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Numerical and Experimental Results of a Passive Free
Yawing Downwind Wind Turbine

David R.S. Verelst



The WINDFLOWER project

• EU Marie Curie Industry Academia Partnerships and Pathways (IAPP) co-funded
PhD project consisting out of the following consortium:

◦ 3E/XANT (Brussels, renewable energy consultant)
◦ DTU Wind Energy (formerly known as Risø)
◦ TU Delft (Netherlands)

• Focus of the PhD research:
◦ Numerical investigation of the feasibility of the free yawing downwind concept
◦ Wind tunnel tests at the TU Delft Open Jet Facility (OJF):

− Comparing different degrees of blade flexibility
− Free yawing, downwind turbine

◦ Comparison HAWC2 simulations with wind tunnel tests
◦ Close link with industry

• This PhD project contributed to:
◦ PhD thesis and presentation
◦ Patent application (3E/XANT), wind turbine in development
◦ Three conference papers on free yawing and the wind tunnel experiments
◦ Technical Risø report on blade sweep for the NREL 5MW reference turbine
◦ Journal publication as co-author on extreme load extrapolation techniques
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Presentation Overview

• Numerical studies: static and free yaw stability for a 140kW wind turbine

• Small 300 Watt experimental wind turbine:
◦ Wind Tunnel experiments: design, production, measurement techniques
◦ Measurements and results
◦ Simulation input data: a numerical representation of the experiment in HAWC2
◦ Comparing numerical and experimental results

• Conclusions and future work
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The Basics

upwind downwind

coning

uniform in ow wind shear
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Numerical Studies with HAWC2

• Coupled aerodynamic-structural time domain wind turbine simulation code

• Structure:
◦ Multi-body formulation
◦ Flexible bodies with Timoshenko beam elements
◦ Orthotropic material properties: no structural couplings

• Aerodynamics:
◦ Blade Element Momentum theory
◦ Tip correction: Prandtl
◦ Dynamic stall: Beddoes-Leishman
◦ Dynamic inflow
◦ Skewed and sheared inflow corrections
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Numerical Studies: Baseline Design

Configuration
3 blades, downwind, Cut in, cut out

3–25 m/s
stall controlled wind speeds

Rated power 140 kW Rated wind speed 12 m/s
Blade length 10 m Hub radius 0.5 m
Tower height 30 m Rated rotor speed 57 RPM
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Yaw Moments and Rotor Coning

• Static yaw stability

• Sheared inflow conditions
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Varying Rotor Configurations in Free Yaw

• A practical and applied approach

• Standard: straight blade, no coning angle

• Coned: straight blade with a 10◦ coning angle (coned downwind)

• Swept: swept blade, no coning angle

• Swept and coned: swept blade with a 10◦ coning angle (coned downwind)

• Uniform and standard sheared wind profiles

• Blade sweep curve: x = a
(

z−z0
ze−z0

)b

• Evaluate both static and dynamic yaw stability
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Free Yaw Response
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Free Yaw Response
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Free Yaw Response Overview
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Wind Tunnel Experiments
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The TU Delft Open Jet Facility
• Wind speeds: 3 - 35 m/s (wind force 11, 70 knots)
• 500 kW fan
• 2.8m by 2.8m exit nozzle
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Scaling: Blade Length from 12m to 1m

• Full scale starting point (XANT)
◦ rated power: 100kW
◦ 24m rotor diameter
◦ Optimal tip speed ratio (TSR) ≊ 6
◦ Typical Reynolds numbers at optimal TSR ≊ 0.50e6− 1.50e6

• Scaled down model, very simple scaling rules:
◦ Rotor diameter ≤ 1.8m (wind tunnel size restriction)
◦ Maintain TSR, consequently optimal RPM’s / wind speeds are:

− 300 RPM @ 4 m/s
− 750 RPM @ 10 m/s

◦ Typical Reynolds number similarity is not maintained ≊ 0.10e6− 0.15e6

• High rotor speeds result in significant centrifugal stiffening. Achieving blade flexibility
is challenging.
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Practical Design Constraints

• Platform: small 300 Watt turbine, designed and assembled in Canada
(vpturbines.com)

• Refitted with custom build and in-house designed blades

16 DTU Wind Energy, Technical University of Denmark PhD Defence 10.9.2013



Aerofoil Selection
• source: University of Illinois Low Speed Aerodynamic test database (UIUC LSATs)
• aerofoil aerodynamic characteristics: uncertainties with measured data

region t/c Redesign Redata CLmax
NREL S823 inboard 21% 4e5 1e5 1.184

NREL S822 outboard 16% 6e5 2e5 1.100
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Aerodynamic Rotor Design with HAWTOPT
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Aerodynamic Rotor Performance (HAWTOPT)
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Blade Structural Design
• Using steady state averaged HAWC2 simulations
• Maximize tip deflection ≥ 10% of rotor radius. Difficult duo to rotational stiffening
• Basic cross sectional modeller TU Delft
• Basic failure criteria based on cross sectional area and HAWC2 loads
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Test Setup Overview

