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ABSTRACT 
Evaluations of the uncertainties resulting from risk assessment tools to predict releases from the 
various hydrogen storage types are important to support risk informed safety management. The tools 
have to predict releases from a wide range of storage pressures (up to 80 MPa) and temperatures (at 
20K) e.g. the cryogenic compressed gas storage covers pressures up to 35 MPa and temperatures 
between 33K and 338 K. Accurate calculations of high pressure releases require real gas EOS. This 
paper compares a number of EOS to predict hydrogen properties typical in different storage types. The 
vessel dynamics are modeled to evaluate the performance of various EOS to predict exit pressures and 
temperatures. The results are compared to experimental data and results from CFD calculations. 

1.0 INTRODUCTION 

Hydrogen may be thermodynamically considered as an almost ideal gas over a very wide temperature 
and pressure range. Nevertheless, present technological developments stores hydrogen in the liquid 
state at about 20K under a low pressure of few bars and in the gaseous state at very high pressures up 
to 800 – 1000 bars at ambient temperatures. Recently, the operational regime of cryo compressed 
hydrogen (CcH2) storage was reported to cover pressures of up to 35 MPa and temperatures from 
+65 °C down to -240 °C [1,2]. Considering these wide ranges for temperature and pressures, the 
assumption of ideal gas behavior and application of the ideal gas equations of state (EOS) is not 
adequate for all situations. This has been recognized by the scientific community and different 
approaches describing high pressure gas releases at ambient conditions from storage tanks [3-7] and 
within vehicles [8] are described. This discrepancy of behavior between ideal gas and real gas is 
illustrated in Figure 1, where the state-of-the-art reference data provided by NIST1 [3] are compared 
against predictions using the EOS for ideal gas. It is shown that the ideal gas EOS accuracy in 
predicting the density pressure relationship is limited up to about 35MPa at 500K, and up to about 
15MPa at 200K.  

From the risk assessment point of view a large number of release scenarios have to be analyzed, to 
give a comprehensive evaluation of the associated risks and to provide useful data for risk 
management purposes. In many scenarios at ambient conditions and moderate storage pressures the 
use of engineering equations based on the ideal gas EOS may give sufficiently accurate results to 
make proper decisions. For scenarios using very high pressure and cryogenic storage real gas behavior 
needs to be taken into account to reduce the level of uncertainty in the evaluations. For this purpose 
several EOS are being developed which may be classified into the cubic EOS type2  (equations by e.g. 

                                                      
1 Accesible from http://webbook.nist.gov/chemistry/fluid  “hydrogen” and described in the PhD thesis by 
Leachman:  http://www.boulder.nist.gov/div838/theory/refprop/leachman.pdf  
2 http://en.wikipedia.org/wiki/Equation_of_state#Cubic_equations_of_state 
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evaluate the possible effects to overall hydrogen safety using the correlations on jet flame length by 
Saffers and Molkov [10] and correlations on explosion severity by Dorofeev [11]. 

2.0 THEORETICAL BACKGROUND 

For risk assessment purposes, it may be sufficient to know the initial vessel conditions using the initial 
mass release to take a conservative approach, as the initial value is the maximum during the whole 
release process. In the case, where more detailed release scenarios are required, a time dependent 
approach has to be taken into account to predict mass release rate decays. Hereunder, it is important to 
know about parameters like vessel temperature, vessel pressure, throat pressure and sonic speed of the 
released gas that determine jet properties and jet flames. Therefore, models need to be capable of 
predicting such parameters. This paper will focus on the accuracy to model time dependent vessel 
pressures and temperatures and mass release.  

Several EOS are applied to calculate the mass release rate at ambient (300 K) and low (200 K) 
temperatures at two vessel pressures (30 and 34.5 MPa). The implementation of the real gas properties 
is implemented using the compressibility factor Z (see appendix A). The temperature profile in the 
vessel as well as important release parameters are calculated using an engineering numerical model 
called “DTU analytical model” in the following. It is developed to predict vessel dynamics and it is 
based on a model description from the Yellow book (see appendix A and CPR 14E chapter 2.5.2.2; 
[12] ) and a CFD model [7] using on the one side the ideal gas EOS and selected cubic EOS. The 
results are compared to former findings by Mohamed and Paraschivoiu [13].  

There are a great number of articles describing pressurized releases at ambient temperatures at 
moderate pressures. In such scenarios the specific heat ratio Cp/Cv is only slightly dependent on 
temperature and pressure as shown in Figure 3 for 298 and 500K. At low temperature an increasingly 
stronger dependency on pressure is observed for Cp/Cv which is illustrated in Figure 3. Also, the decay 
of the isochoric heat capacity Cv is shown. As the dependency of Cv is close to linear, it is obvious that 
the pressure dependency for Cp is becoming strongly non-linear at low temperatures. 

