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1BAbstract 
Complete autotrophic nitrogen removal (CANR) is a novel process that can increase the 

treatment capacity for wastewaters containing high concentrations of nitrogen and low organic 

carbon to nitrogen ratios, through an increase of the volumetric removal rate by approximately 

five times. This process is convenient for treating anaerobic digester liquor, landfill leachate, or 

special industrial wastewaters, because costs related to the need for aeration and carbon 

addition are lowered by 60% and 100%, respectively, compared to conventional nitrification-

denitrification treatment. Energy and capital costs can further be reduced by intensifying the 

process and performing it in a single reactor, where all processes take place simultaneously, e.g. 

in a granular sludge reactor, which was studied in this project. This process intensification means 

on the other hand an increased complexity from an operation and control perspective, due to 

the smaller number of actuators available. 

In this work, an integrated modeling and experimental approach was used to improve the 

understanding of the process, and subsequently use this understanding to design novel control 

strategies, providing alternatives to the current ones available. First, simulation studies showed 

that the best removal efficiency was almost linearly dependent on the volumetric oxygen to 

nitrogen loading ratio. This finding among others, along with experimental results from start-up 

of lab-scale reactors, served as the basis for development of three single-loop control strategies, 

having oxygen supply as the actuator and removal efficiency as the controlled variable. These 

were investigated through simulations of an experimentally calibrated and validated model. A 

feedforward-feedback control strategy was found to be the most versatile towards the 

disturbances at the expense of slightly slower dynamic responses and additional complexity of 

the control structure. The functionality of this strategy was tested experimentally in a lab-scale 

reactor, where it showed the ability to reject disturbances in the incoming ammonium 

concentrations. However, during high ammonium loadings, when the capacity of the present 

sludge was reached, an oscillatory response was observed. Proper tuning of the controller is 

therefore of essential importance. 

In this thesis, it was demonstrated that proactive use of model simulations, in an integrated 

methodology with experimentation, resulted in improved process understanding and novel 

control ideas. This will contribute to moving this promising technology from a case-by-case ad 

hoc approach to a more systematic knowledge based approach. 
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2BResumé på dansk 
Fuldstændig autotrof kvælstoffjernelse er en relativ ny proces, som kan øge behandlings-

kapaciteten for spildevand, der indeholder høje koncentrationer af kvælstof og lave mængder 

organisk kulstof i forhold til kvælstof. Denne proces er velegnet til behandling rejektvand fra 

rådnetank brugt i biogasanlæg, perkolat fra affaldsdeponier eller andre specielle typer af spilde-

vand fra industrien, fordi omkostningerne forbundet med beluftning og tilførsel af ekstern kul-

stof bliver sænket med henholdsvis 60% og 100%, sammenlignet med den konventionelle be-

handling bestående af nitrifikation og denitrifikation. Energi- og kapitalomkostninger kan 

reduceres yderligere ved at intensivere processen og udføre den i en enkelt reaktor, hvor alle 

processer foregår samtidig. Et eksempel på en intensiveret proces er en bioreaktor med 

granulater, hvilket blev undersøgt i dette projekt. Denne procesintensivering betyder samtidig 

en øget kompleksitet med hensyn til drift og regulering, på grund af en reducering i antallet af 

reguleringshåndtag til rådighed. 

I dette arbejde blev en integreret tilgang bestående af både modellering og eksperimentelle 

forsøg brugt til at forbedre forståelsen af processen. Efterfølgende blev denne forståelse brugt 

til at designe nye reguleringsstrategier, hvorved alternativer til de nuværende blev udarbejdet. 

Matematiske modelsimuleringer viste, at den bedste fjernelseseffektivitet er lineært afhængig af 

forholdet mellem ilt- og kvælstoftilførslen. Sammen med eksperimentelle erfaringer fra opstart 

af laboratorie-skala reaktorerne, tjente dette som grundlag for udviklingen af tre single-loop 

reguleringsstrategier, som har ilttilførsel gennem beluftning som aktuator og effektiviteten af 

kvælstoffjernelsen som reguleret variabel. Disse tre reguleringsstrategier blev grundigt testet 

igennem modelsimuleringer foretaget med en eksperimentelt kalibreret og valideret proces-

model. En feedforward-feedback strategi viste sig at være den mest alsidige mod forstyrrelser på 

bekostning af lidt langsommere dynamiske respons og en lidt mere kompleks regulerings-

struktur. Anvendeligheden af denne strategi blev testet eksperimentelt i en laboratorie-skala 

reaktor, hvor evnen til at afvise forstyrrelser i de indkommende ammoniumkoncentrationer blev 

bekræftet. Reaktorslammets maksimum kapacitet blev nået ved høje ammoniumbelastninger, 

hvilket resulterede i et oscillerende, ikke-stabilt respons. Korrekt justering af reguleringen er der-

for af afgørende betydning. 

Dette bidrag vil, igennem både modelsimuleringer og eksperimenter, hjælpe med til at tage 

anvendelsen af denne lovende teknologi i retning af en mere systematisk, videnbaseret, stand-

ard fuldskalaimplementering igennem de præsenterede resultater og de udviklede regulerings-

strategier. 
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3BNomenclature 
Abbreviations 
AE  Algebraic equation 
AnAOB  Anaerobic ammonium oxidizing bacteria (anammox bacteria) 
ANR  Autotrophic nitrogen removal 
AOB  Ammonium oxidizing bacteria 
ASM  Activated sludge model 
BNR  Biological nitrogen removal 
BOD  Biological oxygen demand 
BSM  Benchmark simulation model 
CANON  Complete autotrophic nitrogen removal over nitrite 
CANR  Complete autotrophic nitrogen removal 
CFD  Computational fluid dynamics 
COD  Chemical oxygen demand 
CS  Control strategy 
CSTR  Continuously stirred tank reactor 
CV  Controlled variable 
DO  Dissolved oxygen 
EBPR  Enhanced biological phosphorus removal 
EPS  Extracellular polymeric substance 
ER  Exchange ratio 
GAO  Glycogen accumulating organism 
GHG  Green house gas 
HB  Heterotrophic bacteria 
HRT  Hydraulic retention time 
IAE  Integral absolute error 
IMC  Internal model control 
ISE  Ion selective electrode 
LHS  Latin hypercube sampling 
MABR  Membrane aerated biofilm reactor 
MBBR  Moving bed biofilm reactor 
MBR  Membrane bioreactor 
MC  Monte Carlo 
MF  Membership function 
MFC  Mass flow controller 
MPC  Model predictive control 
MTBL  Mass transfer boundary layer 
MV  Manipulated variable 
N  Nitrogen 
NDF  Numerical differentiation formula 
NOB  Nitrite oxidizing bacteria 
ODE  Ordinary differential equation 
OLAND  Oxygen-limited autotrophic nitrification-denitrification 
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ORP  Oxidation reduction potential 
P  Proportional 
PAO  Phosphor accumulating organism 
PBM  Population balance model 
PDE  Partial differential equation 
PI  Proportional-integral 
PSD  Particle size distribution 
RBC  Rotating biological contactor 
RMSE  Root-mean-square error 
rpm  Rotations per minute 
SBR  Sequencing batch reactor 
SHARON  Single reactor system for high activity ammonium removal over 
  nitrite 
SNAP  Single-stage nitrogen removal using anammox and partial  
  nitritation 
SRC  Standardized regression coefficient 
SRT  Sludge/solids retention time 
SVI  Sludge volume index 
TAN  Total ammonium nitrogen 
TIC  Total inorganic carbon 
TN  Total nitrogen 
TNN  Total nitrite nitrogen 
TSS  Total suspended solids 
TV  Total variance 
VSS  Volatile suspended solids 
WSSE  Weighted sum of squared errors 
WWT  Wastewater treatment 
WWTP  Wastewater treatment plant 
 
 
Symbols 
A  Area 
Abiofilm  Total biofilm area 
b  Decay rate 
Ci  Concentration of compound i 
Dbio,i  Diffusivity of compound i in a biofilm matrix 
Di  Diffusivity of compound i in water 
e  Error or offset 
EAmm  Ammonium removal efficiency 
ETot  Total nitrogen removal efficiency – in percent 
f  Ratio between biofilm and water diffusivities 
fi  Inert content in biomass 
fredox  Number of redox transitions within one SBR cycle 
iNXB  Nitrogen content in active biomass 
iNXI  Nitrogen content in inert biomass 
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ji  Flux of compound i 
J  Janus coefficient 
KC  Proportional controller gain 
ki  Mass transfer coefficient   
kH  Hydrolysis rate constant 
kLa  Volumetric mass transfer coefficient 
KS / Ki  Affinity (half saturation)/inhibition constant 
KX  Hydrolysis half saturation constant 
L  Biofilm thickness 
LB  Mass transfer boundary layer thickness 
LNH4  Volumetric ammonium loading  
LO2  Volumetric oxygen loading 
Mi  Mass of compound i 
n  Number of discretized points in biofilm, unless otherwise stated 
ncal  Number of experimental observations for calibration 
nval  Number of experimental observations for validation 
Q  Flow rate 
ri  Reaction rate for compound i 
rgran  Radius of the granules 
RAmmTot  Ammonium removed over total nitrogen removed 
RNitAmm  Nitrite produced over ammonium removed 
RNatTot  Nitrate produced over total nitrogen removed 
Ron  Fraction of an SBR cycle, which is being aerated 
RO  Volumetric oxygen loading rate over ammonium loading rate 
RT  Total nitrogen removal efficiency - fraction 
Si  Concentration of soluble compound i 
t  Time 
taer  Length of time that aeration is turned on during a cycle 
tcycle  Length of an SBR cycle 
toff  Length of a non-aerated phase 
ton  Length of an aerated phase 
uD  Biofilm detachment velocity 
uF  Biofilm growth velocity 
uL  Biofilm net growth velocity 
V  Volume 
Vreactor  Reactor volume 
Xi  Concentration of particulate compound i 
Y  Growth yield 
ymeas  Observed output 
ymodel  Model output 
yreg  Linearly regressed model output 
z  Radial distance 
zmax  Maximum granule radius 
Z+  Background charge 
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Subscripts 
bio  Occurring or present in the biofilm 
bulk  Occurring or present in the bulk liquid 
end  At the end of an SBR cycle 
g  SBR cycle number 
h  Process number 
i  Compound i, unless otherwise stated 
in  Influent entering the reactor 
k  Location in biofilm 
out  Effluent leaving the reactor 
sat  Saturation concentration 
sp  Set point 
start  At the beginning of an SBR cycle 
∞  Steady state value 
 
 
Greek symbols 
β  Standardized regression coefficient 
ϕ  Non-settled fraction of free cells in bulk liquid 
ηHB   Anoxic inactivation coefficient 
θ  Parameter value or biofilm porosity 
μ  Mean value 
μmax  Maximum specific growth rate 
ρ  Biomass density 
ρh  Process rate of process h 
σ  Standard deviation 
τC  Closed loop time constant 
τI  Integral time 
ν  Stoichiometric coefficient 
υs  Superficial gas velocity 
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PART I – Introduction, 
Experimentation, and Modeling 

In part I, the topic of autotrophic nitrogen removal is introduced from a general perspective 

along with an introduction to the tools used to investigate and achieve these goals. The issues 

and challenges associated to the development and application of such a technology, and the 

specific objectives of this PhD thesis are presented along with a general introduction to the 

subject in chapter 1, followed by an introduction to the experimental laboratory setup along 

with a description of all experimental methods and analyses used (chapter 2). Then, a detailed 

description of the model and the methodology used for its construction and derivation is given 

in chapter 3. 
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Chapter 1 - Introduction 
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1 Introduction 
Water is an essential resource to sustain life. With the growing population and rise in population 

density, the importance of managing water resources properly, by among others, ensuring clean 

water, is rapidly increasing. Along with intensive farming and the development of artificial 

fertilizer production, nitrogen pollution has been observed in increasing amounts in rivers, lakes, 

oceans, and ground water aquifers over the last couple of decades. The legislation – e.g. in 

Europe, the Water Framework Directive (Directive 2000/60/EC) – therefore requires removal or 

conversion of certain compounds that are present in wastewater as a consequence of 

anthropogenic activity. These include organic compounds containing carbon (C), but also 

nutrients such as, nitrogen (N), and phosphorus (P), which cause eutrophication of receiving 

water bodies, and micropollutants, such as heavy metals, pharmaceuticals, and other xenobiotic 

compounds, which are of increasing concern as a risk towards human health and the natural 

ecosystem. 

Nitrogen is one of the most critical pollutants, because it can be found in significant quantities in 

most types of wastewater, it causes eutrophication, and especially nitrate and nitrite are toxic 

toward most invertebrates and vertebrates in high concentrations. Nitrogen can therefore pose 

a threat to the health status of the natural ecosystem and the drinking water quality if it reaches 

aquifers or other water bodies used as drinking water sources. A number of treatment methods 

for nutrient removal has been developed and applied in wastewater treatment (WWT). 

Especially biological treatment processes were developed in the 1970s and 1980s, with the 

development of the bio-N and the bio-P processes (Tchobanoglous et al., 2003). In Denmark, 

many wastewater treatment plants (WWTPs) started to employ biological nutrient removal in 

the late 1970s and early 1980s by means of the BIO-DENITRO and the BIO-DENIPHO processes 

(Henze Christensen, 1975; Bundgaard et al., 1989). 

Lately, climate change and its causes and consequences have been given major attention, and 

thus focus has been on reduction of energy consumption and greenhouse gas production. Also 

within wastewater treatment technology there is a call for energy efficiency and lowering of 

greenhouse gas production. A significant cost in conventional wastewater treatment is the cost 

of aeration, in particular the energy used in supplying sufficient air, either through surface 

aeration equipments or by using compressors to supply air through bubble diffusers. Up to 50% 

of the total electricity consumption of an entire WWTP employing biological nitrogen removal is 

due to aeration (Ingildsen et al., 2002). By combining partial nitrification with the relatively 
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newly discovered anaerobic ammonium oxidation process, complete autotrophic nitrogen 

removal (CANR) can be obtained, which has proven to be a low cost and energy efficient way of 

treating wastewater with high nitrogen concentrations and low organic carbon to nitrogen 

ratios. Examples of such wastewaters are the side-stream wastewater produced after 

dewatering of digested waste sludge, landfill leachate or special industrial wastewaters. 

Although this is a promising technology, it has shown to be difficult to operate in a stable 

manner in pilot- and full-scale plants (Joss et al., 2011). A more detailed understanding of its 

complex nature, and the development of effective control and operational strategies for stable 

operation, is therefore needed to realize the full potential and facilitate successful transfer of 

this promising technology to industrial practice. 

 

1.1 Autotrophic nitrogen removal - what, why, and 

where? 

1.1.1 What is autotrophic nitrogen removal? 

Nitrification 

Nitrogen appears in wastewater in reduced form, either as ammonium (NH4
+) or organically 

bound nitrogen (Tchobanoglous et al., 2003). Traditionally, nitrogen removal consists of 

nitrification, which is most often followed by the denitrification process (Figure 1.1 and 1.2).  

 

Nitrification is an autotrophic process, which means that carbon for cell synthesis is acquired 

from inorganic compounds. The process is conducted in two steps. First, ammonium is 

converted to nitrite (eq. 1.1) over hydroxylamine (NH2OH) by ammonium oxidizing bacteria 

(AOB), which mainly belong to the bacterial species Nitrosomonas (Jetten et al., 2001). Oxidation 

of ammonium to nitrite uses approximately 1.5 mole O2 as electron acceptor per mole 

ammonium, which is converted. The process is also termed partial nitrification or nitritation. 

Nitritation is followed by nitratation, in which nitrite is oxidized to nitrate (NO3
-) (eq. 1.2) by 

nitrite oxidizing bacteria (NOB), which often belong to the bacterial species Nitrobacter or 

Nitrospira (Downing and Nerenberg, 2008). In this process oxygen is also used as electron 

acceptor, however here approximately 0.5 mole of O2 is used to oxidize 1 mole of nitrite to 
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nitrate. The simplified (1.1-1.2) and complete (1.3-1.4) reaction stoichiometries involved in the 

two processes conducted by AOB and NOB are presented below: 

 NH4
+ +1.5 O2 → NO2

- + 2 H+ + H2O    (1.1) 

 NO2
- + 0.5 O2 → NO3

-    (1.2) 

NH4
+ +1.382 O2 + 1.982 HCO3

- →  

0.982 NO2
- + 0.018 C5H7NO2 + 1.891 H2CO3 + 1.036 H2O   (1.3) 

NO2
- 0.0051 NH4

+ + 0.473 O2 + 0.0051 HCO3
- + 0.0204 H2CO3 →  

NO3
- + 0.0051 C5H8NO2 + 0.0123 H2O   (1.4) 

 

In a WWTP, biological nitrification takes place in aerated activated sludge tanks (indicated in 

Figure 1.2B). 

 
Figure 1.1 The inorganic nitrogen cycle. 1. Nitritation, 2. Nitratation, 3. Denitrification, 4. Anammox, 5. N 
fixation. The numbers in between the parentheses behind the compounds indicate the oxidation state of 

the nitrogen atom. 
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Figure 1.2 Schematic diagram of a typical wastewater treatment plant (WWTP) with biological nitrogen 
removal (BNR), sludge digestion, and side-stream treatment. A) Anoxic denitrification tank, B) Aerobic 

nitrification tank, and C) CANR of the sludge digester liquor. 

 

The rates, at which AOB and NOB convert nitrogen, are influenced by many different 

environmental factors. Manipulation of these factors has been sought to control the relative 

abundance of the microbial groups in a mixed culture community. Temperature, hydraulic 

retention time (HRT), sludge retention time (SRT), pH and alkalinity, inhibiting compounds, and 

substrate concentrations are among the most important factors (Gujer, 2010). 

The HRT control concept uses the fact that at high temperatures (above 15-20⁰C) AOB have a 

higher specific growth rate than NOB, whereas the opposite is true at low temperatures 

(Hellinga et al., 1998). The difference in specific growth rates can be utilized by choosing a 

sufficiently low SRT to wash out NOB from the system, while retaining AOB in the system (Pollice 

et al., 2002). This can relatively easily be done in continuously operated suspended sludge 

systems, where there is no biomass retention and the SRT is equal to the HRT. However this 

strategy becomes more difficult to administer in attached growth, sedimentation, or membrane 

based systems in which solids, and thus the bacteria, are retained to a higher degree in the 

system. 

pH directly affects nitrification as it determines the relative distribution of the nitrogen species’ 

concentrations in the medium due to chemical acid-base equilibria. In addition, the nitrification 

process itself affects the pH of the medium, because protons are produced when ammonium is 

oxidized to nitrite (eq. 1.1). The speciation of the true substrates of the nitrogen compounds for 

AOB and NOB has been a point of discussion for a while, with Anthonisen et al. (1976) proposing 
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the unionized forms (ammonia (NH3) and nitrous acid (HNO2)) as the true substrates. pH can also 

affect the concentration of inhibiting compounds. Many different concentrations have been 

reported, and the speciation is also important in case of substrate or product inhibition 

(Anthonisen et al. 1976; Wiesmann, 1994). 

Another important factor affecting nitrification is the dissolved oxygen (DO) concentration. Even 

though many different values, within a significant range of variation, have been reported for the 

oxygen half saturation constants for both AOB and NOB (Wiesmann, 1994; Brockmann et al., 

2008; Lackner and Smets, 2012), there is a general trend that the half saturation constant of AOB 

is lower compared to that of NOB. This means that at low DO concentrations, AOB will have a 

competitive advantage over NOB. As a consequence many studies (Picioreanu et al., 1997; 

Bernet et al., 2001; Chen et al., 2001; Downing and Nerenberg, 2008; Pambrun et al., 2008 to 

name a few) have focused on controlling the DO concentration as a tool for obtaining partial 

nitrification (i.e. nitritation without nitratation or nitrite accumulation). 

 

Denitrification 

In conventional treatment systems, the nitrification is typically followed by denitrification, where 

nitrate is reduced eventually to nitrogen gas (N2) by heterotrophic bacteria (HB) (see Figure 1.1). 

The process occurs under anoxic conditions and with organic carbon as electron donor. This 

process takes place in multiple steps with several intermediates (eq. 1.5). A broad range of HB 

exists, some of which have the ability to completely reduce nitrate to nitrogen gas, whereas 

others are specialized in a specific step of the process. 

 NO3
- → NO2

- → NO → N2O → N2    (1.5) 

Different configurations of nitrification-denitrification can be implemented in the biological 

treatment train at a WWTP. One common configuration is an anoxic tank followed by an aerated 

tank with an internal recirculation stream carrying nitrate from the aerobic tank back to the 

anoxic tank, where the nitrate is denitrified (see Figure 1.2A+B). 

Depending on the wastewater composition, it might be necessary to supply external organic 

carbon to the anoxic stage in order to ensure complete denitrification (Tchobanoglous et al., 

2003). 

A detailed understanding of the denitrification mechanism, the substrate preference and 

competition, and the bacteria involved remains somewhat unclear due to the complexity of the 
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process (Sin et al., 2008c). Since heterotrophic activity is not the focus of this study, the reader is 

referred to the reviews of Peng and Zhu (2006) and Sin et al. (2008c) for discussion of the status 

of the understanding, operation, and control of this process. 

 

Anaerobic ammonium oxidation (Anammox) 

In the anammox process, ammonium is oxidized by using nitrite as electron acceptor, to form 

nitrogen gas and a bit of nitrate. This process is performed by anaerobic ammonium oxidizing 

bacteria (AnAOB). A simplified (1.6) and a complete (1.7) version of the process stoichiometry is 

given below: 

 NH4
+ + NO2

- → N2 + 2 H2O     (1.6) 

NH4
+ + 1.124 NO2

- 0.014 HCO3
- + 0.121 H2CO3 →  

0.987 N2 + 0.138 NO3
- + 0.270 C5H8N0.5O2 + 2.185 H2O   (1.7) 

As can be seen in equation 1.7, in practice, the stoichiometry of ammonium to nitrite is 1 to 

1.12. Most of the nitrogen is converted to N2, but about 6-7% of the converted nitrogen can be 

found as nitrate, and the rest is incorporated in new biomass that is produced during growth. 

The possible existence of AnAOB was first mentioned in the article “Two lithotrophs missing in 

nature” (Broda, 1977), but was not proved existing until the 1990s (Mulder et al., 1995; van de 

Graaf et al., 1995). Most of the identified AnAOB belong to the bacterial division 

Planctomycetales (Kuenen, 2008). AnAOB have a characteristic bright red color, which is related 

to their high production of cytochrome C (Jetten et al., 1999). Since the discovery of the AnAOB, 

almost two decades ago, they have been found to be present in many WWTPs around the world 

and in natural redox-stratified ecosystems, such as in sea sediments. It is estimated that up to 

35% of the natural nitrogen turnover in the marine environment is through the anammox 

process (Dalsgaard et al., 2003). Thus, this process is of great significance both in engineered 

systems, as well as in the natural nitrogen cycle. 

AnAOB are extremely slow growing with a doubling time of approximately 11 days (Strous et al., 

1998). They are very sensitive toward certain compounds and are inhibited by oxygen and nitrite 

(Strous et al., 1999). Since the process is catalyzed by an obligate anoxic microorganism, oxygen 

has an inhibiting effect on AnAOB already at a concentration of 0.2 mg O2 L-1 (Jung et al., 2007). 

However, it has been found that AnAOB can recover their activity after exposure to low oxygen 
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concentrations (Strous et al., 1997; Egli et al., 2001), thus the inhibition is probably somewhat 

reversible. 

Complete autotrophic nitrogen removal (CANR) is the combination of aerobic (eq. 1.1) and 

anaerobic (eq. 1.6) ammonium oxidation (see eq. 1.8), and can therefore be described by the 

simplified version below: 

 2NH4
+ +1.5O2 → N2 + 2H+ + 3H2O   (1.8) 

 

1.1.2 Why use complete autotrophic nitrogen removal? 
As the name gives away, the CANR process is completely autotrophic, which means that the 

microorganisms assimilate inorganic compounds as their carbon source. Since only 53% of the 

influent ammonium has to be converted to nitrite to obtain CANR, the oxygen requirement is 

1.83 g O2 (g N)-1 as opposed to 4.30 g O2 (g N)-1, which is required for complete nitrification (see 

Table 1.1). The organic carbon requirement, measured as chemical oxygen demand (COD), for N 

removal is 8.67 g COD (g N removed)-1 in complete nitrification-denitrification, whereas it is 0 g 

COD (g N removed)-1 in CANR. This is an advantage, because organic carbon, e.g. in the form of 

methanol, often is added in conventional treatment to reach complete denitrification of nitrate 

(Tchobanoglous et al., 2003), and thus comprises an extra operational cost. Also the sludge 

production is reduced significantly from 4.27 g biosolids (g N removed)-1 in the nitrification-

denitrification process to 0.14 g biosolids (g N removed)-1 in CANR. This is due to the relatively 

low biomass yield of the AOB and AnAOB (Strous et al., 1999) compared to the yield of 

heterotrophic denitrifiers (Henze et al., 2000). As can be seen in Table 1.1, the shortcut 

nitrification-denitrification is superior to complete nitrification-denitrification with respect to 

oxygen consumption, organic carbon requirement, and sludge production. However, the CANR is 

still significantly more efficient than the short-cut pathway. 

Table 1.1 Comparison of substrate requirements and sludge production for conventional nitrification-
denitrification, shortcut nitrification-denitrification, and CANR, when considering the stoichiometries given 

in eq.s1.3, 1.4, and 1.7. 
 Complete 

nitrification - 
denitrification 

Shortcut 
nitrification - 
denitrification 

Complete 
autotrophic N 
removal 

Oxygen requirement (g O2/g N) 4.30 3.22 1.83 

Org. carbon requirement (g COD/g N) 8.67 5.18 0.00 

Sludge production (g VSS/g N) 4.27 2.59 0.14 
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In mixed culture systems, such as biological WWT systems, other bacterial groups are competing 

with the ammonium oxidizers. In particular, NOB, which are competing with AOB for oxygen and 

with AnAOB for nitrite. HB, utilizing organic compounds originating from decay processes, can 

also be competing for oxygen with AOB and NOB, and for nitrite with AnAOB, but can also use 

nitrate as electron acceptor. Finally, AOB and AnAOB can compete with each other for 

ammonium (see Figure 1.3). 

To add to the complexity, there are also some microbial groups that utilize substrates that are 

inhibiting for others, while some are growing on decay products originating from other microbial 

groups. A complicated network of interactions thus exists within the nitrogen converting 

microbial community (Figure 1.3). 

 

 
Figure 1.3 Interactions between microbial groups involved in N conversion in WWT. Green arrows: 

substrate dependency, red arrows: substrate competition, blue arrows: inhibition removal, orange arrows: 
decay products used as substrates. 

 

1.1.3 Where to use CANR? 
As CANR is a very suited process to treat wastewater streams with high nitrogen concentrations 

and low C/N ratios, it is mainly employed in side-stream treatment, such as for example 

treatment of reject water from sludge digestion (Figure 1.2C). Currently, efforts are being put 
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into expanding the application to main-stream municipal wastewater treatment as well (Hu et 

al., 2013).  

Since CANR consists of processes carried out by two different microbial groups (AOB and 

AnAOB), it can be realized either in a two-stage system, where the two processes take place in 

separate reactors, or in a single-stage system where the reactor contains both organisms (see 

Figure 1.4). In the two-stage configuration, the optimal substrate concentration ratio for the 

anammox process (1 NH4
+:1.12 NO2

-) is obtained by partial aerobic ammonium oxidation in a 

reactor separated from the anammox process reactor. The single-stage configuration can only 

be realized if different oxic (both aerobic and anoxic) conditions can be obtained within the 

same reactor, e.g. by having a redox stratification governed by biofilm or granule formation of 

the bacteria (see Figure 1.5). Alternatively, the oxic conditions can be time-segregated, e.g. 

through intermittent or periodic aeration. 

 

 
Figure 1.4 Reactor configurations. Left: Two-stage configuration, right: example of a single-stage 

configuration. 

 

The first full-scale implementation of CANR was the SHARON-Anammox two-stage process (van 

Dongen et al., 2001; van Kempen et al., 2001), which was started up during 2002-2004 (van der 

Star et al., 2007). In the SHARON (Single reactor High activity Ammonia Removal over Nitrite) 

process, nitrite is produced from ammonium. Partial nitrification is assured by running the 

process at high temperature and low SRT. The reactor is configured as a chemostat, which is a 

continuously stirred tank reactor (CSTR) with no biomass retention, and the SRT is thus equal to 

the HRT. When the SHARON process was first developed, it was used to treat reject water from 

an anaerobic sludge digester to a degree where it could be recycled back into the main 

wastewater stream to be conventionally treated by denitrification (Hellinga et al., 1998). As the 

anaerobic digester effluent usually contains high concentrations of ammonium and low 
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biodegradable organic carbon concentrations, nitrogen removal was obtained by converting 

most of the ammonium to nitrite and subsequently reducing it to nitrogen gas by addition of 

methanol for denitrification. However, it was later discovered that the effluent from the 

SHARON process makes up a good influent composition for the anammox process (van Dongen 

et al., 2001).  

 

 
Figure 1.5 Idealized spatial location of bacterial groups in different single-stage biofilm systems. A) 

Granular biomass, B) Carrier based biofilm system, C) MABR system. 

 

Among the first reported successful single-stage process was the OLAND (Oxygen-Limited 

Autotrophic Nitrification-Denitrification) process (Kuai and Verstraete, 1998). Since then, several 

single-stage configurations have been introduced, among them the CANON (Completely 

Autotrophic Nitrogen-removal Over Nitrite) process (Third et al., 2001; Sliekers et al., 2002), the 

SNAP (Single-stage Nitrogen removal using Anammox and Partial nitritation) process (Furukawa 

et al., 2006), where the biomass is immobilized onto acryl fiber material in a fixed film 

configuration (Figure 1.5B), in moving bed biofilm reactors (MBBRs), where the biomass is 

attached onto specially designed plastic carriers (Helmer et al., 2001), e.g. the ANITAMox 
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process (Christensson et al., 2011) (Figure 1.5B), in membrane aerated biofilm reactor (MABR) 

systems, where the membrane acts as both substratum for the biofilm and oxygen supply source 

(Figure 1.5C) (Pellicer-Nacher et al., 2010), in a rotating biological contactor (RBC) (Siegrist et al., 

1998; Pynaert et al., 2003), where the biomass is immobilized onto rotating discs, which are 

alternating in contact with the bulk liquid and the oxygen containing atmosphere (Figure 1.5B), 

or in an sequencing batch reactor (SBR) (Strous et al., 1998) with sludge or granules (Figure 1.5A) 

containing both microbial groups, e.g. the DEMON® process (Wett, 2006) or as in the study by 

Vlaeminck et al. (2009), where detailed microbial analysis was made. 

The obvious advantage of the single-stage configuration, over the two-stage configuration, is 

that it has a lower reactor footprint and a lower capital cost. Also, operational costs are lower, 

because only one reactor, and its associated equipment, instead of two, has to be maintained. 

By having two bacterial communities within one reactor, AOB-produced nitrite can be utilized 

immediately by AnAOB, whereby nitrite build-up and inhibitions associated with it, are avoided. 

However, operating the system in such a way, that optimal conditions for both the aerobic 

partial nitritation and for the anaerobic anammox process are ensured, is easier in the two-stage 

system, since both reactors can be controlled independently of each other. Higher removal rates 

can therefore likely be obtained in a two-stage configuration than in the single-stage. 

Currently, approximately 40 full-scale CANR implementations are operated for the treatment of 

a range of different types of nitrogen-rich wastewaters (Hu et al., 2013) and the number is 

constantly growing. The majority of these are single-stage implementations (Vlaeminck et al., 

2012), and it seems that the industry believes this to be the best suited solution for their needs. 

 

1.2 Mathematical modeling of biological WWT 
Mathematical models can serve as useful tools to help understand and elucidate governing 

mechanisms and interactions in process systems, such as wastewater treatment plants. Also, 

they can help to improve and reduce the time needed for plant and reactor design, controller 

construction, and process optimization. Moreover, they can be used to evaluate alternative 

options of plant or reactor layouts and operational strategies for a smaller cost than 

experimental testing. 

In order to facilitate and enhance the model construction and use in biological wastewater 

treatment, the IAWPRC (now IWA) formed a task group dedicated to provide a modeling 
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platform in 1983. The model developed by a South African research group (Dold et al., 1980) 

served as their starting point. The task group’s work resulted in a model for a single-sludge 

treatment system performing COD oxidation, nitrification, and denitrification (Grady et al., 

1986). The model was evaluated and revised later by Henze et al. (1987) resulting in the first 

version of the activated sludge model no. 1 (ASM1). The model is based on a mechanistic 

interpretation of the behavior of the microbial groups catalyzing the process reactions 

considered in the system, as well as detailed characterization of influent wastewater 

composition with respect to different fractions of COD and nitrogen. The task group later on 

expanded the ASM1 by incorporating additional phenomena and concepts. This resulted in the 

ASM2d, which contains enhanced biological phosphorus removal (EBPR) combined with 

denitrification (Henze et al., 1999) and the ASM3, which includes the concept of internal 

compound storage by the heterotrophs (Gujer et al., 1999). Since then, numerous activated 

sludge models have been developed and evaluated, addressing different levels of detail, such as 

the two step nitrification and denitrification, metabolic models for phosphorus accumulating 

organisms (PAOs) and glycogen accumulating organisms (GAOs), and biofilm models, to mention 

a few. This prompted Gujer (2006) to declare a moratorium on model development activity and 

urge the community to rather start using and applying the models than further develop new 

ones, yet the development has been and still is continuing.  

