully based on silicon, thus compatible with CMOS and MEMS technology. 

In order to evaluate the suitability of LSC for thin film µSOFC cathodes, in-plane conductivity 

measurements were performed on simple films, to ensure good current collection, and a complete 

electrochemical characterization of the symmetrical free-standing membrane (half-cell measurements) was 

carried out, to evaluate the optimum operation temperature range of the LSC/YSZ (cathode/electrolyte) 

bilayer.    
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EXPERIMENTAL 

 

1) Pulsed Laser Deposition and characterization of porous LSC films on bulk substrates 

 

Yttria-stabilized zirconia (8mol% Y2O3-ZrO2 – YSZ) and La0,6Sr0,4CoO3-δ (LSC) pellets were fabricated by 

conventional sintering for being used as targets for PLD. Starting from a commercial powder of YSZ (Tosoh) 

and LSC powder supplied by EMPA (Switzerland), green pellets were obtained by compaction in a uniaxial 

die press. Sintered discs were obtained after a thermal treatment at 1450ºC for 7 h in air achieving relative 

densities over 95%. 

Dense YSZ thin films of 200-500 nm thick were deposited by PLD over Si3N4/SiO2/Si substrates by laser 

ablation of the previously fabricated target. Details on the substrate fabrication and PLD deposition 

conditions to obtain dense and homogeneous YSZ films are described with greater detail elsewhere [6]. 

Porous LSC films were deposited by PLD over the YSZ films. In order to achieve the desired porosity, a 

higher base pressure was employed, i.e. 1.0·10-1 mbar instead of 2.5·10-2 mbar. Deposition temperature 

was also lowered from 600ºC (dense YSZ) to 100ºC (porous LSC). The deposition time for obtaining 350 nm 

thick films of LSC was 25 min, using a pulse rate of 10 Hz and laser energy of 1 J/cm2. A PLD5000 equipment 

from PVD was used for the functional layers deposition at a wafer level, allowing the integration of the 

technique onto the silicon substrate fabrication flow. The so-prepared bi-layer samples were used in this 

work for the study of the electrode microstructure and in-plane electrical conductivity. 

Scanning electron microscopy (SEM, Zeiss Auriga) was used for the study of the microstructure of LSC 

deposited films before and after thermal treatments up to the maximum working temperature (T=700ºC). 

The identification of the phase on the films and its evolution with temperature was made by in situ X-ray 

diffraction (XRD, Brucker-D8 Advance). A temperature-controlled stage was employed for the acquisition of 

diffraction patterns at different temperatures, from room temperature to 700ºC in steps of 50ºC. 
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In-plane electrical characterization of the as-deposited porous LSC films was carried out by using the Van 

der Pauw method [51]. Four gold electrodes were painted on top of the LSC films (close to the corner 

edges) for their use as electrical contacts. Measurements at different temperatures, ranging from room 

temperature to 700ºC, were carried out on a Probostat cell placed inside a furnace by means of a Keithley 

2400 sourcemeter, using slow heating and cooling ramps (1ºC/min). A constant flux of synthetic air was 

forced in order to provide with the desired oxidizing atmosphere. A thermocouple was located besides the 

sample for temperature control. 

 

2) Fabrication and characterization of large-area self-supported membranes of LSC/YSZ/LSC 

 

LSC/YSZ/LSC free-standing membranes were fabricated for testing LSC as a cathode on a real µSOFC 

configuration. The technological flow for the fabrication of the self-supported low-thermal mass 

membranes is described in Figure 1a and references [48–50]. In order to make large area thermo-

mechanically stable membranes, a grid of doped-silicon slabs was defined in the earlier stages of micro 

fabrication (photolithographic step followed by a doping process [52], step A in Figure 1a). A SiO2/Si3N4 

dielectric bi-layer is then deposited on both sides of the substrate serving as isolation and substrate for the 

functional layer deposition (step B). By a second photolithographic step from the back side (step C) the 

