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Abstract

Background: The genome-scale metabolic model of Saccharomyces cerevisiae, first presented in 2003, was the first
genome-scale network reconstruction for a eukaryotic organism. Since then continuous efforts have been made in
order to improve and expand the yeast metabolic network.

Results: Here we present iTO977, a comprehensive genome-scale metabolic model that contains more reactions,
metabolites and genes than previous models. The model was constructed based on two earlier reconstructions,
namely iIN80O and the consensus network, and then improved and expanded using gap-filling methods and by
introducing new reactions and pathways based on studies of the literature and databases. The model was shown
to perform well both for growth simulations in different media and gene essentiality analysis for single and double
knock-outs. Further, the model was used as a scaffold for integrating transcriptomics, and flux data from four
different conditions in order to identify transcriptionally controlled reactions, i.e. reactions that change both in flux
and transcription between the compared conditions.

Conclusion: We present a new yeast model that represents a comprehensive up-to-date collection of knowledge

environmental conditions.

controlled reactions

on yeast metabolism. The model was used for simulating the yeast metabolism under four different growth
conditions and experimental data from these four conditions was integrated to the model. The model together
with experimental data is a useful tool to identify condition-dependent changes of metabolism between different

Keywords: Saccharomyces cerevisiae, Genome-scale metabolic model, Integrated analysis, Transcriptionally

Background

The number of metabolic network reconstructions for
microorganisms has increased rapidly during the past
decade following the genome revolution and the rapid
increase of genome sequencing projects. The yeast
Saccharomyces cerevisiae was the first eukaryote to have
its metabolic network reconstructed and its metabolism
is very well-studied. During the last 10 years the yeast
metabolic network has been further updated and further
reconstructed leading to several genome-scale models
[1-9]. Yeast genome-scale modeling have many different
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applications, which have been reviewed lately [2]. Yeast
has for example been used extensively in biotechnology as
a workhorse for production of a wide range of chemicals,
and metabolic modeling has helped in many cases to guide
the strain construction by finding strategies for improved
chemical production [10]. Recently the S. cerevisiae
metabolic network has also been used as the basis for
constructing metabolic models for other vyeasts, eg.
Schizosaccharomyces pombe [11], Yarrowia lipolytica [12],
Pichia pastoris and Pichia stipitis [13].

The first genome-scale metabolic model for S
cerevisiae was presented in 2003 [1] and since then no less
than 11 genome-scale reconstructions have been released
[2]. To overcome the problem with different models
having different metabolite names, different scopes and
representing parts of the metabolism in slightly different

© 2013 Osterlund et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.
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ways a consensus metabolic network was constructed as
the result of a community jamboree effort [3]. The
consensus network introduced a nomenclature standard for
metabolites following MIRIAM, using ChEBI annotations
and InChl codes. The consensus network can be viewed as
a genome-scale reconstruction (GENRE) of the vyeast
metabolism, but not as a genome-scale model (GEM) ready
for simulations using e.g. constraint-based methods such as
flux balance analysis (FBA), due to missing information
about reversibility of some reactions and missing biomass
equations. The consensus network was further developed
and improved and the updated version called Yeast 4 [4] is
a GEM ready for simulations. It was further expanded and
updated leading to another version called Yeast 5 [5]. The
relationship between the yeast genome-scale models is
shown in the pedigree in Figure 1A. The first model that
included a detailed description of the lipid metabolism,
namely iIN800 [8], was not included in the consensus
reconstruction.