Below, further introduction to biofilm modeling and modeling of CANR is presented. 

 

1.2.1 Mathematical modeling of biofilm systems 
The difference between the activated sludge type models and biofilm models is that space is 

introduced as an independent variable in biofilm models, and gradients of substrate 

concentrations and often gradients within the microbial compositions are considered in biofilm 

systems. This entails that mass transfer phenomena are accounted for explicitly in biofilm 

models. The microbial kinetic parameter (e.g. half saturation constant) values in biofilm models 

are thus only describing the microbial metabolism, and not accounting for the effects of mass 

transfer limitation, which they otherwise do in traditional activated sludge models.  

The first biofilm models were describing a steady-state, one-dimensional (1-D), flat-sheet 

geometry with a uniform distribution of a single microbial species and a single substrate and 

were focusing on the substrate flux and concentration profile (Rittmann and McCarty, 1980). 

Since then, the model complexity has increased such that the palette of biofilm models now 
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contains: dynamic, multi-species and multi-substrate models (Wanner and Gujer, 1986), multi-

dimensional models (Picioreanu et al., 1998) describing the structure and morphology of the 

biofilms, individual based models (Kreft et al., 2001; Lardon et al., 2011) in which individual cells 

are considered, and hybrid models (Alpkvist et al., 2006), where the extracellular polymeric 

substance (EPS) matrix and individual cells are modeled. The increase in model complexity goes 

hand in hand with the increase in available tools for experimental observation of the biofilms 

(Wanner et al., 2006) such as in situ hybridization techniques, microsensors, and advanced 

microscopy such as confocal laser scanning microscopy, as well as with the increase in available 

computational power. 

 

1.2.2 Mathematical modeling of CANR systems 
Modeling of CANR can be done either as modeling of two separate processes in a two-stage 

configuration (nitrification and anammox) or as a simultaneous process, which is carried out by 

means of multi-species biofilm models. 

 

Two-stage CANR modeling 

For the first approach, many studies have modeled two-step nitrification and investigated how 

to stimulate and achieve partial nitrification, i.e. promote AOB growth and suppress NOB 

growth. Picioreanu et al. (1997) investigated the effect of oxygen concentration in a nitrifying 

biofilm reactor, Hellinga et al. (1999) modeled a SHARON reactor for process design calculations 

at a full-scale plant, Wyffels et al. (2004) and Pambrun et al. (2006) modeled nitrification in a 

membrane bioreactor (MBR) and in an SBR, respectively, both with the objective of obtaining 

optimal operational conditions for partial nitrification, while Bernet et al. (2005) constructed a 

steady-state biofilm model with homogenous AOB and NOB distribution in order to design a 

control system ensuring nitrite accumulation.  

The study of Dapena-Mora et al. (2004) modeled an anaerobic SBR by extending the ASM1 with 

AnAOB growth and decay processes and investigated the interaction between AnAOB and HB. 

The same was investigated by Ni et al. (2012) in a 1-D flat-sheet biofilm model. Both concluded 

that HB will be present in significant (although low) amounts despite the absence of organic 

carbon in the reactor feeds.  
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Single-stage CANR modeling 

The study of Koch et al. (2000) was amongst the first to mathematically describe a single-stage 

CANR configuration by modeling a biofilm based RBC removing nitrogen without organic carbon 

supply. Under the operational conditions investigated it was found that diffusion of nitrite to the 

anoxic AnAOB containing parts of the biofilm was the limiting process for nitrogen removal in 

the system. Later, the effect of temperature, influent ammonium concentration, and influent 

flow rate (Hao et al., 2002b), plus bulk oxygen concentration and biofilm thickness (Hao et al., 

2002a) were investigated by modeling of the CANON process as a 1-D flat-sheet biofilm. It 

should be noted that both the model of Koch et al. (2000) and the model of Hao et al. (2002a&b) 

did not consider the presence of HB and did not explicitly include external mass transfer 

resistance. However, the study of Hao et al. (2004) investigated the impact of HB presence in the 

biofilm in cases where biodegradable organic carbon was present in the influent. This was 

extended by the study of Lackner et al. (2008) which looked into the effect of HB and COD in co-

diffusion and counter-diffusion biofilm systems performing CANR. The counter-diffusion system 

being an MABR, in which the oxygen was supplied through a membrane acting as biofilm 

substratum. The MABR configuration for CANR was first modeled by Terada et al. (2007). The 

study found that the surface loading ratio of ammonium to oxygen was determining the 

performance of the N removal.  

The latest development within modeling of single-stage CANR is the modeling of granular sludge 

reactors (Volcke et al., 2010). Both the effect of average granule size (Volcke et al., 2010) and the 

distribution of granule sizes (Volcke et al., 2012) have been investigated. The results show that 

bigger granules are less efficient but more robust than smaller ones, and that modeling of a 

single average granule size might give a different result than modeling of a distribution of 

granule sizes, which is a more accurate representation of reality. However, external mass 

transfer resistance has not been considered in these granule investigations either, hence the 

interpretation of the results will be limited by this assumption. 

 

1.3 Control of biological WWT processes 
The objective of WWT is to supply the best possible (at least within the legislative demands) 

effluent quality at the lowest possible energy and resource utilization costs. However, also of 

tremendous importance is the ability to handle and reject disturbances. In obtaining these goals, 

control and automation play an essential role (Olsson, 2012). Control systems and strategies are 

28



Chapter 1 - Introduction 

17 
 

often acting on flow and concentrations – process variables that can relatively easily be 

observed – but it is important to keep in mind that these affect the microbial composition of the 

biomass performing the treatment. Control strategies can thus, apart from enhancing effluent 

quality, also be used actively in optimizing microbial properties or in limiting the growth of 

unwanted microbial groups (Olsson, 2012). An example of such is the suppression of NOB 

growth through control of the pH in the system or through SRT control. 

Early nitrogen removal controllers focused on controlling the DO, which has proven effective in 

reducing the effluent concentrations (Nielsen et al., 1981). Since then, more advanced strategies 

have been developed along with the utilization of more sophisticated sensor equipment, such as 

on-line nutrient sensors. In the study of Ingildsen et al. (2002) a feedforward controller, based 

on on-line ammonium signals, was tested in a full-scale WWTP and it was found that 5-15% of 

energy for aeration could be saved. The study of Vrecko et al. (2006) presented a feedforward-

feedback controller to improve aeration consumption. Intermittent aeration based on on-line 

nitrogen sensors has also resulted in improved nitrogen removing performance (Kaelin et al., 

2008). In the study of Lemaire et al. (2008) pH signals, along with DO, were utilized to construct 

an automated switching off of the aeration in an SBR system achieving short-cut nitrification-

denitrification via nitrite. A SHARON reactor removing nitrogen via short-cut nitrification-

denitrification was operated with and optimized by a fuzzy logic control strategy based on pH 

and oxygen reduction potential (ORP) measurements (Claros et al., 2012). 

For CANR, the study of Volcke et al. (2006a) investigated a number of control strategies for the 

SHARON process in a two-stage configuration based on DO and/or pH signals. A strategy, in 

which the DO set point was set by a master controller keeping the nitrite to ammonium ratio 

(cascade control) combined with a pH controller, was proposed as a result of this study, in order 

to produce a good influent quality for a subsequent anammox reactor. Valverde-Perez et al. 

(2012) extended this study to also include a control loop on the anammox reactor, which was 

cascaded onto the set point of the nitrite to ammonium ratio in the SHARON reactor and was 

based on effluent concentration measurements from the anammox reactor.  

As for the single-stage CANR systems, the DEMON® process developed by Wett (2007) made use 

of on-line pH measurements to control the intermittent aeration in a full-scale SBR 

implementation with a long feeding phase. The pH set point was derived from the oxygen 

transfer efficiency, and during this operation the DO was kept between 0.25-0.35 mg O2 L-1 in 

the aerated phases. Intermittent aeration was also tested both in a suspended sludge system 

(Joss et al., 2011; Jardin and Hennerkes, 2012) and in a carrier based system (Zubrowska-Sudol 

29



Chapter 1 - Introduction 

18 
 

et al., 2011). The first study found little difference in performance, but claimed that continuously 

aerated systems are easier to observe and control, Jardin and Hennerkes (2012) found that the 

control of aeration length and control of frequency of switching between oxic and anoxic 

conditions were essential for suppression of NOB growth, while the latter study found that the 

length of aeration time impacted the removal efficiency. In the ANITAMox plant, DO is also the 

controlled variable, but here the nitrate produced over the ammonium removed is used to 

deduce the value of the DO set point (Christensson et al., 2013). In a lab-scale study of a fixed 

filter performing CANR, Kwak et al. (2012) showed that tight control on the oxygen to nitrogen 

volumetric loading ratio resulted in a good nitrogen removal performance. 

 

1.4 Issues and challenges 
The challenges related to CANR can be divided into 1) start-up, 2) scale-up, and 3) operation. 

Below, the issues related to these three challenges are highlighted. 

Since AnAOB have very slow growth rates, starting up reactors utilizing this process has proved 

challenging and time consuming (Strous et al., 1998; Wett, 2006; van der Star et al. 2007; Joss et 

al., 2009). This makes the systems very sensitive towards biomass retention, and in cases using 

sedimentation, sludge flocculation or granulation problems can upset the system performance 

due to washout of AnAOB (van der Star et al., 2007; Joss et al., 2009). 

Mass transfer phenomena play a role in CANR performance, which means that proper design, 

operation and control for process scale-up is not straightforward. This, together with the slow 

growing biomass and its sensitivity towards biomass retention, emphasizes the importance of a 

systematic development of a scale-up methodology.  

Microbial competition for substrates and for space, especially in single-stage systems, has posed 

an obstacle for well-functioning CANR (Fux et al., 2004). Inhibitions of involved microorganisms, 

e.g. by substrates and/or products, especially oxygen inhibition of AnAOB, make the systems 

very sensitive towards influent composition (which is often complex in full-scale 

implementations (van der Star et al., 2007)) and towards operating conditions. As a consequence 

of these issues, pilot- and full-scale systems have shown instability and loss of microbial activity 

(Joss et al., 2011; Jardin and Hennerkes, 2012).  

Intensification of the process, by running it as a single-stage configuration, makes it difficult to 

observe and operate an already complex biological system. Multiple biological processes are 
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occurring simultaneously, while at the same time mass transfer limitation might play an 

important role. In addition to this, fewer actuators are available in the intensified system. The 

tradeoff between reduction of footprint/energy consumption and actuator availability is often 

an issue in intensified systems (Nikacevic et al., 2012). All these things together underline the 

importance of formulating and testing indicators and strategies, which can be used to diagnose 

and control the status of the system. Establishing operational guidelines and robust control 

strategies is therefore highly needed (van Hulle et al., 2010; Vlaeminck et al., 2012). 

Development of control in wastewater treatment systems, including the CANR process, whether 

it is for side-stream treatment or industrial nitrogen-rich wastewater applications, is usually 

done by previous process experiences and past insights and observations. A systematic analysis 

of the controllability and generation of control ideas and strategies, especially linking regulatory 

control to the control objective, is lacking and does therefore need to be addressed. 

Addressing the above mentioned issues solely through the execution of an experimental 

campaign is expensive and time consuming. Hence, model-based or model-supported systematic 

studies are needed to facilitate and speed up such investigations. By first conducting simulation 

analysis, subsequent experimental testing can be guided and more targeted than in pure 

experimental studies. 

In this work the issue of ensuring optimal and stable operation is tackled using a systematic 

approach that uses modeling, experimental work, and control studies in a complementary and 

integrated manner. The knowledge obtained from this work is expected to realize the full 

potential of this promising technology in industrial practice of wastewater treatment. 

   

31



Chapter 1 - Introduction 

20 
 

1.5 Objectives of the PhD project 
On the basis of the status and the challenges related to complete autotrophic nitrogen removal 

presented above, this PhD project has been formulated aiming at gaining further insight into the 

CANR process by applying a systematic and generic methodology, combining modeling and 

experimental analyses (see Figure 1.6), and to use the derived knowledge and insights to 

optimize and control the operation of this process in granular based sequencing batch reactors.  

 

Figure 1.6 Research methodology of the PhD project. 

 

In particular the research methodology addresses the following questions: 

Process understanding:  

 What are the most important parameter(s), mechanism(s), and interactions affecting 

nitrogen removal in these systems?  

 Which parameters are of highest importance under different sets of operating 

conditions? 

 Which operating conditions are the optimal ones? 

Control and optimization:  

 Can a model accurately capture process performance?  
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 Which possible actuators are available for controlling the system?  

 How are these paired with controlled variables for achieving the best possible control 

strategy?  

 Can the performance be stabilized and/or improved through automated control?  

 And can the effect of this control strategy be validated experimentally? 

The research scope of the PhD project is summarized in the methodology shown in Figure 1.6 

and in the graphical abstract in Figure 1.7. As indicated in the graphical abstract, the research 

aims at closing the cycle of modeling and experimentation in a complementary manner going 

from model development, simulation analysis, calibration and validation, to control strategy 

generation and design, testing, evaluation and experimental validation (Figure 1.7).  The output 

of the research cycle is expected to deliver improved process understanding and novel ideas for 

stable and optimized operation of the CANR process. 
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1.6 Structure of PhD thesis 
The thesis is divided into 4 parts consisting of 9 chapters. The first part contains introduction, 

and a description of the experimentation and modeling. The first and current chapter gives a 

general introduction to the autotrophic nitrogen removal topic and the background, motivation, 

and objectives of the project are presented. Chapter 2 contains a description of the 

experimental setup and chapter 3 contains the mathematical model used to describe the system 

along with the methodology used to construct this model. Parts of the mathematical model 

described in chapter 3 have been published as a paper in Bioresource Technology. Part II 

contains simulation and scenario studies, which investigate the importance of microbial kinetics 

versus mass transfer through global sensitivity analysis in chapter 4 and the effect of including 

pH as a state variable in the model in chapter 5. Parts of chapter 4 consist of the article 

published in Bioresource Technology and chapter 5 is based on an article published in Water 

Science and Technology. In part III, the knowledge from the previous chapters is used to control 

and optimize the operation and performance of the system. In order to do this, a validated 

model was needed and this was obtained by following a customized calibration and validation 

methodology, which is presented in chapter 6. This chapter is based on an article published in 

Journal of Chemical Technology and Biotechnology. Subsequently, in chapter 7, ideas for control 

strategies were generated through a process oriented approach. These were tested and 

evaluated through exhaustive simulations studies with the validated model developed in the 

previous chapter. Chapter 7 is based on a published conference proceedings paper from the 

ESCAPE23 conference, but has been extended in the dissertation and has been submitted as a 

full paper to the journal Computers and Chemical Engineering. The most promising control 

strategy from chapter 7 was implemented experimentally for validation in the lab-scale reactors, 

and this work is presented in chapter 8. This chapter comprises material used in a research 

article in preparation. In the final chapter, the general conclusions obtained from the PhD 

project are given and future works and perspectives are discussed. In appendix A1 a full list of 

journal publications and conference contributions resulting from activities within this PhD 

project can be found. 

In Figure 1.6 and 1.7 the links and dependencies between the different tools, developments, and 

objectives are illustrated. 
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2 Experimental setup 

Two reactors (denominated SBR1 and SBR2) were run in parallel for approximately 26 months. 

They were operated to obtain granular biomass which performed complete autotrophic nitrogen 

removal. They were started up in May 2011 using an ammonium oxidation bacteria enriched 

inoculum (see below). SBR2 has been running since then, while SBR1 had to be reinoculated in 

October 2011 due to an unrecoverable upset in the operation. 

 

Figure 2.1 The experimental laboratory scale setup with the two parallel reactors. 

 

2.1 Reactors 

2.1.1 Physical layout 
The reactor vessels were modified 4 L fermentors of the model Biostat A Plus (Sartorius, 

Melsungen, Germany), which have a cylindrical geometry with a diameter of 16 cm and a height 

of 25 cm. Each vessel was mixed by mechanical stirring (Rushton impeller), which was built into 
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the fermentors (Figure 2.1 and 2.2). Other equipment originally belonging to the fermentors 

were an electrical heating jacket for temperature control, a ring-shaped bottom aeration line in 

steel, an OxyFerm FDA DO sensor, an EasyFerm plus K8 325 pH sensor (both Hamilton, Bonaduz, 

Switzerland), and a Pt-100 temperature sensor (Sartorius, Melsungen, Germany). In order to 

construct a functioning SBR, external influent and effluent peristaltic pumps (Watson-Marlow, 

Wilmington, MA, USA) were added to the setup. Aeration was provided using compressed air 

from a central line available in the laboratory, and regulated by an external EL-FLOW mass flow 

controller (Bronkhorst, Ruurlo, The Netherlands). A sensor containing both an ammonium and a 

nitrate ion selective electrode (Varion, WTW, Weilheim, Germany) was placed in a separate 

probe chamber connected to the effluent line (Figure 2.2). 

Reactor vessel

Mixer

NH4
+/NO3

-

sensor

Heating
jacket

Temperature

DO

pH

Sampling
port

Influent

Compressed lab air

Effluent

Figure 2.2 Schematic illustration of SBR with equipment. 

 

All of the equipment was operated through a tailor-made software routine programmed in 

LabVIEW (National Instruments, Austin, USA), which was also used for data acquisition, 

monitoring, control and data storage purposes. The equipment built into the Sartorius 

fermentor was connected to LabVIEW through an OPC server acting as a data socket and the 

external equipment were connected through a solid state relay and a NI USB-6008 DAQ device 

(National Instruments, Austin, USA). 
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2.1.2 Inoculum 
The reactors were seeded with sludge from AnoxKaldnes’ ANITAMox “BioFarm” plant located at 

Sjölunda WWTP in Malmö, Sweden. The “BioFarm” plant is a full-scale MBBR performing 

autotrophic nitrogen removal treating anaerobic sludge digester liquor. The biomass was 

manually removed from the carriers obtained from the plant, and was subsequently used as 

inoculum for the reactors. The reactors were inoculated within a week after the carriers were 

collected, and they were stored in a nitrate solution prior to reactor inoculation. 

 

2.1.3 Substrate – synthetic wastewater 
A synthetic wastewater was fed to the reactor, which was based on demineralized water and 

contained NH4HCO3 (N source, C source, and alkalinity) and NaHCO3 (C source and alkalinity). 

The ammonium and with it the bicarbonate concentration changed over time as described in the 

“operation history” below. The bicarbonate to ammonium molar concentration ratio varied 

between 1.27 and 1.48. Trace elements solutions based on van de Graaf et al. (1996) were also 

added to the feed, and the final concentrations in the feed were: 169.7 mg KH2PO4 L-1, 751.1 mg 

MgSO4·7H2O L-1, 451.6 mg CaCl2·2H2O L-1, 20.0 mg EDTA L-1, 5.00 mg FeSO4·7H2O L-1, 0.43 mg 

ZnSO4·7H2O L-1, 0.24 mg CoCl2·6H2O L-1, 0.99 mg MnCl2·4H2O L-1, 0.25 mg CuSO4·5H2O L-1, 0.22 mg 

NaMoO4·2H2O L-1, 0.19 mg NiCl2·6H2O L-1, 0.21 mg NaSeO4·10H2O L-1. In order to avoid 

precipitation issues, six different stock solutions were made. The substrate solution was 

prepared by diluting the stock solutions appropriately into 25 L bottles. In order to avoid oxygen 

supply through the influent and avoid microbial growth in the influent bottles, the substrate was 

sparged with N2 gas for 20 minutes immediately after preparation. The substrate feed was 

prepared twice per week. 

 

2.1.4 “Default” reactor operation 
The operating temperature was controlled at 30⁰C, the pH was kept at 7.5±0.5, and the vessel 

was mixed by mechanical stirring at 80 rpm combined with intermittent or continuous bubble 

aeration. 
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The influent to the reactor contained 500 mg total ammonium nitrogen (TAN) L-1. The reactor 

was operated with a cycle length of 8 hours and an exchange ratio of 50%, which resulted in an 

HRT of 16 hours, and a volumetric N loading rate of 750 mg N L-1 d-1. The 8 hour cycle was 

distributed in a 10 minute fill phase, a 447 minute reaction phase, a 3 minute settling phase, a 10 

minute draw phase, and a 10 minute idle phase (Figure 2.3). During the aerated phases the air 

flow was approximately 0.5-1.0 L min-1. 

 
Figure 2.3 Schematic illustration of the phases in the SBR cyclic operation. 1) Fill phase, 2) Reaction phase, 

3) Settling phase, 4) Draw phase, 5) Idle phase (adapted from Vlaeminck et al., 2009). 

 

2.1.5 Operation history  
The reactors were operated for more than two years. During that period, several changes were 

imposed to the operation as part of the research plan. Here, the most significant operational 

changes are briefly outlined: 
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Cycle length: The reactors were started up with a cycle time of 12 hours and, since the exchange 

ratio (ER) was 50%, with a concomitant HRT of 24 hours. Later on, when the nitrogen removal 

rate had reached a sufficient efficiency the cycle time was reduced to 8 hours with a 

concomitant HRT of 16 hours. 

Temperature: The reactors were first controlled at a temperature of 30⁰C. After an upset in 

operation due to failure of the temperature controller, the reactors were operated at ambient 

temperature for a couple of months. However, since a drop in the removal rate was observed as 

a consequence of this change, the temperature control was subsequently re-established.  

N loading: Both reactors were started up with an influent concentration of 200 mg N L-1 and a 

volumetric loading rate of 200 mg N L-1 d-1. During operation, this was gradually increased 

through decreasing cycle length and increasing influent concentrations, such that the final 

influent concentration was 500 mg N L-1 and the volumetric loading rate was 750 mg N L-1 d-1. 

Aeration: Since aeration was supplied both continuously and as intermittent phases, a range of 

metrics to characterize the aeration system has been defined below (Table 2.1). During 

intermittent aeration, the number of sequential aerated and non-aerated phases during one 

reaction phase was varying leading to different number of transient changes in the redox 

conditions (fredox). 

 

Table 2.1 Independent and dependent operational parameters related to oxygen supply in SBRs with intermittent 
aeration. 

Parameter Formula Definition 

Independent operational parameters 

Qair - Air flow rate during aerated phase 

ton  - Length of a single aerated phase  

toff - Length of a single non-aerated phase 

tcycle - Length of a total cycle including all phases 

Dependent operational parameters 

fredox cycle

on off

t
t t

 
Number of changes in redox conditions during one 
SBR cycle 

Ron on redox

cycle

t f
t

 
Fraction of the cycle time in which the reactor is 
aerated 

LO2 L O2,sat O2,bulk onk a S S R  Overall volumetric oxygen loading rate per cycle 

kLa f(Qair, sludge characteristics) Mass transfer coefficient for oxygen 
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The aeration is the operational parameter which has been altered the most. It has been changed 

through manipulation of the air flow rate (Qair), which directly changes the overall oxygen 

loading to the system, but it has also been changed through alteration of fredox and Ron, which are 

affected by the number of changes from aerated to non-aerated conditions and vice versa, and 

affected by the duration of the aerated and the non-aerated phases. 

Substrate composition: When the reactors were first started up a substrate composition from 

Kuai and Verstrate (1998) based on tap water was used. At the reinoculation of SBR1 in October 

2011 the substrate composition was switched to the composition from van de Graaf et al. (1995) 

based on demineralized water. The reason for this was to ensure a more stable concentration of 

the divalent cations (Ca2+ and Mg2+) in the influent. 

Recirculation: During the first four months of operation, a recirculation line with a peristaltic 

pump containing the N probe was employed and bulk concentrations of ammonium and nitrate 

were logged on-line continuously. The reason for this was that the N probe was too big to fit 

directly in the reactor vessel. However, the pumping had an adverse effect on the biomass 

structure resulting in completely suspended sludge with no granule formation to observe. The 

recirculation line was therefore deployed and the N probe was moved to the effluent line (as in 

Figure 2.2). 

Settling time: In the startup phase the settling time was 10 minutes. This was gradually 

decreased, eventually to remain at 3 minutes corresponding to a critical settling velocity of 

approximately 2 m h-1. 

SRT: From November 2012 sludge was systematically wasted every day to ensure an average 

sludge age of approximately 100 days. Prior to this, sludge was wasted more irregularly such 

that a good estimation of SRT could not be made. However, prior to this time point the SRT was 

longer than 100 days. 

 

2.2 Measurements and analyses 

2.2.1 N analyses  
The concentrations of NH4

+-N and NO3
--N in the effluent were measured by ion selective 

electrodes (Varion, WTW, Weilheim, Germany). The data were logged on-line and by the end of 

the operational period also acquired through the online data acquisition system in LabVIEW. The 
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NH4
+-N and NO3

--N concentrations were verified by manual sampling from the effluent line 

approximately once per week. The samples were filtered using a cellulose acetate 0.45 μm 

syringe filter (Frisenette, Knebel, Denmark) and analyzed with colorimetric test kits (Merck 

KGaA, Darmstadt, Germany) (Figure 2.4). NO2
--N concentration was always measured off-line 

through sampling and analysis with the colorimetric test kits, where a chemical reaction 

produces a color intensity dependent on the concentration, which is measured at a given light 

wavelength. 

 
Figure 2.4 Colorimetric test kits - green: ammonium, pink: nitrite, orange/red: nitrate. 

 

2.2.2 Solids concentration 
Total and volatile suspended solids (TSS and VSS) were determined according to the Standard 

Methods (APHA-AWWA-WPCF, 1998). Usually, 5 or 10 mL sample was taken, filtered though 

pre-weighed glass fiber filters (Pall Corporation, Port Washington, NY, USA), dried at 104⁰C for 2 

hours to remove water present in the sample, weighed again, burned at 550⁰C for 30 minutes to 

remove all organics, and finally weighed again. 

 

2.2.3 Particle size distribution  
Particle size distribution (PSD) and the volumetric weighted mean particle size were determined 

by laser diffraction measurements (Mastersizer 2000, Malvern, Worcestershire, UK). Depending 
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on the solids concentration a sample of 2-15 mL was taken and passed through the laser 

diffraction chamber and analyzer. All measurements were made in triplicate. 

 

2.2.4 Oxygen transfer coefficient (kLa) 
The air was supplied to the bulk liquid through a ring-shaped steel tube with a diameter of 

approximately 7 cm with holes, through which air was distributed. The compressed air was 

supplied to the bottom of the reactor and vented through an outlet in the reactor lid. To find out 

more about the diffuser’s oxygen transfer abilities, standard clean water oxygen transfer tests 

according to the American Society of Civil Engineers (ASCE) were performed. 

The reactor was filled with demineralized water and the electrical heating jacket controlled the 

temperature at 30°C. All oxygen in the system was depleted by sparging with N2 gas for 

approximately 15 minutes. Subsequently, the aeration was started at a fixed flow rate and 

automatic logging of the DO concentration was started. The slope and shape of the increasing 

DO concentration profile, starting from approximately zero to the saturation concentration was 

analyzed using a non-linear fitting program (ASCE, 2007), and values for kLa were obtained. 

A mass balance was considered: 

 L
dC k a C* C
dt         (2.1)

 

Which has the solution: 

 kLa t
0C C* C* C e         (2.2) 

where C is the DO concentration [mg L-1], C* is the DO saturation concentration [mg L-1], C0 is the 

DO concentration at t=0 [mg L-1], and kLa is the volumetric mass transfer coefficient [d-1]. 

The non-linear regression model was fitted to the DO concentration vs. time data, by estimating 

C*, C0, and kLa such that the residual sum of squares was minimized. 

 

2.2.5 Microbiological analysis  
Another PhD project focusing on microbial composition and architecture was carried out by PhD 

fellow A.G. Mutlu in parallel with this study. As a part of her work, biomass samples were taken 
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during the entire operation and DNA was extracted for microbial analysis such as quantitative 

polymerase chain reaction (qPCR) and fluorescence in-situ hybridization (FISH). Also, the sludge 

volume index (SVI) was systematically measured for the last 8 months of operation to assess 

changes in the settlability of the sludge.  
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3 Mathematical model 
A systematic framework for generating models of biofilm based systems in an efficient and 

structured way has been developed and used in this work. Subsequently, it has been applied to a 

case study of single-stage autotrophic nitrogen removal by granular sludge.  

In the first part of this section, the general framework, assumptions, model equations, and 

solutions of these are presented. In the second part, the features specific to the CANR case and 

parameter values associated to it are presented. 

 

3.1 Conceptual model 
In biofilm systems, processes happen at very different spatial and temporal scales, as opposed to 

in completely mixed reactors where all processes are assumed to happen at the same spatial 

scale. Modeling of biofilm systems is therefore typically done in two (Wanner et al., 2006) or 

even three different spatial scales (Xavier et al., 2005). The two scales are here termed the 

“biofilm scale” and the “reactor scale” (Figure 3.1). At the biofilm scale the microbial metabolism 

along with transport of soluble and particulate compounds are described. These processes will 

govern the spatial location of the particulate compounds, i.e. the bacteria, inert material, and 

other particulates. At the reactor scale the overall mass balances are considered along with the 

hydrodynamic conditions in the reactor. When a third stage is included, individual cells are 

modeled separately. In this case, the biofilm scale is only including the transport processes and 

spatial location, while the individual or cellular scale describes the growth and metabolism of the 

microorganisms. 

At the biofilm scale, either a subset of a microbial functional group (e.g. specific species of AOB), 

or an entire functional group of microorganisms (e.g. AOB) can be modeled. If individual cells are 

considered, a certain differentiation in their metabolism might be assumed, whereas if a subset 

or entire functional group is modeled, their metabolism is assumed identical. The latter is called 

the lumped approach and can be solved along with the transport equations at the biofilm scale, 

i.e. it practically results in only two spatial scales. 
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Figure 3.1 Conceptual model of a bioreactor with granular sludge as an example of a multi-scale model. 

Two spatial scales are illustrated; the biofilm scale and the reactor scale. 

 

3.2 Model development framework 
A framework that supports the model construction at the different scales, as well as linking them 

to each other, has been developed based on the methodology of Heitzig et al. (2010). The 

framework was developed by studying the workflow typically involved in development of 

models for multi-scale systems (see Figure 3.2). The first and most important step consists of 

defining the overall modeling objective. The second step is gathering system information such 

as, for example, physical and operational conditions of the system. From this information the 

main assumptions can be established in the third step. Subsequently, the model scenarios of 

interest should be defined, including which spatial scales and processes are of relevance. From 

this definition, the individual models to be constructed can be derived. Each of the individual 

models are either taken from previous studies, if such exist, or they are constructed or modified 

following the workflow depicted on the right side of Figure 3.2. First, the specific model 

objective for the individual model and then the corresponding system information and 

assumptions are defined. The individual model is constructed, and sensitivity analysis of the 

model parameters is conducted if needed. The model is then calibrated to experimental data by 
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adjusting the sensitive parameters. Finally, when the individual model has been validated, it is 

“exported” back into the multi-scale modeling workflow. The individual models are then linked 

to each other by defining the information needed to be transferred from one spatial scale to 

another and vice versa. The multi-scale model system can now be solved in steady state by 

defining appropriate boundary conditions and dynamically by also defining initial conditions. 

 

 
Figure 3.2 Workflow scheme for multi-scale modeling (left) and identification of the individual models 

(right) (adapted from Heitzig et al., 2010). 
 

3.2.1 Model objective 
By following the framework (Figure 3.2), first the modeling goal is defined. The objective here is 

to construct a general model describing a bioreactor containing granular sludge. The model 

should be able to determine the reactor performance (i.e. concentrations of suspended 

compounds) and the microbial composition and distribution. 

 

3.2.2 System info 
The system consists of an aqueous phase and a biofilm phase consisting of granular sludge. 

Processes occurring in the system are microbial catalyzed processes, mass transfer through 

diffusion and advection plus gas/liquid transfer processes. 
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3.2.3 Assumptions 
There are a number of assumptions that need to be made to support the development of an 

appropriate level of model complexity. These are: 

- All microorganisms belonging to the same microbial group (e.g. AnAOB) are assumed to 

have the same microbial kinetics. In other words, only two scales (namely biofilm and 

reactor) will be considered in the model construction. 

Reactor scale assumptions: 

- The bulk volume of the reactor is considered completely mixed. 

- Granules present in the system are perfectly retained. However, free floating cells in the 

bulk liquid can leave the system in the effluent. 

- Formation of new granules and breakup of existing ones are assumed at steady-state. 

Hence, the number of granules remains constant. 

Biofilm scale assumptions: 

- Granules are considered identical and spherical, i.e. all granules have the same size and 

the same spatial distribution of microbial groups. 

- Since the bulk liquid is considered completely mixed (without any spatial difference in 

concentration), the concentration gradients in the granules only take place along the 

radial coordinate. That means no gradients occur in the polar or azimuth coordinates. 

Thus, the model will be in one dimension following the radial distance from the center of 

the granule, perpendicular to the granule surface. 

 

3.2.4 Model equations 
Since the objective is to describe bulk liquid concentrations of soluble compounds and the 

microbial composition inside the granules, the model will be based on mass balances of relevant 

compounds. A general mass balance can be written as: 

 Accumulation = Inflow - Outflow + Generation – Consumption (3.1) 

We now move to the right side of the work flow scheme in Figure 3.2. Since the purpose of this 

chapter is to present the model structure and equations, the sensitivity analysis and calibration 

and validation procedures will not be presented here, but are described in detail in the following 

chapters (chapter 4 and 6, respectively). 
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Biofilm scale 

First, the model equations for the biofilm scale are derived. 