Si3N4 layer is selectively removed (using Reactive Ion Etching, RIE), thus defining the zone of the silicon 

substrate to be etched for obtaining the membranes. SiO2 and Si are wet etched (HF and KOH, respectively) 

from the back side using the Si3N4 layer as mask (step D). After these etching processes, Si3N4 free-standing 

membranes supported on hexagonal doped silicon slabs grids were obtained on the top side (see Figure 1b-

c). Doped silicon zones were not etched due to their high selectivity to Si anisotropic etchants (KOH), thus 

the silicon slabs grids were obtained [52]. The obtained membranes ranged from 1.8x1.8 mm2 to 3.5x3.5 

mm2 and were used as substrate for the electrolyte deposition. These membranes present tensile strain 

and are used as sacrificial layers for the PLD deposition of the functional dense 500 nm YSZ electrolytes 
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(same deposition conditions than in previous section). By removing the silicon nitride layer, using selective 

reactive ion etching (RIE), YSZ free-standing membranes were released allowing a double side deposition of 

porous LSC of 350 nm thick (same deposition conditions than in previous section) to define the symmetrical 

LSC/YSZ/LSC cells. Finally, patterned 150 nm thick Pt films were implemented on both sides of the 

membrane to serve as current collectors. The mentioned pattern was defined by nanosphere lithography as 

detailed elsewhere [49], maintaining a substantial porosity after high temperature characterization. 

Comparison between top view SEM images on Figure 2 show the microstructure evolution of the Pt mesh 

after measurements performed at high T=700ºC, revealing a microstructural change during the 

measurement but in any case losing the porosity and connectivity on the current collector film. The 

continuity of the film is ensured since percolation pathways, i.e. in-plane connectivity, are observed (see 

inlet of Figure 2b). 

 

Figure 1 to be placed here 

 

Figure 2 to be placed here 

 

Electrochemical characterization of LSC/YSZ/LSC free-standing symmetrical membranes was carried out 

on a Probostat cell inside a high temperature furnace. Pt meshes were attached to both sides of the 

substrate always avoiding direct contact with the membranes to prevent severe damages. Electrochemical 

impedance spectroscopy (EIS) across the membrane was performed by applying small AC voltages of 50 mV 

in order to keep the linear regime at the measurement temperature range, in the frequency range from 

30MHz to 0.1 Hz (Novocontrol Alpha-A frequency analyzer with ZG4 test interface). Measurements were 

performed in temperatures between 150ºC and 700ºC, in order to properly separate the contribution of 

each component of the cell from the total resistance. Synthetic air was used as oxidizing atmosphere on 
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both sides of the membrane. The Adler-Lane-Steele (ALS) model was applied for fitting the arcs of the 

porous mixed ionic-electronic conductor LSC [53]. 

 

RESULTS AND DISCUSSION 

 

1) Microstructural and electrical characterization of porous LSC thin films deposited by PLD 

 

Figure 3 shows top view and cross section SEM images of as-deposited (a-b) and post-annealed at 700ºC 

(c-d) LSC porous layers (350 nm-thick) deposited over dense YSZ films. The typical columnar growth of PLD-

deposited complex oxides [54] is observed for both the YSZ and LSC layers. However, while YSZ presents 

strongly ordered and well-defined compact grains, LSC shows disordered columnar clusters with open 

porosity all along the whole thickness of the films. The origin of these differentiated microstructures 

corresponds to the set of PLD deposition conditions selected for each material, mainly temperature and 

pressure. According to Infortuna et al. [54], a high background pressure promotes the mobility of species 

allowing the formation of single clusters on the film, while the substrate temperature is the responsible of 

re-crystallization and grain growth during the deposition. Thus, low-temperature and high-pressure 

depositions, like the ones employed for LSC, usually provide disordered films formed by separated clusters 