A genome-scale metabolic model can be thought of 1)
being a biochemically and genetically structured database
of the metabolism linking enzymes, metabolites and reac-
tions together, and 2) a predictive model that can estimate
the fluxes of intracellular reactions as well as predicting
the growth of the cell when constraining the extracellular
(measured) fluxes to represent the growth conditions. The
first part corresponds to the GENRE and the second part
corresponds to the GEM concept. The genome-scale
metabolic model can be applied as an in silico hypothesis
testing tool to gain insight into the operations of
metabolism, leading to identification of targets for superior
strain development.
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Genome-scale metabolic model reconstructions can
also be used as a scaffold for integrated data analysis,
where the network structure of the model is the basis
for the integration of omics data in order to gain more
mechanistic knowledge of the cell's behavior in different
environments or under different conditions. The reporter
metabolite algorithm [14] is a useful tool for integration of
transcriptomics data into the metabolic network. The
algorithm identifies key metabolites whose neighboring
genes in the metabolic network are transcriptionally
changed between two conditions. However, the regulation
of the cellular response to different perturbations such as
gene deletion or changes of environmental conditions may
occur on many different levels in the cell. By using the
genome-scale model to predict changes in metabolic flux
between different conditions and correlate these changes
with the change in expression of the genes involved, reac-
tions that are directly controlled by transcription can be
identified. The random sampling algorithm presented by
Bordel et al. [15] is a framework for identification of this
kind of trancriptionally controlled reactions using the
genome-scale metabolic model.

Here we present an updated genome-scale model (GEM)
that is based on the consensus network and the iIN800
model. The goal of the model is to provide an up-to-date
and comprehensive description of the yeast metabolism, so
the new model contains more genes, reactions and
metabolites than previous models. We show that the
model performs well in simulating the growth under
different environmental conditions. The model was
also used as a tool for integrating a large amount of
omics data from different conditions. It was used
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Figure 1 The reconstruction process for iTO977 and its comparison with Yeast 5. (A) Yeast genome-scale metabolic model pedigree. The
iTO977 model (red) was reconstructed with the iIN800 model and the consensus network (blue) as starting points. The two starting point
reconstructions were merged and further expanded by adding new pathways and reactions from databases and literature. (B) A comparison of

the genes included in iTO977 and Yeast 5.
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together with the random sampling algorithm to correlate
the changes in fluxes between aerobic and anaerobic
conditions as well as carbon limited and nitrogen limited
conditions with changes in gene expression in order to
identify condition-dependent transcriptionally controlled
reactions.

Results and discussion

In order to construct a comprehensive genome-scale
metabolic model, the consensus network was merged
with the iIN800 model to construct a draft starting point
reconstruction. The model was then improved by adding
several new pathways, new reactions and new metabolites
to the model based on database searches and literature evi-
dence. The resulting model includes 977 metabolic genes
and is called iTO977. Figure 1A shows how the iTO977
model was created. The model is available in SBML and
Excel format (Additional files 1 and 2 and through the
BioMet Toolbox [16], http://www.sysbio.se/biomet ) and a
list of newly added reactions and pathways is available
in Additional file 3.

iTO977 model properties

We present an updated yeast model that is bigger in
scope than earlier models; it contains more genes,
metabolites and reactions than previous models. Table 1
shows a statistical summary of the current model and
some previous models in terms of number of metabo-
lites, genes and reactions. The iTO977 model has 4
compartments included in the model in contrast to the
consensus network and Yeast 5 which both have 15
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model compartments. The compartments in iTO977 are
Cytoplasm, Mitochondria, Peroxisome and Extracellu-
lar. By keeping the number of compartments low the
complexity of the model is reduced and its simulation
capabilities are improved. Some of the reactions in
the consensus network that takes place in other com-
partments, such as ER or nucleus, were included in
the iTO977 model but localized to the cytoplasm,
while some reactions in other compartments were out
of scope of the model and discarded. The four com-
partments included in iTO977 are the compartments
with the biggest confidence in terms of localization of
the proteins in the Saccharomyces Genome Database
(SGD, www.yeastgenome.org).

When comparing the number of metabolites and reac-
tions between different models it is important to keep in
mind that the same metabolite can be present several times
in the model, but in different compartments. In genome-
scale metabolic models the same metabolite is considered
as two different species if it is localized to two different
compartments. When measuring the levels of intracellular
metabolites by metabolomics it is impossible to distinguish
metabolites in different compartments, e.g. pyruvate in the
cytoplasm and pyruvate in mitochondria will be considered
as the same species in a metabolome experiment. Similarly
a reaction taking place in two different compartments will
also be counted twice in the model. Since the yeast 5 model
has many more compartments than iTO977 it also has a
higher number of metabolites and reactions when taking
compartmentalization into account. However, iTO977
has a higher number of unique metabolites and unique