For a control volume, the mathematical expression of the microscopic mass balance of a 

compound (i) is as follows: 

 ii
i i

C VM j A Vr
t t

   (3.2) 

Where Mi is the mass of compound i, Ci is the concentration of the soluble or particulate 

compound i in the biofilm [g m-3], ji is the flux of the compound [g m-2 d-1] in the radial direction, 

A is the cross sectional area perpendicular to the flux [m2], V is the volume of the control volume 

[m3], and ri is the production/consumption rate of compound i [g m-3 d-1].
 

Within the biofilm, the inflow and outflow are related to the transport in and out of a given 

control volume (Figure 3.3). Like in the 1-D model of benchmark problem 3 (BM3), made by the 

IWA task group on biofilm modeling (Wanner et al., 2006), the transport of soluble compounds is 

assumed governed solely by diffusion and of particulate compounds solely by advective 

transport. For both soluble and particulate compounds their generation and/or consumption is a 

function of their production/removal rate (ri), which in turn is a function of the microbial 

metabolism. 

 

Figure 3.3 Spherical coordinates and the control volume used to describe the mass balance in the biofilm 
scale.  
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In a 1-D biofilm system in spatial coordinates, as depicted in Figure 3.3, and assuming that the 

radial distance between the two points (z and z+dz) bounding the control volume (dV) is 

approaching zero, the mass balance can be approximated to be: 

 i
Ci i

CdV j A dVr
t

    (3.3) 

 

The control volume derived in a spherical geometry is approximated to be: 

 2dV 4 z dz      (3.4) 

where z is the radial distance from the center of the granule.
 

The mass balance therefore becomes: 

 2 2i
Ci Ci iz z dz

C4 z dz j A j A r 4 z dz
t

  (3.5) 

 

If we derive with respect to z, the entire equation becomes: 

 
2 2i

Ci i
C4 z j A r 4 z
t z    (3.6) 

 

For soluble compounds (concentration denoted by Si) the flux can be expressed by Fick’s first law 

of diffusion: 

i
Si bio,i

dSj D
dz     (3.7) 

where Dbio,i is the diffusivity of compound i in the biofilm [m2 d-1]. Considering the symmetry of 

the granules, combining equation 3.6 and 3.7 yields the mass balance for soluble compounds in 

a 1-D biofilm with spherical coordinates (z=radial coordinate): 
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2 2 2i i
bio,i i

2 2 2i i
bio,i i

2i i
bio,i i2

S S4 z D 4 z r 4 z
t z z

S Sz D z rz
t z z

S S1D z r
t z z z

 

(3.8) 

 

For particulate compounds (concentration denoted as Xi), the flux is caused by advection and 

therefore expressed as: 

Xi i Fj Xu      (3.9) 

where uF is the velocity [m d-1], which is governed by biofilm growth.  

Combining equation 3.6 and 3.9 gives the mass balance for particulate compounds in the 

granules: 

2 2 2i
i F i

i
i F i

i i F
F i i

X4 z X u 4 z 4 z r
t z

X X u r
t z

X X uu X r
t z z

 

(3.10) 

 

The growth velocity at a given point k, in the granule, is a function of the net growth (growth 

minus decay) of all the particulate species located at the inside of that point in the granule. The 

velocity is therefore mathematically described as: 

partnk
i

F,k k
0k i 1 k

r1u A dz
A

    (3.11) 

where Ak is the area of the sphere at point k and ρ is the density of the biomass. The density is 

assumed equal among all microbial species and also not changing with space. 
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The biofilm thickness (L) is also a state variable and varies according to two phenomena: the net 

growth of the particulate species at the biofilm liquid interface, and their detachment from the 

granule surface. Its derivative with respect to time is therefore a function of the growth and 

detachment velocities (uF,L and uD): 

 F,L D
dL u u
dt      (3.12) 

 

Several mechanisms and therefore also mathematical expressions have been suggested for the 

detachment. It has been shown to have a significant impact on the modeling result (Morgenroth 

and Wilderer, 2000). Here, the detachment velocity is modeled according to eq. 3.13 (Lackner et 

al., 2008): 

2

D F,L
max

Lu u
z     (3.13) 

where zmax is the predefined maximum radius of the granule. At steady state the granules reach 

the maximum size, because the growth and detachment velocities are equal to each other. 

 

Reactor scale 

Now, the model equations for the larger reactor scale are derived.  

In the overall mass balance of the reactor, the transport terms are the inflow and outflow from 

the reactor plus the fluxes in or out of the granules. The generation and consumption are caused 

by microbial growth and decay of free floating cells in the bulk liquid, and abiotic processes 

occurring in the bulk, such as gas to liquid transfer processes. 

The general mass balance for both soluble and particulate compounds in the completely mixed 

bulk liquid therefore looks as follows: 

i,bulk
in i,in out i,bulk bio,i biofilm i,bulk reactor

dM
Q C Q C j A r V

dt
  (3.14) 

where Qin and Qout are the in- and out- flow rates and Abiofilm is the total surface area of all the 

granules. The flux (jbio) in and out of the granules is the link connecting the biofilm and the 
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reactor scales, and ri,bulk is the production and/or consumption taking place in the bulk. Vreactor is 

the volume of the bulk liquid and has the following derivative expression: 

 
reactor

in out
dV

Q Q
dt     (3.15) 

 

Generation and consumptions 

The microbial metabolism and hydrolysis processes, in the bulk as well as in the biofilm, along 

with gas to liquid transfer processes in the bulk are all included in ri. The net reaction rate for 

any compound i can be written as the product of the process rate (ρ) and the stoichiometric 

coefficient (ν), which is summed for all processes (indicated by subscript h) affecting compound 

i: 

 

h np

i h,i h
h 1

r
     (3.16) 

where np is the number of processes. 

 

3.2.5 Linking scales 
Once all the model equations have been defined we move back to the workflow in the left side 

of Figure 3.2, where the next task is to define the link between the different scales.  

The link between the reactor scale and the biofilm scale is the flux of the compounds into or out 

of the granules from the bulk liquid. 

Assuming that the film theory holds in the mass transfer boundary layer (Bird et al., 2002), and 

that there is a continuity of the flux at the biofilm/liquid interface, the flux of the soluble 

compounds across the interface can be modeled as:  

i
bio,Si i i,bulk i,L i,bulk i,L

B

Dj k S S S S
L

   (3.17) 

where ki is the mass transfer coefficient [m d-1], Di is the diffusivity of the soluble compound in 

water [m2 d-1], LB is the thickness of the mass transfer boundary layer [m], Si,bulk is the bulk 

concentration [g m-3], and Si,L is the concentration at the biofilm/liquid interface [g m-3]. Here, it 

is assumed that no reactions are taking place in the mass transfer boundary layer. 
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For particulate compounds the only interaction mechanism between the bulk and the granules is 

detachment, and the flux of particulates out of the granules, into the bulk can be expressed as: 

bio,Xi D i,Lj u X      (3.18) 

where Xi,L is the particulate concentration at the biofilm/liquid interface. 

 

3.2.6 Model summary 

From the above, it can be concluded that the model is a system of equations consisting of 

several first and second order partial differential equations (PDEs) along with multiple 

constitutive algebraic equations (AEs). A summary of the equation system and the number of 

equations in it can be seen in Table 3.1 below. 

Table 3.1 Overview of the model structure through system of equation analysis. 

Equation Type Eq. number Number 

2. order PDE 3.8 N1a 

1. order PDE 3.10 N2b 

ODE 3.12, 3.14, 3.15 1 + N1 + N2 + 1 

AE 3.11, 3.13, 3.16, 
3.17, 3.18 1 +1 + N1 + N2 + N1 + N2 

Total  4*N1 + 4*N2 + 4 
 a) N1 = # soluble compounds, b) N2 = # particulate compounds 

 

3.2.7 Numerical solutions 
The PDEs can be solved by the method of lines, i.e. discretization of one of the independent 

variables (z or t). In this case discretization of the space (z – the radial distance) was chosen, and 

numerical approximations of the space derivatives, in order to obtain a system of ordinary 

differential equations (ODEs), were derived. It has been shown that the number of discretized 

layers or nodes can have a significant impact on the model result (Boltz et al., 2011), and the 

number should therefore be chosen with care.  

The nodes in each of the discretized layers are indicated by subscript k and have an equal 

distance of ∆z in between them (Figure 3.4). The illustration is only containing three control 

volumes, but a finer grid with more nodes is usually used in order to obtain a higher precision. If 
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more nodes are employed, the equations describing the inner nodes (all nodes, but the two 

boundaries) will all be the same as the equations applicable for control volume 2 in Figure 3.4. 

 

z

0 L∆z ∆z ∆zDistance (z)

Discretized points (k) 1 2 3

Control volume 1 32

Control volume
surface area A(1) A(3)A(2)

Center of granule

z_1 z_3z_2

 
Figure 3.4 Illustration of discretization scheme. 

 

The distance between the nodes is a function of the granule size and the number of nodes (n): 

 
Lz
n

     (3.19) 

 

The second order space derivative of the concentration of soluble compounds can numerically 

be approximated by the finite central difference method in spherical coordinates: 

i,k k 1/2 k 1/22
k2 2 2

k k k

S g g1 1 1z g
z z z z z z z   (3.20) 

where 

 i,k 1/2 i,k 1 i,k2 2
k 1/2 k 1/2

k 1/2

S S S
g z z

z z
  (3.21) 

 i,k 1/2 i,k i,k 12 2
k 1/2 k 1/2

k 1/2

S S S
g z z

z z
  (3.22) 
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The approximation of the mass balance for the solute concentrations (eq. 3.8) thus becomes: 

2 2i,k 1 i,k i,k i,k 1
k 1/2 k 1/2

i,k
i,bio i,k2

k

S S S S
z z

dS z z
D r

dt z z  (3.23)
 

 

For the particulate compounds, approximations of both the velocity and of the derivative of the 

velocity are needed. The derivative has been approximated with the following expression: 

 
partn

F,k i,kF

i 1k

u rdu
dz z

    (3.24) 

 

The integral in the equation describing the growth velocity (eq. 3.11) is approximated with the 

trapezoidal rule, so that the approximation of the velocity becomes: 

 

F,k F,k 1
k k 1k

F,k
1k

u uA Az z1u z
A 2

  (3.25) 

where Ak is the area of a sphere at the point k with the distance zk to the center of the granule: 

 2
k kA 4 z      (3.26) 

 

For the mass balance of the particulate compounds (eq. 3.10), the above expressions are used 

along with a backward difference approximation of the first order concentration space 

derivative. The approximated mass balance therefore becomes: 

i,k i,k i,k 1 F,k
F,k i,k i,k

dX X X u
u X r

dt z z    (3.27) 

 

For the particulate compounds the mass balance of the first node is approximated with a 

forward difference instead of a backwards difference as in all other nodes. The mass balance of 

the first node therefore becomes: 

 i,1 i,2 i,1 F,1
F,1 i,1 i,1

dX X X u
u X r

dt z z
   (3.28) 
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Boundary conditions 

In order to solve the equation system containing second order derivatives obtained above, 

appropriate boundary conditions at the center and at the biofilm/liquid interface need to be 

specified. At the center of the granule no change in concentration in space can be assumed, due 

to the symmetry of the granules. The boundary condition therefore becomes: 

idS 0
dz

 z 0     (3.29) 

 

This gives the following mass balance for the soluble compounds in the first node: 

 

2 i,2 i,1
1 1/2

i,1
i,bio i,12

1

S S
z

dS z
D r

dt z z
   (3.30) 

 

At the biofilm/liquid interface the continuity of flux applies, which means that the flux of mass to 

or from the internal part of the granules is equal to the flux of mass coming from the bulk. Here 

it is assumed that no microbial metabolism is taking place in the mass transfer boundary layer. 

 i,L
i,L i,bulk bio,i i i,bulk i,L

dS
j j D k S S

dz
   (3.31) 

 

From this assumption, the concentration at the interface can be deduced: 

 

i,L i,L 1
i,bio i i,bulk i,L

i,bio
i i,bulk i,L 1

i,L
i,bio i

S S
D k S S

z

DkS Sz
S

D z k

   (3.32) 

 

Given these boundary conditions, the reformulation of the PDE system of the process as a 

system of ODEs is now complete and ready for solution.  

 

59



Chapter 3 – Mathematical model 

48 
 

3.2.8 Model solving 
The model equations derived above were implemented and solved with respect to time in the 

MATLAB-Simulink® R2009b software (The MathWorks, Natick, MA). The “ode15s” solver routine 

was used, which is a numerical multi-step variable order solver based on numerical 

differentiation formulas (NDFs). 

In order to solve the ODE system dynamically, initial conditions for all dependent state variables 

were defined. 

 

3.3 Model applied to CANR  
Once the general framework for constructing a model describing a granule based bioreactor is in 

place, it can be applied to more specific cases. In this project investigation of autotrophic 

nitrogen removal was thoroughly investigated.  

In the following, the compounds of interest and the processes affecting them are presented and 

described in detail. The model presented contains “default” parameters collected from relevant 

literature and from operation for initial analysis. Subsequent analysis of these parameters is 

presented elsewhere in the dissertation (see e.g. chapter 6).  

 

3.3.1 Model states and variables 
The soluble compounds included in the modeling were the nitrogen species; total ammonium 

nitrogen (STAN = SNH4 + SNH3), total nitrite nitrogen (STNN = SNO2 + SHNO2), nitrate (SNO3), free nitrogen 

gas (SN2) along with oxygen (SO2) and soluble readily biodegradable organic material (SS) (Table 

3.2). The particulate compounds were the autotrophic microbial groups; ammonium oxidizing 

bacteria (XAOB), nitrite oxidizing bacteria (XNOB), anaerobic ammonium oxidizing bacteria (XAnAOB). 

Heterotrophic bacteria (XHB) were also included since they can utilize decay products originating 

from other microbial groups as substrate. So even if organic material is not supplied to the 

system, there will always be some organic carbon originating from biological activity, which 

heterotrophic organisms can thrive on. Among the particulate compounds are also inert material 

(XI) and particulate organic material (XS). 
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Table 3.2 Overview of independent variables and dependent or state variables included in the model. 

Independent variables Symbol Unit 

Space z m 

Time t d 

Dependent variables Symbol Unit 

Soluble compounds   
Total ammonium nitrogen STAN g N m-3 

Total nitrite nitrogen STNN g N m-3 

Nitrate SNO3 g N m-3 

Nitrogen gas SN2 g N m-3 

Oxygen SO2 g COD m-3 

Readily biodegradable organic carbon SS g COD m-3 

Particulate compounds   

Aerobic ammonium oxidizing bacteria XAOB g COD m-3 

Nitrite oxidizing bacteria XNOB g COD m-3 

Anaerobic ammonium oxidizing bacteria XAnAOB g COD m-3 

Heterotrophic bacteria XHB g COD m-3 

Inert material XI g COD m-3 

Particulate organic material XS g COD m-3 

Granule size L m 

Volume V m3 

 

3.3.2 Model processes 
In this case, the processes considered in the model are biological processes plus hydrolysis and 

aeration. Aeration is modeled as a mass transfer process from gas to liquid at the reactor scale. 

All process rates and stoichiometric coefficients are summarized in Table 3.3 and 3.4.  

As biological processes, growth and decay of all the microbial groups were considered. Biomass 

decay was modeled according to the death-regeneration concept as in the activated sludge 

model no. 1 (ASM1), which means that the decay rate is a first order expression with respect to 

the biomass concentration (Table 3.4).  

The unionized forms of the compounds were considered to be the true substrates for AOB, NOB 

(Anthonisen et al., 1976) and AnAOB (van Hulle et al., 2007; Tora et al., 2010). Thus, AOB used 

ammonia (NH3) and were product inhibited by free nitrous acid (HNO2). The AOB growth process 

rate therefore includes Monod expressions of ammonium and oxygen and an inhibition term for 
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nitrous acid (Table 3.4). NOB grew on nitrous acid, and Monod expressions of oxygen and 

nitrous acid are therefore included in the process rate. AnAOB utilized ammonia and nitrous acid 

and were inhibited by oxygen, which is therefore reflected in the AnAOB growth process rate 

(Table 3.4). For the HB, three growth terms, using different electron acceptors but always with SS 

as electron donor, were considered. All three growth related process rates therefore include 

Monod expressions of readily degradable organic carbon and TAN, since these compounds are 

assimilated for new biomass cell production (Table 3.3). The first growth term is based on 

oxygen as electron acceptor, the second on TNN as electron acceptor, and the third HB growth 

term is based on nitrate as electron acceptor. The latter two processes assume that the HB 

perform complete denitrification and N2 is thus the product of both processes. Both 

denitrification processes are inhibited by oxygen, which is expressed in the process rate through 

a Monod inhibition term including the oxygen concentration and through an anoxic correction 

factor also termed anoxic inactivation constant (ηHB) (Henze et al., 1987). 

The hydrolysis process converts particulate organic material into soluble organic matter and TAN 

through a first order rate process (Table 3.4). 

Aeration is modeled as a gas to liquid transfer process with the concentration gradient being the 

driving force, which is multiplied by the volumetric mass transfer coefficient (kLa) (Table 3.4). 

For simplicity and as a starting point, the pH is considered constant in space and in time when 

the model is solved dynamically. In chapter 5, the effect of including pH gradients in the granules 

is tackled. 

The constant pH value considered was 7.5. The acid-base reactions are very fast and the 

equilibria are therefore considered immediate. The ammonia concentration is thus calculated as: 

 
3 NH4

TAN
NH pH pK

CC
1 10

    (3.33) 

 

The nitrous acid concentration was calculated in a similar fashion: 

 
2 HNO2

TNN
HNO pH pK

CC
1 10

     (3.34) 

 

All kinetic parameters, their default values, and the appropriate references can be seen in Table 

3.5. Temperature dependency was considered for maximum growth rates and for decay rates. 
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Stoichiometric parameters are shown in Table 3.6, while biofilm characteristics and mass 

transfer parameters are highlighted in Table 3.7.  
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Table 3.4 Process rate expressions for the 12 processes included in the model. 

Process k  Process Rate ρ 

1. AOB growth I,HNO2,AOBNH3 O2
max,AOB AOB

NH3,AOB NH3 O2,AOB O2 I,HNO2,AOB HNO2

KS SX
K S K S K S

 

2. NOB growth HNO2 O2
max,NOB NOB

HNO2,NOB HNO2 O2,NOB O2

S SX
K S K S

 

3. AnAOB growth I,O2,AnAOBNH3 HNO2
max,AnAOB AnAOB

NH3,AnAOB NH3 HNO2,AnAOB HNO2 I,O2,AnAOB O2

KS SX
K S K S K S

 

4. AOB decay AOB AOBb X  

5. NOB decay NOB NOBb X  

6. AnAOB decay AnAOB AnAOBb X  

7. HB growth 1 O2 S TAN
max,HB HB

O2,HB O2 S,HB S TAN TAN,HB

S S SX
K S K S S K  

8. HB growth 2 I,O2,HBS TNN TAN
max,HB HB HB

S,HB S TNN,HB TNN I,O2,HB O2 TAN TAN,HB

KS S SX
K S K S K S S K  

9. HB growth 3 I,O2,HBS NO3 TAN
max,HB HB HB

S,HB S NO3,HB NO3 I,O2,HB O2 TAN TAN,HB

KS S SX
K S K S K S S K  

10. HB decay HB HBb X  

11. Hydrolysis S
H

X

Xk
K  

12. Aeration L O2_sat O2_bulkk a(S S )  
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Parameter values 

Table 3.5 Kinetics parameter and their default values. 

Parameter Symbol Value Unit Reference 

AOB 

Max growth rate μmax,AOB 0.8e-0.094(293-T) day-1 (Hao et al., 2002) 

Oxygen half saturation constant KO2,AOB 0.3 g O2 m-3 (Wiesmann, 1994) 

Ammonia half saturation constant KNH3,AOB 0.75 g N m-3 (Van Hulle, 2005) 

Nitrous acid inhibition constant KI,HNO2,AOB 2.04 g N m-3 (Van Hulle, 2005) 

Decay rate bAOB 0.05e-0.094(293-T) day-1 (Hao et al., 2002) 

NOB 

Max growth rate μmax,NOB 0.79e-0.061(293-T) day-1 (Hao et al., 2002) 

Oxygen half saturation constant KO2,NOB 1.1 g O2 m-3 (Wiesmann, 1994) 

Nitrous acid half saturation constant KHNO2,NOB 3.09*10-4 g N m-3 (Wiesmann, 1994) 

Decay rate bNOB 0.033e-0.061(293-T) day-1 (Hao et al., 2002) 

AnAOB 

Max growth rate μmax,AnAOB 0.028e-0.096(293-T) day-1 (Hao et al., 2002) 

Ammonia half saturation constant KNH3,AnAOB* 5.33*10-3 g N m-3 (Van Hulle, 2004) 

Nitrous acid half saturation constant KHNO2,AnAOB* 1.69*10-5 g N m-3 (Van Hulle, 2005) 

Oxygen inhibition constant KO2,AnAOB 0.01 g O2 m-3 (Strous et al., 1999) 

Decay rate bAnAOB 0.001e-0.096(293-T) day-1 (Hao et al., 2002) 

HB     

Max growth rate μmax,HB 6e-0.069(293-T) day-1 (Henze et al., 2000) (ASM1) 

Oxygen half saturation/inhibition constant KO2,HB 0.20 g O2 m-3 (Henze et al., 2000) (ASM1) 

Organic substrate half saturation constant KS,HB 20 g COD m-3 (Henze et al., 2000) (ASM1) 

Nitrite half saturation constant KNO2,HB 0.5 g N m-3 (Henze et al., 2000) (ASM1) 

Nitrate half saturation constant KNO3,HB 0.5 g N m-3 (Henze et al., 2000) (ASM1) 

Ammonium half saturation constant KTAN,HB 0.01 g N m-3 (Henze et al., 2000) (ASM3) 

Anoxic correction factor ηHB 0.8 - (Henze et al., 2000) (ASM1) 

Decay rate bHB 0.62e-0.113(293-T) day-1 (Henze et al., 2000) (ASM1) 

* Have been calculated at pH=7.5 
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Table 3.6 Stoichiometric parameters and their default values. 

Parameter Symbol Value Unit Reference 

AOB growth yield  YAOB 0.21 (0.15) g COD (g N)-1 (g VSS (g N)-1) (Wiesmann, 1994) 

NOB growth yield YNOB 0.059 (0.042) g COD (g N)-1 (g VSS (g N)-1) (Wiesmann, 1994) 

AnAOB growth yield YAnAOB 0.159 (0.07) g COD (g N)-1 (mol C (mol N)-1) (Strous et al., 1998) 

HB growth yield YHB 0.67 g COD (g COD)-1 (Henze et al., 2000) (ASM1) 

Inert content in biomass fi 0.08 g COD (g COD)-1 (Henze et al., 2000) (ASM1) 

Nitrogen content in inert iNXI 0.06 g N (g COD)-1 (Henze et al., 2000) (ASM1) 

Nitrogen content in biomass iNXB 0.086 g N (g COD)-1 (Henze et al., 2000) (ASM1) 

 

 

Table 3.7 Biofilm and mass transfer parameters and their default values. 

Parameter Symbol Value Unit Reference 

Biomass density ρ 50000 g COD m-3 (Koch et al., 2000) 

Biofilm porosity θ 0.75 - (Koch et al., 2000) 

Max granule radius zmax 0.001 m (Koch et al., 2000; Vlaeminck et 
al., 2009) 

Boundary layer thickness LB 10-5-10-4 m (Nicolella et al., 1998) 

Hydrolysis rate kH 3e-0.110(293-T) day-1 (Henze et al., 2000) (ASM1) 

Hydrolysis half saturation constant KX 0.3e-0.110(293-T) g COD (g COD)-1 (Henze et al., 2000) (ASM1) 

Diffusivity of Ammonium in water DNH4 1.7e-4 m2 day-1 (Perry and Green, 1997) 

Diffusivity of Nitrite in water DNO2 2.6e-4 m2 day-1 (Perry and Green, 1997) 

Diffusivity of Nitrate in water DNO3 2.6e-4 m2 day-1 (Perry and Green, 1997) 

Diffusivity of Oxygen in water DO2 2.2e-4 m2 day-1 (Perry and Green, 1997) 

Diffusivity of nitrogen gas in water DN2 1.6e-4 m2 day-1 (Perry and Green, 1997) 

Diffusivity of Bicarbonate in water Dalk 1.7e-4 m2 day-1 (Perry and Green, 1997) 

Diffusivity of organic matter in water DS 1e-4 m2 day-1 (Hao and van Loosdrecht, 2004) 

Ratio biofilm/water diffusivity f 0.75 -  

Nitric acid dissociation constant pKa 3.25 -  

Ammonium dissociation constant pKa 9.25 -  
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3.3.3 Reactor operation – CSTR vs. SBR 
The abovementioned model can be used to simulate both continuous systems and systems of a 

more discrete nature such as fed-batch reactors or SBRs. 

In a CSTR type system, influent and effluent are continuously fed to and leaving the system, and 

the bulk liquid is continuously aerated. The bulk liquid volume will thus be constant and its 

derivative will be equal to zero: 

 reactordV
0

dt
     (3.35) 

The mass balance of the compounds in the bulk liquid can therefore be simplified to: 

 i,bulk in i,in out i,bulk bio,i
i,bulk

reactor

dC Q C Q C j A
r

dt V
   (3.36) 

where Vreactor, Qin, and Qout are constants. 

In the SBR system, the model structure is the same, but some parameters change value from 

one phase to another. An SBR cycle consists of the following phases: Fill, reaction, settling, draw, 

and idle, as outlined in the description of the experimental setup in the previous chapter 2. Qin 

has a certain value during the fill phase and is zero during the other phases. The same applies to 

Qout, which only has a positive value during the draw phase, but is zero during the other phases. 

Finally the aeration, in the form of the value of the mass transfer coefficient (kLa), is only active 

during the reaction phase and kLa has a value of zero during the other phases (see Figure 3.5). 

 
Figure 3.5 Schematic illustration of operational parameters affected by the SBR operation. 
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Another prominent difference between modeling a continuous and an SBR system is that during 

the settling phase of the SBR operation, the free cells suspended in the bulk liquid settle to a 

certain degree. Perfect settling is assumed, and the non-settled fraction is included in the 

effluent by adding a multiplication factor (ϕ) to the bulk liquid particulate concentration in the 

mass balance during the draw phase: 

 i,bulk in i,in out i,bulk bio,i
i,bulk

reactor

dX Q X Q X j A
r

dt V
  (3.37) 

where Xi,in is the influent concentration of the particulate species, which is assumed zero in this 

case, and a value of ϕ=1 represents perfect mixing and ϕ=0 perfect retention. 

The value of the non-settled fraction can be found through solving the linear ODE: 

 i,bulk
0 out out i,bulk

dX
V Q t Q X 1

dt
   (3.38) 

This equation can be analytically solved with an integration factor, and ϕ can be isolated: 

 

i,bulk

0

0

0 out

X (t)
log

X
Vlog

V Q t

    (3.39) 

Assuming that 80% of the mass of the free floating cells is retained, a value of ϕ=0.32 is 

obtained. 

In this project both continuous systems and SBRs were investigated and simulated. A continuous 

system was used as basis for model investigations presented in chapter 4 and 5, and for idea 

generation and initial testing of control strategies (chapter 7), while sequential batch mode was 

used during calibration and validation (chapter 6) and control strategy testing in chapter 8. 

 

3.3.4 Model solution for the CANR system 
Since the number of discretization points can significantly affect the results, different numbers 

of discretization layers were tested, and a number of 100 was found to be sufficient for the 

solution as no significant change in the results was observed when additional discretization 

nodes were included.  
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PART II - Simulation, Scenario, 
and Sensitivity Analyses 

This part presents the results of the simulation studies of the CANR process, which were aimed 

at gaining a better understanding of the mechanisms and interactions affecting the process. In 

chapter 4, the relative importance of microbial kinetics and mass transfer was investigated 

through a global sensitivity analysis study performed under a number of different operation 

scenarios. In chapter 5, the effect of including pH as a variable in the system (instead of 

assuming it constant) was investigated by developing a pH model and an effective solution 

strategy.  
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4 Sensitivity analysis: Influence of mass 
transfer versus microbial kinetics 

 

Summary 

A comprehensive global sensitivity analysis was conducted under a range of operating 

conditions. The relative importance of mass transfer resistance versus kinetic parameters was 

studied and found to depend on the operating regime as follows: When operating under the 

optimal loading ratio of 1.90 (g O2 m-3 d-1)/(g N m-3 d-1), the system was influenced by mass 

transfer (10% impact on nitrogen removal) and performance was limited by AOB activity (75% 

impact on nitrogen removal), while operating above the optimal loading ratio, AnAOB activity 

was limiting (68% impact on nitrogen removal). In that case, the negative effect of oxygen mass 

transfer had an impact of 15% on nitrogen removal. Summarizing such quantitative analyses led 

to formulation of an optimal operation window, which serves as a valuable tool for diagnosis of 

performance problems and identification of optimal solutions in nitritation-anammox 

applications. 
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4.1 Introduction 
A better understanding of which mechanisms and which process steps control and affect the 

microbial community composition and the process performance is essential for future operation 

and optimization of the nitrogen removal process. 

Previous contributions have attempted to identify the key phenomena involved in the operation 

and establishment of microbial communities based on local sensitivity analysis studies (Hao et 

al., 2002a; Terada et al., 2007). In these modeling studies, external mass transfer resistance was 

neglected and only kinetic and biomass related parameters were considered. The relative 

importance of the mass transfer and its interaction with microbial kinetics were therefore not 

examined. It has previously been shown that inclusion of external mass transfer has an impact 

on the parameter identifiability in nitrifying biofilms (Brockmann et al., 2008), and it is therefore 

of interest to investigate the sensitivity towards this mass transfer. To overcome the limitations 

of the local sensitivity analysis and the lack of the external mass transfer resistance of previous 

studies and to expand the boundary of the process analysis, this study use global sensitivity 

analysis with a significantly expanded scope. The global sensitivity analysis, e.g. linear regression 

of Monte Carlo (MC) simulations, has previously been demonstrated as a useful tool to diagnose 

the state of the system, obtain valuable insights, and identify bottlenecks in a process (Sin et al., 

2011). 

The aim of the work presented in this chapter was, therefore, to elucidate which mechanisms 

were the most influential on the process performance of a single-stage complete autotrophic 

nitrogen removing granular sludge reactor. Specific emphasis was put on diagnosing the key step 

in the overall process for a given set of operating conditions. Mass transfer parameters and 

microbial kinetic parameters and their individual impacts on the concentrations of substrates, 

intermediates, products, and bacterial groups were therefore investigated for several scenarios 

considering different influent conditions, different operational strategies and different granule 

sizes. To this end, a model-based methodology that employs global sensitivity analysis 

techniques along with the 1-D multi-scale multi-species granular biofilm model from chapter 3 

was developed and used.  
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4.2 Methods 
Before carrying out the sensitivity analysis, scenarios of interest were first identified, and 

appropriate models were set up. The key steps in the uncertainty and sensitivity analysis were 

defined, which included identifying and characterizing parameter uncertainty, sampling of the 

defined parameter space, and performing Monte Carlo simulations (Sin et al., 2009). The 

sensitivity of the uncertain parameters was then quantified by constructing linear models of 

selected model outputs, and finally the sensitivity analysis results were evaluated by putting 

them into context with the system information of the given scenario. 

 

4.2.1 Step 1: System description 
To formulate realistic settings and scenarios for simulations and sensitivity analysis, the physical 

system in this study was defined considering the lab-scale reactor described in chapter 2 (Table 

4.1) as a reference system. The operating temperature was set to 25°C, the pH was 7.5, and the 

vessel was mixed by a mechanical impeller operated at 80 rpm and by bubble aeration. The 

mixing in this modeling study was considered sufficient enough to assume the bulk liquid to be a 

completely mixed compartment. 

 

Table 4.1 Description of scenarios for sensitivity analysis of the autotrophic nitrogen removal system.  

Operation 
variable  

Scenario 1 – 
Mimicking lab-scale 

reactor - 
TNN limited 

Scenario 2 – Effect 
of increased 
aeration rate 

(double) 

Scenario 3 – Effect 
of smaller granule 

size 

Scenario 4 – 
Effect of higher 

loadings 

N loading  0.2 g L-1 d-1 0.2 g L-1 d-1 0.2 g L-1 d-1 0.65 g L-1 d-1 

HRT  1 d 1 d 1 d 1 d 

kLa  43 d-1 86 d-1 43 d-1 140 d-1 

Granule size 2 mm 2 mm 0.5-2 mm 2 mm 

WWT type Low digester 
effluent strength 

Low digester 
effluent strength 

Low digester 
effluent strength 

High digester 
effluent strength 

 

Scenario formulation for sensitivity analysis 

In scenario 1, an experimentally determined oxygen mass transfer coefficient (kLa) was used (43 

d-1), and the volumetric nitrogen loading (in the form of total ammonium nitrogen, TAN) was 200 
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g N m-3 d-1. The solids concentration was maintained at 3.14 g VSS L-1 in the reactor, which is 

within the range of lab-scale (Vazquez-Padin et al., 2009; Figueroa et al., 2012) and full-scale 

observations (Joss et al., 2009). This solids concentration was used as a reference in the 

simulations and scenarios for the sensitivity analysis. The mass transfer coefficients were 

determined using a semi-empirical correlation for mixed reactors with aeration (Nicolella et al., 

1998). The average thickness of the external mass transfer boundary layer (LB) was estimated to 

be 64 μm, which is also within the range reported in attached growth experiments (Masic et al., 

2010). Three additional scenarios were evaluated (Table 4.1). In scenario 2, the effect of oxygen 

supply was investigated by doubling the mass transfer coefficient. In scenario 3, the effect of 

granule sizes was investigated. Lastly, the effect of high influent loading was investigated in 

scenario 4. In the latter scenario, the oxygen supply was simultaneously increased by increasing 

the kLa to 140 d-1. 