with a high percentage of amorphous phase and porosity. Meanwhile, high-temperature and low-pressure 

conditions, as employed for YSZ, yield to ordered dense layers. The comparison of the Figures 3a-b and 3c-d 

shows the evolution of the microstructure with a thermal treatment up to maximum expected working 

temperatures (T=700ºC). While the microstructure of the YSZ layer remains essentially the same, showing a 

great stability against temperature (see ref. [6,55] for a more detailed study of the authors on YSZ films), 

the microstructure of the LSC layers evolves towards an inhomogeneous porosity. Indeed, cracks are 

apparently observed in the top view image of the layer (Figure 3c). These cracks are only affecting the 

upper part of the layer (see Figure 3d), that is, not affecting the quality of the attachment between the film 
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and the substrate. Indeed, an excellent adhesion between YSZ and LSC is observed by SEM, i.e. no loss of 

percolation is expected (not measured) after crystallization. This microstructural evolution is likely 

associated to the combined effect of the crystallization of the film from its initial amorphous nature and the 

partial sintering and densification of the original clusters into bundles. No cracking or delamination was 

observed on the fabricated films. By simple image processing of the SEM images, the in-plane porosity was 

found to be of ca. 30% ensuring good percolation, large Triple-Phase-Boundary (TPB) lengths and 

reasonable diffusion of gas species. Presumably, the observed porosity helps to balance the big difference 

in thermal expansion coefficient (TEC) reported for both materials, avoiding Sr segregation [37,38,44] and 

limiting the presence of significant stresses in the final multi-layer. 

 

Figure 3 to be placed here 

 

Figure 4 shows the evolution with temperature of the XRD patterns of the LSC/YSZ bi-layer deposited on 

Si3N4/SiO2/Si substrates from room temperature to 700ºC. The pattern acquired at room temperature 

corresponds to the as-deposited sample. A single phase is clearly shown by the only presence of diffraction 

peaks corresponding to a pure cubic Fm-3m structure (JCPDS-ICDD #30-1468). A previous work by the 

authors [6] showed that so deposited YSZ layers present less than 5%vol. of amorphous phase and pure 

cubic phase (no significant tetragonal contribution). No diffraction peaks are observed for the as-deposited 

LSC indicating an amorphous nature of the layer prior to annealing. As previously mentioned, this is mainly 

due to the low substrate temperature employed during the PLD process. The evolution of the XRD patterns 

with temperature shows a crystallization of the LSC layer between 500 and 550ºC by the appearance of 

new diffraction peaks corresponding to the cubic Pm-3m structure (JCPDS-ICDD #48-0121). The LSC 

crystallization at such low temperatures is very convenient for reaching the main goal of avoiding high 

temperature steps in the fabrication process. It is also important to notice that no reactivity between LSC 
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and YSZ was observed up to 700ºC, showing the applicability of LSC on a great range of temperatures 

covering the typical intermediate temperature range ascribed to the µSOFC.  

 

Figure 4 to be placed here 

 

Figure 5 shows the evolution of the in-plane conductivity with the temperature on a 350 nm thick LSC 

film, measured by using the Van der Pauw method. Starting from as-deposited samples, an improvement of 

more than one order of magnitude is observed at T=500-525ºC. Non hysteresis was observed for the 

subsequent cooling and heating curves, suggesting the irreversibility of the phenomenon. Therefore, and in 

concordance with the XRD study (Figure 4), the abrupt change can be associated to the crystallization of the 

LSC layer and the corresponding increase of electronic conductivity [42]. A maximum value of ca. 300 S/cm 

on in-plane conductivity is observed after crystallization. This is well over the target values typically 

required for SOFC electrodes (20 S/cm), even more assuming the sub-µm size of the fabricated cathode. No 

degradation or drastic losses in conductivity were observed neither with temperature nor time up to 700ºC 

and for more than 60h. 