Table 1 Summary of the characteristics of different yeast genome-scale metabolic models

iFF708 iIN800 iMM904 Consensus Yeast5 iTO977 (Current model)
Metabolites 825 985 1228 1168 1768 1353
-Unique metabolites 595 683 713 664 779 815
-Cytosolic metabolites 518 645 634 590 579 738
-Mitochondrial mets 170 209 241 235 308 231
-Peroxisomal mets 0 0 80 80 75 87
-Extracellular metabolites 137 131 164 158 168 156
Reactions 1145 1706 1577 1761 2034 1566
-Unique reactions 780 1041 1053 804 1068 1207
-Cytosolic reactions 723 1301 710 835 1092 1083
-Mitochondrial reactions 104 242 306 330 334 256
-Peroxisomal reactions 0 0 109 121 1M1 80
Genes 708 800 904 888 898 977
-Percentage’ 10.7% 12.1% 13.7% 13.4% 13.6% 14.8%
-Cytosolic genes 532 639 736 676 681 800
-Mitochondrial genes 104 124 199 190 204 212
-Peroxisomal genes 0 0 19 24 23 22

! Part of the genome that is included in the model. Based on the updated statistics from Saccharomyces Genome Database that includes 6607 genes.

(as of Aug 29, 2010).
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reactions than all previous models, i.e. without taking
compartmentalization into account when counting the
number of metabolites and reactions.

The number of genes included in the iTO977 model is
larger than in previous models. Figure 1B shows the
comparison of the iTO977 model and the Yeast 5 model
in terms of number of open reading frames. A list of the
OREFs included in the iTO977 model but not in Yeast 5
is presented in Additional file 4. The 25 ORFs that are
in yeast 5 but not in iTO977 were all considered to be
out of scope of the iTO977 model, since they are mainly
transporters over e.g. the Golgi membrane, the vacuole
membrane and other organelles that are not included in
the iTO977 model. Among the 104 ORFs that are
included in iTO977, but not in Yeast 5, many of them
belong to two pathways that are newly introduced in the
iTO977 model. These two pathways represent the
biosynthesis of lipid-linked oligosaccharides [17] and
Glycosylphosphaditylinositol [18], two molecules that
are both used for protein modifications. These pathways
provide a direct link between the iTO977 model and the
recent model of the protein secretion machinery in yeast
[19] and is a step towards connecting the metabolic
model with a model for protein secretion.

Model validation

The predictive power of the model was evaluated in two
ways: 1) by comparing the simulated growth rate to
experimental growth rate under different conditions, and
2) by comparing the predicted viability of in silico
single and double gene knock-outs with the experimental
observations of single and double mutant growth.

Figure 2 shows the results from the growth rate
simulations. Experimental measurements for the specific
growth rate, specific substrate consumption rate and
specific product formation rate in chemostat cultures under
four different conditions were taken from our previous
study [20] and compared to simulated data using FBA
(for more information, see materials and methods and
Additional file 5). The four conditions that were consid-
ered were carbon limited aerobic growth, nitrogen limited
aerobic growth, carbon limited anaerobic growth and
nitrogen limited anaerobic growth. The model was shown
to perform well in predicting the growth rate in all these
four conditions.

In order to evaluate the model’s capability of predicting
gene essentiality we performed simulations of growth of
single and double gene knock-outs. The viability of the
mutants was compared to experimental observations from
literature [6,21,22] and from SGD. Figure 3 shows the
accuracy of the predictions for growth on glucose in
minimal media (single gene knock-outs) and rich YPD
media. A knock-out mutant was considered to be viable if
the simulated growth rate of the mutant was within 10
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percent of the wild type growth rate, otherwise the
mutation was flagged as lethal. Simulations of growth
phenotypes on other carbon sources such as ethanol
and galactose and using different viability cut-offs are
presented in Additional file 6.