 

4.2.2 Step 2: Model description 
The model of the CANR process operated as a continuous system, described in chapter 3, was 

used as basis for the analysis. 

The steady state concentrations in the biofilm and the bulk liquid were found by simulating the 

system for a sufficiently long time (in this case 5000 days) using the default parameter values 

shown in Table 4.2. These steady state concentrations were used as initial conditions for the 

mass balance equations for each of the scenarios. 
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Table 4.2 Parameters included in the uncertainty analysis and the classification of their uncertainties. 

No. Parameter Default value 
at 20⁰C 

Unit Reference Uncertainty 
class 

1 μmax,AOB 0.80 day-1 Hao et al., 2002b 2 
2 KO2,AOB 0.30 g O2 m-3 Wiesmann, 1994 3 
3 KNH3,AOB 0.04 g N m-3 Wiesmann, 1994 3 
4 KHNO2,AOB 2.04 g N m-3 Van Hulle et al., 2007 3 
5 bAOB 0.05 day-1 Hao et al., 2002b 2 
6 μmax,NOB 0.79 day-1 Hao et al., 2002b 2 
7 KO2,NOB 1.10 g O2 m-3 Wiesmann, 1994 3 
8 KHNO2,NOB 3.09e-4 g N m-3 Wiesmann, 1994 3 
9 bNOB 0.033 day-1 Hao et al., 2002b 2 
10 μmax,AnAOB 0.028 day-1 Hao et al., 2002b 2 
11 KO2,AnAOB 0.01 g O2 m-3 Strous et al., 1999 3 
12 KNH3,AnAOB 1.20e-3 g N m-3 Strous et al., 1998 3 
13 KHNO2,AnAOB 2.81e-6 g N m-3 Strous et al., 1998 3 
14 bAnAOB 0.001 day-1 Hao et al., 2002b 2 
15 μmax,HB 6.00 day-1 Henze et al., 2000(ASM1) 2 
16 KO2,HB 0.20 g O2 m-3 Henze et al., 2000 (ASM1) 3 
17 KS,HB 20.0 g COD m-3 Henze et al., 2000 (ASM1) 3 
18 KTNN,HB 0.50 g N m-3 Henze et al., 2000 (ASM1) 3 
19 KNO3,HB 0.50 g N m-3 Henze et al., 2000 (ASM1) 3 
20 KTAN,HB 0.01 g N m-3 Henze et al., 2000 (ASM3) 3 
21 ηHB 0.80 - Henze et al., 2000 (ASM1) 2 
22 bHB 0.62 day-1 Henze et al., 2000 (ASM1) 1 
23 YAOB 0.21 g COD (g N)-1 Wiesmann, 1994 1 
24 YNOB 0.059 g COD (g N)-1 Wiesmann, 1994 1 
25 YAnAOB 0.159 g COD (g N)-1 Strous et al., 1998 1 
26 YHB 0.67 g COD (g COD)-1 Henze et al., 2000 (ASM1) 1 
27 fi 0.08 g COD (g COD)-1 Henze et al., 2000 (ASM1) 2 
28 iNXI 0.06 g N (g COD)-1 Henze et al., 2000 (ASM1) 2 
29 iNXB 0.086 g N (g COD)-1 Henze et al., 2000 (ASM1) 2 
30 kH 3.00 day-1 Henze et al., 2000 (ASM1) 1 
31 KX 0.30 g COD (g COD)-1 Henze et al., 2000 (ASM1) 1 
32 DNH4 1.70e-4 m2 day-1 Perry and Green, 1997 2 
33 DNO2 2.60e-4 m2 day-1 Perry and Green, 1997 2 
34 DO2 2.20e-4 m2 day-1 Perry and Green, 1997 2 
35 DNO3 2.60e-4 m2 day-1 Perry and Green, 1997 2 
36 DN2 1.60e-4 m2 day-1 Perry and Green, 1997 2 
37 DS 1.00e-4 m2 day-1 Perry and Green, 1997 2 
38 LB 6.40e-5 m Nicolella et al., 1998 3 
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4.2.3 Step 3: Uncertainty analysis 
Based on the approach of Brun et al. (2002) and Sin et al. (2009), the included parameters were 

divided into three uncertainty classes based on available expert knowledge. All included 

parameters were assumed to have a uniform probability distribution, since knowledge about 

their true distributions was scarce. The parameters in class 1 were considered quite well known 

and their corresponding uniform distributions were bounded 5% around the default value. The 

parameters belonging to class 2 had an intermediate level of uncertainty with a uniform 

distribution bounded 25% around the default value. Finally, the parameters in class 3 were 

classified to have the highest uncertainty with 50% variability around the default value.  

Parameters related to the microbial kinetics and related to mass transfer were selected for 

sensitivity analysis, while all others, e.g. influent characteristics, were kept constant at the values 

specified in each scenario. Maximum growth rates, decay rates, half saturation constants, 

inhibition constants plus composition and yield coefficients of the microbial groups were making 

up the first group of parameters. The diffusivities and the thickness of the mass transfer 

boundary layer (MTBL) belonged to the second group of parameters. All together, 38 

parameters were included in the uncertainty analysis (Table 4.2). 

For the three microbial groups AOB, NOB, and AnAOB, the maximum growth rates and the decay 

rates were considered intermediately uncertain (class 2), and the half saturation constants and 

inhibition constants belonged to the most uncertain group of parameters (Hao et al., 2002a). 

Especially the oxygen half saturation constants of the nitrifying bacterial groups have been a 

subject of debate in the literature previously (Hao et al., 2002a; Brockmann and Morgenroth 

2010). The uncertainties of parameters related to the HB were classified as suggested in Sin et al. 

(2009). The yield coefficients of all involved microbial groups were considered rather well-known 

and were placed in the first uncertainty class. The composition of biomass has in many cases 

been estimated, but the variation within the microbial groups (maybe due to diversity of 

species) is still considered significant. iNXB, iNXI, and fi were therefore in class 2. Hydrolysis related 

parameters have been placed in the first class, because their deviations have been estimated to 

be low (Insel et al., 2003). The diffusivities were classified as intermediately unknown, because 

they were experimentally quite well established in aqueous solution. However, the granule 

matrix composition was an unknown factor affecting the effective diffusivity within the granules, 

and their values were thus considered intermediately unknown. Finally, the MTBL thickness has 

been given the highest uncertainty, because it was difficult to estimate and measure its true 
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value due to its high sensitivity to the hydrodynamic conditions around the granule (Masic et al., 

2010; Boltz et al., 2011).  

The above defined parameter space was sampled by the Latin Hypercube Sampling (LHS) 

method (Iman and Conover, 1982). The parameters were considered to be uncorrelated due to 

unavailability of the information on the correlation matrix. As the sampling number from the 

joint probability distributions of the uncertain parameter space, 500 samples were taken and 

used for Monte Carlo simulations of the system for a period of 5000 days, from which the steady 

state model outputs were obtained. Similar time periods needed to reach steady state in such 

systems have been reported elsewhere (Volcke et al., 2010).  

The model outputs formed the basis of the subsequent sensitivity analysis. 

 

4.2.4 Step 4: Linear regression of Monte Carlo simulations 
The sensitivity was found by performing linear regression on each of the model outputs. A first 

order linear multivariate model was fitted to the model outputs (yk), which was relating it to the 

parameter values (θi) (Saltelli et al., 2008): 

, ,reg k k k i i
i

y a b     (4.1)  

where ak and bk,i are linear regression coefficients. The standardized linear regression 

coefficients (SRCs), βk,i, were obtained by making eq. 4.1 non-dimensional by mean-centered 

sigma-scaling, where μyk and i are the mean values and σyk and i are the standard deviations 

of the model outputs and input parameters, respectively: 

,
,

reg k yk i i
k i

iyk i

y
   (4.2)  

 

The linear coefficient (bk,i) is related to the standardized coefficient in the following way: 

, ,
i

k i k i
yk

b      (4.3)  
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 If the model was linearly additive, then 2 1i
i

 for each model output, and 2
i would 

represent the relative variance contribution of parameter i and thus be giving a measure of the 

importance of the model output. In this study the model was assumed linear if the squared 

coefficient of correlation (R2) between the Monte Carlo simulation output (yk) and the regressed 

linear output (yreg,k) was above 0.7. A parameter was considered sensitive or significant when

0.1i , meaning that the parameter approximately contributed with at least 1% of the model 

output variance (Sin et al., 2011). 

 

4.3 Results and discussion 
Ten selected outputs were evaluated after reaching steady state for every set of parameter 

values. To obtain more details on how the entire process was affected, the bulk concentrations 

of TAN, TNN, nitrate, and DO on top of N2 (which is equal to the nitrogen removal and represents 

the process performance) were selected for evaluation. The last five model outputs evaluated 

were the mass fractions of the particulate species within the granules, namely the AOB, AnAOB, 

NOB, HB, and the inert material, which gave information about the microbial community 

composition. 

 

4.3.1 Steady state bulk concentrations and microbial composition 
The steady state concentrations of soluble compounds and the granule composition, found by 

simulations using the default parameter values and operation as specified in scenario 1, can be 

seen in Figure 4.1A. Oxygen and TNN were depleted within the first few hundred μm, while TAN 

penetrated the entire granule. HB were only present in low concentrations close to the 

biofilm/bulk liquid interface, and NOB were present in negligible concentrations. 
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Figure 4.1 Soluble compounds and biomass concentrations inside the granule obtained from simulations 
using the default parameter values. The dashed vertical line indicates the position of the biofilm/liquid 

interface. A: scenario 1, B: scenario 2, and C: scenario 4. 
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Significance of microbial conversion kinetics vs. mass transfer parameters on bulk 

concentrations and process performance in scenario 1 

All model outputs, except for the NOB mass fraction, could be sufficiently linearized to obtain 

the SRCs. The individual SRCs for each parameter for each scenario can be found in appendix A2. 

In order to investigate the influence of the microbial kinetics versus mass transfer, all the 

parameters were consolidated into these two groups. In Table 4.3 the sum of the squared SRCs 

of these groups are shown.  

Overall, microbial kinetics explained most of the variance in the model outputs. However, for N2, 

TNN, DO, and for the AOB mass fraction, 10-20% of the variance could be assigned to mass 

transfer related parameters (Table 4.3). If oxygen and TNN were more available, e.g. by reducing 

mass transfer resistance by decreasing LB, it would have a positive impact on the AOB and 

AnAOB activity, respectively. The TNN availability was limiting the AnAOB activity and thus the 

overall nitrogen removal process (the N2 concentration in the bulk). Supporting this model-based 

finding, the limitation of TNN availability to the AnAOB was also identified as the determining 

factor in recent experimental studies in the marine environment (Rush et al., 2012) and found to 

be the limiting factor for the performance in a rotating biological contactor by Koch et al. (2000). 

Table 4.3 Grouping and summary of the standardized linear regression coefficients given as sum of the 
squared SRCs within each group. 

Output → TAN TNN Nitrate N2 gas DO AOB AnAOB HB Inerts 

groupi n
2
k,i

1

into the following groups 

Mass transfer 0.08 0.15 0.00 0.12 0.17 0.18 0.02 0.02 0.02 

Microbial kinetics 1.07 0.88 1.00 1.02 0.91 0.82 1.31 0.99 1.31 

AOB* 0.98 0.29 0.29 0.86 0.91 0.80 0.50 0.40 0.54 

AnAOB** 0.04 0.58 0.48 0.15 0.00 0.01 0.80 0.14 0.77 

NOB*** 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

HB**** 0.02 0.00 0.22 0.01 0.00 0.01 0.00 0.43 0.00 

hydrolysis and composition***** 0.02 0.00 0.01 0.00 0.00 0.00 0.01 0.02 0.01 

* μmax,AOB, KO2,AOB, KNH3,AOB, KHNO2,AOB, bAOB, YAOB 

** μmax,AnAOB, KO2,AnAOB, KNH3,AnAOB, KHNO2,AnAOB, bAnAOB, YAnAOB 

*** μmax,NOB, KO2,NOB, KNO2,NOB, bNOB, YNOB 

**** μmax,HB, KO2,HB, KTAN,HB, KTNN,HB, KNO3,HB, KS,HB, bHB, YHB, ηHB 

***** kH, KX, iNXB, iNXI, fi 
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Significance of microbial conversion kinetics vs. mass transfer parameters on 

microbial interactions in scenario 1 

In order to elucidate the mechanisms affecting the microbial composition and process 

performance, the kinetic parameters were further divided according to the groups of 

microorganisms they were related to. From this analysis, the microbial interactions could be 

inferred. The variance of the AOB mass fraction was predominantly governed by variance of 

their own kinetic parameters (see Table 4.3), which entails them not being significantly affected 

by substrate competition with other organisms under these operational conditions. For the 

AnAOB mass fraction, a significant amount of the variance could be assigned to the AOB 

parameters (see Table 4.3), because AnAOB were dependent on AOB for production of substrate 

(TNN) as electron acceptor and removal of the inhibiting oxygen. The variance of HB mainly 

(43%) originated from their own kinetic parameters, but a large part (40%) could be attributed to 

the AOB kinetics as well, and a smaller amount (14%) to the AnAOB kinetic parameters. This 

shows that the HB mainly utilized decay products originating from AOB. The variance in the inert 

mass fraction was almost solely due to AOB and AnAOB. 

Overall, it can be concluded that AOB activity and TNN availability for AnAOB were the main 

limiting factors for the nitrogen removal in oxygen limited systems. This is furthermore 

supported by the N2 mainly being affected by AOB kinetics (see Figure 4.2). The linear model 

obtained from the linear regression of the Monte Carlo simulations is valid for the given 

operating point defined in scenario 1 and provides an approximation of the steady state 

nitrogen removal, in the form of nitrogen gas concentration in the bulk liquid, as a function of 

parameters, which had an impact of at least 5% (see eq. 4.4). The unit of the number in front of 

each parameter value has the unit of g N2-N m-3 in the bulk per unit of the given parameter. 

From this it can be deduced, that as AOB activity increased (μmax,AOB increased or KO2,AOB 

decreased) the nitrogen removal simultaneously increased. Also noteworthy is that as the 

external mass transfer resistance increased (increased LB), the performance decreased.  

3
2 max,AOB O2,AOB AnAOB BN 4.79 13.73 K 132.5 Y 27554 L 180.5 g N/m    (4.4) 
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Figure 4.2 Result of sensitivity analyses for the bulk concentration of N2, which represents the process 

performance. The slices are given as the sum of the squared SRCs within the given group divided by the 
sum of all the squared SRCs. The output could be sufficiently linearized for all scenarios except for 

scenario 4. 

 

4.3.2 Effect of oxygen load on bulk concentrations and microbial 

composition 
In scenario 2, the volumetric mass transfer coefficient for oxygen, kLa, was doubled, which 

entailed an increased oxygen loading to the system. This resulted in an increase in the bulk DO 

concentration to 0.5-1.3 g O2 m-3 (in all Monte Carlo simulations), as opposed to 0.1-0.4 g O2 m-3 

in scenario 1. Even at double kLa, the oxygen was depleted within the granule. The higher oxygen 

supply caused the system to no longer be TNN limited (see the left hand side of Figure 4.1B), and 

NOB could compete for space with the other microbial groups in the granules. Even though 

AnAOB had a higher affinity for TNN than NOB, competition between the species was possible 

since NOB could withstand a higher oxygen concentration. As a consequence they could occupy 

a region close to the source of TNN in the granules (see Figure 4.1B). This is in line with the 

findings by Hao et al. (2002a), who found that AnAOB win the competition for TNN against NOB, 

when KO2,NOB/ KO2,AOB > 0.2 and KO2,NOB/ KO2,AnAOB > 3. This is, however, only valid under sufficiently 

low oxygen supply conditions, as can be observed from the results obtained here. 
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The sensitivity analysis results (see Appendix A2) showed that the TAN and TNN bulk 

concentrations were mainly affected by the microbial kinetics and no longer by mass transfer 

related parameters. While this result made sense for TNN, it was a bit surprising for TAN. The 

bulk TNN concentration was no longer affected by the producer’s kinetics (AOB), but by its 

consumers’ kinetics (NOB and AnAOB), which underlined, that the TNN production by AOB was 

no longer a key step for the reactor performance. AOB were slightly dependent on AnAOB 

kinetics, in contrast with scenario 1. Along with the TAN concentration being affected by AnAOB 

kinetics, this indicates that the TAN substrate competition between AOB and AnAOB was an 

important mechanism influencing the overall process. 

The performance, represented by the N2 concentration, was mainly (68%) affected by AnAOB 

kinetics (see Figure 4.2), especially by KO2,AnAOB. This shows that even at very low bulk DO 

concentrations, AnAOB activity inhibition by oxygen played an important role in the overall 

nitrogen removal performance. This can also be seen in the linear model, which contains 5 

parameters that each impacted the performance at least 5% (eq. 4.5). The linear coefficients 

indicate that an increase in either the AnAOB maximum growth rate or oxygen inhibition 

constant increased the nitrogen removal. On the contrary, increased mass transfer, indicated by 

the coefficients of oxygen diffusivity and the external boundary layer thickness, led to decreased 

nitrogen removal, hence resulting in a negative effect on the performance as expected from 

process engineering experiences. The effects of the important parameters are quantified in a 

simple model:  

2 max,AnAOB O2,AnAOB B

3
O2 O2,NOB

N 376.9 1772 K 112360 L

54836 D 5.59 K 130.5 gN/m
  (4.5) 

 

4.3.3 Effect of granule size on bulk concentrations and microbial 

composition 
In scenario 3, the effects of four different granule sizes on the microbial composition and bulk 

concentrations were investigated (0.5, 1, 1.5 and 2 mm diameter). These relatively small granule 

sizes have been observed in several experimental studies (Vlaeminck et al., 2010; Figueroa et al., 

2012), including our own experimental observations, which showed even smaller sizes, with the 

volumetric average ranging between 0.1 and 0.25 mm in diameter. Slightly larger granule sizes 

have also been observed, although in a system where higher solids concentrations were 
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observed as well (Vazquez-Padin et al., 2009). The total solids concentration was kept constant 

in the different simulation scenarios by increasing the number of granules with decreasing 

granule size, while assuming a constant granule density for all the granule sizes. This means that 

external mass transfer resistance will decrease with increasing specific surface area of the 

granules (i.e. smaller granules, higher mass transfer rate). 

In line with this, the AOB mass fraction slightly increased while the bulk DO concentration 

slightly decreased with decreasing size (Table 4.4 and Figure 4.3). The granule sizes investigated 

showed quite similar performance results, with the overall process performance slightly 

increasing with decreasing granule size (Table 4.4). This is in line with the results of Volcke et al. 

(2010). However, similar to their results, this is expected only to happen when operating under 

conditions where the performance is limited by AOB activity (as in scenario 1), because the 

aerobic volume is increased in smaller granules, and not by AnAOB activity, for which larger 

granules are expected to perform better.  

The result of the sensitivity analysis was almost identical to scenario 1 (Figure 4.2), which entails 

that the mass transfer was still important for AOB, TNN, and N2 at smaller granule sizes, even 

though the mass transfer resistance was lowered as the specific surface area increased. The 

inhibitory effect of oxygen on AnAOB activity is speculated to be the reason, which is also 

reflected in the changes in the biomass composition; the smaller granules consist of higher 

amounts of AnAOB (Table 4.4), but with a lower activity due to oxygen inhibition. In line with 

this finding, Vlaeminck et al. (2010) showed in batch tests conducted with granules belonging to 

the smallest size fraction that the specific rate of ammonium conversion by AnAOB was lower 

than in larger granules. However, they also found lower abundance of AnAOB in smaller granules 

than in bigger ones. This observation could be due to the particular operation history of their 

OLAND reactor that affected the granule composition and physiology of the biomass (e.g. the 

performance of the OLAND reactor is a combination of the performance of the different sizes of 

granules). To resolve this observation, more experimental investigations on different systems 

are needed. It could thus be deduced that there was no simple relationship between biomass 

composition and process performance, which was also shown by Lackner et al. (2008) in a 

modeling study of membrane aerated biofilm reactors.  

Since the result of the sensitivity analysis was similar to the observations made in scenario 1, the 

key step in the overall removal remained the AOB activity and TNN availability for AnAOB. 
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Figure 4.3 Biomass distribution in granules at different granule sizes. (A) rgran = 1 mm, (B) rgran = 0.75 mm, 

(C) rgran = 0.5 mm, and (D) rgran = 0.25 mm. 

 

It can be argued that systems containing the bigger granules (2 mm in diameter) were containing 

excess solids and the specific nitrogen removal rate (measured as g Nremoved g VSS-1 d-1) could 

therefore be increased. The same was found by Ni et al. (2009), who found that anammox 

performing granules above 1.3 mm in diameter did not perform better, but showed a lower 

specific nitrogen removal rate. 

An interesting observation is that as the N2 production increased with decreasing size, the bulk 

nitrate concentration decreased simultaneously (Table 4.4). This may be attributed to HB 

activity, which indicated that HB, even though low in numbers, had an impact on the 

performance. As in scenario 1, HB grew on decay products originating from AOB, and when they 

were present in higher concentration (as is the case with smaller granules with less oxygen 

limitation), the HB had better conditions to grow. Thus, HB in low concentrations contributed to 

a slightly better nitrogen removal through a) anoxic heterotrophic activity (denitrification) with 

N2 production and nitrate removal and b) TAN assimilation for growth of HB. 
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Table 4.4 Effect of granule size on bulk concentrations of soluble compounds and microbial composition of 
the granules. 

Granule size Bulk concentrations Mass fractions 
Diameter Radius TAN TNN DO Nitrate N2 AOB  AnAOB NOB HB Inert 

mm mm gN m-3 gN m-3 gO2 m
-3 gN m-3 gN m-3 % % % % % 

2 1 15.9 0.332 0.222 11.2 170.4 3.16 56.8 0 0.34 39.6 
1.5 0.75 15.7 0.208 0.207 11.0 171.0 3.61 61.9 0 0.41 34.0 
1 0.5 15.3 0.116 0.179 10.6 172.0 4.28 69.6 0 0.55 25.5 

0.5 0.25 14.5 0.050 0.124 9.55 174.2 5.38 81.2 0 0.77 12.6 

 

4.3.4 Effect of high N loading on bulk concentrations and microbial 

composition 
The capability of the simulated system to handle high loads was investigated in scenario 4. In 

this simulation, the TAN load (i.e. the influent TAN concentration) was increased with a 

corresponding increase in oxygen supply rate (through increase in kLa), while keeping the 

granule size and number (and thus the total biomass concentration) the same as in scenario 1 

(see Table 4.1). In Figure 4.1C it can be seen that the microbial composition of the granule was 

dominated by AnAOB in the internal part of the structure, and less than 10% of the mass was 

made up of inert material.  

Only bulk DO concentration and AOB mass fraction, among all of the abovementioned model 

outputs, could be sufficiently linearized (appendix A2). Nevertheless, the results of the sensitivity 

analysis on the overall performance (N2 concentration) were evaluated as well (Figure 4.2), even 

though conclusions should be drawn with care. The sensitivity analysis indicated that, as in 

scenario 1, the bulk DO and the AOB mass fraction were affected by the mass transfer 

parameters (MTBL thickness and oxygen diffusivity), while the N2 no longer was affected by 

these (see Figure 4.2). Hence, the system was limited by its biomass inventory (mass of solids), 

which would have to be increased in order to reach a higher treatment efficiency. This was also 

evident from unconverted TAN and TNN being present throughout the depth of the granules in 

relatively high concentrations (see Figure 4.1C). When the system was operated in this regime, 

the nitrogen removal was therefore limited almost solely by microbial kinetics and negligibly 

affected by mass transfer. 
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4.3.5 Summarizing insights: Impact of operational conditions on N 

removal rates  
To sum up the findings from all the abovementioned scenarios, the process performance as a 

function of the nitrogen and oxygen loading was investigated by simulating 10 TAN loads ranging 

from 100 to 1000 g N m-3 d-1 combined with 10 kLa values, ranging from 25 to 250 d-1, resulting in 

100 different operational conditions. The system was simulated to steady state with these 

operational conditions, and the resulting volumetric nitrogen removal rates (g N m-3 d-1) and 

removal efficiencies are shown in Figure 4.4. The graphs presented serve as a two dimensional 

operation window. 

 
Figure 4.4 Process performance as N removal rate (left) and N removal efficiency (right) as a function of 

the operational conditions (oxygen and N load). The locations of the four operational scenarios are shown 
in the left plot. 

 

The observed optimal loading ratio was slightly higher than the theoretical ratio of the 

stoichiometry of nitrogen and oxygen substrates. The theoretical stoichiometry yields a ratio of 

1.83 g O2 (g N)-1, whereas the observed optimal loading ratio was here found to be 1.90 (g O2 m-3 

d-1)/(g N m-3 d-1), as can be seen from Figure 4.5. This is higher than the values reported for 

conventional flat biofilm and membrane aerated biofilm systems (Terada et al., 2007). In the 

study of Terada et al. (2007), the optimal surface loading ratio was found to be 1.5-1.6 (g O2 m-2 

d-1)/(g N m-2 d-1), which was below the theoretical value. However, the external mass transfer 

resistance was neglected in that study, which under certain operational conditions plays an 

important role. The different results could be caused by the presence of HB, or because the 
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mass transfer resistance affected the value of the optimal loading ratio significantly, and 

neglecting either would therefore lead to a suboptimal set point of a potential controller.  

The significance of this finding is that optimal performance depends on the optimal ratio of the 

oxygen to nitrogen loading to the system, and not on a specific DO concentration in the system, 

which has otherwise often been assumed in previous studies (Hao et al., 2002a+b; Joss et al., 

2009; Volcke et al., 2010). A similar conclusion was drawn by Kwak et al. (2012), who optimized 

the performance of a fixed film, single-stage CANR reactor through tight control of the oxygen 

loading to the system. Additionally, controlling the bulk DO concentration might be practically 

challenging, because the concentration often is very low (< 0.1 mg L-1), which is a concentration 

range where it is difficult to acquire accurate measurements. This finding is an extension of the 

findings of Bernet et al. (2005), who reported for a partial nitritation biofilm system, that 

controlling the ratio of the oxygen to ammonium bulk concentration was superior to solely 

controlling the bulk oxygen concentration. 

Moving away from the observed optimal value led to suboptimal performance due to a complex 

interplay between mass transfer and microbial kinetics as explained below. The results showed 

that when operating below the optimal oxygen loading/TAN loading for optimal nitrogen 

removal, the removal would mainly be affected by the AOB activity and also, but to a lesser 

extent, be influenced by AnAOB kinetics and by mass transfer limitation as observed in scenario 

1 and 3 (Figure 4.4). Thus, the AOB activity is limiting the nitrogen removal. At operational 

conditions giving an oxygen/TAN loading ratio higher than required for optimal nitrogen 

removal, the AnAOB activity will decrease due to oxygen inhibition, and NOB will be able to 

compete for the space with the other microbial groups (as in scenario 2). Both the nitrogen 

removal rate and the removal efficiency decreased with increased oxygen load above this ratio 

(see Figure 4.4 and 4.5). When reaching a certain nitrogen and corresponding oxygen loading the 

nitrogen removal rate reached a plateau, because all the biomass in the system was active, and 

the granules contained a minimum amount of inert material as observed in scenario 4. This 

means that the nitrogen loading to the system (the food to microorganism (F/M) ratio as g N (g 

VSS-biomass)-1 d-1) exceeded the maximum specific nitrogen removal rate of the biomass 

inventory in the system. The performance will in this case be influenced almost solely by the 

microbial kinetics and not at all by mass transfer. It is speculated that the granule size will 

influence the onset of the plateau and the maximum nitrogen removal rate. The granule size did 

not have a significant impact on the performance when operating at the oxygen loading limited 
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regions in Figure 4.4, which was the case in scenario 3. However, if operating at the biomass 

limited plateau, the size is expected to have an impact on the performance. 

The removal efficiency was optimal at a loading ratio of 1.90 (g O2 m-3 d-1)/(g N m-3 d-1) and at 

low nitrogen loadings (Figure 4.4). As the nitrogen loading increased, the removal efficiency 

decreased due to increased AnAOB inhibition by oxygen and limitation of the biomass inventory 

in the system to convert all nitrogen present in the influent (these operational conditions are 

indicated in the center of Figure 4.5). 

 
Figure 4.5 Nitrogen removal efficiency as a function of the oxygen to nitrogen loading ratio. 

 

4.4 Conclusions 
In this work, phenomena that are the most influential on process performance of nitritation- 

anammox granular bioreactors were computationally identified and quantified via a global 

sensitivity analysis. Based on the analysis, an optimal operation window for the system was 

developed, which among others, revealed that the optimal nitrogen removal performance is 

critically controlled by the ratio of the oxygen supplied to the nitrogen loading of the system, 

and not by the DO concentration in the bulk alone. 

The relative importance of mass transfer and kinetic parameters were found to depend on the 

operating regime of the system. Operating under the optimal loading ratio of 1.90 (g O2 m-3 d-

1)/(g N m-3 d-1), the system was influenced by mass transfer (10% impact on N2) and performance 
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was limited by AOB activity (75% impact on N2), while operating above the optimal loading ratio, 

AnAOB activity was limiting (68% impact on N2). The negative effect of oxygen mass transfer had 

an impact of 15% on N2.  

The developed optimal operation window is a valuable tool for diagnosing performance 

problems, and can contribute significantly to successful scale-up and control development for 

this important technology. 
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5 pH variation and influence 
 

Summary 

A pH simulator consisting of an efficient numerical solver of a system of nine non-linear 

equations was constructed and implemented in the modeling software MATLAB®. The pH 

simulator was integrated in a granular biofilm model and used to simulate the pH profiles within 

granules performing the nitritation-anammox process for a range of operating points. The 

simulation results showed that pH profiles were consistently increasing with increasing depth 

into the granule, since the proton producing aerobic ammonium oxidizers (AOB) were located 

close to the granule surface. Despite this pH profile, more NH3 was available for AOB than for 

anaerobic ammonium oxidizers (AnAOB) located in the center of the granules. However, 

operating at a higher oxygen loading resulted in steeper changes in pH over the depth of the 

granule and caused the NH3 concentration profile to increase from the granule surface towards 

the center. The initial value of the background charge and influent bicarbonate concentration 

were found to greatly influence the simulation result and should be accurately measured. Since 

the change in pH over the depth of the biofilm was relatively small, the activity potential of the 

microbial groups affected by the pH did not change more than 5% over the depth of the 

granules.  
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5.1 Introduction 
Among the operating conditions in the reactor, pH has a major impact on the nitrification and on 

the anammox process, since it has an impact on: 1) the compound speciation, and thus on the 

substrate concentration; and, 2) the structure and stability of the bacterial cell wall and 

membrane. In addition, pH varies as a consequence of the activity of these microbial groups, due 

to their production or consumption of protons during their metabolism (Figure 5.1). The 

objective of this study was to improve the process understanding by elucidating the close 

relation between microbial activity and pH in a stratified biofilm structure by means of numerical 

model simulations. To reach this objective, an efficient pH calculation procedure including a pH 

model and numerical solution strategy was developed. 

 

5.2 Materials and methods 

5.2.1 Model description 
The model described in chapter 3 of a continuously run granular sludge reactor consisting of 

mass balances for soluble and particulate compounds within the granules and in the bulk liquid 

was used. It was extended to also include HCO3
- (bicarbonate) as a state variable. The 

stoichiometric coefficients for bicarbonate and the modified process rates can be seen in Table 

5.1 and 5.2. In the model, aeration was included in the bulk liquid mass balance for oxygen. On 

the contrary, no stripping was considered for any of the other gaseous compounds (CO2 or N2) 

produced or consumed in the system. 

The speciation of the true substrates has been, and still is, a point of discussion (Sin et al., 2008c; 

Jin et al., 2012), with Anthonisen et al. (1976) being among the first to propose that NH3, rather 

than NH4
+ or total ammonium nitrogen (TAN), is the true substrate for AOB. This has since been 

extended to AnAOB substrates with van Hulle (2005) showing that the unionized species were 

the true substrates. In this work, the unionized forms of the compounds were assumed to be the 

true substrates for all autotrophic microbial groups, i.e. AOB, NOB, and AnAOB. Thus AOB use 

NH3 and are product inhibited by free nitrous acid (HNO2), rather than by NO2
- or total nitrite 

nitrogen (TNN), NOB grow on HNO2, and AnAOB utilize NH3 and HNO2 (Table 5.2). The pH 

therefore has a significant impact on the substrate and inhibitor concentrations and availability 

(Figure 5.1). Additionally, pH affects the structure and permeability of the bacterial cell 

membrane and the energy required for maintenance of the internal cell proton concentration. 
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To account for this, a bell-shaped function around the optimal pH value (Henze et al., 1995) was 

included in the growth rates of AOB, AnAOB, and NOB (Table 5.2) with the parameter values 

obtained by van Hulle et al. (2007) and used by Ganigue et al. (2010). 

 

Figure 5.1 Interactions between bacterial activity, pH and reactor environment. a) The pH profile indicates 
where H+ production/consumption takes place, d) dictates the location of the bacterial groups. TAN + TNN 

in combination with pH (b) determines the substrate and inhibitor concentrations which affect bacteria 
location, c) determines where in the biofilm, growth conditions are the best, e) & g) affect the absolute 

value and shape of the pH profile, and f) have a high impact on biomass activity and on the inert fraction 
of the granule. 
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Table 5.2 Modified process rate expressions including pH for the first 3 of the 12 processes included in the 
model. 