 

Figure 3. Real gas behaviour of normal hydrogen: Cp/Cv vs. pressure at several isotherms. Also shown 
(small figure) Cv versus pressure at the same isotherms. The dotted lines are linear fits to the graph and 

the respective coefficients are listed in Table 1 
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3.0 THE CASE STUDY 

3.1 Engineering modeling strategy 

The following scenarios are used to compare the DTU analytical model with the JRC CFD release 
model. For validation purposes, the first scenario is equal to the configuration in Mohamed and 
Paraschivoiu’s paper [13]. The release is from a hole r=3.18mm in a 27 L cylindrical tank. The initial 
tank pressure is 34.5 MPa at a temperature of 300 K. Mohamed and Paraschivoiu used the Beattie-
Bridgeman EOS and a 3-D unstructured tetrahedral finite volume Euler solver to model a high 
pressure hydrogen release at ambient temperature. They additionally applied an analytical model with 
the following assumptions: the thermodynamic properties are uniform in the tank; the release occurs at 
adiabatic conditions; the release is sonic at the orifice (velocity of gas is equal to the local speed of 
sound); the expansion of hydrogen from the stagnation state in the vessel to the critical state at the 
orifice takes place in a small region near the orifice being modeled as quasi one-dimensional 
isentropic flow. These assumptions for the analytical model are essentially the same as used in the 
DTU analytical model.  

In the second scenario, the geometry is kept unchanged while the initial pressure and temperature are 
equal to 30 MPa and 200 K respectively. In the third scenario, a much larger tank was considered (197 
L and 5.7 mm orifice radius) with the same initial conditions like in case 2.  

3.2 CFD modeling strategy 

The ANSYS CFX14.0 fully compressible solver was used [15]. Hybrid axy-simmetric meshes were 
generated with Pointwise 17.0 [16]as shown in Figure 5. The mesh is a pseudo 2-dimensional mesh 
since it is one cell thick in the y direction and it represents 1/360 of the whole 3D geometry. The main 
domain in the tank is built with an unstructured tetrahedral mesh. Since in the leak a preferential 
direction in the movement of the flow can be easily identified, a structured mesh was generated in that 
region. In the validation case with the 27 L tank, two computational grids were built in order to 
investigate the  

Table 2. Selected scenarios 

 Tank 
volume (L) 

Orifice 
diameter(mm)

Initial 
pressure(Mpa)

Initial 
temperature(K) 

case 1 
(Validation) 

27 3.18 34.5 300 

case 2 27 3.18 30 200 

case 3 197 5.7 30 200 

 

grid independence. The number of nodes in the meshes is reported in Table 3. It must be emphasized 
that the number of nodes is reported instead than the number of cells because in ANSYS-CFX the 
control volumes are built around the nodes and therefore their number is equal to the number of nodes. 
Negligible differences were observed in the results between the two grids. The high resolution 
advection scheme and the second order backward Euler time scheme were selected. The free slip 
boundary condition is applied to the walls and the exit surface is modeled as a supersonic outlet 
boundary condition, following the modeling strategy by Mohamed and Paraschivoiu [13]. 
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Figure 5: Computational mesh. 

Table 3: Number of nodes in the computational grids. 

Mesh Number of nodes 

27 L coarse 2984 

27 L fine 13380 

200 L  7328 

4.0 RESULTS  

4.1 Case 1: 27L vessel at ambient conditions 

Simulations are performed for the ideal gas release, the CFD code using the Peng Robionson EOS and 
the engineering model using Leachman’s EOS adaption for the compressible factore Z [3,17]. In the 
engineering model, the specific heats are variated: 1) Cv and Cp taken as constant at initial vessel 
temperature; 2) Cv and Cp taken as constant at (Tend-Tstart)/2 and finally 3) as a function of the 
temperature Cv(T) and Cp (T). Furthermore, the results are compared to the one’s published by 
Mohamed et al. [13] using an analytical and a 3D CFD approach.  
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Figure 6. Release calculations at 300K and a vessel pressure of 34.5MPa. The hole-radius is 3.18mm. 
The JRC CFD calculation and the DTU analytical model are compared with the CFD calculations by 

Mohamed et al.. 

 

Figure 7.Time profiles of the vessel temperature using Beattie Bridgeman (Mohamed et al.), Peng 
Robinson (JRC CFD) and Leachman (DTU analytical model). In the latter Cv values are: a) function of 

temperature, b)constant value Cv at 300K (solid black line) and c) constant value Cv at 190K (Tend-
Tstart)/2; dotted black line).  
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At ambient conditions all the models with the different real gas EOS provide very similar results. It is 
valid for the mass flow decay, the pressure decay in the vessel as well as the temperature decay in the 
vessel. The ideal gas approach is providing conservative release duration, while the initial releases are 
about the same for all. 

4.2 Case 2: 27L vessel at low temperature 

Simulations are carried out for the ideal gas release, the CFD code using the Peng Robionson EOS and 
the engineering model using Leachman’s EOS adaption for the compressible factor Z [3,17]. The 
specific heats are varied: 1) Cv and Cp taken as constant at initial vessel temperature; 2) Cv and Cp 
taken as constant at (Tend-Tstart)/2 and finally 3) as a function of the temperature Cv(T) and Cp (T). 