Integrated analysis

The iTO977 model was used as a scaffold for integrated
data analysis. Chemostat cultivations were performed at
a dilution rate of 0.05 h™ under the same four different
conditions as used for simulations above (carbon limited,
nitrogen limited, aerobic and anaerobic) and microarray
data as well as external and intracellular flux measure-
ments was obtained for each condition [20]. We were
particularly interested in changes that occur both on the
transcript level and on the flux level, i.e. correlations
between changes in transcriptome and fluxome under
the different conditions. The enzymes that have a direct
link between change in expression and change in flux
might be good targets for over-expression in order to
direct the flux toward i.e. a desired product, since there
is a coupling between expression and flux. We therefore
used the random sampling algorithm [15] to identify
reactions that change both in flux and transcription. These
reactions are referred to as transcriptionally controlled
reactions and can be seen as a subset of the global set of
reactions that change transcriptionally. The random sam-
pling algorithm calculates a probability score for each reac-
tion to change in flux between two conditions by using
measured fluxes as additional constraints to the model to
be able to simulate the two different conditions. The extra-
cellular fluxes used to constrain the condition-specific
models as well as the intracellular flux distributions
predicted by each of the condition-specific models are
presented in Additional file 7. The probability score of the
reaction changing in flux is compared to the probability
score of a transcriptional change of the involved genes,
calculated from the microarray data. The transcriptionally
controlled reactions when changing from carbon limited to
nitrogen limited conditions or changing from aerobic to an-
aerobic conditions are shown in the heatmap in Figure 4.
These reactions have a probability score calculated by the
random sampling algorithm higher than 0.9, which indi-
cates that the flux and transcript level for these reactions
change in the same direction. Red color corresponds
to up-regulation in both flux and in transcription,
and blue corresponds to down-regulation both on the
flux level and on the transcriptional level.

Transcriptionally controlled reactions in glycolysis and
ergosterol biosynthesis

As expected we observe big differences in the glycolytic
activity between anaerobic and aerobic chemostat
growth and between carbon limited and nitrogen limited
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Figure 2 Model validation by comparing in silico prediction of the specific growth rate with experimental data. Growth phenotypes
were collected from literature and compared to simulated values for chemostat cultivations at four different conditions, nitrogen limited aerobic
(green) and anaerobic (red), carbon limited aerobic (blue) and anaerobic (white).

growth. There are three reactions that are considered to
be transcriptionally controlled in all four comparisons
(Figure 4), namely phosphofructokinase, phosphoglycerase
mutase and pyruvate kinase. These reactions are all
glycolytic reactions, and some of the other reactions
in the glycolysis are also considered to be transcriptionally
controlled, i.e. change in the same sense in flux and in
expression (Figure 5A). The flux of these reactions and
the expression of the involved enzymes are higher under
anaerobic conditions than aerobic conditions. In the

chemostat experiments the cells are controlled to grow
with the same specific growth rate at all conditions. The
cells have to consume more glucose under anaerobic
conditions than under aerobic conditions in order to grow
at the same rate, since anaerobic growth is less efficient
energetically. Similarly, the glycolytic activtity is higher
during nitrogen limited (glucose excess) conditions
compared to carbon limited conditions, since there is
more glucose available, and the cell uses more glucose to
be able to produce both biomass and ethanol. The

A

C

W TP, predicted growth, experimentally growth
BTN, predicted no growth, experimentally no growth
OFP, predicted growth, experimentally no growth
EFN, predicted no growth, experimentally growth

Figure 3 Model validation by comparing simulation of single and double gene knock-out mutant growth to experimental
observations. (A) Single gene knock-out mutants cultivated in minimal media. (B) Single gene knock-out mutants cultivated in rich YPD media.
(C) Double gene knock-out mutants cultivated in rich YPD media. TP =true positive, TN =true negative, FP =false positive and