Process k  Process Rate ρ 

1. AOB growth 
opt ,AOB

pH,AOBI,HNO2,AOBNH3 O2 HCO3
max,AOB AOB pH pH

NH3,AOB NH3 O2,AOB O2 I,HNO2,AOB HNO2 HCO3,AOB HCO3 pH,AOB

KKS S SX
K S K S K S K S K 1 10

 

2. NOB growth 
opt ,NOB

pH,NOBHNO2 O2
max,NOB NOB pH pH

HNO2,NOB HNO2 O2,NOB O2 pH,NOB

KS SX
K S K S K 1 10

 

3. AnAOB growth 
opt ,AnAOB

pH,AnAOBI,O2,AnAOBNH3 HNO2
max,AnAOB AnAOB pH pH

NH3,AnAOB NH3 HNO2,AnAOB HNO2 I,O2,AnAOB O2 pH,AnAOB

KKS SX
K S K S K S K 1 10

 

4. AOB decay AOB AOBb X  

5. NOB decay NOB NOBb X  

6. AnAOB decay AnAOB AnAOBb X  

7. HB growth 1 O2 S TAN
max,HB HB

O2,HB O2 S,HB S TAN TAN,HB

S S SX
K S K S S K  

8. HB growth 2 I,O2,HBS TNN TAN
max,HB HB HB

S,HB S TNN,HB TNN I,O2,HB O2 TAN TAN,HB

KS S SX
K S K S K S S K  

9. HB growth 3 I,O2,HBS NO3 TAN
max,HB HB HB

S,HB S NO3,HB NO3 I,O2,HB O2 TAN TAN,HB

KS S SX
K S K S K S S K  

10. HB decay HB HBb X  

11. Hydrolysis S
H

X

Xk
K  

12. Aeration L O2_sat O2_bulkk a(S S )  

 

 

5.2.2 pH calculation and numerical solution  
The procedure of the determination of pH was carried out through the solution of a system of 

equations, consisting of three mass balances of TAN, TNN, and total inorganic carbon (TIC) (eqs. 

5.1-5.3), five acid-base equilibrium conditions (eqs. 5.3-5.8), and a global charge balance (eq. 

5.9). In the global charge balance, the background charge (Z+) represents the net charge that 

participates neither in acid/base equilibria nor in the biological conversions. A value of 10 

charge-mol m-3 was used in all simulations. As an illustration, addition of NaCl does not 

contribute to Z+, since its net charge is zero (the anion Cl- and the cation Na+ compensate each 

other), whereas addition of HCl would decrease the background charge (corresponding to the 

contribution of the anion Cl-, which is completely dissociated).  

The resulting system of nine nonlinear equations was solved by a multidimensional Newton-

Raphson method adapted from Luff et al. (2001).  
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 4 30 TAN NH NH        (5.1) 

 2 20 TNN HNO NO       (5.2) 

 2
2 3 30 TIC CO HCO CO       (5.3) 

 W0 K OH H        (5.4) 

 e,NH4 4 30 K NH NH H       (5.5) 

 e,HNO2 2 20 K HNO NO H       (5.6) 

 e,CO2 2 30 K CO HCO H       (5.7) 

 2
e,HCO3 3 30 K HCO CO H       (5.8) 

 2
3 3 3 2 40 Z NO HCO 2 CO NO OH NH H    (5.9) 

 

The model of the CANR system, consisting of partial differential equations (PDEs) (the compound 

mass balances), was discretized in space into 100 nodes, each accounting for a given control 

volume, which resulted in a system of ordinary differential equations (ODEs). The numerical pH 

solver along with the model was implemented and solved during dynamic simulations in the 

MATLAB software. The built-in “ode15s” solver based on numerical differentiation formulas was 

used to solve the ODEs. It was assumed that the establishment of the acid-base equilibria was 

immediate compared to the diffusion and production/consumption of compounds. As a 

consequence, a new distribution of the chemical species was calculated for every integration 

time step of the equation system. 

However, it was quickly found out that the determination of pH through numerical solution of 

eqs. 5.1-5.9 was computationally heavy and prone to numerical errors in some implementations, 

since the Newton-Raphson numerical method was not convergent for every initial guess. To 

overcome these problems and to obtain an efficient solution strategy, pH was determined off-

line (still through the Newton-Raphson method), prior to simulation, for the complete expected 

range of TAN, TNN, TIC and NO3
- concentrations. A lookup table was constructed from these 

results using the Matlab command “TriScatteredInterp” and then used to interpolate the value 

of pH during integration of the ODEs in dynamic simulations. The error of interpolation was 
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estimated by evaluating the difference between the Newton-Raphson method solution and the 

interpolation. This was done for 10000 points which were different from the ones used to build 

the interpolator. The expected root mean squared interpolation error was 0.014 pH units and 

the variance was 3.87·10-4 (pH unit squared) for the range pH=3 to pH=9. If the range of pH was 

restricted to the range 6.5-8.5, the expected root mean squared interpolation error became 

7.89·10-5 and the variance 6.09·10-9. This error was considered negligible. 

For all simulations the initial conditions were the steady state result of a simulation using a 

constant pH value. To obtain a steady state solution, the dynamic model was solved for a long 

enough time (in this case 10000 days) and the final values were recorded as steady state results. 

 

5.2.3 Description of scenarios 
The four scenarios, comprising four different operating points described in chapter 4, were 

simulated and evaluated (see Table 4.1). 

In scenario 1, an oxygen mass transfer coefficient (kLa) determined through clean water tests 

was used (43 d-1), the volumetric nitrogen loading was 200 g N m-3 d-1, and the bicarbonate 

loading was 1.22 g HCO3
- L-1 d-1, corresponding to a molar ratio of 1:1.43 TAN-N:HCO3

-. In 

scenario 2, the effect of oxygen supply was investigated by doubling the value of the mass 

transfer coefficient (kLa). In scenario 3, the effect of granule size was investigated by decreasing 

the granule diameter from 2 mm to 0.5 mm. Finally, the effect of high influent loading for a 

given amount of biomass was investigated in scenario 4. In the latter scenario, the increased 

loading of nitrogen implied increasing the supply of bicarbonate to 4.27 g HCO3
- L-1 d-1 and the 

oxygen supply to kLa=140 d-1 (see Table 4.1). 

 

5.3 Results and discussion 
From the modeling results it was found that the initial value of the background charge had a 

significant impact on the pH due to its impact on the solution of the system of equations (eqs. 

5.1-5.9). Both the value of the pH and the shape of the pH profile were affected by this variable. 

The higher the background charge, the higher the pH and the flatter the pH profile. The 

background charge changes with composition and strength of wastewater, and estimation of 

this prior to pH calculation should therefore preferably be conducted. Unfortunately, the 
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background charge is very difficult to estimate for a biofilm system for two reasons: the actual 

detailed composition of the biofilm is not known (or not considered in the model, e.g. ions, 

along with the extracellular polymeric substances (EPS) making up the biofilm matrix are not 

considered); and secondly, there is no reason why the background charge should be constant 

throughout the biofilm thickness.  

Since background charge values are rarely reported and vary from system to system, the 

approach has been to use a value of Z+ which would give a pH close to 7.2 in the bulk of the 

reactor, given the concentrations predicted for a constant pH. This resulted in the Z+ value being 

10 charge-mol m-3. The simulations with such a value of charge and with the given bicarbonate 

concentrations lead to different but relatively close values of pH in the bulk (from approximately 

7.2 in scenario 4 to 7.6 in scenarios 1 and 3, as it can be seen below). 

The results shown in the Figures 5.2-5.5 were steady state conditions obtained after simulating 

10000 days of operation. 

 

5.3.1 Scenario 1. Interpretation of the results 
The pH decreased from the center to the surface of the biofilm (Figure 5.2A), where AOB were 

present at the biofilm/liquid interface (Figure 5.2C). The combination of the TAN concentration 

profile and the pH profile yielded an NH3 profile (Figure 5.2B), which despite the shape of the pH 

profile, showed that less NH3 was available as substrate for AnAOB, located a bit further inside 

the granule (Figure 5.2C), than there was for the AOB located at the surface. Both the pH profile 

and the HNO2 profile, which also showed a decreasing trend from the surface towards the 

center of the granule, were opposite compared to observations made by Park et al. (2010). The 

difference can be found in the consumption of TNN, which in this study is taking place inside the 

granule at the location of the AnAOB (Figure 5.2C). AOB consumed significantly more alkalinity 

than the AnAOB, which was evident from the pH profile showing that the greatest change was 

happening in the vicinity of the biofilm/liquid interface where the AOB were present (illustrating 

process (a) in Figure 5.1). The microbial composition in this scenario was similar to investigations 

made without inclusion of the pH effect (Volcke et al., 2010; Vangsgaard et al., 2012), which is 

reasonable considering the relatively small change in pH value over the depth of the granule. 

The total nitrogen removal efficiency of the granular reactor was 86.4%. 
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Figure 5.2 A) pH profile with biofilm depth, B) NH3 and HNO2 profiles with biofilm depth, and C) biomass 
composition inside the granular biofilm in scenario 1 simulated with pH effect on microbial growth. The 

vertical dashed line in A) and B) indicates the biofilm/liquid interface. 

 

5.3.2 Scenarios 2-4. Effect of operating conditions 
Simulation of scenario 2 resulted in a similar pH profile as obtained in scenario 1, with a lower 

pH closer to the biofilm/liquid interface and increasing towards the granule center (Figure 5.3A). 

However, the shape of the pH profile was very different, with the pH changing over almost the 

entire depth of the granules, instead of just close to the biofilm/liquid interface, and the slope of 

the pH profile was much steeper. The effect of the relatively high change in pH resulted in an 

NH3 concentration profile showing an increasing trend from the granule surface towards the 

center of the granule. The AnAOB were located from a couple of hundred μm below the surface 

of the granules and all the way to the center, where there was a tradeoff between availability of 

NH3 and HNO2 and low oxygen concentrations (Figure 5.3C). It could also be observed that NOB 

growth appeared close to the biofilm/liquid interface under these conditions. The higher 

amount of oxygen supplied thus caused nitrification to be the dominating process, and the 

nitrogen removal efficiency was therefore only 27.2%, while the TAN removal efficiency was 

83.5%. 

At smaller granule sizes, similar results as in scenario 1 were observed, showing a relatively small 

change in pH value over the depth of the granules, but with the difference that the pH profile 

was smoother with on the one hand a reduced slope, and on the other hand a gradient that was 

penetrating deeper in the granule. The NH3 concentration did therefore not change much over 

the depth as a result, and the HNO2 concentration was mainly a function of the TNN 
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concentration profile. The HNO2 penetrated all the way through the granule, albeit in low 

concentrations in the center of the granule (Figure 5.4B). As a result the granules contained 

higher amounts of AnAOB, and the inert core took up less space (Figure 5.4C) than in scenario 1. 

Despite the change in microbial composition, the efficiency of the total nitrogen removal 

remained similar to scenario 1. 

 
Figure 5.3 A) pH profile with biofilm depth, B) NH3 and HNO2 profiles with biofilm depth, and C) biomass 
composition inside the granular biofilm in scenario 2 simulated with pH effect on microbial growth. The 

vertical dashed line in A) and B) indicates the biofilm/liquid interface. 

 
Figure 5.4 A) pH profile with biofilm depth, B) NH3 and HNO2 profiles with biofilm depth, and C) biomass 
composition inside the granular biofilm in scenario 3 simulated with pH effect on microbial growth. The 

vertical dashed line in A) and B) indicates the biofilm/liquid interface.  
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In the final scenario, the pH profile obtained showed changes in pH over the entire depth of the 

granules (Figure 5.5A). Since a higher load was applied, more substrate was available for both 

the AOB and the AnAOB. This meant that more TAN was converted, and thus more protons 

produced, causing the slope of the pH profile to last the entire depth of the granules, similar to 

scenario 2. The higher load also meant that the AnAOB were present in higher concentrations 

and dominated the interior of the granules (Figure 5.5C). Despite their increase in amount, they 

were not able to convert all the supplied nitrogen, and the overall nitrogen removal efficiency 

was therefore just 75.1% of the supplied nitrogen load. 

 
Figure 5.5 A) pH profile with biofilm depth, B) NH3 and HNO2 profiles with biofilm depth, and C) biomass 
composition inside the granular biofilm in scenario 4 simulated with pH effect on microbial growth. The 

vertical dashed line in A) and B) indicates the biofilm/liquid interface. 

 

5.4 Conclusions and outlook 
 A pH simulator was constructed through a numerical solver of a system of nine nonlinear 

equations and was implemented in the MATLAB® software. The pH simulator was coupled to the 

dynamic granule model by using a lookup table to facilitate the computational efficiency. In this 

way, the pH profiles within granular sludge performing the nitritation-anammox process, at a 

range of different operating points, were simulated. The results showed the following: granules 

containing proton producing AOB in the outer layers of the granules, next to the biofilm/liquid 

interface, always resulted in an increasing pH with increasing depth into the granules. 
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A number of approximations were needed to complete the solution of the whole model, e.g. the 

value of the background charge and bicarbonate concentrations. This was found to have a great 

impact on the value and shape of the pH profile, and estimating or measuring an appropriate 

and correct value of these variables is therefore of great importance. As a conclusion, these 

results represent a first step in the evaluation of the impact of pH in granular systems. However, 

more information about the effect on the cell structure and the background charge estimation, 

supported by experimental essays, will be needed to verify the conclusions and consolidate the 

pH effect on microbial activities.  

Despite the difficulty related to determining the appropriate value of the background charge, it 

is believed that the approach developed and described in this work provides valuable 

information about how the pH impacts the processes and the relation between microorganisms 

within the granule. Even though a pH profile could be simulated and constructed over the depth 

of the granules, it was evident that the change in pH over the depth was relatively small (highest 

in scenario 2 and lowest in scenario 3), due to the buffering capacity of bicarbonate. Thus, the 

stratification was present for pH, but the difference in impact on the activity potential of the 

different microbial groups, caused by predicted pH change over the depth of the granules, was 

relatively small (about 5% at most). Compared to the impact on the activity potential caused by 

e.g. the stratified oxygen concentration, the impact caused by pH changes on the microbial 

activity potential was relatively small. 

As a future perspective, ultimately, experimental work (e.g. with micro-sensors) should be 

carried out to give more insight about the actual conditions of pH and background charge inside 

the granule as these two are important to validate any pH modeling efforts.  

Further, the above presented simulation scenarios for pH assumes negligible impact of aeration 

through CO2 stripping – an assumption valid for relatively small aeration regimes which is the 

case for the investigated granular CANR system in this work. However, for the sake of 

generalization and scale-up efforts of this technology, it is important to also study the effect of 

CO2 stripping on pH under a different range of aeration rates and especially in systems exposed 

to high aeration rates. CO2 stripping has previously been included in activated sludge models 

(e.g. Sin and Vanrolleghem, 2007), and should be relatively easily incorporated in the presented 

model. Related to this, it will also be relevant to consider scenarios with different bicarbonate 

and alkalinity concentrations.  
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PART III – Control and 
Optimization 

In this part, the possibilities of optimizing and controlling the CANR process are explored. In 

order to test and evaluate control strategies, a model able to predict process performance was 

needed. This was obtained through calibration and validation of the model presented in chapter 

3 to experimental data collected in the lab-scale reactors. The procedure of the calibration and 

validation is presented in chapter 6. Subsequently, using a process oriented approach, several 

novel control strategies were developed, designed, and evaluated based on extensive model 

simulations of continuous operation with the validated model (chapter 7). Finally, the most 

promising technology from the simulation investigations was tested experimentally in one of the 

lab-scale reactors presented in chapter 2. The experimental validation of the control strategy is 

presented in chapter 8. 
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6 Calibration and validation of a model of 
a granular SBR system 

 

Summary 

A validated model describing the nitritation-anammox process in a granular SBR system is an 

important tool for: a) design of future experiments and b) prediction of process performance 

during optimization, while applying process control, or during system scale-up. To this end, a 

model was calibrated using a step-wise procedure customized to the specific needs of the 

system. The important steps in the procedure were initialization, steady-state and dynamic 

calibration, and validation. A fast and effective initialization approach was developed to 

approximate pseudo steady-state in the biofilm system. For oxygen mass transfer coefficient 

(kLa) estimation, long-term data, removal efficiencies, and the stoichiometry of the reactions 

were used. For the dynamic calibration a pragmatic model fitting approach was used - in this 

case an iterative Monte Carlo based screening of the parameter space proposed by Sin et al. 

(2008b) - to find the best fit of the model to dynamic data. Finally, the calibrated model was 

validated with an independent data set. 

The presented calibration procedure is the first customized procedure for this type of system 

and is expected to contribute to achieve a fast and effective model calibration, an important 

enabling tool for various biochemical engineering design, control, and operation problems. 
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6.1 Introduction 
Good modeling practice requires, among other things, following a systematic model calibration 

guideline for quality check and consistency purposes (Sin et al., 2008b). For this purpose, a 

number of calibration protocols have previously been presented targeting SBR systems (Insel et 

al., 2006; Ganigue et al., 2010). However, a general guideline for calibration of biofilm reactor 

models is still under way (Boltz et al., 2012). 

The issue of model calibration in wastewater treatment has been extensively studied and 

debated by both academia and practicing modelers/consultants (e.g. WERF protocol, HSG 

guidelines). Broadly speaking there are two schools of thought: (1) a systems analysis approach 

that aims to ground the model calibration on a more scientific basis by using parameter 

estimation theory and comprehensive sensitivity/identifiability analyses that come along with it; 

and, (2) an expert approach which relies on experiences for model fitting including parameter 

subset selection and manual fine-tuning of the selected parameter values. 

In the systems analysis approach, the identifiability of the selected parameters must be ensured 

when estimating parameter values. Previous studies have investigated the parameter 

identifiability issue caused by model structure, where the model is typically overparameterized. 

Ruano et al. (2007) compared different approaches for subset selection of activated sludge 

models and found that up to 13 parameters could be identified, if sufficient data was available. 

Brun et al. (2002) found a maximum of 9 identifiable parameters consisting of a smaller subset 

of parameters belonging to different parameter/microbial groups in the ASM2d. Brockmann et 

al. (2008) found a maximum of 4 identifiable parameters in a nitrifying biofilm model. Findings 

like these led Gujer to conclude that “the unique identification of model parameters of ASM2d 

becomes impossible” (Gujer, 2006). In other words, model complexity is believed to make it 

impossible to allow unique parameter values resulting from a parameter estimation procedure. 

In addition to this, there are many other issues with systems analysis as discussed in Sin et al. 

(2008b): (1) search algorithms can get stuck without finding a global minimum; (2) identifiability 

analysis returns a limited number of parameters as identifiable while the remaining parameters 

(which cannot be identified) need to be assigned arbitrary default values. This makes parameter 

estimation conditional to other fixed values of parameters; (3) many parameter subsets exist as 

identifiable candidates without an obvious one to choose; (4) both sensitivity and identifiability 

analysis and parameter estimation are computationally very demanding. Given these practical 

challenges and constraints associated with using a systems analysis approach in model 

calibration studies, Sin et al. (2008b) proposed a pragmatic Monte Carlo based approach for 
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model fitting purposes. In fact, the recently published IWA GMP guidelines (Rieger et al., 2013) 

also suggest a combination of heuristics, expert knowledge, and sensitivity analysis as an option 

for parameter subset selection for the task of model calibration. 

Calibration is strongly dependent on the purpose of the model usage. In this work, it was 

decided to use the pragmatic approach, since the overall objective of this current study was to 

obtain a model, which could capture the performance of the SBR by adequately predicting the 

concentrations of the soluble nitrogen species in the bulk liquid. 

The aim of this work was therefore to calibrate a model of nitrogen conversion in granular 

sludge dominated by autotrophic microorganisms. To this end, first a customized calibration 

protocol, addressing the specific needs and features of the autotrophic nitrogen removal 

systems was developed. Second long-term data approximating steady-state performance and 

short-term dynamic data sets were collected from the lab-scale SBR reactor and used for model 

calibration and validation. 

 

6.2 Modeling and methods 

6.2.1 Granular sequencing batch reactor 
One of the lab-scale SBRs described in chapter 2 was operated and data for calibration and 

validation were collected from it. The reactor was operated as described in the default operation 

with the following exceptions. The 8 hour cycle was distributed in a 10 minute fill phase, a 444 

minute reaction phase, which was divided into three aerated and three non-aerated phases (see 

Figure 6.1), a 6 minute settling phase, a 10 minute draw phase, and a 10 minute idle phase. 

During the aerated phases the air flow was controlled at 1.2 L min-1. 

The DO signal was logged on-line, but the measured concentration was typically below the 

detection limit. 

The concentrations of NH4
+-N, NO2

--N, and NO3
--N were measured with the colorimetric test kits 

during the dynamic calibration measurement campaign. During long-term operation, NH4
+-N and 

NO3
--N in the effluent were logged on-line with the ion selective electrodes (ISE), while NO2

--N 

was manually measured with the test kits. Total and volatile suspended solids were determined 

and the particle size distribution and the volumetric weighted mean particle size were measured 

as described in chapter 2.  
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Figure 6.1 Scheme of the sequencing batch reactor operation with illustration of the phases. 

 

6.2.2 Model description 
The model described in chapter 3, consisting of mass balances for all of the compounds 

throughout the depth of the granules as well as in the bulk liquid, was employed.  

The SBR operation was introduced to the model by letting the inflow, outflow, and oxygen 

supply, in the form of kLa, only being active during certain phases of the SBR cycle (see Figure 

6.1, bottom). Ideal settling was assumed, such that 80% of the suspended cells in the bulk was 

retained during the draw phase as explained in chapter 3. 
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Figure 6.2 Flow diagram of the step-wise model calibration procedure. 

 

6.2.3 Calibration methodology 
In the calibration procedure a distinction between “steady-state” (pseudo steady-state, meaning 

that the performance of one cycle was similar to the previous one) and dynamic calibration was 

made (see Figure 6.2). In the steady-state calibration, the model was fitted to the overall reactor 

performance data, by calibrating operational parameters, which could not be determined 
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accurately by experimentation (e.g. oxygen transfer coefficient, granule size, or solids 

concentration), while in the dynamic calibration the specific removal and production rates due 

to the inherent dynamics of cyclic batch operation were evaluated (by calibration of a subset of 

parameters). Finally, after both steady-state and dynamic calibration the model was subjected to 

a validation procedure. Following this methodology, a workflow was developed as can be viewed 

in Figure 6.2. Below, the steps in the methodology are explained in detail. 

 

6.2.4 Steady-state calibration 
Step 1. Objective definition  

As stated earlier, the objective of the calibration was to obtain a model which could capture the 

performance of the SBR by adequately predicting the concentrations of the soluble nitrogen 

species in the bulk liquid. 

 

Step 2. Synthesis of required information, data collection, and data treatment 

In the next step the required information was synthesized by defining the evaluation criteria to 

be used in the steady-state calibration. In order to represent the overall microbial activity and 

performance, five evaluation criteria were defined; three ratios of the production or 

consumption of the soluble nitrogen species from the start to the end of one cycle (Mutlu et al., 

2013), and two removal efficiencies (see eqs. 6.1-6.5). The first ratio was nitrite produced over 

ammonium consumed, RNitAmm, which was a measure of AOB activity (nitrite producer) vs. 

AnAOB+NOB activity (nitrite consumers) and expected to be approximately zero, since nitrite 

was an intermediate compound in the overall removal process. The second ratio was the 

ammonium removed over the total nitrogen removal, RAmmTot, which gave information on AOB 

vs. AnAOB activity and was, based on reaction stoichiometry, expected to be around 1.09 for a 

balanced nitritation-anammox process. Finally, the third ratio was nitrate produced over total 

nitrogen removal, RNatTot, indicating NOB vs. AnAOB activity (both nitrate producers), and was 

expected to have a value of approximately 0.07, when AnAOB were the only nitrate and nitrogen 

gas producers. All ratios were also affected by the possible activity of heterotrophic bacteria 

(HB), which can be present in these types of systems even though no external organic carbon 

source is supplied (Dapena-Mora et al., 2004). 

The ratios thus gave information on the relative activity of the microbial groups, whereas the 

removal efficiencies supplied information on their absolute activity.  
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  (6.5) 

where the subscript “start” denotes the concentration in the beginning of a cycle, the subscript 

“end” denotes the concentration at the end of a cycle, and the subscript “in” denotes the 

concentration in the influent. 

The data collection for the steady-state calibration was considered sufficient when, during one 

week of operation, the evaluation criteria varied less than 5% (the evaluation criteria were 

calculated once per day). 

 

Step 3. “Steady-state” calibration  

A one week period of “pseudo steady-state” operation was used as the calibration period (see 

Figure 6.3), and average values of the evaluation criteria were used to compare with the 

simulation results. 

A challenging task in biofilm modeling is initialization, i.e. simulating sufficient time to reach 

steady-state. Since the retention time of the solids increases over the depth of the biofilm, the 

normal rule of thumb of simulating operation for three times the SRT cannot be applied. 

Previously, 1000 days (Sin et al., 2008a) and 10000 days (Volcke et al., 2010) of operation have 

been simulated to reach steady-state in continuously operated biofilm systems. In addition, the 

discrete nature of SBR operation causes fast dynamics and steep concentration gradients in the 

system. The combination of these very slow biofilm dynamics with the relatively fast SBR 

operation dynamics makes it computationally very heavy to solve the model. In this work, this 
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problem was tackled by initializing the model by simulating 1000 days (assumed steady-state) of 

continuous operation, with continuous influent, effluent, and aeration, followed by 10 days of 

SBR operation. Finally, the values of the evaluation criteria were calculated on the basis of the 

last cycle of the 10 days of SBR operation. 

 

6.2.5 Dynamic calibration 
Following the pragmatic approach of Sin et al. (2008b), first a parameter subset was selected by 

using process knowledge, previous experiences, and sensitivity analysis. Then the Latin 

Hypercube Sampling (LHS) technique was used to efficiently sample the parameter subspace 

(defined by an upper and lower range assigned for each parameter in the subset). The Monte 

Carlo simulations were performed with these samples, and the resulting model fits to the data 

were assessed and ranked. The best fit was selected and thereby concluded the model fitting 

task. In this approach, the parameter values obtained are interpreted as an arbitrary 

combination of values from a parameter subspace (among many other possible ones) that 

provided a good fit to data. The values are not considered unique estimates of the parameter 

values, as one would get from parameter estimation theories, and hence no physical meaning is 

attached to them. 

 

Step 4. Parameter subset identification 

In the dynamic calibration, the first step was to define a parameter subset to be used for 

calibration (see Figure 6.2). Previously, different approaches have been used to select the 

parameter subset, ranging from the simplest approach based on expert knowledge to the more 

computationally demanding identifiability analysis (Ruano et al., 2007; Brockmann et al., 2008). 

In this work we used a combination of expert knowledge, process knowledge, and sensitivity 

analysis as commonly used for selecting parameters for fitting models to data, see e.g. the 

STOWA protocol (Hulsbeek et al., 2002) and the IWA GMP guidelines (Rieger et al., 2013) among 

others.  
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Step 5. In-cycle data collection 

In the following step of the calibration procedure, data of the bulk concentrations of the soluble 

nitrogen species were collected by manually sampling from the reactor vessel every 15 minutes, 

which in total gave 30 data points for each measured compound during one cycle. 

 

Step 6. Dynamic calibration 

100 samples were taken from the defined parameter space by LHS (Iman and Conover, 1982) 

and the resulting 100 Monte Carlo simulations were run. Similar to the steady-state calibration, 

each of the 100 simulations of the model was initialized by simulating 1000 days of continuous 

operation followed by four cycles of SBR operation. Simulation of four cycles was found to be 

sufficient to reach “pseudo steady-state”, where the nitrogen concentration profiles did not 

change more than 1% from one cycle to the next. The last of these four cycles was therefore 

used for comparison with the experimental data.  

Different objective functions was used to assess the quality of the model fit, such as root mean 

squared error (RMSE) and weighted sum of squared errors (WSSE) (see eqs. 6.6 and 6.7): 

 

 
n 2

meas,i i
i 1

1RMSE y y t ,
n

      (6.6) 

 

2m n
meas,k i model,k i

k 1 i 1 k

y (t ) y (t , )
WSSE      (6.7) 

 

where m is the number of variables measured (three; ammonium, nitrite, and nitrate), n is the 

number of experimental observations (the number of sample times), ymeas,k is the observed 

value, ymodel,k is the simulated output value, θ represents the values of the parameters in a given 

subset, and σk represents the measurement error of variable k, which was found as the standard 

deviation resulting from triplicate measurements of a standard concentration of each of the 

three variables (ammonium, nitrite, and nitrate). The Monte Carlo simulations were ranked, and 

the parameter set in the sample resulting in the lowest error was selected. 

In order to ensure that the dynamically calibrated parameters also captured the overall 

performance, a long-term simulation, consisting of 1000 days of continuous operation followed 
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by 10 days of SBR operation as in the steady-state calibration, was conducted and the five 

evaluation criteria were calculated and compared to the experimental values. 

 

6.2.6 Validation 
Step 7. Data collection for validation 

It is desirable to collect data at a different operating point, than the one where the calibration 

was conducted, to ensure that the validity range of the model is as wide as possible. Samples 

were taken every 15 minutes as in the data collection for calibration. 

 

Step 8. Validation 

A simulation, with the different conditions and the new values of the parameters in the 

calibrated subset, was conducted in a similar fashion as for the calibration, by first simulating 

1000 days of continuous operation followed by four SBR cycles. In order to ensure the model’s 

validity before application, the calibrated parameters were checked by comparing the RMSEs 

from the calibration to the RMSEs from the validation and through calculation of the Janus 

coefficient (J) (Power, 1993): 
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n

J
1 y y t ,
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      (6.8) 

where nval is the number of experimental observations for validation and ncal is the number of 

experimental observations for calibration. 

 

6.3 Results and discussion 

6.3.1 Steady-state calibration 
The solids concentration was 4.2 g VSS L-1, and a particle size distribution was determined by 

laser diffraction with the average granule/floc diameter being 100 μm. The kLa value was first 

estimated by conducting clean water tests in the lab-scale SBR, since it could not be determined 

in-situ with the sludge present in the reactor, as this would lead to inhibition of the anoxic 

microbial groups (i.e. AnAOB). However, simulation results quickly showed that the actual kLa 
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value in the SBR during microbial reaction was strongly underestimated, which can be seen on 

the predicted removal efficiencies of simulation 1 in Table 6.1. This discrepancy is speculated to 

be caused by differences in the ionic strength, viscosity, etc. between the clean water and the 

synthetic influent/sludge mixture. The kLa value was therefore chosen as a calibration parameter 

in the steady-state calibration, while all other operational parameters were assumed accurately 

measured. Based on theoretical reaction stoichiometry, a set of kLa values was selected as first 

guesses for the correct kLa value (simulation 2 to 5 in Table 6.1). 

Table 6.1 Simulations for kLa determination. Simulation no. 1 corresponds to the kLa obtained from clean 
water test estimation, while simulations no. 2 to 5 were simulated to obtain the best fit to the steady-

state experimental values. 

  kLa R1 R2 R3 NH4
+ removal TN removal 

No. Simulation d-1 ΔNO2
-/ΔNH4

+ ΔNH4
+/ΔTN ΔNO3

-/ΔTN % % 

1 369 0.000 1.047 0.045 47.9 44.7 

2 444 0.000 1.051 0.048 67.7 64.6 

3 516 0.000 1.052 0.049 82.1 78.2 

4 533 0.000 1.051 0.049 84.3 80.3 

5 565 0.000 1.051 0.049 90.2 85.9 

Experimental   0.001 1.072 0.071 86.9 81.0 

Expected* 0.00 1.09 0.07 

* From stoichiometric reactions of complete autotrophic nitrogen removal, i.e. AOB and AnAOB activity 
without any activity of NOB and HB. 

 

The simulations were assessed by calculating the sum of the relative errors of the five evaluation 

criteria. The values of evaluation criteria were obtained as an average of one week of SBR 

operation data, where measurements were made once per day. From the simulation results, 

evaluation criteria were calculated for one cycle after 10 days of simulated SBR operation. In 

simulation, the cycles were already repeatable after four cycles, with the nitrogen 

concentrations changing less than 1%, but in order to visually compare data and modeling 

results (Figure 6.3), 10 days of operation were simulated. As a result, the kLa during the aerated 

phases of the SBR cycle was determined to be the average of the kLa values used for simulations 

3 and 4, i.e. kLa=524 d-1 (see Table 6.1). Results of the simulation with kLa=524 d-1 along with the 

experimental data from the calibration period can be seen in Figure 6.3. This calibrated value is 

relatively far from the measured value in clean water, and it is therefore important to stress that 

the calibrated value does not carry any physical meaning, but captures the performance and 

state of the system. 
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Figure 6.3 “Long-term” (1 week) concentration data at the beginning and at the end of the SBR cycles 
along with model results. 