 

Figure 5 to be placed here 

 

2) Microstructural and electrochemical characterization of LSC cathodes implemented in large-area 

µSOFCs  

 

Figure 6 shows top view and cross section images (optical and SEM, respectively) of the self-supported 

large area membranes used for this work, after deposition of YSZ and LSC. The area of the measured 

membranes is 2.8 mm2 for a total active area of 2 mm2, which represents an enhancement of ca. 20x over 

previously reported basic free-standing membrane configurations [3]. The mechanical stability of the 
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membranes is ensured by the grid of silicon slabs (5 µm in thickness). The buckling patterns observed in the 

free-standing part of the membranes (see Figure 6a) correspond to a compressive strain mainly associated 

to the YSZ layer (see references [6,55] for further details on the origin and thermo-mechanical response of 

the so-strained membranes). The LSC double deposition did not affect the buckling pattern suggesting a 

minimal contribution from the electrode layer to the total strain (as expected being LSC a porous layer able to 

easily release stress). The functional tri-layer (LSC/YSZ/LSC) presents a total thickness of ca. 1.2 µm with 

500 nm of dense YSZ electrolyte and 350 nm of porous LSC at both sides (Figure 6b). 

 

Figure 6 to be placed here 

 

The LSC/YSZ/LSC membranes were characterized by EIS in order to evaluate their electrochemical 

performance in the final µSOFC configuration. Figure 7 depicts two Nyquist plots corresponding to 

impedance spectra obtained at different temperatures. Below 350ºC, two arcs are clearly observed. A small 

arc appears at high frequencies due to the resistance associated to the ionic conduction through the bulk 

electrolyte (T=300ºC spectrum on Figure 7) while a big arc present at lower frequencies is presumably 

associated to poor performance at the electrodes. No grain boundary contribution to the resistance was 

observed for the electrolyte due to the typical columnar growth of PLD-deposited YSZ (see reference [6] for 

further details). 

At higher temperatures, the arc corresponding to the electrolyte becomes a pure serial resistance while 

the low-frequency arc associated to the symmetrical electrodes shows a great reduction in resistance 

(T=600ºC spectrum on Figure 7). The continuous line represents the fitted ALS continuum model [53] useful 

for describing porous mixed ionic-electronic conductors like LSC, i.e. the case under study. The excellent 

agreement between model and experimental data suggests that the non-charge transfer phenomena 

(solid-state oxygen diffusion and O2 surface exchange) and the gas-phase diffusion dominate the 

electrochemical behavior of the system.  
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It is important to notice here that the Si diffusion from the substrate is not expected to significantly 

affect the electrochemical behavior of the YSZ layer. This is due to the accumulation of silicon in the grain 

boundaries that present negligible contribution to the total resistance as previously mentioned. SIMS 

analysis performed after annealing at 800ºC (not presented here) shows that silicon from the substrate 

does not reach the electrode side through the dense electrolyte. Any asymmetry between the top and 

bottom electrode is observed by EIS suggesting that possible silicon diffusion from the substrate after RIE is 

neither significant. All these facts indicate that there is not significant effect of Si diffusion neither in the 

YSZ nor LSC films electrochemical behavior. However, future long-term degradation studies have to 

consider the relevance of this effect with time. 

 

Figure 7 to be placed here 

 

Figure 8 shows Arrhenius plots of the area-specific-resistance of the electrolyte (ASRYSZ) and the 

electrolyte-cathode interface (ASRLSC) as a function of the temperature, compared to previously reported 

values for both materials as well as state-of-the-art Pt electrodes. ASR values were obtained from the 

equivalent circuit fitting of the set of impedance spectra. Only the active area of the membrane was used 

for the calculations. The ASR dependence on temperature follows an Arrhenius-type law for both the YSZ 

and the LSC, with activation energies of Ea=1.05(1) eV and Ea=1.54(4) eV, respectively. These values are in 

concordance with previously reported values for the corresponding bulk materials (see [31,54,56–58] for 

YSZ and [21,22,24,42] for LSC). 