FN = false negative.
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ELO2_4 Elongation of fatty acids protein 2 (Fatty acid biosynthesis)
LYS12 Homoisocitrate dehydrogenase, mitochondrial (Lysine metabolism)
FPS1 Glycerol uptake/efflux facilitator protein (Transport, extracellular)
IPT1_1 Inositolphosphotransferase 1 (Sphingoglycolipid metabolism)
BAT2_1 Branched-chain-amino-acid aminotransferase, cytosolic (Branched chain amino acid metabolism)
ADY2 Acetate transporter (Transport, extracellular)
ARO9_1 Aromatic amino acid aminotransferase 2 (Aromatic amino acid biosynthesis)
LYS20_2 Homocitrate synthase, cytosolic isozyme (Pyruvate metabolism)
LEU4 2-isopropylmalate synthase (Branched chain amino acid metabolism)
INO1 Inositol-3-phosphate synthase (Phospholipid biosynthesis)
MEP1 Ammonium transporter MEP1 (Transport, extracellular)
ADES8 Phosphoribosylglycinamide formyltransferase (Purine metabolism)
ADE1 Phosphoribosylaminoimidazole-succinocarboxamide synthase (Purine metabolism)
ADE13_1 Adenylosuccinate lyase (Purine metabolism)
ADE4 Amidophosphoribosyltransferase (Purine metabolism)
URA2_1 Aspartate carbamoyltransferase (Pyrimidine metabolism)
ILV5_1 Ketol-acid reductoisomerase, mitochondrial (Branched chain amino acid metabolism)
ILV3_1 Dihydroxy-acid dehydratase, mitochondrial (Branched chain amino acid metabolism)
ADE2 Phosphoribosylaminoimidazole carboxylase (Purine metabolism)
URA10 Orotate phosphoribosyltransferase 2 (Pyrimidine metabolism)
TAL1 Transaldolase (Pentose phosphate pathway)
TKL1_1 Transketolase 1 (Pentose phosphate pathway)
GND1 6-phosphogluconate dehydrogenase, decarboxylating 1 (Pentose phosphate pathway)
SOL1 Probable 6-phosphogluconolactonase 1 (Pentose phosphate pathway)
JENT1_2 Carboxylic acid transporter protein homolog (Transport, extracellular)
SUR2 Sphingolipid C4-hydroxylase SUR2 (Sphingoglycolipid metabolism)
ERG2 C-8 sterol isomerase (Sterol biosynthesis)
LEU2 3-isopropylmalate dehydrogenase (Branched chain amino acid metabolism)
ERG7 Lanosterol synthase (Sterol biosynthesis)
ERG6 Sterol 24-C-methyltransferase (Sterol biosynthesis)
ERG27_1 3-keto-steroid reductase (Sterol biosynthesis)
PGI1_2 Glucose-6-phosphate isomerase (Glycolysis / Gluconeogenesis)
LAC1_1 Sphingosine N-acyltransferase LAC1 (Sphingoglycolipid metabolism)
ADH1 Alcohol dehydrogenase 1 (Pyruvate metabolism)
Uelo_4 Model-specific reaction, involved in the elongation of fatty acids (Fatty acid biosynthesis)
CsG2_1 Mannosyl phosphorylinositol ceramide synthase (Sphingoglycolipid metabolism)
LCB1 Serine palmitoyltransferase 1 (Sphingoglycolipid metabolism)
TRP2_1 Anthranilate synthase component 1 (Aromatic amino acid biosynthesis)
ARO2 Chorismate synthase (Aromatic amino acid biosynthesis)
ARO1_1 3-dehydroquinate synthase (Aromatic amino acid biosynthesis)
RNR1_3 Ribonucleoside-diphosphate reductase large chain 1 (Salvage pathways)
BNA1 3-hydroxyanthranilate 3,4-dioxygenase (Aromatic amino acid biosynthesis)
GLK1_1 Glucokinase GLK1 (Glycolysis / Gluconeogenesis)
HOR2 (DL)-glycerol-3-phosphatase 2 (Aminosugars metabolism)
PHO84 Inorganic phosphate transporter (Transport, extracellular)
MVD1 Diphosphomevalonate decarboxylase (Sterol biosynthesis)
TGL5 Lipase 5 (Glycerol metabolism (glycerolipid metabolism))
PMI40 Mannose-6-phosphate isomerase (Fructose and mannose metabolism)
ERG5 Cytochrome P450 61 (Sterol biosynthesis)
ERG25_1 C-4 methylsterol oxidase (Sterol biosynthesis)
ERG4 Delta(24(24(1)))-sterol reductase (Sterol biosynthesis)
DGA1 Diacylglycerol O-acyltransferase 1 (Glycerol metabolism (glycerolipid metabolism))
GPM1_2 Phosphoglycerate mutase 1 (Glycolysis / Gluconeogenesis)
CDC19 Pyruvate kinase 1 (Glycolysis / Gluconeogenesis)
PFK1_1 Phosphofructokinase 1 (Glycolysis / Gluconeogenesis)
ERG26_1 Sterol-4-alpha-carboxylate 3-dehydrogenase, decarboxylating (Sterol biosynthesis)
ERG1 Squalene monooxygenase (Sterol biosynthesis)
PMT1 Dolichyl-phosphate-mannose--protein mannosyltransferase 1 (Glycoprotein metabolism)
ERG20_1 Dimethylallyltranstransferase (Sterol biosynthesis)
PDC1 Pyruvate decarboxylase isozyme 1 (Pyruvate metabolism)
ERG3 C-5 sterol desaturase (Sterol biosynthesis)
ERG11 Cytochrome P450 51 (Sterol biosynthesis)
PGK1 Phosphoglycerate kinase (Glycolysis / Gluconeogenesis)
ENO1 Enolase 1 (Glycolysis / Gluconeogenesis)
ERG24 C-14 sterol reductase (Sterol biosynthesis)
MET22 3'(2’),5"-bisphosphate nucleotidase (Cysteine metabolism)
HIS5 Histidinol-phosphate aminotransferase (Histidine metabolism)
GLT1 Glutamate synthase [NADH] (Glutamate metabolism)
ECM17 Sulfite reductase [NADPH] subunit beta (Cysteine metabolism)
DUR1_1 Urea carboxylase (Nitrogen metabolism)
HIS2 Histidinol-phosphatase (Histidine metabolism)
RNR1_2 Ribonucleoside-diphosphate reductase large chain 1 (Salvage pathways)
HIS1 ATP phosphoribosyltransferase (Histidine metabolism)
ARG4 Argininosuccinate lyase (Arginine metabolism)
GLN1 Glutamine synthetase (Glutamate metabolism)