 

6.3.2 Dynamic calibration 
From a global sensitivity analysis (Vangsgaard et al., 2012), the squared standardized regression 

coefficients (SRCs) of the bulk concentrations of ammonium, nitrite, and nitrate for each 

parameter were calculated, and a cut off value of 0.05 (corresponding to 5% impact) was used to 

distinguish the significant parameters from the non-significant ones. Conducting this analysis, a 

parameter subset containing one stoichiometric and five kinetic parameters was selected (see 

Table 6.2). Uniform probability distributions of the parameter values were assumed, since no a 

priori information about the true statistical distributions was available. The variability of the 

parameters in the subset was assigned based on expert knowledge and previous experiences 

(Sin et al., 2009). For μmax,AOB, bAOB, and μmax,AnAOB the uniform distribution was bounded 25% 

around the default value, for KO2,AOB and KO2,AnAOB the distribution was bounded 50% around the 

default value and for YAnAOB, which was considered relatively well-known, the distribution was 

bounded 5% around the default value. All Monte Carlo simulations are shown along with the 

experimental data in Figure 6.4. 

The calibrated values obtained from the parameter subset giving the smallest value of WSSE can 

be seen in Table 6.2. 
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Table 6.2 Default values, upper and lower boundaries of the uniform distribution and calibrated values of 
the selected parameter subset. 

Parameter Name Unit Default 
value 

Lower 
bound 

Upper 
bound 

Calibrated 
value 

Max growth rate of 
AOB 

μmax,AOB d-1 2.050 1.538 2.563 2.450 

Oxygen affinity 
constant for AOB 

KO2,AOB g O2 m-3 0.300 0.150 0.450 0.165 

AOB decay rate bAOB d-1 0.130 0.098 0.163 0.136 

Max growth rate of 
AnAOB 

μmax,AnAOB d-1 0.073 0.055 0.091 0.068 

Oxygen inhibition 
constant for AnAOB 

KO2,AnAOB g O2 m-3 0.010 0.005 0.015 0.011 

AnAOB growth 
yield 

YAnAOB g COD (g N)-1 0.160 0.152 0.168 0.166 

 

 

 

Figure 6.4 Experimental data from three cycle analyses shown as averages with standard deviations, 
compared to the results of the last cycle from the Monte Carlo simulations. 
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As can be seen in Figure 6.4, all of the MC simulations have an offset compared to the data 

collected, especially for ammonium. Two measures were therefore taken in order to tackle this 

problem. 

First, the dynamic calibration step was iterated once again by revising the parameter subset (this 

option is indicated in the workflow in Figure 6.2). The parameter subset was therefore extended 

to also include μmax,NOB, KO2,NOB, bNOB, KHNO2,AnAOB, YAOB, DNO2, LB and the parameter space was 

expanded to be ±50% around the default value in a uniform distribution for all of the parameters 

in the subset. The new parameter subset selection was based on a combination of the most 

sensitive parameters based on model analysis (like in the previous iteration) and parameters 

expected to have an impact based on practical experiences. Thus a combination of expert 

knowledge and sensitivity analysis was applied in this iteration. Among these last parameters 

were kinetic parameters of NOB, which according to the sensitivity analysis should not have a 

large impact, but which by experience can strongly influence the reactor system. The new subset 

and its upper, lower, and default values can be seen in Table 6.3. 

Secondly, both the data and the model result were scaled based on the initial concentrations, 

such that any inaccuracy caused by equipment, but not included in the model (e.g. deviations in 

pump flow rates which were assumed constant in the model), did not influence the calibration. 

The ammonium and nitrate concentrations were scaled by dividing all of the concentrations in 

the measured points by the first measurement point (the start of the reaction phase). The nitrite 

concentrations were scaled by dividing all the measurements by the concentration 

corresponding to the fourth measurement (55 minutes into the cycle) in order to avoid dividing 

by zero, which was the value of the concentration at the beginning of the cycle. The new MC 

simulations and the scaled concentrations can be seen in Figure 6.5. 
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Table 6.3 Default values, upper and lower boundaries of the uniform distribution and calibrated values of 
the selected parameter subset after iteration. 

Parameter 
 

Unit Default 
value 

Lower 
bound 

Upper 
bound 

Calibrated 
value 

Max growth rate of 
AOB 

μmax,AOB d-1 2.050 1.025 3.075 2.064 

Oxygen affinity 
constant for AOB 

KO2,AOB g O2 m-3 0.300 0.150 0.450 0.332 

AOB decay rate bAOB d-1 0.130 0.065 0.195 0.150 

Max growth rate of 
NOB 

μmax,NOB d-1 1.454 0.727 2.181 0.974 

Oxygen affinity 
constant for NOB 

KO2,NOB g O2 m-3 1.100 0.550 1.650 0.752 

NOB decay rate bNOB d-1 0.061 0.030 0.091 0.069 

Max growth rate of 
AnAOB 

μmax,AnAOB d-1 0.073 0.037 0.110 0.088 

Oxygen inhibition 
constant for AnAOB 

KO2,AnAOB g O2 m-3 0.010 0.005 0.015 0.013 

HNO2 affinity 
constant for NOB 

KHNO2,AnAOB g N m-3 2.81e-6 1.41e-6 4.22e-6 2.92e-6 

AOB growth yield YAOB g COD gN-1 0.210 0.105 0.315 0.292 

AnAOB growth yield YAnAOB g COD gN-1 0.160 0.080 0.240 0.124 

Diffusivity of nitrite DNO2 m2 d-1 2.60e-4 1.30e-4 3.90e-4 1.70e-4 

Mass transfer 
boundary layer 
hi k

LB m 1.76e-5 8.80e-6 2.64e-5 2.26e-5 

 

The calibrated values in Table 6.3 were obtained from the parameter subset sample, which 

resulted in the lowest RMSE value. RMSE (see the values in Table 6.4) was used instead of WSSE, 

since the data points were already scaled by the initial concentration in this approach. This 

simulation with the parameter subset sample resulting in the smallest RMSE is plotted along 

with the data in Figure 6.6, which shows a much better model fit than in the previous iteration 

(Figure 6.4). 
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Figure 6.5 Scaled model result of the last cycle of all Monte Carlo simulations along with scaled 

experimental data from three cycles. 

 

 
Figure 6.6 Experimental data with simulation result with best fitting parameter subset. 
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6.3.3 Validation 
The data for validation were collected approximately three months after collection of the data 

for calibration. From the collection of the data for calibration to the collection of data for 

validation, the solids concentration had increased to 4.4 g VSS L-1 and the volumetric weighted 

mean of the granule/floc diameter had decreased from 100 μm to 70 μm. Since the model was 

describing a biofilm, the mass transfer phenomena were accounted for explicitly. This means 

that the microbial kinetic parameter values (e.g. KS values) in this model are solely describing the 

microbial metabolism, and not accounting for the effects of mass transfer limitation, which they 

otherwise do in suspended growth systems, as described by activated sludge models. It was 

therefore not expected that the kinetic parameter values would change when the mass transfer 

conditions were altered, which was the case from calibration (100 μm) to validation (70 μm). 

 

Table 6.4 Statistical tests for calibration and validation. 

  RMSE Janus 
coefficient (J) Model output Calibration Validation 

Ammonium 0.039 0.057 1.478 

Nitrite 0.366 0.173 0.473 

Nitrate 0.171 0.093 0.544 

 

The statistical tests in Table 6.4 show that the model fitted the data better for nitrite and nitrate 

during the validation. For ammonium the validation was slightly worse compared to the 

calibration, which was also found in the SBR calibration reported by Ganigue et al. (2010). These 

trends can also be observed in the graphs in Figure 6.7. It could be caused by the smaller amount 

of data being used in validation compared to the calibration. However, the results of RMSE 

calculations were within the same order of magnitude in calibration and validation, and the 

Janus coefficients were relatively close to 1 for all the three outputs, which implied a good 

model fit. No change in the model structure from the calibration to the validation could 

therefore be assumed.  

Since both the data for calibration and validation were collected in the same reactor the extent 

of the validity of the model remains within this reactor. If the model should be applied to other 

reactor systems a new validation should be performed. 
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Figure 6.7 Scaled validation simulation result along with the scaled experimental data. 

 

This approach proves suitable for obtaining a model, which can successfully capture the 

performance of the system. However, interpreting the meaning of the new values of the 

calibrated parameters might not be possible, since a pragmatic brute force method was used. 

The objective of the calibration is thus of great importance. This calibration procedure can 

therefore be applied to other autotrophic nitrogen removing systems as a systematic approach 

to guide the calibration efforts, however, the calibrated parameter values themselves should be 

transferred with care. 

 

6.4 Conclusions 
The presented calibration procedure is the first customized procedure for this type of system 

and contributes to achieve a fast and effective model calibration. An efficient initialization 

approach was developed to approximate pseudo steady-state in the biofilm system by 

simulating 1000 days of continuous operation followed by the much more dynamic SBR 

operation. For the kLa estimation, long-term performance data of removal efficiencies and the 
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stoichiometry of autotrophic nitrogen removal reactions were used as novel evaluation criteria. 

This resulted in a calibrated kLa value of 524 d-1. Second, a subset of microbial kinetic parameters 

was calibrated to dynamic data collected during SBR cycles by a pragmatic Monte Carlo based 

model fitting method, which needed iteration until satisfactory results were obtained. Finally, 

the model was successfully validated and will serve a useful tool for: a) design of future lab-scale 

experiments, and b) prediction of process performance, which is important in future process 

optimization, control applications, and up-scaling. 
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7 Development of novel control strategies: 
A process oriented approach 

 

Summary 

In this contribution, a new process oriented approach was used to develop, evaluate and 

benchmark control strategies to ensure stable operation and rejection of disturbances. Three 

control strategies were developed: a feedforward control (control strategy 1 – CS#1), a rule-

based feedback control (CS#2), and a feedforward-feedback controller, in which the feedback 

loop updates the set point of the feedforward loop (CS#3). The CS#1, based on influent 

measurements, was giving the best performance against disturbances in the ammonium 

concentration, whereas the CS#2 was providing the best performance against disturbances in 

the readily degradable organic carbon concentration. The CS#3 rejected both disturbances 

satisfactorily. Thus, this controller provided versatility towards disturbance rejection, at the 

expense of a slightly larger offset in the controlled variable, which was the removal efficiency, 

and a slightly more complex control structure. 
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7.1 Introduction 
The automatic control of bioreactors utilizing mixed cultures, such as single-stage CANR, is 

challenging given their highly nonlinear behavior, interactive dynamics, and variations in the 

influent (flow rate, composition, temperature, etc.). Furthermore, only a few actuators are 

usually available to reject disturbances and maintain a stable operation, which is complicated 

due to competing microbial groups. In this context, advanced control can improve the process 

performance: i.e. nonlinear controllers, such as gain scheduling, are suitable to address the 

nonlinear behavior of the bioreactor, or model predictive control (MPC) can tackle the 

relationships between the multiple microbial groups. However, the development of such 

advanced control strategies in bioreactors is usually hindered by the low accuracy of models 

describing the microbial metabolism, the long simulation times required to solve such models, 

and by the complexity of such controllers (Olsson, 2011). In this respect, the simplicity of a 

controller is an important characteristic in a bioreactor, since it is likely that frequent 

maintenance will be needed as a result of variations in the feed, seasonal variations, and even 

because of microbial evolution. Hence, a tradeoff must be achieved between efficient control 

and monitoring tools on the one hand and simplicity on the other hand, in order to ensure the 

success of the control strategy. 

Previously, several control strategies for the two-stage CANR process have been developed and 

tested (i.e. Volcke et al., 2007). However, results cannot be directly transferred to the intensified 

single-stage system, since fewer actuators are available and the process dynamics are more 

complex. This is a common issue faced in intensified systems (Nikacevic et al., 2012). For single-

stage treatment, pH (Wett, 2007) and ammonium and nitrate measurements (Christensson et 

al., 2013) have been used as measured variables providing the necessary on-line data to control 

the DO concentration. Yet, these strategies only tackle the regulation of the process, not the 

performance. As a result, no strategies have so far aimed at directly controlling the nitrogen 

removal efficiency. 

In the previous modeling study in chapter 4, the oxygen to ammonium loading ratio (RO), as 

opposed to the concentration ratio or solely the DO concentration, was identified as a key factor 

for securing a high removal efficiency and conversion rate, while avoiding growth of undesired 

microbial groups. A similar finding was made by Kwak et al. (2012). Additionally, ranges of ratios 

of nitrogen species, consumed or produced in the process that indicate a suitable operation, 

have been formulated based on reaction stoichiometry and process knowledge (Mutlu et al., 

2013). Among these, a ratio between the ammonium removal and the total nitrogen removal 
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(RAmmTot) has been formulated as a measure of the relative activity of microbial groups present in 

the system (eq. 6.2). 

The aim of this work was to design a control system through a systematic process oriented 

approach, for a single-stage treatment system, by utilizing process insights obtained from 

previous model and experimental studies. This has been illustrated through numerical 

simulations of a continuously operated reactor system, utilizing the experimentally calibrated 

and validated model from the previous chapter 6. The objective of the controller was to keep 

the intensified process at a stable and efficient performance during disturbances in influent 

composition and set point changes. 

 

7.2 A process oriented approach to controller design 
The controllers were developed by following a step-wise procedure consisting of the following 

steps (Figure 7.1): The first step was the definition of the control objective, in which the specific 

aim of the controller was specified. This was then followed by a variable analysis and degrees of 

freedom analysis, where the measurements and actuators available were specified. 

Subsequently, the controlled and manipulated variables were identified from the analysis result 

generated in the previous step. Once these were identified the control structures were 

formulated, followed by a definition of the control laws, which concluded the controller design. 

Finally, the simulation scenarios and evaluation criteria were defined. The entire workflow can 

be viewed in Figure 7.1. Each step of this procedure applied to the CANR process is explained in 

more detail below. 

 
Figure 7.1 Workflow used for controller development. 
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Step 1 - Objective 

In line with the aim of the work, the objective of each controller was to obtain a high and stable 

nitrogen removal efficiency. 

 

 
Figure 7.2 Reactor system scheme indicating potential MVs (dashed blue lines) and measured variables 

(dashed red lines). 
 

 

 

Table 7.1 Variable analysis. MV = Manipulated variable, CV = Controlled variable. 

Variable Unit  Candidate for:  Description 
Qout  L d-1  MV  Reactor outflow 

Heating  W  MV  Electrical heating jacket 
Mixer  rpm  MV  Electrical motor for rotor 
kLa  d-1  MV  Oxygen mass transfer coefficient 

NH4
+

out  mg N L-1  CV  Effluent ammonium concentration 

NO2
-
out  mg N L-1  CV  Effluent nitrite concentration 

NO3
-
out  mg N L-1  CV  Effluent nitrate concentration 

DO bulk  mg COD L-1  CV  Dissolved oxygen concentration in bulk 

pH  -  CV  pH in the bulk liquid 
T  ⁰C  CV  Temperature in the bulk liquid 
RT  -  CV  Total nitrogen removal efficiency 

RAmmTot  - CV Ammonium to total nitrogen removal – metric 
of relative activity of microbial groups 

NH4
+

in  mg N L-1  Disturbance  Influent ammonium concentration 

SS  mg COD L-1  Disturbance  Influent organic carbon concentration 
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Step 2 - Variable analysis 

The potential controlled variables (CVs) and potential manipulated variables (MVs) can be seen 

in Figure 7.2, where sensors and actuators are indicated in red and blue, respectively. 

Descriptions of these, along with a description of the disturbances in the system, are provided in 

Table 7.1.  

The removal efficiency (RT) in Table 7.1 is defined similarly as the evaluation criteria in the 

previous chapter in eq. 6.5, however here it is given as a fraction instead of in percent. It is 

calculated as the total nitrogen removed (ΔTN) over the total nitrogen in the influent (TNin), and 

is thus a combination of measurements of influent and effluent composition concentrations: 

  

 4,in 2,in 3,in 4,out 2,out 3,out

in 4,in 2,in 3,in

NH NO NO NH NO NOTNRT
TN NH NO NO

 (7.1) 

 

 

And RAmmTot is the ammonium removal over the total nitrogen removal, as defined previously in 

chapter 6. However, since in this chapter a continuous operation was considered, it was 

calculated as a combination of influent and effluent measurements of nitrogen species 

concentrations: 

  

  4,in 4,out4
AmmTot

4,in 2,in 3,in 4,out 2,out 3,out

NH NHNH
R

TN NH NO NO NH NO NO
 (7.2) 

 

 

The concentrations of ammonium and organic carbon were identified as the two main 

disturbances. From practical experiences, these are the disturbances that show most variation 

and which are most frequently observed in side-streams originating from dewatering of 

anaerobic digestion sludge, along with changes in flow rate and temperature of the stream. 
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Step 3 - Control degree of freedom analysis  

Four potential actuators (MVs) were identified in the system; namely the effluent pump, the 

mixer, the electrical heating jacket, and the air supply (Figure 7.2 and Table 7.1). The influent 

stream was assumed to originate from a sludge digester upstream and was therefore a 

disturbance to the system through variations in the influent concentrations. The effluent pump 

was assumed to perfectly control the level, and thus the HRT in the reactor at a given set point 

(a good assumption considering that flow variations are several orders of magnitude faster than 

the reactions catalyzed by the microbial groups active in the CANR process). The heating jacket 

was assumed to perfectly control the temperature. The impact of mixing on the mass transfer 

conditions was previously established through a semi-empirical relation (Nicolella et al., 1998; 

Vangsgaard et al., 2012). However, a certain amount of shear should be supplied in order to 

trigger granule formation, but at the same time should not be so high that the granules 

disintegrate (Tay et al., 2006). How much shear force is needed, and how this is related to the 

mixing conditions, is not yet fully established (Vlaeminck et al., 2012), hence the mixer was not 

considered a suitable actuator. Consequently, it was concluded that the only available actuator 

for control was the air supply. For simplicity, this manipulated variable was represented by the 

oxygen mass transfer coefficient, kLa, in the model simulations. 

 
 

Step 4 - Identification of controlled variable 

Since only one MV was available, pairing it with an appropriate CV was of essential importance. 

The measured variables are indicated on Figure 7.2 and in Table 7.1, and at a first glance the 

obvious CV candidate is DO or failing that, the effluent concentrations of the nitrogen species 

ammonium, nitrite or nitrate. However, DO, which is often used as a CV in biological nitrogen 

removal in wastewater treatment (Olsson, 2012; Åmand et al., 2013; Christensson et al., 2013), 

was not a suitable CV in this case, since its concentration was very low in the reactor, i.e. often 

below the detection limit. Besides, none of the aforementioned variables could be directly 

related to nitrogen removal efficiency due to the complexity of the intensified process. Hence, 

RT, which is a function of both influent concentration and effluent concentration measurements, 

was proposed directly as the CV. 
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Figure 7.3 Layout of the three control strategies. A) Case 1: Feedforward control, B) Case 2: Rule based 

feedback control, and C) Case 3: Feedforward-feedback control. 

 

Step 5 - Control structures 

As a consequence of the variable analysis, three control strategies were developed with RT as 

the CV and kLa as the MV. They are presented in detail below. 

Control strategy 1 (CS#1): The first strategy identified was a feedforward control (Figure 7.3A) 

based on the optimal oxygen to ammonium volumetric loading ratio (RO). This strategy was 

inspired by the findings from previous simulation studies from chapter 4. The optimal RO can be 

seen in Figure 7.4, where the efficiency is plotted as a function of RO. Operating below the 

optimal ratio leads to ammonium accumulation and the overall removal being limited by AOB 

activity. Above the optimal ratio nitrite and/or nitrate accumulates and the removal efficiency is 

compromised by NOB growth and/or AnAOB inhibition. 

Assuming that the bulk oxygen concentration was always zero (or below the detection limit), the 

oxygen to ammonium volumetric loading ratio can be expressed by the following equation: 

 2 L O2,satO

NH4 4,in

k a SL
RO

L NH / HRT
    (7.3) 
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Figure 7.4 Nitrogen removal efficiency (RT) represented as a function of the volumetric oxygen to nitrogen 

loading ratio (RO). Simulation results based on the calibrated and validated model from chapter 6. The 
green point indicates the optimal RO value. 

 

Control strategy 2 (CS#2): The second control strategy (Figure 7.3B) consisted of a feedback loop, 

where the control action was determined by the offset in removal efficiency (e(t) = RTsp-RT(t)) 

and the value of RAmmTot was used to diagnose the system. The rationale behind the introduction 

of RAmmTot was the following: The offset from the optimal removal could be caused either by an 

excess oxygen supply or a lack of oxygen supply (Figure 7.4). Therefore, a criterion was needed 

to establish the cause of the removal efficiency offset. A value above the set point of RAmmTot 

indicated nitrite or nitrate accumulation leading to a lower total removal efficiency (Figure 7.4 

and 7.5). The oxygen supply should therefore be decreased in order to return to a balanced 

activity state. If the RAmmTot value was below the set point value, the activities were balanced, but 

there was an excess of ammonium. Hence, aeration should be increased, such that more 

ammonium could be removed and thereby increase the efficiency. The relation between RAmmTot 

and the oxygen to nitrogen loading ratio can be seen in Figure 7.5, where the set point value is 

also indicated. 
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Figure 7.5 RAmmTot as a function of the volumetric oxygen to nitrogen ratio (RO). Simulation results based 
on the calibrated and validated model from chapter 6. The green point indicates the set point value of 

RAmmTot. 
 

Control strategy 3 (CS#3): The third control strategy (Figure 7.3C) was a feedforward-feedback 

control system, where the feedback loop updated the set point of the feedforward loop, 

merging the two strategies presented earlier. The RO feedforward control acted as the “slave”, 

and its set point was controlled by the “master” loop, where the offset in RT was the error and 

RAmmTot was deciding the direction of the action of the controller, analogously to the previous 

strategy (CS#2). 

 

Step 6 - Control laws 

The control law for CS#1 was derived from the steady-state model by isolating the kLa from the 

expression, and resulted in the following equation: 

 L O2,sat sp 4,in
sp L

4,in O2,sat

k a S RO NH
RO k a

NH / HRT HRT S
  (7.4) 

 

For the CS#2, a proportional-integral (PI) controller was implemented. With the RAmmTot deciding 

the direction of the control action, the expression became: 
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L AmmTot AmmTot,sp

I 0
L

L AmmTot AmmTot,sp
I 0

Kk a K*e(t) e(t)dt, R (t) R
k a(t)

Kk a K*e(t) e(t)dt, R (t) R
 (7.5) 

 

Controller tuning: The internal model control (IMC) rules were used to properly tune the 

controller parameters. To this end, the transfer function that relates the output (the removal 

efficiency) to the input (kLa) was first identified as follows: 

 RT

0.0061 0.101s 1 0.608s 1
G (s)

0.062s 1 0.541s 1 0.636s 1
  (7.6) 

 

The transfer function was approximated to a first-order-plus-delay model using the half rule 

defined by Skogestad (2003), resulting in the following transfer function: 

 
0.132s

RT
0.0058eG (s)

0.572s 1
    (7.7) 

 

Finally, using the IMC guidelines and selecting a moderate closed loop time constant (τC) 

(Skogestad, 2003) of 0.132 d, a value of the proportional gain of K = 371.3 d-1 was obtained and 

an integral time of τI = 0.572 d was found. In order to avoid chattering, a deadband above 95% 

removal was used in this case. 

 

The CS#3 consisted of the controller designed for CS#1 (eq. 7.4) as the slave controller, whose 

set point was obtained by the following proportional (P) controller: 

 sp, C AmmTot AmmTot,sp
sp

sp, C AmmTot AmmTot,sp

RO K *e(t), R (t) R
RO (t)

RO K *e(t), R (t) R
  (7.8) 

 

Controller tuning: The proportional gain, KC, was found as the inverse of the process gain to be 

norm|ΔRO/ΔRT|, from simulations of both a positive and a negative step change in the kLa value 
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in the open-loop system with no controller implemented. The gain value obtained from these 

simulations was 2 (mg O2 L-1 d-1)/(mg N L-1 d-1). 

A P controller was used in order to keep the controller as simple as possible. A deadband above 

95% was also implemented on the feedback controller in this case. 

 

Optimal set point values: The optimal set point values were obtained by deriving the optimal 

oxygen to nitrogen loading ratio by simulating a range of RO conditions with the validated model 

(see Figure 7.4 and 7.5). These resulted in the following set point values: ROsp,∞ = 1.66, RTsp = 

0.965, and RAmmTot,sp = 1.03. 

 

Step 7 – Simulation scenarios and control performance evaluation  

The validated model and the three control strategies were implemented and simulated in 

Matlab-Simulink.  

To test the flexibility of the control strategies and the capability of the controllers to recover the 

system performance, set point change simulations were conducted (sim#1 in Table 7.2). Here, 

the set points were changed as specified below and simulated until steady state was obtained, 

after which the original set point was re-established, and the response of the system returning 

to the original state was tracked. For the CS#1 a 5% increase and decrease of ROsp were 

simulated. For the CS#2, RTsp=0.9 was simulated, and for the CS#3 a 5% increase and decrease of 

ROsp,∞, both combined with RTsp=0.9 were simulated. 

 

Table 7.2 Simulation scenarios for controller evaluations. 

Sim # Simulation scenario Disturbances or changes 

1 Set point changes 5-10% changes in RTsp and/or ROsp depending on 
control structure 

2 Step changes ±10% influent ammonium concentration 
+100/200 mg COD L-1 

3 Dynamic influent Constant fluctuations in ammonium and readily 
degradable organic carbon influent concentrations 

 

For the controller performance evaluation, disturbance analyses were performed. In order to 

achieve this, step changes of the concentration of two compounds in the influent were 
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simulated, with two different levels of each (sim#2 in Table 7.2). For ammonium, a positive and 

negative perturbation were simulated in the form of a ±10% change in the default concentration 

of 500 mg N L-1, while concentrations of 100 and 200 mg COD L-1 were used for soluble readily 

degradable organic carbon (Ss) in the influent, where a default concentration of zero was 

otherwise used. These two compounds were the ones of major concern, since i) the main 

objective of the process was to remove nitrogen from the wastewater stream, and ii) the organic 

carbon concentration often shows large variations, leading to the growth of microbial groups 

which can comprise the granule structure, since they compete for substrates with the desirable 

microbial groups performing nitrogen removal.  

A more realistic test was carried out using an influent originating as the effluent from an 

anaerobic digester. The dynamic profile of the influent was obtained from the benchmark 

simulation model no. 2 (BSM2) (Jeppsson et al., 2007) (sim#3 in Table 7.2) and featured 

continuous variations of both ammonium and readily degradable organic carbon concentrations. 

The average ammonium concentration was normalized to 500 mg N L-1 and organic carbon to 

200 mg COD L-1 to be in ranges comparable to the step changes that were simulated earlier. 

The ability of the controllers to reject the disturbances and to cope with the set point changes 

were evaluated by the integral of the absolute error (IAE) criterion defined as follows: 

 
endt

0
IAE e(t)dt      (7.9) 

 

In all the three cases the error was the distance of RT from its set point, and the IAE was 

calculated during an operating time of 10 days.  

The cost of the change of the actuator was evaluated by the total variation (TV), which was 

calculated as follows: 

 
n

i 1 ii 1
TV u u      (7.10) 

where ui is the value of the MV and subscripts i and i+1 indicate consecutive sampling times. A 

measurement interval of 0.1 d was used. Scaled values of both IAE and TV will be presented. 
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7.3 Results and Discussion 

7.3.1 Set point change responses 
In Table 7.3 and Figure 7.6, it can be seen that the CS#1 was better at returning the system to its 

original performance than both the CS#2 and CS#3. Since the CS#1 is a feedforward controller, it 

is logical that it responds faster to an influent disturbance than the other controllers. However, 

for all simulated set point change scenarios, the control systems were generally able to bring the 

system back to its original performance within a few days of operation (Figure 7.6).  

 

Table 7.3 Response of the controllers to set point changes. 

Control strategy Initial condition            IAE     TV 

CS#1 
-5% ROsp 0.099 0.005 

+5% ROsp 0.081 0.007 

CS#2 RTsp=0.9          0.156   0.103 

CS#3 
   -5% ROsp and RTsp=0.9 0.126 0.018 

  +5% ROsp and RTsp=0.9 0.019 0.003 
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Figure 7.6 Responses of effluent concentrations and controlled variables to set point changes. A) CS#1 

response – full line corresponds to initial conditions being +5% ROsp and dashed line corresponds to -5% 
ROsp, B) CS#2 response, and C) CS#3 response – full line corresponds to initial conditions being +5% ROsp 

and RTsp=0.9, and dashed line corresponds to -5% ROsp and RTsp=0.9. 
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7.3.2 Input disturbances: step change analyses 
In Table 7.4 and Figure 7.7A, it can be seen that the feedforward control strategies from CS#1 

and CS#3 were handling the ammonium step change best, with the lowest IAE and TV values. 

This was due to the almost immediate response of these control strategies to the incoming 

disturbance through the feedforward loop. This is not so surprising, since the feedforward loop 

was designed to handle exactly this disturbance. 

However, the CS#2 control strategy also showed a better performance than the open-loop 

system with no control action. The deadband implementation can be seen in this case with the 

effluent ammonium concentration leveling off at a higher value than the initial concentration. 

Regardless, the concentration profile, within the first two days after the step changes, shows 

that the dynamic response of this control strategy was much slower and with a larger offset than 

for CS#1 and CS#3. 

The same trends can be observed when decreasing the ammonium influent concentration with 

10% (Table 7.4). 

Even though CS#1 comes out as the best strategy at handling ammonium concentration 

disturbances, it is important to note that in case of failure in the microbial conversion or in case 

of a model mismatch no action will be taken if this strategy is implemented. However, the two 

other strategies have a feedback loop to catch offsets in the performance, which will result in 

some sort of action in order to try to correct an offset, independent of the source of this offset. 

 

Table 7.4 Responses of the open loop and the three control strategies to ±10% step changes in the 
ammonium concentration and readily degradable organic carbon concentrations of 100 and 200 mg COD 

L-1 in the influent. The reported value of RT was obtained after 10 days of operation.  
Control 
strategy 

Disturbance IAE TV RT Disturbance IAE TV RT 

No 
control 

+10% NH4
+

in 2.708 - 0.890 100 mg COD L-1 0.344 - 0.954 

-10% NH4
+

in 2.975 - 0.881 200 mg COD L-1 2.532 - 0.877 

CS#1 
+10% NH4

+
in 0.068 0.002 0.964 100 mg COD L-1 0.406 0.003 0.951 

-10% NH4
+

in 0.085 0.002 0.967 200 mg COD L-1 2.463 3.6e-9 0.885 

CS#2 
+10% NH4

+
in 0.628 0.087 0.950 100 mg COD L-1 0.298 0.000 0.957 

-10% NH4
+

in 0.629 0.083 0.950 200 mg COD L-1 0.613 0.077 0.950 

CS#3 
+10% NH4

+
in 0.072 0.003 0.964 100 mg COD L-1 0.411 0.002 0.951 

-10% NH4
+

in 0.090 0.002 0.967 200 mg COD L-1 1.394 0.048 0.920 
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Figure 7.7 Responses of effluent concentrations and controlled variables to step changes. A) +10% in 

ammonium influent concentration, and B) +200 mg COD L-1 in the influent concentration. 

 

When simulating a disturbance scenario with an influent concentration of organic carbon of 100 

mg COD L-1, the increase in ammonium concentration in the effluent was lower than the removal 

of nitrate through the denitrification process catalyzed by heterotrophic bacteria. This meant 

that the removal efficiency was not negatively impacted (right side of Table 7.4), and the 

implementation of the control strategies did therefore not have a significant effect on the 

performance.  
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However, for an organic carbon concentration of 200 mg COD L-1, the competition for oxygen as 

electron acceptor between heterotrophs and nitrifiers became important when all nitrate was 

depleted by the heterotrophs after about 1 day (Figure 7.7B). The CS#1 controller failed to reject 

the disturbance, whereas CS#2 did a very good job of keeping a high removal efficiency by 

increasing the oxygen supply, thus providing sufficient oxygen to oxidize both the ammonium 

and the organic carbon (Figure 7.7B). Since the removal efficiency decreased, but the balance 

between the desired microbial groups was intact (RAmmTot was below its set point value), the 

oxygen supply increased in CS#2 and CS#3. As expected, CS#1 failed in handling this disturbance, 

since it was designed to only handle the disturbances in the ammonium concentration and not 

to act on any other disturbance. For CS#2, a new steady state was reached after about 5 days 

with an ammonium effluent concentration of 25 mg N L-1. This corresponds to the allowable 

concentration according to the deadband above 95%, when no other soluble nitrogen species 

were present in the effluent. The CS#3 controller showed a performance somewhere in between 

the CS#1 and CS#2, and thus rejected the disturbance to some extent, but not quite as well as 

the CS#2, as noted by the integral absolute errors shown in Table 7.4 and the longer time to 

reach a new steady-state (about 6-7 days) (Figure 7.7B). 

 

7.3.3 Controller response to dynamic influent profile 
The response of the system to the dynamic influent profile without any controller and with the 

three control strategies is reported in Table 7.5. The CS#1 controller showed a slight 

improvement in performance compared to operation without any controller, whereas CS#2 

showed a much better performance. CS#3 was, maybe not surprisingly considering the results of 

the step change analyses, the best strategy at rejecting simultaneous disturbances in ammonium 

and organic carbon influent concentrations with a slightly lower IAE value than CS#2. 

 

Table 7.5 Integral absolute error and total variance responses to 10 days of dynamic influent conditions. 

Control strategy Disturbance IAE TV 

No control Dynamic influent profile 2.680 - 

CS#1 Dynamic influent profile 2.637 0.137 

CS#2 Dynamic influent profile 0.556 0.569 

CS#3 Dynamic influent profile 0.546 0.187 
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As all of the strategies are considering the same actuator and controlled variable, the 

measurement equipment needed to practically implement them is the same. However, as the 

CS#1 does not require a measurement of the removal efficiency, this can be determined off-line 

which might reduce the operating costs. 