 

 

 

Figure 8. Results from the 27L storage release hole radius 3.18mm at 34.5 MPa at 200 K storage 
temperature. 
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In Figure 8 the results for the mass release shows the highest release for the ideal gas approximation 
being thus a conservative approach. The initial rates are about the same for all simulations. The 
models using the real gas predictions give about the same results. Similar findings are valid for the 
vessel pressure time profile. The temperature of the gas in the vessel is predicted considerably 
different comparing the three EOS applied. It further shows that the approximation of Cv and Cp/Cv is 
important to chose as some differences are observed. Due to the lack of experimental data it is not 
possible to predict the real temperature decay and giving recommendations on the best approach for 
predictions. The sound velocity has been calculated as seen in Figure 8. 

4.3 Case 3: 200L vessel at low temperature 

In order to test the basic assumptions made for the engineering model, as e.g. homogeneous pressure 
and temperature distribution inside the tank the following tests with a 200L vessel are performed using 
the CFD code from JRC and the engineering model adapted from the yellow book. The hole size 
radius is 5.7mm and the hydrogen is stored at 30 MPa at 200K.  

Simulations are made for the ideal gas release, the CFD code using the Peng Robinson EOS and the 
engineering model using Leachman’s EOS adaption for the compressible factor Z [3,17]. The specific 
heats are varied: 1) Cv and Cp taken as constant at initial vessel temperature; 2) Cv and Cp taken as 
constant at (Tend-Tstart)/2 and finally 3) as a function of the temperature Cv(T) Cp (T). 

The results are shown in Figure 9 for the mass release shows good comparison for the mass flow time 
dependency though the initial rate for the engineering model is slightly decreased. The decay curve 
though is close to the one obtained by the Peng Robinson CFD modeling approach. There are larger 
differences in the temperature decay, while the pressure decays are in excellent agreement.  

4.4 Accident consequence 

In the case of ignition, a hydrogen release can develop into a jet fires or an explosion depending on the 
local conditions and on the position and time of ignition.  The consequences of those scenarios can be 
evaluated with simple methods. 

An indication on the flame length can be provided by the correlation by Saffers and Molkov [18]. For 
under-expanded jets like in the case that is investigated in this paper, they developed the following 
correlation:  
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An evaluation of blast effects and safety distances for unconfined hydrogen explosions can be 
performed using a simple approximate method that was developed by Dorofeev [11] for that purpose. 
The main parameter in the model is the total mass of released hydrogen and the worst case conditions 
of nearly instantaneous releases of hydrogen are assumed. We assume that all the hydrogen in the tank 
is released as a further conservative condition. Given the different initial density in the real case (26 
kg/m3) and in the ideal case (30 kg/m3) for the 200 L tank, the total mass in the ideal case is about 6 kg 
while it is 5.2 in the real case. Dorofeev defines 3 different levels of congestion (high, medium and 
low) according to the distance between obstacles and to the size of the obstacles. He also identifies 4 
levels of damages to the building: minor structural damage, serious structural damage, partial 
destruction (50-75%) and total destruction of buildings. If we use Dorofeev’s diagrams to provide an 
approximate conservative indication of the safety distances for the case of high congestion in the real 
case, the safety distance is about 45 m for the minor structural damage, 17 m for the serious structural 
damage, 10 m for partial destruction (50-75%) and 7 m for total destruction of buildings. In the ideal 
case, those distances are about 10% longer. 

5.0 CONCLUSIONS AND DISCUSSION 

The paper describes a modeling approach comparing the use of an engineering numerical model and a 
CFD outflow model to characterize the hydrogen outflow from a pressurized vessel at ambient and 
cryogenic temperatures. Different EOS are used to predict the real gas behavior of hydrogen and the 
results are being compared focusing on the mass release rate , the time profile of the vessel pressure as 
well as the time profile of the vessel temperature. The models have been compared to former findings 
in the literature and excellent agreements for both time profiles are found at ambient conditions using 
the ideal gas EOS. Real gas EOS, as the reference NIST data by Leachman, the Peng Robinson, 
Beattie Bridgeman and the Abel Nobel EOS6, gave also excellent agreement for the vessel pressure 
decays, but there are differences observed for the temperature profiles. 

The DTU analytical model and the JRC CFD code are then applied to low temperature storage release 
scenarios at 200K and two vessel sizes. The results for the 27L and 200L vessel also show good 
comparison for the release rates and the pressure time profile, while some more scatter (compared to 
the ambient conditions) are seen in the temperature time profile of the vessel.  

It seems that the results are sensitive to the chosen strategy to predict the Cv value in the models. This 
dependency is not seen so strongly in the ambient releases and simple constant Cv start values may be 
applied. For low temperatures, such simple assumptions are questionable due to the increasing non-
linearity in the specific heat capacity Cv with decreasing temperatures. 

Simple models have been applied to estimate the consequence of the ignition in the case of the release 
for the 200 L tank. The dominant parameter for the flame length is the density at the nozzle and 
therefore by using the ideal gas law one will overestimate the flame length compared to the estimate 
with the real gas equation. The strength of an explosion is related to the total amount of mass that is 
released and therefore to the gas density inside the tank. Since the density is larger with the ideal law 
than with the real law, also in the case of explosions, by using the ideal law one overestimates the 
consequence of the accident. 
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