Figure 4 Transcriptionally controlled reactions (reactions where the change in flux correlate with the change in expression of the
involved genes) when comparing carbon limited with nitrogen limited growth and comparing aerobic and anaerobic growth. Red color
corresponds to an up-regulation both in flux and expression and blue color corresponds to down-regulation.
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Figure 5 Transcriptionally controlled reactions in glycolysis and around the FPP branch point. (A) Three glycolytic reactions are
9 y glycoly glycoly
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anaerobic conditions (upper right corner) and C-limited — N-limited under aerobic conditions (lower right corner). (B) Transcriptionally controlled
reactions in the ergosterol biosynthesis pathway.

observation that the flux changes in the same direction as
the expression of the enzymes catalyzing the reactions
shown in Figure 5A suggests that the glycolytic flux is
transcriptionally controlled through regulation of a few
key enzymes when cell growth is constrained. This is in
contrast to studies on engineering the glycolytic flux
by over-expression glycolytic genes [23], which have
shown that it is not possible to increase the glycolytic
flux above the maximum observed at un-limited
growth conditions.

Many of the steps in the ergosterol biosynthesis
pathway were found to be down-regulated in both
flux and expression in carbon limited conditions as
compared with nitrogen limited conditions (Figure 5B).
Many of the reactions were also up-regulated in both
flux and expression in anaerobic conditions compared
to aerobic under nitrogen limitation. Only the reactions
considered to be transcriptionally controlled are presented
in Figure 5.

Identification of responsible transcription factors

In order to identify transcription factors responsible for the
transcriptional control of the reactions shown in Figure 4
and Figure 5 we performed a hypergeometric enrichment
test for each comparison and each transcription factor
based on known transcription factor — gene interactions
[24]. The transcription factors with a hypergeometric
p-value less than 0.05 are shown in Table 2. The
transcription factor Opilp, a known negative regulator
of phospholipid biosynthesis was over-represented in all
four comparisons which suggest that the phospholipid
metabolism is significantly changed in all four comparisons.
Phospholipid synthesis is activated by the transcription
factors Ino2p and Inodp [25] and inactivated by Opilp.
Opilp is in turn activated by protein kinase A (Tpklp) that
is activated at high glucose levels [26]. We found that most
of the genes regulated by Opilp are up-regulated in
carbon limited conditions as compared to nitrogen limited
conditions, which suggests that the flux through the
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Table 2 Over-represented transcription factor interactions
among significantly changed reactions