The control strategies presented here are novel for this process, since they are designed for an 

intensified system with limited actuator availability. Thanks to previous contributions, which 

assessed the operation of the reactor, it was possible to design control structures that addressed 

the regulation of the system while fulfilling the control objectives, by directly including the 

performance objective in the controller designs. The most promising strategy has been 

implemented at lab-scale and experimentally tested for validation (see chapter 8). 

 

7.4 Conclusions and outlook 
Three novel control strategies for a granular sludge bioreactor removing ammonium from high 

strength streams were developed using a systematic process oriented approach. The CS#1, a 

simple feedforward controller, was best at handling disturbances in the ammonium 

concentration as expected. The CS#2, a feedback controller, was best at rejecting disturbances in 

the organic carbon concentration in the influent. A combination of the two strategies, presented 

in CS#3, was able to reject both disturbances satisfactorily, albeit not as well as CS#1 and CS#2 

for ammonium and organic carbon, separately. Versatility toward disturbances could be 

obtained with the CS#3, at the expense of slower dynamic responses and a more complex 

controller structure. The performance of the CS#3 was also verified by using a dynamic influent 

profile from a realistic effluent from an anaerobic digester containing both ammonium and 

organic carbon disturbances, which resulted in a better performance of CS#3 compared to CS#2 

and CS#1. Hence the appropriate design will depend on the particular requirements of the 

process, and in particular on the disturbances originating in the upstream units, which should 

therefore be thoroughly investigated. In any case, implementing the CS#3 will ensure the safest 

operation. 
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8 Experimental validation of a novel 
control strategy 

 

Summary 

The feedforward-feedback control strategy developed in chapter 7 was adapted from 

continuous operation to SBR operation. The adaptation required model identification for the 

SBR process and retuning of the controller algorithm resulting in a new gain and new set points 

for the controller. The resulting strategy is called a batch-to-batch control strategy, since the 

feedback was provided after the conclusion of a batch cycle. The strategy was experimentally 

tested in a lab-scale SBR through set point changes and disturbance rejection experiments. 

Compared to the manual operation mode, with a constant air supply, the performance was 

significantly improved for disturbances in the influent ammonium concentration. Comparing the 

previous numeric simulations with the experimental setup, the results obtained were 

qualitatively similar. Therefore, with the insight obtained from the prior simulation studies, it 

was possible to implement and start up the controller fast and efficiently compared to the 

traditional experience-based trial and error approach for controller operation and tuning. During 

the testing, a slight retuning of the controller was needed in order to avoid oscillatory behavior 

under high ammonium loading rate conditions. The successful validation of the controller in the 

lab-scale reactor is a promising result which brings this control strategy one step closer to full-

scale implementation. The results also add credit to the systematic model-based approach at 

large, which has been used to develop and optimize the controller for the system. 
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8.1 Introduction 
Operating a single-stage CANR system in a stable and efficient manner requires an appropriate 

control strategy. This has typically been developed and operated through an experience-based 

approach (Vlaeminck et al., 2012). In this study, an alternative approach is presented in which a 

control strategy is developed following a systematic and methodological approach that employs 

modeling and simulation studies together with control theory and experimentation in a 

synergistic manner. 

In the previous chapter 7, a feedforward-feedback control strategy was found to be the most 

versatile among the three designed controllers, and hence the best strategy at handling 

disturbances coming to the system. It was therefore decided to test this control strategy in a lab-

scale SBR. The control strategy developed for a continuously operated system was modified to 

fit the sequential batch operation, as described in the materials and methods section of this 

chapter. 

The goal of the experimental testing of the controller is to validate that the control strategy can 

reject disturbances in the influent while maintaining a stable (and efficient) performance of the 

nitrogen removal. This is done by subjecting the lab-scale reactor to designed perturbations in 

the operation while monitoring the resulting effect on the performance of the system. The 

controller is evaluated by comparing the results of the controlled system to the reference 

operation mode of the reactor that uses a manual controller, in which the oxygen supply rate is 

kept constant. 

 

8.2 Material and methods 

8.2.1 Reactor features and operation 
One of the two lab-scale reactors described in chapter 2 was used for the experimental work. It 

had a volume of 4 L, was fed with synthetic wastewater, and was operated in a sequential batch 

manner in cycles of 8 hours. They consisted of a 10 minute fill phase, a 447 minute reaction 

phase, a 3 minute settling phase, a 10 minute draw phase, and a 10 minute idle phase. 
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8.2.2 Measurements and actuator 
Effluent measurements of ammonium and nitrate were available on-line through the ion 

selective electrodes, while influent concentrations and nitrite effluent concentration were 

measured by manual sampling and subsequent use of colorimetric test kit analyses. The 

measured DO concentration was available on-line during the reaction phase of the SBR cycle. 

The actuator, considered in the modeling investigation in the previous chapter, was the kLa of 

oxygen. In the physical setup, the air was supplied through a mass flow controller (MFC) and the 

setting of this MFC was therefore considered the actuator in the experimental laboratory 

implementation. 

 

8.2.3 Structure of the controller  
With the composition measurements of the influent and the effluent concentration only being 

available once per cycle and the nature of the operation being different when comparing a 

continuous system – used in chapter 7 – to an SBR, a batch-to-batch type controller was 

constructed, in which the feedback was provided after the conclusion of a batch cycle, and the 

feedforward was active once per cycle during the fill phase, when the influent was pumped to 

the reactor (Figure 8.1). This resulted in the aeration (i.e. the kLa value), manipulated by the 

controller, changed once per cycle. 

The calculations used in the controller were modified slightly compared to the strategy 

developed for continuous operation presented in the previous chapter. All modified expressions 

are presented below. 

The volumetric oxygen loading to the system during one cycle was calculated as: 

 aer,g
O2,g L g O2,sat

cycle,g

t
L k a S

t
    (8.1) 

where the subscript g denotes the number of the cycle, taer,g is the length of time that aeration is 

turned on during cycle g, and tcycle,g is the length of the entire cycle. 

Likewise, the volumetric ammonium loading rate was defined as: 

 4,in,g 4,out,g 1
NH4,g

cycle,g

NH ER NH 1 ER
L

t
   (8.2) 
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where 4,in,gNH is the concentration of the influent being pumped in during the fill phase of cycle 

g, ER is the volumetric exchange ratio, defined as the volume leaving the reactor at the end of 

the cycle divided by the entire volume of the reactor when full, and 4,out,g 1NH is the effluent 

concentration of the cycle before cycle g, i.e. g-1. 

The oxygen to ammonium loading rate ratio thus looked as follows: 

 L g sat,O2 on,g
g

4,in,g 4,out,g 1

k a S t
RO

NH ER NH 1 ER
   (8.3) 

 

The feedforward control law therefore became: 

 sp,g 4,in,g 4,out,g 1
L g

sat,O2 aer,g

RO NH ER NH 1 ER
k a

S t
  (8.4) 

 

The removal efficiency was calculated as presented earlier in chapter 6. Its value was updated 

once per cycle, resulting in the following expression: 

 g 4,in,g 2,in,g 3,in,g 4,out,g 2,out,g 3,out,g
g

in,g 4,in,g 2,in,g 3,in,g

TN NH NO NO NH NO NO
RT

TN NH NO NO
 (8.5) 

 

RAmmTot, the metric capturing the relative activity of the microbial groups, was defined as: 

4,start ,g 4,out,g
AmmTot,g

start ,g out,g

4,in,g 4,out,g 1 4,out,g

4,in,g 2,in,g 3,in,g 4,out,g 1 2,out,g 1 3,out,g 1 4,out,g 2,out,g 3,out,g

NH NH
R

TN TN

NH ER NH (1 ER) NH

NH NO NO ER NH NO NO 1 ER NH NO NO

 (8.6) 

 

The feedback control law, correcting the oxygen to ammonium loading rate ratio, takes the 

removal efficiency and the RAmmTot value from the previous cycle into account: 
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sp, C sp g AmmTot,g AmmTot,sp

sp,g 1
sp, C sp g AmmTot,g AmmTot,sp

RO K * RT RT , R R
RO

RO K * RT RT , R R
 (8.7) 

where KC is the proportional gain, whose value was selected as the inverse of the steady-state 

gain between the manipulated RO and the controlled variable RT. It was therefore found as 

|ΔRO/ΔRT| in simulations of a step change in the kLa value. The value obtained from this 

exercise was 2 (mg O2 L-1 d-1)/(mg N L-1 d-1). 

The control structure, and the relation between the cycle number, data acquisition and 

controller action can be seen in Figure 8.1. 

REACTORInfluent Effluent

prev. cycle
n=g-1

REACTOR Effluent

current cycle
n=g

REACTOR
Influent

Effluent

kLa

next cycle
n=g+1

Influent

RTC2

RRT

RTC1<

ROC

Feedback
loop

DO

 
Figure 8.1 Structure of the controller. n is the cycle number, RRT is the RAmmTot transmitter, RTC1 and RTC2 

are the removal efficiency controllers (1 indicating a positive control action and 2 indicating a negative 
control action), and ROC is the oxygen to ammonium loading ratio controller. 

 

A new feature which can also be seen in Figure 8.1, is the usage of the DO signal. It was 

implemented as an override loop in the following proportional manner: 
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1

L 2
L 1

L C,DO 2

k a DO 0.2mgO L
k a

k a K DO 0.2 DO 0.2mgO L
  (8.8) 

 

This extra loop ensured that the aeration intensity was decreased in case the DO rose above 0.2 

mg O2 L-1 in the bulk liquid. The value of KC,DO was set to 130 d-1 (mg O2 L-1)-1. Negative kLa values, 

obtained from this calculation, were set equal to zero, meaning a complete stop of the aeration, 

which happened around a DO concentration of approximately 2 mg O2 L-1 depending on the 

original value of kLa during the given cycle. 

From the control laws presented above, a kLa value was obtained. This had to be translated to a 

valve setting, in percent, for the mass flow controller. As nicely illustrated by Åmand et al. 

(2013), the relationship between kLa and air flow rate (Qair) is not always linear, neither between 

air flow rate and valve setting. The following exercise was therefore done to find an appropriate 

relationship between the kLa and the valve setting. 

First, an empirical correlation was used to check the relation between the air flow rate and the 

oxygen mass transfer coefficient (Van’t Riet, 1979). 

 
0.4

0.5
L s

Pk a 0.026
V

    (8.9) 

where (P/V) is the power to volume number and υs is the superficial gas velocity. Both P and υs 

are proportional to Qair, which results in kLa being proportional to Qair
0.9. 

Using this correlation, it was found that within the air flow range used in the reactor operation, 

the relation was very close to linear (R2=0.98).  

A linear relationship between Qair and kLa, based on the value obtained in the steady state 

calibration in chapter 6 and an interception at (0,0), was therefore assumed (Figure 8.2). 
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Figure 8.2 Linear relationship between air flow rate (Qair) and oxygen mass transfer coefficient (kLa). 

 

The next step was to relate the air flow rate to the setting of the mass flow controller. This was 

done through an experimental calibration, where two ranges were identified, an upper range 

and a lower range. A piece-wise linear relation consisting of two linear ranges was therefore 

established (Figure 8.3).  

 

 

Figure 8.3 Piece-wise linear relationship between air flow rate (Qair) and mass flow controller setting. 
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By combining the relations shown in Figure 8.2 and 8.3 a relationship between kLa and the MFC 

setting was obtained.  

For the data acquisition and control purposes LabVIEW (National Instruments, Austin, TX, USA) 

was used, and the control algorithm was therefore also coded in a LabVIEW routine, which 

controlled the reactor operation. 

 

Since the influent ammonium and effluent nitrite concentrations were measured manually, their 

values were updated for two out of the three 8 hour cycles per day. For the third cycle, during 

the night, the values obtained from the second cycle of the day were used. The effluent 

ammonium and nitrate concentrations were updated every cycle, because they were 

continuously logged on-line. 

 

8.2.4 Design of control performance experiments 

Set point change 

In order to first check that the controller could perform set point tracking, a set point change in 

which RTsp was set to 0.7 for a period of 8 days followed by a set point increase to RTsp=0.925 

was employed to bring the performance back to the starting point. During the set point change 

experiment taer was 390 minutes, which was distributed on three aerated phases of 130 minutes 

each.  

 

Disturbance in feed  

Feed concentration disturbances were performed with the shape of a square signal, i.e. an 

increase followed by a decrease back to the original level in ammonium concentrations. One 

experiment was conducted with the reference reactor operation (actuator value fixed) and one 

experiment was conducted with the controller active. The ammonium concentration was 

increased approximately 20% from around 500 mg N L-1 to around 600 mg N L-1 for one day, i.e. 

during three SBR cycles. The reactor was continuously aerated during the reaction phase, which 

resulted in taer= 447 minutes. 
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Dynamic influent profile 

A dynamic influent profile was imposed to the system during five days, in which the influent 

concentration ranged between approximately 400 mg N L-1 and 700 mg N L-1 and changed once 

per day (Figure 8.4). After these disturbances in the feed, the influent ammonium concentration 

was restored to a level around 500 mg N L-1, and the reactor was operated with this influent for 

10 days in order to allow a more long-term monitoring of the system performance. As in the 

disturbance in the feed experiment, the reaction phase was continuously aerated during the 

dynamic influent experiment, such that taer= 447 minutes. 

 
Figure 8.4 Dynamic influent concentration profile during the long-term experiment. 

 

Controller settings 

During all experiments, RAmmTot,sp = 1.15 was used. This value was obtained from long-term 

observation of the lab-scale reactor prior to the start of the controller validation experiments 

(Figure 8.5). The steady state set point value of the oxygen to ammonium loading ratio was 

found through simulation studies to be ROsp,∞ = 1.67 (mg O2 L-1 d-1)/(mg N L-1 d-1). During the 

disturbance introduction experiments RTsp = 0.925 was used, however this value was readjusted 

to 0.90 during the dynamic influent profile experiment on the basis of experimental 

observations showing that the maximum removal efficiency produced by the system never 

reached higher than 0.90. 
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Figure 8.5. Reactor operational data from before the controller experiments were conducted. From this 

the set point values of RAmmTot and RT were obtained. 

 

8.3 Results 

8.3.1 Set point change response 
The performance of the reactor was relatively stable before the implementation and testing of 

the controller (Figure 8.5 and 8.6). At day 2 of the experiment the controller was implemented, 

and the performance dropped to a lower level where it stabilized within 1-2 days (Figure 8.6). 

The set point was increased on day 10 of the experiment, and, apart from a point accounted for 

by an operational upset due to a pump failure on day 11, the performance went back up to the 

initial level of around 89% within one day. 

However, when the low set point of RTsp = 0.7 was used, the offset was rather significant. A 

slight retuning of the controller was therefore introduced by increasing the proportional gain of 

the controller, first from 2 to 3 (mg O2 L-1 d-1)/(mg N L-1 d-1) and later from 3 to 4 (mg O2 L-1 d-

1)/(mg N L-1 d-1). Subsequently, the performance leveled off at a TN removal of 82%, which 

showed an offset from the set point of 70%, but still showed a significant change in the 

performance from the reference operation achieved before the controller implementation 

(Figure 8.6). The significant offset was caused by the proportional-only control law, which results 

in a significant steady state error, regardless of the controller gain. 
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Figure 8.6 Set point change experiment. Evolution of controlled and manipulated variables as a function of 
time. The vertical dashed black line indicates the transition from reference operation to operation with an 

active controller. The vertical grey dashed lines indicate the fine tuning of the controller gain. 

 

8.3.2 Responses to influent ammonium disturbances 
During the manual operation (the MFC set point being a constant value (Figure 8.7, bottom)), it 

was observed that the increase in ammonium concentration in the influent propagated to the 

effluent (Figure 8.7, top). Concurrently, the nitrate concentration dropped slightly. In the 

controlled case the ammonium concentration remained low throughout the experiment, but the 

nitrite concentration increased a bit and varied between 0 and 10 mg N L-1 (Figure 8.7, top). The 

fluctuations in effluent concentrations were reflected in the larger offset in the removal 

efficiency in the reference operation case than in the controlled case (Figure 8.7, bottom). In the 

controlled case, it was observed that the actuator set point was lowered when the value of 

RAmmTot exceeded its set point value, e.g. in cycle two and eight, counting from the start of the 

experiment. Finally, the effect of the DO override loop could also be observed in the second 

cycle, in the end of which the MFC value decreased (Figure 8.7, bottom), because the DO 

concentration went above 0.2 mg O2 L-1. This coincided with a very low (practically zero) effluent 

ammonium concentration, which confirmed that the DO increased due to oxidation of all 

present ammonium before the end of the reaction phase. 
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Figure 8.7 Top: Influent and effluent concentrations during the disturbance introduction experiment. 
Bottom: Evolution of the controlled and manipulated variables as a function of time. Full lines: 

Experiments conducted with constant MFC setting. Dashed line: Experiment with controller implemented. 
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8.3.3 Dynamic influent response 
In order to test the stability and long-term effects and impacts of the control strategy, a dynamic 

influent profile was imposed to the reactor with implemented controller, and it was observed 

for 15 days. 

The results showed that the removal efficiency was not optimal in the beginning of the 

experiment, with a bit of ammonium remaining in the effluent (Figure 8.8, top). This effluent 

ammonium concentration was quickly reduced despite the fluctuations in the influent 

concentration, thus demonstrating that the controller could quickly produce a good and stable 

effluent quality under varying load conditions. At day 4 of the experiment, the influent 

concentration increased to 735 mg N L-1, which resulted in an increase in the ammonium 

effluent concentration. Subsequently, the nitrite concentration increased and fluctuated 

between 5 and 45 mg N L-1 for the following 3 to 4 days. During this time the nitrate 

concentration reached a lower level than in the beginning of the experiment and after this 

period it increased slightly again. 

As a consequence of, mainly, the effluent concentration variations, the total nitrogen removal 

efficiency dropped at day 4 of the experiment (Figure 8.8, bottom). Since both ammonium and 

nitrite were present in the effluent, it could be deduced that AnAOB activity was not sufficient to 

keep a high removal efficiency. There could be two reasons for this: 1) The maximum capacity of 

the sludge present in the reactor was reached, and the biomass did not have enough time to 

grow to produce sufficient biomass to convert all ammonium and nitrite present, or 2) due to 

the higher oxygen supply (Figure 8.9), the AnAOB were oxygen inhibited to some extent, despite 

the fact that the DO bulk level never reached detectable concentrations during this part of the 

experiment. Studies have shown AnAOB inhibition at concentrations as low as 0.2 mg O2 L-1 

(Jung et al., 2007). From these results, it cannot be deduced whether it was insufficient AnAOB 

capacity, AnAOB inhibition, or a combination of the two, which was responsible for the observed 

efficiency decrease. Despite the drop in removal efficiency on day 4 of the experiment, the total 

nitrogen removal rate was higher, than in the beginning of the experiment, during this day of 

operation, due to the higher loading rate (Figure 8.9). 

The oscillations in nitrite concentrations from day 4 to 8 of the experiment initiated oscillations 

in RAmmTot around the set point value (Figure 8.8, bottom). This in turn caused oscillations in the 

set point of the actuator (the MFC set point which varied from cycle to cycle). These oscillations 

were reflected in the oxygen to ammonium loading ratio and in the oxygen loading rate (Figure 

8.9).  
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Figure 8.8 Top: Influent and effluent concentrations during the dynamic influent experiment. Bottom: 
Evolution of controlled and manipulated variables as a function of time. 
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Figure 8.9 Ammonium and oxygen volumetric loading rates, the ratio between the two loading rates (RO), 
and ammonium and total nitrogen removal rates as a function of time. 
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especially anammox bacteria), where the reference reactor operation with fixed MFC value 

would fail. The controller was also able to perform set point tracking albeit with a significant 

offset.  

 

The controller performance: Comparison with simulation results 

Qualitatively, similar trends can be observed between the experimental results from the influent 

ammonium concentration perturbations both with the controller and with the reference 

operation (Figure 8.7) and the simulation results (Figure 8.10) of the same influent profile. 

Seeing how the trends agree between experiments and simulation emphasizes the usefulness of 

the simulation based development methodology used throughout this thesis. 

However, of notable deviations between experiments and simulation results, it can be observed 

that the response in the ammonium effluent concentration, and hence also the response in 

removal efficiency, with reference operation, was faster in simulation (Figure 8.10) than in the 

experimental observations (Figure 8.7). This leads us to speculate that there might be a practical 

time delay, which is not included in the model, e.g. caused by probe response time or due to a 

lag in bacterial activity, when exposed to changing operating conditions, like in the SBR 

operation or during intermittent aeration, which has previously been observed (Katsogiannis et 

al., 2003; Zhang et al., 2011; Wett et al., 2013). Including such phenomena in the model is 

therefore expected to result in a better agreement between model and simulations (as in 

Vanrolleghem et al., 2004), and will thus further refine the quality of the model. A better and 

more correct estimation of the time constants and delays in the system is therefore expected to 

result in a better controller tuning and thus a better performance. 

Secondly, a difference in the level of nitrate concentration could be observed, with the 

concentration in the experimental observations being higher than the simulation results. This is 

likely due to the estimated heterotrophic denitrification rate being higher in simulation than in 

the reactor during the experiments. The lower amount of HB activity also affects the values of 

RTsp and RAmmTot,sp, which were, precisely for this reason, based on experimental observations 

from about a month before the start of the experiments (see Figure 8.5 in the Materials and 

methods section), instead of directly based on the values obtained from simulation. 

 

160



Chapter 8 – Experimental validation of a novel control strategy 

149 
 

 

Figure 8.10 Top: Simulation results showing influent and effluent concentrations during an influent 
disturbance introduction. Bottom: Simulation results of the controlled and manipulated variables 

matching the influent disturbance introduction. 
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offsets, as in this proportional controller case, a model mismatch can result in either a higher or 

lower steady state offset than expected from previous model simulations. The steady state 

offset observed here was slightly higher than expected from model simulations, which indicates 

a slight model mismatch. One way to handle this difference and to overcome an undesired large 

offset could be to implement an integral term in the feedback loop, instead of having a purely 

proportional feedback action. However, the practical implementation of this in the batch-to-

batch control operation is not straightforward without a sound anti-reset windup strategy, since 

the meaning of the error integration between batch cycles is not completely clear. It was 

therefore not tested here but is an obvious point of future investigations. For now the 

proportional controller was deemed sufficient, because offsets from the removal efficiency set 

point could be tolerated, as the effluent from reactors using this technology is most often 

recycled back to the main stream treatment, and not directly discharged, and does therefore not 

have to live up to any strict discharge limits. 

 

Sensor equipment 

A practical issue faced in this study was related to the fact that influent ammonium and 

especially effluent nitrite concentration values were only updated for two out of three cycles. In 

cases where the nitrite concentration varied from cycle to cycle, only updating the controller 

two out of three times did not help to decrease the oscillatory behavior (Figure 8.8), and very 

likely it even worsened them. On-line measurements of nitrite, e.g. from on-line UV light 

absorption measurements (Rieger et al., 2004) or by ion selective electrodes (Kaelin et al., 2008), 

is expected to improve the controller performance. It is however, not quite common practice to 

use nitrite sensors in large scale facilities yet, as they require a high amount of maintenance 

(Kaelin et al., 2008), but this type of equipment is expected to become more widely used within 

the coming years. 

 

Feedback vs. feedforward loop 

Since only disturbances in ammonium influent concentration were tested in this experimental 

study, one can argue that only the feedforward part of the controller was tested. However, 

disturbances originating from within the process were handled by the feedback loop, as 

happened in the dynamic influent profile experiment following the instability issue. Also, the 

feedback loop ensured correction of the set point of the actuator in case there were offsets 
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originating from the tuning of the feedforward loop or the translation of a kLa value to the 

proper MFC setting. 

 

Actuator dynamics 

As can be seen in Figure 8.2 and 8.3, the established relationship between the kLa and the value 

of the MFC setting (the actuator of the physical equipment) has a considerable impact on the 

MFC setting value obtained from the controller. In case this curve is not correct the feedback 

loop will try to compensate for it, however, some steady state offset will occur. Calibrating this 

curve should therefore be done on a frequent basis, and a solid knowledge of this relationship 

every time a new system is started up is definitely a necessity. The option of directly including 

the MFC setting in the control law was considered, but since a piece-wise linear relationship was 

found between the kLa and the MFC setting, this would have resulted in a gain scheduling 

depending on where, within the MFC range, the system was operating. In order to keep the 

translation transparent and easily available for future changes and edits, the translation was 

kept as a separate step of the controller. 

 

Tuning of the controller gain 

As observed during the set point change experiment, a higher gain resulted in a smaller offset 

from the set point without resulting in instability and oscillatory behavior. However, as seen in 

cases of system capacity limitation (high concentrations during the dynamic influent 

experiment), the system was very sensitive towards the gain value of the proportional feedback 

control loop. It is therefore speculated that gain scheduling could be an advantageous attribute 

from which this controller could benefit considerably (Seborg et al., 2004). This could be done by 

defining a metric (error signal), which gives information on the distance between the current 

state of the system and its capacity limit, and based on this information the gain value would 

change accordingly. I.e. the gain would be higher, the further the current operation is from the 

capacity limit. Such a metric could e.g. be a batch assay measuring the specific removal rate of 

the sludge present in the reactor, and by comparing this to the load coming to the system, a 

measure of how far from the maximum capacity the system was operating could be obtained. 

Conducting a measurement like this might be a costly and time consuming thing to do, but if 

conducted with an appropriate frequency (e.g. once per week), it could definitely improve 

performance of the system. 
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Startup of reactor operation 

From the experience obtained in this work, it is believed that the control strategy can also be 

implemented during a startup of nitritation-anammox reactors. What is often also controlled 

during startups is the ammonium loading to the system (e.g. Christensson et al., 2013), which is 

slowly ramped up as the concentrations of the microbial groups slowly increase to the desired 

levels (van der Star et al., 2007). As the ammonium loading is an input to the controller 

presented here, this information can simply be fed to the controller, which will ensure to supply 

the appropriate amount of oxygen to the system in order to cope with the current load received 

by the system. 

 

Possibility of multi-loop extensions 

Finally, it should also be mentioned, that the control strategy validated in this study was a mere 

single-loop controller considering one actuator. Possibilities of extending it to a multi-loop 

strategy include utilizing the pH signal to control the exchange ratio or to control the length of 

the SBR cycle, similarly to the study by Lemaire et al. (2008), by which the volumetric removal 

rate might be improved due to higher loading rates. The pH signal has previously been used to 

control the nitritation processes (Volcke et al., 2006a) and a single-stage nitritation-anammox 

process (Wett, 2007). From experimental experiences (results not shown), it was found that the 

pH signal often responded faster, by changing from a decreasing to an increasing trend, 

compared to the DO signal in cases of ammonium depletion before the end of the reaction 

phase. It is therefore believed that utilizing this measurement as well could further optimize the 

reactor performance. 

 

8.5 Conclusions 
A batch-to-batch control strategy for a single-stage CANR process was developed, tested, and 

validated in a lab-scale SBR. Through extensive experimental testing of a feedforward-feedback 

control strategy promising results have been obtained. The main conclusions are: 

 The controller successfully rejected the disturbances in the influent ammonium 

concentration and maintained a high removal efficiency, while the reference operation 

strategy simply failed at rejecting the disturbance. 
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 Due to insight obtained from the previous simulation studies the controller was 

implemented and started up in a rapid manner compared to experience-based trial and 

error operation and tuning of a controller. 

 Qualitatively similar results were obtained in disturbance handling when comparing 

simulations and experimental work. The observation, that these trends agree, confirms 

the importance of the simulation based methodology used throughout this thesis. 

 Retuning of the controller was needed in order to avoid oscillatory behavior during high 

ammonium loading rates due to limitation of the nitritation-anammox capacity of the 

microbial community present in the reactor. 

 Careful calibration of actuator equipment and tuning of the controller is therefore 

necessary to ensure good controller performance and disturbance rejection. 

 Future perspectives include, further consolidating the control strategy by including 

inherent time constants and delays observed experimentally in the model and propose a 

better tuning of the control parameters, inclusion of more on-line sensors to facilitate a 

better automation, and utilization of measurements for development of multi-loop 

strategies, e.g. by considering pH and timing of the SBR cycle. 
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PART IV – Conclusions and 
Future Perspectives 

This last part of the thesis consists of one chapter, in which the findings obtained as a direct 

consequence of the work conducted during this PhD project are presented first, followed by a 

general discussion of the implications that these findings might have. Finally, ideas on how this 

field is evolving in the future and possibilities for further improvements of the methodologies 

used in this thesis are presented in the future perspectives section. 
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9 Conclusions 

9.1 Findings 
Through an integrated approach including modeling, experimentation, and control the following 

was obtained: 

- A comprehensive mechanistic model of a granular CANR reactor was successfully 

constructed by applying a multi-scale modeling framework. In order to be able to solve 

the resulting non-linear system of PDEs and AEs that the model consisted of, a solution 

strategy considering appropriate numerical approximation schemes was formulated and 

applied. 

- The developed model was used for simulation studies and analyzed through sensitivity 

analysis techniques, aiming at obtaining a deeper process understanding. In particular, 

this analysis revealed that AOB related parameters along with mass transfer related 

parameters are the most important model parameters during aeration limited 

operation. During excess aeration the AnAOB related parameters were the most 

important along with the mass transfer related parameters. However, here the impact 

of improved mass transfer had a negative impact on the overall nitrogen removal due to 

AnAOB inhibition. 

- The best removal efficiency was found to be almost linearly dependent on the 

volumetric oxygen to nitrogen loading ratio and not solely on the bulk oxygen 

concentration.  

- An efficient numerical solution scheme to calculate the pH profile inside the granules 

was developed and used to simulate and investigate the two-way interactions between 

medium pH and microbial activities in the granules. The solution scheme showed the 

ability to cope with the additional numerical complexity related to the solution of the pH 

equations along with the PDEs of the existing model. 

- The mechanistic process model was calibrated to process performance data. Following 

good modeling practice principles, a customized calibration and validation protocol for 

granular SBR systems was developed and used to ensure consistency and quality of the 

model calibration efforts. The protocol included two new features: a) a fast model 

initialization and b) novel evaluation criteria based on stoichiometric ratios of nitrogen 

species, which were measures of the relative microbial activities. 
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- Three novel single-loop control strategies were developed based on process 

understanding gained from model simulations and experimental work. All of the control 

strategies used oxygen supply as the actuator and removal efficiency as the controlled 

variable. These control strategies are:  

o A feedforward controller: This was based on the finding of the optimal removal 

efficiency being proportional to the volumetric oxygen to nitrogen loading rate. 

Thus the oxygen supply was regulated based on the incoming ammonium load. 

o A feedback controller: This was based on experiences from experimental start-

up of lab-scale reactors. The feedback action is based on an offset in the 

removal efficiency from the optimal set point and a metric of the relative activity 

of the microbial groups, taking into account the removed and produced nitrogen 

species in the system and the reaction stoichiometry, deciding the direction of 

action of the controller. 

o A feedforward-feedback controller: In this controller, the offset in removal 

efficiency, through a feedback loop, corrects the set point of oxygen to nitrogen 

loading ratio in the feedforward loop. 

- The three strategies were tested through simulations of step change disturbances in the 

influent load, set point changes of the controlled variable, and dynamic changes in the 

influent load mimicking the composition of effluent of an anaerobic digester. The results 

highlighted that the feedforward controller was best at handling disturbances in 

ammonium loading, while the feedback controller was best at handling different organic 

carbon loadings. Overall the feedforward-feedback controller was found to be the most 

versatile towards the disturbances at the expense of slightly slower dynamic responses 

and a slightly more complex control structure. 

- Since the feedforward-feedback controller was deemed the most successful from 

simulation analyses its functionality was tested experimentally, where it was shown to 

reject disturbances in the influent ammonium concentrations. However, during very 

high ammonium loadings, when the capacity of the present sludge was reached, an 

oscillatory response was observed. A proper retuning of the controller was therefore 

needed to solve the problem and was identified as a task of essential importance. 

Based on the abovementioned findings and results, it can be concluded that a systematic and 

integrated modeling and experimentation approach was successful as a research methodology 

in providing an improved understanding of the process. It has helped developing novel control 

alternative concepts and strategies, aiming directly at keeping a high and stable removal 
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efficiency of the process. The developed promising operation and control strategies will 

contribute to realization of the full potential of this nitrogen removal technology in full-scale 

plant applications.  

 

9.2 General discussion 
As anticipated in the introduction, the integration of the CANR process in a single reactor with 

granular sludge containing a mixture of microbial groups resulted in many simultaneous 

processes and phenomena occurring, complicating the observation and understanding of the 

overall process. In order to overcome this issue, a mechanistic structured model of the system 

was developed and model-based tools, such as sensitivity analysis, were used to try to unravel 

which processes and interactions were influential during different operational conditions. 

Through this exercise, an improved understanding of the CANR technology was obtained, which 

help direct the efforts trying to improve the operation. It was established that both microbial 

metabolism along with mass transfer resistance had an impact on the overall performance, and 

improvement of the performance was therefore not a straightforward task. The oxygen supplied 

in relation to the ammonium present in the stream to be treated was identified as a key factor, 

which resulted in efforts in developing control strategies utilizing this knowledge. These 

strategies can be used in operation of granular SBR type systems, where things to be considered 

as well are granule sizes, their distribution and the timing and configuration of the sequential 

operation. The SBR technology is a great option for implementation of CANR, since it utilizes a 

cheap strategy for biomass retention, i.e. gravity in the settling phase as opposed to expensive 

alternatives, such as hydrocyclones or membrane separation, while it still allows manipulation of 

the microbial composition through discrimination of different size fractions of the biomass. Also, 

the load handling of the SBR is easily changeable through the sequential operational scheme, 

which is a big advantage when treating streams that are not stable in flow and composition. 