The YSZ electrolyte presents similar ASRYSZ values than those previously reported for bulk [57] and YSZ 

free-standing membranes measured in cross-plane [12]. Thus, fabrication of large-area YSZ membranes 

with similar performances than those already reported was satisfactorily proven. Although film stress has a 

marked influence on ionic-conduction properties by affecting the charge carrier mobility [59–64], any 

relevant contribution of the strain on the cross-plane conductivity was observed neither in this work nor in 
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previous studies on free-standing YSZ membranes [6]. This is probably due to (i) a great reduction of the 

film stress after buckling deformation and, (ii) a defect clustering and vacancy association taking place close 

to the grain boundaries, which in cross-plane measurements is much less significant in our columnar-type 

microstructure. In terms of µSOFC applications, the electrolyte layer should not contribute more than 

0.15 Ωcm2 to the total fuel cell resistance [11]. In the present case, this target was attained at temperatures 

as low as 450ºC, covering the typical µSOFC temperature range (500-700ºC).  

LSC resistivity values were similar or slightly higher than other previously reported thin films of LSC 

(some of them also plotted on the figure for direct comparison [21,22,42]). This small discrepancy can be 

attributed to the well-known dependency of the oxygen surface exchange properties and electrolyte-

electrode polarization resistances on the fabrication routes. Up to the authors’ best knowledge, this is the 

first report on half-cell measurements of a thin film LSC/YSZ/LSC system and, therefore, it is not possible to 

directly compare the obtained ASR with any similar configuration previously reported.  

As earlier mentioned, Figure 8 also includes ASR values for two different porous Pt/YSZ interfaces: (i) 

based on Pt/YSZ/Pt membranes under real µSOFC operating conditions from three different research 

groups [4,8,9]; (ii) based on porous Pt films deposited on YSZ single crystal as reported by Ryll et al. [17]. 

The wide variability of reported values is probably due to the instability of these metallic-based electrodes 

at µSOFC operating temperatures and does not allow clear comparison with the here presented results on 

LSC’s performance. 

An absolute value usually targeted for cathode/electrolyte polarization resistances is ASR=0.3 Ω·cm2 

[11]. In this sense, the here-presented results suggest the need of temperatures higher than 650ºC for 

having a good performance of the LSC/YSZ interface (dot line in Figure 8). Although this fact forces to work 

at higher temperatures than those previously published µSOFC devices based on Pt/YSZ/Pt (350-550ºC, 

[3,13]), the proven stability of the LSC films at such temperatures makes the system more reliable 

considering the fast degradation observed for pure metallic based devices. Moreover, working at such high 

temperatures allows substantially increasing the electrolyte thickness to several hundreds of nm. Thicker 
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electrolytes make the membrane more robust reducing the probability of pinhole formation, i.e. minimizing 

one of the most frequent reasons of dramatic failure for free-standing electrolyte membranes [12]. 

 

Figure 8 to be placed here 

 

CONCLUSIONS 

 

Highly porous LSC thin films (up to 33% in-plane porosity) were deposited by PLD over dense YSZ films 

for the fabrication of bi-layer cathode/electrolyte free-standing membranes for micro solid oxide fuel cells 

applications. An in-plane conductivity of ca. 300 S/cm was measured for the porous LSC films, within the 

typical range of µSOFC operation temperatures (450-700ºC), well over the values typically required for 

SOFC cathodes. Any microstructural degradation or loss of in-plane conductivity was observed neither with 

temperature nor with time up to 700ºC and for more than 60 h. The fabrication process of a novel large-

area membrane design is detailed. This membrane is employed for the implementation and evaluation of 

LSC porous layers as a cathode into a real µSOFC configuration, i.e. symmetrical LSC/YSZ/LSC free-standing 

membrane cell. The thermo-mechanical stability of the large-area membranes was ensured up to 700ºC. 