Comparison TF Hypergeometric p-value
Anaerobic - Aerobic (C-limited) Opilp 0.0009
Pip2p 00168
Gis2p 0.0278
Anaerobic - Aerobic (N-limited) Opilp 0.0215
C-limited - N-limited (Anaerobic) ~ Opilp 0.0070
C-limited - N-limited (Aerobic) Yap7p 0.0018
Opilp 00021
DalsOp  0.0153
Digip 0.0290

phospholipid synthesis pathways is repressed by Opilp at
glucose excess conditions, but not at carbon limited
conditions. We also found that most of the genes regulated
by the Opilp transcription factor are up-regulated at
anaerobic conditions compared with aerobic conditions.

When comparing carbon limited growth with nitrogen
limited growth during aerobic conditions we identify the
transcription factors Opilp, Yap7p, Dal80p and Diglp as
important regulators when considering both change in
transcription and change in flux (Table 2). At glucose
limited conditions yeast goes through full respiration
and in glucose excess conditions the cell produces
ethanol and the flux through the glycolysis is controlled
by carbon catabolite repression. Similarly, at high nitro-
gen concentrations the nitrogen catabolite pathways are
repressed [27]. The transcription factor Dal80p is known
to be involved in nitrogen catabolite repression. In this
analysis we find that the majority of the genes regulated
by Dal80p have a higher expression and higher flux in
carbon limited (excess of nitrogen) conditions than in
nitrogen limited conditions under aerobic cultivation,
which indicates that these pathways are transcriptionally
regulated by Dal80p when changing from nitrogen
limitation to carbon limitation.

Conclusions

In this paper we present iTO977, a new updated genome-
scale metabolic model for yeast. The model is bigger in
scope than previous models and can be used both for
simulations as well as a scaffold for integrated analysis.
The model follows the standards that were introduced in
the consensus reconstruction regarding annotation of
metabolites and reactions and can therefore be seen as a
well-annotated database representing the current know-
ledge of the yeast metabolism. By using the model to
simulate different growth conditions and compare the
simulated fluxes from different conditions using the
random sampling algorithm we investigate the yeast
metabolism in carbon limited, nitrogen limited, aerobic
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and anaerobic conditions. The change in predicted
flux for each reaction in the model is compared with
the changes in expression of the involved enzymes
and reactions that are directly transcriptionally con-
trolled are identified as well as transcription factors
controlling these reactions. The genome-scale metabolic
model together with experimental data is a valuable tool
for data integration in order to find condition-dependent
differences in yeast metabolism.

Methods

Model reconstruction

The first step in constructing the iTO977 model was to
merge the iIN800 model [8] and the consensus network
[3] to form a draft model. This was done by importing
the SBML files for the two starting point reconstructions
into Matlab format using the RAVEN toolbox [28].
Additional pathways and biochemical reactions were
added from Kyoto Encyclopedia of Genes and Genomes
[29], Saccharomyces Genome Database [30] and litera-
ture. A list of these reactions with references is available
in Additional file 3. Reactions from the consensus
network taking place in other compartments than extracel-
lular, cytoplasm, mitochondria or peroxisome was moved
to the cytoplasm before merging the two models. Since the
iIN800 model doesn’t have peroxisome as a model com-
partment some of the reactions from iIN80O involved in
fatty acid synthesis and degradation (beta-oxidation) was
moved from cytoplasm to peroxisome before merging.
Water and hydroxyl ions were not balanced in the model,
assuming that there are other processes in the cell that uses
these molecules as well. The model was corrected for
inconsistencies and network gaps, using gap filling methods
in RAVEN. The reactions identified as inconsistent by
Zomorrodi et al. [31] were corrected to improve the ability
to predict knock-out growth phenotypes. CHEBI identifiers
and INCHI codes was added to all metabolites following
the MIRIAM standard and the reactions in the model have
links to EC-numbers or KEGG reactions. The biomass
equation was taken from the iIN800 model. The final
model was converted from Matlab format both to Excel
format and SBML format.