• Blade tip trajectory (HS
camera)

• 3D accelerometer tower top

• Fixed data acquisition
dSPACE

• Free yawing (tower base),
control with wire

• Limited generator torque
control (no active tracking of
rotor speed)

• Blades made from injected
PVC foam, internal glass
fiber stiffener

• Rotor speed measurements

• Tower base strain FA, SS

• Blade strain (flapwise),
wireless transmitted

• Yaw angle (laser)
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Tower Support Structure
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Free Yaw: Locking and Range Limits
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Yaw Bearing and Generator Load
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Blades made from injected PVC foam
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Rotor Speed on Extended Shaft
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Tower Strain Gauges
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Wireless Blade Strain Transmitter
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Yaw Angle with Laser Distance Meter
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Measurements and Results
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High Speed Camera Data Processing
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High Speed Camera Processing Results
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• Trailing Edge (TE)
coordinates function of
position on the lens:
perspective
deformation.

• February, April results:
camera positions
slightly different, other
lenses and lighting
conditions

• Results used to
establish coning
imbalances, and blade
pitch angles
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Synchronizing dSPACE and Wireless Strain
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Synchronizing dSPACE and Wireless Strain
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Trailer Time: Tower Eigenfrequency Passage
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Trailer Time: Free Yaw Stability
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Simulation Input Data

37 DTU Wind Energy, Technical University of Denmark PhD Defence 10.9.2013



Model Properties, System Identification

• Create a numerical model that corresponds to the experimental setup

• Blade structural properties (static, non rotating):
◦ complex varying cross section geometry
◦ optimize stiffness distribution to match measured static deflection curves
◦ optimize mass distribution to match measured center of gravity, and

eigenfrequency
◦ optimize damping to match measured frequency response decay tests

• Tower structural properties (static, non rotating):
◦ simple tubular constant cross section geometry
◦ stiffness affected by clamping at the yaw bearings
◦ optimize stiffness to match measured eigenfrequency
◦ optimize damping to match measured frequency response decay tests

• Nacelle and hub are assumed stiff compared to the tower and blades

• Blades stiff in torsion: no measurable blade tip twist deformations (rotating, HS
camera)

• Yaw bearing friction not measured, but very low

• Lacking: accurate generator torque-rpm curve, no torque measurements
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Linear Generator Model
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Simulations vs Measurements
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Rotor Thrust Coefficients
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Flapwise Blade Root Moment (high RPM)
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Flapwise Blade Root Moment (low RPM)
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Free Yaw Response: Deep Stall
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Free Yaw Response: Deep Stall
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Free Yaw Response: Optimal TSR
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Free Yaw Response: Optimal TSR
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Conclusions

• Numerical studies for a 100 kW wind turbine:
◦ Unstable in free yaw when blade close to maximum lift point
◦ Combining blade sweep and rotor coning angle minimizes unstable operating

points

• Wind tunnel experiments:
◦ High blade flexibility failed due to centrifugal stiffening
◦ Hardware and sensor limitations (generator and control, torque measurements,

synchronisation)
◦ Documentation
◦ Verified free yaw stability
◦ Unstable regions not reached due to limited generator control
◦ Recorded azimuthal blade load dependency for various inflow angles

• Simulations vs experiments:
◦ Matching thrust coefficients for varying inflow angles
◦ Data synchronisation issues
◦ Similar trends for blade load azimuthal dependency for varying inflow angles
◦ Comparable free yaw dynamics
◦ Difference in steady state free yaw angle while operating
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Future Work

• Detailed aerodynamic assessment of yaw moment contributions from different radial
stations along the blade, and under varying operating conditions

• Blade design: formulate strategy which includes free yawing behaviour

• Yaw moment sensitivity to aerodynamic profile coefficient data, and modelling (3D
stall delay)

• More data remains to be analysed/compared with simulations:
◦ Improving high speed data footage analysis
◦ Synchronization issues
◦ More accurate generator model, better torque estimates?
◦ Other blade configurations (sweep, coning)

• Follow up experiment:
◦ Use practical experience gained to improve the experiment (measurements

techniques and test definitions)
◦ Use more extensive and robust/redundant system identification strategies
◦ Sufficient torque control to test unstable free yawing conditions
◦ Design and built a truly flexible blade
◦ Focus on yawed flow
◦ Influence of wind shear
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The End.

Thank you for your attention.
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