Target values of Area Specific Resistance required for SOFC cathode/electrolyte interface (ASR=0.30 Ω·cm2) 

were achieved in the intermediate range of temperatures (T=700ºC). These results showed the feasibility of 

using the fabricated LSC as cathode on µSOFC configurations, as a good alternative to the widely used 

metallic electrodes and anticipating more reliable all-ceramic-based micro solid oxide fuel cells operating in 

the intermediate range of temperatures. 
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FIGURE CAPTIONS 

 

Figure 1. (a) Main steps of the fabrication process flow of large-area LSC/YSZ/LSC self-supported 

membranes. First, a photolithographic step defines the doped silicon slabs where the ceramic films will 

stand (A); then, a SiO2/Si3N4 dielectric bi-layer is deposited on both sides of the substrate (B); a second 

photolithographic step from the back side (C) selectively eliminates the Si3N4 layer defining the zone to be 

etched for obtaining the membranes on the opposite side; SiO2 and Si are wet etched from the back side 

using the Si3N4 layer as mask (D), obtaining large-area Si3N4 membranes on the top side; dense YSZ layers 

are deposited over the Si3N4 by PLD (E); a RIE step eliminates the remaining Si3N4 layer releasing free-

standing YSZ membranes (F); finally, porous LSC layers are deposited on both sides of the substrate by PLD, 

forming free-standing LSC/YSZ/LSC membranes (G). (b) Detail of a large-area Si3N4 membrane, before YSZ 

deposition by PLD (step (D)). (c) Processed wafer after step (D), used as substrate for large-area PLD 

deposition. 

 

Figure 2. SEM top view images of a Pt current collector fabricated by nanosphere lithography, as-

deposited (a) and post-measurement (b). 

 

Figure 3. Top view and cross section SEM images of as-deposited (a, b) and post-annealing (c,d) 350 nm-

thick porous LSC layers over previously deposited dense YSZ. 

 

Figure 4. X-Ray diffraction patterns of a porous LSC film deposited over dense YSZ on a Si3N4/SiO2/Si 

substrate, measured at different temperatures. The stars correspond to YSZ diffraction peaks, while the 

crosses point out the main peaks of a crystalline LSC pattern, appeared between T=500ºC and T=550ºC. 
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Figure 5. Evolution of the in-plane conductivity of a porous 350 nm thick LSC cathode deposited over 

dense YSZ on a Si3N4/SiO2/Si substrate, measured by the van der Pauw method. 

 

Figure 6. (a) Top view optical image of a large area YSZ free-standing membrane supported on doped 

silicon slabs grid. (b) SEM cross sectional view of a flying free-standing LSC/YSZ/LSC tri-layer.  

 

Figure 7. Impedance spectra of a symmetrical LSC/YSZ/LSC free-standing membrane, measured at 

T=600°C and T=300°C. Solid red lines represent the fitting for the two different spectra. The numbers refer 

to the frequency decades covered by the EIS analysis. 

 

Figure 8. Evolution of the ASR of both LSC electrode and YSZ electrolyte with temperature, measured on 

symmetrical LSC/YSZ/LSC free-standing membranes. Reference values from previously published works 

[4,8,9,12,17,21,22,42,57] are also plotted for comparison. Black dot line marks the 0.3 Ωcm2 target value 

for the cathode/electrolyte bi-layer. 
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- Porous LSC thin film cathodes were implemented in real micro SOFC configuration. 

- LSC/YSZ/LSC symmetrical free-standing membranes fully integrated on silicon. 

- Thermo-mechanical stability of the all-ceramic membrane is shown up to 700ºC. 

- LSC/YSZ interfaces show area specific resistance below 0.3 Ω·cm
2
 at T=700ºC. 

- LSC presented as a good alternative to metallic electrodes for reliable micro SOFC. 

 

 