In silico growth simulations

Experimental data were collected from literature for
chemostat cultivations performed at various dilution rates
under each of the four different conditions: carbon limited
aerobic [20,32-35], carbon limited anaerobic [36,37], nitro-
gen limited aerobic [35,36,38,39] and nitrogen limited
anaerobic [40,41] (Additional file 5). For simulation
purposes the uptake of glucose, NH; and oxygen were
constrained in the model according to the measured values
for each experiment. FBA simulations were performed with
maximization of biomass as the objective function and the
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deviation from the experimentally measured growth rate
was identified.

Anaerobic conditions were simulated with the iTO977
model by constraining the oxygen uptake rate to zero,
but also allowing for uptake of sterols to simulate
that these compounds are supplied to the media for
anaerobic growth.

Gene essentiality predictions

In silico simulations of single gene knock-out growth
were carried out for each of the genes in the model by
constraining the flux of all corresponding reactions to
zero and then estimating the maximal biomass flux
using FBA. A relative fitness value was calculated for
each mutant as f= mutant growth rate/wild type growth
rate. A mutation was considered as lethal if the relative
fitness was smaller than a cutoff value. Three different
cutoffs were considered, 0.8, 0.9 and 0.95. The simulations
were carried out for growth on glucose, both for a
simulated minimal media, allowing only uptake of glucose,
ammonium, oxygen, sulfate and phosphate, and for a simu-
lated rich media (YPD media), where also uptake of amino
acids and nucleotides was allowed. The viability of the
mutants was compared to experimental observations of
growth phenotypes for 524 single gene knockouts in
minimal media and YPD media [6,30]. The model was also
used to simulate the relative fitness for all pairs of double
gene knock-outs, simulating growth on glucose in rich
media (YPD) and compared to experimental observations
for 234,719 double knock-outs [21].

Random sampling

Experimental data from chemostat cultivations from four
different conditions (carbon limited, nitrogen limited, aer-
obic and anaerobic) was taken from Jewett et al. [20]. The
raw transcriptome data were normalized using the Probe
Logarithmic Intensity Error (PLIER) method and the mod-
erated t-statistic was used to identify significantly changed
genes between two conditions. The upper and lower
bounds of the exchange fluxes and lipid and biomass reac-
tions in the iTO977 model were constrained according to
experimentally measured fluxes (Additional file 7) for each
condition. A set of flux distributions compatible with the
measured fluxes was generated for each of the considered
conditions as it has been previously described [15]. In order
to avoid solutions involving loops we set the default bounds
for the metabolic fluxes to Inf and —Inf instead of 1000
and -1000 as it is commonly done. For each pair of
condition, we compared the first sample of the reference
condition with all the samples of the second condition
and computed how many times the reference had a higher
(or lower) value for each reaction. The process was
repeated for all the samples of the reference condition
until all the possible combinations of samples at both

Page 9 of 10

conditions have been compared. The fraction of the com-
parisons in which the reference had a higher (or lower)
value than the second condition was used as a probability
score for the flux decreasing or increasing. The values of
the moderated t-statistic from the transcriptome data were
used to calculate a probability score P for each reaction
representing the probability that the flux and the
transcription is significantly changed in the same direction
between two conditions. A hypergeometric enrichment test
was performed to identify over-represented transcription
factor interactions in the list of reactions from each
comparison passing the cutoff P> 0.9 based on known
transcription factor-gene interactions [24].

Additional files

Additional file 1: iTO977 model in Excel format including
well-annotated spreadsheets for reactions, metabolites and genes.

Additional file 2: iTO977 model in SBML format. The model is also
available through the Biomet toolbox, www.sysbio.se/biomet.

Additional file 3: Changes and additional reactions and pathways
in iTO977.

Additional file 4: ORFs not in iTO977 but in Yeast 5 and vice versa.
Additional file 5: Growth simulation results.

Additional file 6: Single and double growth knockout
simulation results.

Additional file 7: Additional constraints for condition-specific
models used for random sampling.
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