Even though the findings in this work were specified for granular sludge performing CANR and at 

some points specified for SBR operation, similar ideas can be extrapolated to other types of 

sludge systems and operations. For example, utilizing the control strategies in continuous or SBR 

type MBBRs or other attached growth systems is easily applicable. The controller structure will 

remain the same, but what is different in other systems is quite likely the role of mass transfer 

limitation. The implementation of the control law will therefore require a new identification of 
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the optimal oxygen to nitrogen loading ratio along with identification of the process transfer 

function, in order to obtain a proper tuning following the IMC rules. 

In the controller development and analysis, different control alternatives were identified with 

different alternatives being best at handling different types of disturbances. This brings the 

attention to the importance of investigating and obtaining a detailed knowledge of the events in 

the upstream units from the CANR process as an important prerequisite for the design and 

control of such systems. In line with this, the CANR control scheme should be considered a 

“module” as a part of a bigger plant-wide control scheme, in which measurements and data 

from other units are utilized to anticipate the disturbances and the settings of the controller. 

This is expected to benefit the plant-wide operation, more than if the controller is considered a 

standalone application. 

Since the number of implementations of the CANR process in full-scale is steadily increasing, the 

importance of proper control and operation is increasingly important to realize the full potential 

of this technology in practice. It is believed that the control strategy developed here is an 

important contribution to the field. Also, modeling should be used first, before the 

implementation and not after the implementation to check and understand the results. As 

demonstrated in this thesis, the use of simulation and experimentation tools is complimentary 

and synergistic. By utilizing this approach, the application will move towards a more systematic, 

knowledge based, standard implementation, as opposed to the case-by-case and experience 

based approach followed to implement this technology in practice.  

 

9.3 Future works 
Here, suggestions and ideas about where future efforts should be put within modeling, control, 

and experimentation are presented. First, model extensions and integration with other 

important areas of research is introduced, followed by a comment on calibration methodology 

improvement. Secondly, a discussion on improvements and extensions of the control of the 

CANR process is provided, through an introduction of ideas for multi-loop control strategies, 

improvements to the control laws, and alternative control methods. In particular, the use of 

fuzzy logic has been explored, and is therefore introduced a bit more in detail. Finally, future 

experimental work is presented. 
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9.3.1 Modeling 
With respect to the modeling efforts involving the CANR process, there are a number of obvious 

points of extensions and/or improvements which are discussed below. 

 

Green house gas emissions 

Currently, a lot of efforts are being put into investigations of green house gas (GHG) formation 

and emissions, since there are indications that a substantial amount of nitrous oxide (N2O) is 

produced in biological treatment systems using low aeration intensity configurations 

(Kampschreur et al., 2009) and since nitrous oxide is a very potent GHG having a global warming 

potential approximately 300 times higher than CO2 (IPCC, 2000). Inclusion of this compound in 

the modeling studies of CANR could improve the understanding of the emissions and, maybe 

even more importantly, help the development of operational and control strategies that also 

minimize the emissions, instead of only focusing on optimizing the removal efficiency. Seeing 

how many studies have investigated emissions from conventional biological treatment system 

through simulation (Flores-Alsina et al., 2011; Corominas et al., 2012; Ni et al., 2013), this is 

definitely a direction that the CANR modeling will be moving in as well. 

 

Model integration – plant-wide modeling 

Another effort is moving towards a more holistic understanding of the biological treatment 

processes. This can be obtained through integrating the anammox process model with models of 

other important microbial groups, e.g. phosphorus accumulating organisms (PAO) or special 

heterotrophic bacteria. By keeping on expanding the model like this, a model of the entire 

microbial ecosystem can be obtained. Efforts based on microbial and molecular tools and 

investigations (Nielsen et al., 2010) have been made to construct conceptual models like this, 

taking into account the core microbial species in a treatment plant. This is an important effort 

towards establishing interactions between the most important microbial groups in a modern up-

to-date biological WWTP. For CANR, this especially becomes of interest when the technology is 

considered for treatment of the mainstream in the WWTP (Wett et al. 2013; Hu et al., 2013b) 

where other microbial processes are occurring at the same time as CANR. 

The model developed in this work (both the biofilm feature and the single-stage CANR 

containing part) could be part of an extension for the BSM platform, as these are features that 
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are present more and more often in modern day WWTPs. Biofilm models are considered to be 

included in the future (Jeppsson et al., 2013) and GHG emissions has already been incorporated 

(Flores-Alsina et al., 2011). The two-stage SHARON-Anammox process has been evaluated in the 

BSM2 platform (Volcke et al., 2006b), yet single-stage CANR still needs to be investigated. 

 

Mixing conditions 

Concentration gradients in the reactor caused by imperfect mixing may take place, especially 

when scaling up the process to larger tanks and possibly higher biomass concentrations. These 

mixing conditions can be simulated by computational fluid dynamics (CFD), which can serve as a 

useful tool to investigate and suggest improvements to the mixing conditions. Nevertheless, the 

CFD simulation of a three-phase bioreactor is a complex task, resulting in a manifold 

multiplication of the number of model equations to be solved, and the lack of certainty about 

essential model parameters (e.g. biomass effect on fluid properties such as viscosity) cannot 

guarantee achieving accurate results. It is therefore not clear whether the information obtained 

from such a CFD simulation is sufficient to optimize conditions. Hence, before moving to this 

level, other shortcut analyses can be used to check the mixing conditions, such as micromixing 

analysis (Baldyga and Bourne, 1990) or time-regime analysis (Van’t Riet and Tramper, 1991), and 

depending on these results decide whether CFD or simpler compartmental models are needed. 

 

Influence of granule/particle size on process performance 

Investigations of the interaction between biofilm/granules and suspended cell growth are of 

great interest, since observations of a bi-modal distribution in the PSD (Mutlu et al. in prep.) 

indicate that the microbial groups have different preferences with respect to how they spatially 

organize themselves. Investigations show that different size fractions of the granular biomass 

have a different microbial composition with the small sizes consisting of mainly AOB and the 

bigger granules containing almost only AnAOB (Mutlu et al. in prep.; Wett et al., 2013; 

Vlaeminck et al., 2010). Masic and Eberl (2012) did model investigations of the interaction 

between wall-attached and suspended growth in a single-species system, and found that 

although most biomass was found in the biofilm, the suspended biomass in the bulk contributed 

significantly to the substrate conversion. Since, the observed bi-modal distribution can be 

conceived as suspended biomass (peak in small particle sizes) and actual granules (peak in bigger 

particle sizes), it would be interesting to do the same sort of modeling exercise here, to see how 
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the interactions between the microbial groups might influence the performance. The final 

objective of an exercise like this would be to investigate whether an extra handle/actuator 

would be available for control or manipulation of the microbial composition in case size 

segregation is possible, in order to optimize the performance and operation. 

Another approach to address the same issue is to model a particle size distribution (PSD) and not 

just a single size granule as done in this work. The consequence of this would be adding one 

more dimension, thus one more level of discretization. Modeling a PSD would result in a 

population balance type model (PBM), which is often computational very heavy to solve. An 

approach in between a PBM and a single granule size model has been presented by Volcke et al. 

(2012), investigating the consequence of considering more classes of granule sizes. It would be 

useful to investigate this approach for the presented model to see whether the findings related 

to mass transfer importance and optimal operational conditions would be different from the 

findings obtained with the single size assumption. 

 

While different modifications of the model can be made in order to obtain higher resolution of 

the results or obtain more detailed information, as stated above, it is very important to keep the 

objective in mind, since these modifications most likely come at very high computational time 

costs. One should therefore ensure that it is worthwhile to do such an extra effort.  

 

Calibration 

Finally, with respect to the methodology used for the calibration, an issue which could be 

addressed is to include measurements of abundance of microbial groups in the model 

calibration methodology. This requires highly reliable and accurate measurement techniques, 

which for now are at a state where qualitative comparisons can be made, yet for quantitative 

comparison they are not quite accurate enough. 

 

9.3.2 Control 
In this work, alternatives to existing control schemes were developed based on traditional 

control theory. Below, ideas of how these can be extended, improved, and combined with 

existing ones are discussed. 
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Multi-loop strategy 

The use pH or ORP measurements to control the cycle or aeration length in SBR operation has 

previously been investigated (e.g. Lemaire et al., 2008; Lackner et al., 2012) and was shown to 

improve the performance of nitritation systems. Since timing was not considered an actuator in 

the work presented here, it is speculated that improvements to the system can be obtained by 

starting to utilize this. An example of such an application is the observation of the pH signal. The 

value of the pH measurement usually decreases during an SBR cycle due to proton production by 

the AOB. Once all of the ammonium present in the reactor has been oxidized the pH value starts 

increasing due to stripping of CO2 by aeration, an effect which then starts dominating over the 

proton production, which has now stopped (a similar observation has been made in many 

nitrification-denitrification studies, e.g. Andreottola et al. (2001)). Ending the cycle at this point 

in time, instead of waiting until a fixed time has elapsed, allows for a lowering of the HRT, which 

means that the system would be able to handle higher volumetric loads. It is therefore believed 

that the treatment capacity of the system can be increased in this manner. 

 

Control law 

Related to the specific control strategies presented in this thesis, a PI controller for the feedback 

loop in the feedforward-feedback controller instead of a P-only controller is expected to reduce 

the offset from the set point significantly, an issue which was observed both in modeling and 

experimental studies during set point changes. 

Finally, a future investigation could also be the design of a non-linear DO controller, which takes 

into account the non-linear oxygen transfer function, instead of assuming a linear or piece-wise 

linear relation around the point of normal operation. This was previously shown to reduce the 

aeration consumption in biological treatment removing ammonium (Lindberg and Carlsson, 

1996) and is speculated to be able to contribute to improve performance of controllers 

developed in this thesis as well. 
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Control method 

MPC 

In future control applications, more advanced control methods, such as model predictive control 

(MPC), are expected to play an increasing role. This is possible if a reduced order model that only 

links input to output can be obtained. However, a reduced order model only makes sense within 

a narrow range of operation, and its applicability is therefore limited. Numerous investigations 

of MPC applications already exists in aeration controllers in conventional biological treatment 

systems, however, all utilizing simpler models. For an extensive review the reader is referred to 

Åmand et al. (2013). 

 

Fuzzy logic control 

Fuzzy decision methods have been used for diagnosis of performance since it is a means to 

formalize the knowledge accumulated by the process operators (Honda and Kobayashi, 2000), 

and it is adapted to the use of expert knowledge and quantitative models. For instance, Comas 

et al. (2008) developed a fuzzy diagnosis method to establish the risk for occurrence of 

microbiology related settling problems in activated sludge systems. Likewise, fuzzy decision can 

also be used in control of bioprocesses, allowing synthesis of the available information from the 

process and applying it for the automatic control of the process (Ruano et al., 2010). 

Since controllers depending on set point values for DO, nitrogen species, and pH alone may not 

be enough to deduce whether the microbial community activities are balanced and performance 

is stable (Vangsgaard et al., 2012), a fuzzy logic based application is a good alternative for 

diagnosis and control in CANR applications. Fuzzy diagnosis and control have previously been 

combined in anaerobic digesters (Punal et al., 2001; Lardon et al., 2005) and configured similarly 

to a state controller with a filter for state estimation. 

The use of fuzzy logic for diagnosis of the CANR process taking into account the stoichiometric 

ratios of formed or produced nitrogen species as previously used by Mutlu et al. (2013) has 

therefore been conducted here, with the intention of extending it to a control application. 

Below, the diagnosis procedure is briefly outlined for the reader to get an idea about how and 

why this might be a smart way to diagnose and control this system. 
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Figure 9.1 Decision tree developed for diagnosis of SBRs performing single-stage CANR (adapted from 

Mutlu et al., 2013) 

 

In the fuzzy diagnosis the measurement inputs (ΔTN, RAmmTot, RNatTot, RNitAmm, Reff, RNitAmm,ef) were 

linked to the outputs through a rule-base and defined membership functions (MFs). 

The decision tree formulated in Figure 9.1 is based on a number of rules formulated based on 

process stoichiometry and experiences: 

Rule 1. The optimal performance is the case where balanced nitritation-anammox is achieved 

and more than 80% ammonium removal is observed. 

Rule 2. If the removal efficiency is not sufficient, yet RAmmTot (as defined in previous chapters) is 

within the target range, the system is limited by nitrite production. 

Rule 3. If the system moves away from balanced CANR, nitrite or nitrate accumulates. If such an 

accumulation is still relatively small, within the allowable ranges, the AOB activity is still limiting.  

Rule 4. When NOB activity is within allowable limits, the system is experiencing nitrite 

accumulation due to low AnAOB activity. 

Rule 5.  When NOB activity is within allowable limits, the system is experiencing nitrite 

accumulation due to too high nitritation. 

178



Chapter 9 – Conclusions  

167 
 

Rule 6. If nitrate accumulates to more than the allowed levels, then nitratation is prevailing in 

the system.  

It must be highlighted that the core of a fuzzy inference system is the set of production rules 

(Kovacic and Bogdan, 2005). It is therefore essential that the rules gather all the information 

available about the system and are self-consistent. 

Evaluation of diagnosis tool 

The diagnosis tool was tested assessing real data from one of the lab-scale reactors during 100 

days. This assessment was done a posteriori and did not influence the policy followed by the 

operator, hence an open-loop analysis.  

The diagnosis results for four defined outputs (Figure 9.2) show the following evolution of the 

reactor: at the beginning the autotrophic nitrogen removal (ANR) was limited by the AnAOB 

metabolism and in a few occasions by too much nitratation. As nitritation became lower due to a 

decrease in the oxygen supply, the process was no longer limited by AnAOB and nitratation 

became less significant. However, since nitritation became too low (after day 50) the ANR still 

did not quite reach a satisfactory level. These status diagnoses are very much in line with what 

was observed during the operation. 

 

 

Figure 9.2 Results of the diagnosis tool for 100 days of experimental operation data of the SBR. 
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In the future, this work will be extended such that the on-line measurement of the nitrogen 

species in the reactor is used for diagnosis of the system, which is carried out first, and this 

information is then passed on to a fuzzy controller that decides on the appropriate action to be 

taken. The separation of diagnosis and control is expected to be an efficient way to implement 

this tool resulting in an alternative simple control structure.  

 

9.3.3 Experimentation 
All possible model extensions, mentioned in the previous section, need to be supported by 

experimental observations. Thus, depending on which direction is decided to be further 

elucidated, experimental efforts should be simultaneously extended in this direction. 

From the findings in this work, a place to start investigating control of other types of systems 

both with respect to the sludge type (suspended vs. granular vs. attached) and with respect to 

the operation type (SBR vs. continuous, within SBR long vs. short feeding phase, intermittent vs. 

continuous aeration) would be through further experimental validation in these systems. 
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51BAppendix A2 

Individual standardized regression coefficients 

The variances of the ten model outputs (the bulk concentration of the five soluble species and 

the mass fraction of the five particulate species at steady state) obtained from the Monte Carlo 

simulations have been decomposed, with respect to the 38 parameters considered in the 

uncertainty analysis, by linear regression for each of the four scenarios (see Table A2.1-A2.4). 

Most significant parameters for the bulk concentrations – scenario 1 

The most significant parameters for the TAN concentration in the bulk liquid are the AOB oxygen 

half saturation constant (KO2,AOB), maximum growth rate (μmax,AOB), decay rate (bAOB), and growth 

yield (YAOB). Also the thickness of the MTBL (LB) has an impact as the third most important 

parameter. In Table A2.1, it can be seen that also the nitrogen content of the biomass (iNXB) is a 

significant parameter and has a negative impact on the TAN bulk concentration, which is 

because TAN is the assumed nitrogen form that the bacteria use for cell synthesis. For the same 

reason iNXB does not have an impact on any of the other selected model outputs.  

KO2,AOB is also found to be an important parameter for the bulk TNN concentration. However, for 

TNN the oxygen inhibition constant of AnAOB (KO2,AnAOB) is most important. Thus, it is a mixture 

of AnAOB and AOB related parameters that affect the bulk TNN concentration. It is noteworthy 

that the diffusivity of TNN has a significant impact on the TNN concentration, as the fourth most 

important parameter. An increased diffusivity makes TNN more available inside the granule, and 

thus more is consumed, which leads to a decrease in the bulk concentration. 

For the bulk nitrate concentration, the yield of the AnAOB is the most significant parameter, 

which is because the AnAOB is the only bacterial group producing nitrate since NOB have been 

outcompeted from the biofilm in all cases. It is also interesting that the HB organic substrate half 

saturation constant (KS,HB) and the anoxic deactivation constant (ηHB) are the fourth and fifth 

most important parameters for the nitrate concentration. This indicates that even if the 

heterotrophs are present only in very low concentrations, their denitrifying activity is of 

importance for the effluent nitrate concentration and thus for the overall N removal. 

For the bulk N2 concentration, the same parameters as for TAN are the most important except 

that AnAOB instead of AOB growth yield is among the most significant parameters. Thus, the 

results indicate that the oxygen half saturation constant has a significant impact on the 

196



Appendix 

185 
 

performance. This finding is in contrast with the study by Hao et al. (2002a) who found that the 

effluent concentrations were insensitive to the half saturation constants. 

For the bulk DO concentration, KO2,AOB and μmax,AOB are the most important parameters. It is also 

noteworthy that the ammonium affinity constant (KNH3,AOB) has an impact. This indicates that 

anything influencing the growth rate of AOB will also affect the DO concentration, because they 

are the primary consumers of DO in the biofilm. 

Most significant parameters for the microbial composition – scenario 1 

For AOB, three out of the five most significant parameters are related to the bacterial group’s 

own kinetic parameters.  The reason for the negative effect of the μmax,AOB on the mass fraction 

of AOB is due to an increase in the overall growth rate, which entails a higher detachment rate, 

and the positive effect is thus annulled by the negative side effect. However, the AOB still 

present in the biofilm have more substrate available and thus a higher activity, which can be 

seen on the negative impact of μmax,AOB on the bulk TAN concentration (Table A2.1). The 

diffusivity of oxygen and the thickness of the MTBL are also found to be significant for the AOB 

mass fraction. A higher DO2 or smaller LB means that the oxygen will be transported faster or 

easier, and thus be more available as substrate for the AOB.  

For AnAOB, only kinetic parameters are among the five most important parameters. Its oxygen 

inhibition constant (KO2,AnAOB) is most significant, followed by the AOB oxygen half saturation 

constant and the maximum growth rates of AnAOB and AOB.  

For HB, their own kinetic parameters, KS,HB and μmax,HB, are important. Out of the five most 

significant parameters, the other three relate to AOB kinetics, probably due to the HB growing 

on decay products originating from AOB. Even if AOB are present in low concentrations, their 

decay rate is fifty times higher than the decay rate of AnAOB, and thus more organic substrate 

will be originating from them. Therefore the decay rate of AOB is of great significance as the 

third most important parameter. 

Generally AOB kinetic parameters (KO2,AOB, μmax,AOB and bAOB) are of highest importance for all 

selected model outputs since the absolute values of the SCRs are above 0.1 in all cases (Table 

A2.1). The KO2,AnAOB and μmax,AnAOB are important for the TNN and nitrate bulk concentrations and 

for the mass fraction of the AnAOB, HB and inerts in the biofilm. Mass transfer affects mainly DO 

and TNN concentrations among the soluble species, and only the AOB and slightly the AnAOB 

among the particulates.  
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Table A2.1 Result of sensitivity analysis of scenario 1. Standardized regression coefficients (βk,i) of the 
linearized model for ten selected model outputs. Values abs(βk,i)>0.1 are highlighted in bold. 

Output → TAN TNN Nitrate N2 gas DO AOB AnAOB NOB HB Inerts 

R2 0.98 0.85 0.98 0.98 0.98 0.99 0.93 0.05 0.95 0.94 

Parameter ↓           

μmax,AOB -0.58 -0.23 0.29 0.54 -0.58 -0.55 -0.32 -0.08 -0.29 0.34 
KO2,AOB 0.74 0.43 -0.38 -0.70 0.72 0.62 0.56 -0.03 0.42 -0.58 
KNH3,AOB 0.16 0.07 -0.07 -0.15 0.17 0.15 0.08 -0.05 0.06 -0.09 
KHNO2,AOB 0.00 -0.02 0.01 0.00 0.00 -0.01 -0.02 -0.05 0.01 0.02 
bAOB 0.23 0.23 -0.24 -0.17 0.13 -0.27 0.28 -0.03 0.37 -0.26 
μmax,NOB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
KO2,NOB 0.00 -0.04 0.00 0.00 0.01 0.00 -0.02 0.02 -0.01 0.02 
KHNO2,NOB 0.01 0.02 -0.01 -0.01 0.00 0.02 0.02 0.02 0.01 -0.02 
bNOB -0.01 -0.02 0.01 0.01 0.00 0.00 -0.01 -0.10 0.00 0.01 
μmax,AnAOB -0.06 -0.38 0.13 0.05 0.02 -0.03 -0.43 -0.02 -0.15 0.43 
KO2,AnAOB -0.11 -0.62 0.21 0.08 0.02 -0.07 -0.69 0.02 -0.23 0.68 
KNH3,AnAOB 0.00 0.01 0.00 0.00 -0.01 0.00 0.01 -0.03 -0.01 -0.01 
KHNO2,AnAOB 0.04 0.21 -0.08 -0.03 0.00 0.02 0.27 -0.01 0.08 -0.26 
bAnAOB 0.05 -0.05 -0.15 0.01 -0.01 0.05 -0.22 0.02 0.24 0.21 
μmax,HB 0.06 0.02 -0.18 -0.02 0.00 -0.05 0.01 0.01 0.31 -0.01 
KO2,HB -0.05 0.01 -0.11 0.08 0.01 0.00 0.01 -0.04 0.02 -0.01 
KS,HB -0.10 0.01 0.29 0.04 -0.02 0.08 0.02 0.05 -0.47 -0.02 
KTNN,HB -0.04 0.00 0.02 0.03 0.00 0.01 0.00 -0.02 -0.06 0.00 
KNO3,HB 0.01 0.00 0.03 -0.01 0.00 0.01 0.01 0.02 -0.02 -0.01 
KTAN,HB 0.01 0.00 0.00 -0.01 0.01 0.01 0.00 0.01 0.00 0.00 
ηHB 0.02 0.00 -0.29 0.06 0.00 0.00 0.00 0.02 0.22 0.00 
bHB 0.01 0.02 0.02 -0.01 0.01 0.02 0.03 -0.03 -0.10 -0.02 
YAOB -0.16 0.01 -0.01 0.16 0.04 0.15 0.01 0.00 0.06 -0.02 
YNOB -0.01 0.01 0.00 0.01 -0.01 0.00 0.01 0.02 -0.01 -0.01 
YAnAOB 0.15 0.07 0.63 -0.37 -0.01 -0.07 0.10 0.00 0.00 -0.09 
YHB -0.01 -0.01 0.03 0.00 0.01 -0.02 0.00 -0.05 0.21 -0.01 
fi -0.03 0.00 0.08 0.00 0.01 -0.03 -0.06 -0.04 -0.15 0.06 
iNXI -0.01 -0.01 0.00 0.00 0.00 0.00 -0.01 0.00 -0.01 0.01 
iNXB -0.15 0.06 -0.02 -0.02 0.02 0.02 0.04 0.03 0.01 -0.04 
kH 0.00 -0.01 0.00 0.00 0.00 0.00 0.00 -0.02 0.01 0.00 
KX -0.01 -0.02 0.00 0.01 0.00 -0.01 -0.02 0.06 0.02 0.02 
DTAN -0.01 -0.01 0.00 0.01 0.00 -0.01 -0.02 -0.02 0.00 0.02 
DTNN -0.01 -0.35 -0.01 0.04 0.00 0.02 0.15 -0.03 -0.01 -0.15 
DO2 -0.09 0.00 -0.06 0.12 -0.16 0.31 0.01 -0.02 0.14 -0.03 
DNO3 0.01 0.01 -0.01 -0.01 0.02 0.00 0.01 0.04 0.00 -0.01 
DN2 -0.02 -0.04 0.01 0.02 -0.01 0.00 -0.02 0.09 -0.01 0.02 
DS 0.00 0.00 0.01 0.00 0.00 0.01 -0.01 -0.08 -0.01 0.01 
LB 0.26 0.16 0.01 -0.31 0.38 -0.28 -0.01 -0.03 -0.03 0.03 
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Table A2.2 Result of sensitivity analysis of scenario 2. Standardized regression coefficients (βk,i) of the 
linearized model for ten selected model outputs. Values abs(βk,i)>0.1 are highlighted in bold. 

Output → TAN TNN Nitrate N2 gas DO AOB AnAOB NOB HB Inerts 

R2 0.86 0.49 0.46 0.78 0.96 0.87 0.89 0.95 0.89 0.83 

Parameter ↓           

μmax,AOB -0.45 0.03 0.04 -0.06 -0.16 -0.21 0.05 -0.09 -0.04 0.11 
KO2,AOB 0.50 -0.02 0.10 -0.11 -0.09 -0.15 -0.11 -0.10 0.12 0.05 
KNH3,AOB 0.59 -0.01 -0.06 0.03 0.16 0.21 -0.09 0.08 0.07 -0.13 
KHNO2,AOB -0.02 0.01 -0.02 -0.01 0.00 0.02 0.00 0.01 0.00 -0.02 
bAOB 0.27 0.00 0.03 -0.04 -0.08 -0.59 -0.06 0.35 0.10 0.06 
μmax,NOB 0.06 -0.27 0.30 0.14 -0.05 -0.10 0.12 0.00 -0.11 0.05 
KO2,NOB -0.04 0.38 -0.40 -0.23 0.03 0.14 -0.21 -0.04 0.21 -0.19 
KHNO2,NOB 0.00 0.14 -0.14 -0.08 0.01 0.01 -0.13 -0.05 0.13 0.01 
bNOB 0.00 0.16 -0.16 -0.10 -0.01 0.09 -0.07 0.05 0.10 -0.69 
μmax,AnAOB -0.20 -0.17 0.00 0.32 0.29 0.15 0.20 0.17 -0.22 0.12 
KO2,AnAOB -0.41 -0.41 0.07 0.66 0.54 0.24 0.38 0.29 -0.41 0.28 
KNH3,AnAOB 0.03 0.05 -0.02 -0.07 -0.05 -0.02 -0.07 -0.04 0.08 -0.04 
KHNO2,AnAOB 0.01 0.02 -0.01 -0.02 -0.01 0.00 -0.01 -0.01 0.01 0.00 
bAnAOB 0.00 0.05 -0.04 -0.04 -0.06 0.11 -0.67 0.21 0.65 -0.04 
μmax,HB 0.01 0.04 -0.05 -0.02 -0.01 -0.01 -0.07 0.17 0.07 -0.06 
KO2,HB -0.01 -0.04 0.02 0.04 0.02 0.02 0.02 0.08 -0.03 0.08 
KS,HB -0.04 0.02 -0.02 -0.01 0.03 0.09 0.11 -0.26 -0.11 0.02 
KTNN,HB -0.01 -0.02 0.02 0.02 0.00 0.01 0.04 0.03 -0.04 0.02 
KNO3,HB 0.03 0.00 0.00 -0.01 -0.01 0.00 -0.02 -0.02 0.02 0.01 
KTAN,HB -0.01 -0.04 0.02 0.05 0.03 0.01 0.12 0.05 -0.12 0.06 
ηHB 0.05 0.01 0.01 -0.03 -0.04 -0.06 -0.17 -0.04 0.17 -0.01 
bHB 0.02 0.03 -0.02 -0.03 -0.01 0.02 -0.01 -0.23 0.01 -0.01 
YAOB -0.01 0.01 0.00 -0.03 0.04 0.19 -0.02 0.14 0.01 -0.03 
YNOB 0.01 -0.06 0.06 0.04 0.01 -0.04 0.02 0.02 -0.03 0.19 
YAnAOB 0.07 0.05 0.00 -0.09 -0.05 -0.10 0.09 -0.05 -0.08 -0.06 
YHB 0.04 -0.04 0.07 -0.01 -0.03 -0.11 -0.07 0.46 0.07 0.01 
fi 0.08 0.02 0.05 -0.10 -0.06 -0.22 -0.23 -0.39 0.25 -0.03 
iNXI 0.03 0.00 0.01 -0.01 -0.01 -0.01 0.01 -0.01 0.00 0.01 
iNXB 0.01 -0.02 0.03 -0.04 0.00 0.00 -0.02 0.00 0.02 0.02 
kH -0.02 0.03 -0.03 -0.02 -0.01 0.01 -0.01 -0.01 0.01 0.00 
KX -0.03 -0.01 0.00 0.02 0.01 0.02 0.02 0.02 -0.02 -0.01 
DTAN -0.03 0.00 -0.04 0.04 0.05 0.09 -0.03 0.05 0.02 -0.07 
DTNN 0.00 -0.03 0.04 0.01 -0.01 -0.04 -0.02 -0.02 0.02 0.06 
DO2 0.01 0.00 0.22 -0.23 -0.44 0.26 -0.13 0.22 0.08 0.31 
DNO3 -0.01 0.07 -0.07 -0.05 0.00 0.02 -0.04 -0.01 0.04 -0.04 
DN2 -0.04 -0.01 0.00 0.01 0.00 0.01 0.01 0.00 -0.01 0.01 
DS -0.02 0.01 -0.02 0.00 0.01 0.02 0.03 0.02 -0.03 0.00 
LB 0.09 0.00 -0.27 0.27 0.54 -0.25 0.13 -0.19 -0.09 -0.21 
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Table A2.3 Result of sensitivity analysis of scenario 3. Standardized regression coefficients (βk,i) of the 
linearized model for ten selected model outputs. Values abs(βk,i)>0.1 are highlighted in bold. 

Output → TAN TNN Nitrate N2 gas DO AOB AnAOB NOB HB Inerts 

R2 0.98 0.82 0.98 0.98 0.98 0.98 0.95 0.11 0.95 0.95 

Parameter ↓           

μmax,AOB -0.53 -0.21 0.27 0.48 -0.52 -0.50 -0.30 -0.03 -0.30 0.32 
KO2,AOB 0.73 0.39 -0.35 -0.67 0.70 0.61 0.53 -0.01 0.46 -0.56 
KNH3,AOB 0.15 0.06 -0.06 -0.14 0.16 0.14 0.08 0.01 0.06 -0.08 
KHNO2,AOB 0.01 -0.01 0.00 -0.01 0.00 -0.01 -0.01 0.12 0.02 0.01 
bAOB 0.23 0.22 -0.24 -0.16 0.13 -0.33 0.26 -0.05 0.36 -0.24 
μmax,NOB 0.00 0.00 0.00 0.00 0.01 0.00 0.00 -0.07 0.00 0.00 
KO2,NOB 0.00 -0.04 0.00 0.00 0.01 0.00 -0.01 0.10 -0.01 0.01 
KHNO2,NOB 0.01 0.02 0.00 -0.01 0.00 0.01 0.01 0.00 0.01 -0.01 
bNOB -0.01 -0.02 0.01 0.01 0.00 -0.01 -0.01 0.01 0.01 0.01 
μmax,AnAOB -0.06 -0.38 0.12 0.03 0.02 -0.02 -0.41 0.10 -0.14 0.40 
KO2,AnAOB -0.10 -0.59 0.18 0.06 0.01 -0.06 -0.65 0.04 -0.20 0.63 
KNH3,AnAOB 0.00 0.01 0.00 0.00 -0.01 -0.01 0.01 0.04 -0.01 -0.01 
KHNO2,AnAOB 0.04 0.25 -0.08 -0.02 0.00 0.02 0.29 -0.13 0.08 -0.29 
bAnAOB 0.06 -0.04 -0.16 0.01 -0.01 0.06 -0.24 0.02 0.23 0.23 
μmax,HB 0.06 0.02 -0.19 -0.01 0.00 -0.05 0.00 0.04 0.29 0.00 
KO2,HB -0.07 -0.01 -0.13 0.12 0.01 0.00 0.00 0.03 0.00 0.00 
KS,HB -0.10 0.02 0.30 0.03 -0.02 0.08 0.03 -0.07 -0.44 -0.02 
KTNN,HB -0.04 0.01 0.01 0.04 0.00 0.01 0.01 0.00 -0.05 -0.01 
KNO3,HB 0.00 -0.01 0.03 -0.01 0.00 0.01 0.00 0.00 -0.03 0.00 
KTAN,HB 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 
ηHB 0.01 0.00 -0.33 0.10 0.00 0.00 -0.01 0.10 0.21 0.00 
bHB 0.00 0.00 0.02 -0.01 0.01 0.02 0.02 -0.07 -0.10 -0.02 
YAOB -0.18 0.02 -0.02 0.18 0.03 0.16 0.02 0.08 0.06 -0.03 
YNOB -0.01 0.01 0.00 0.01 -0.01 0.01 0.01 -0.06 -0.01 -0.01 
YAnAOB 0.16 0.07 0.60 -0.40 -0.01 -0.07 0.10 0.03 0.00 -0.10 
YHB -0.01 -0.01 0.04 -0.01 0.02 -0.02 0.01 0.01 0.21 -0.01 
fi -0.03 0.02 0.09 0.00 0.01 -0.04 -0.06 -0.03 -0.16 0.07 
iNXI -0.01 0.00 -0.01 0.00 0.00 0.00 0.00 -0.01 0.00 0.00 
iNXB -0.15 0.05 -0.01 -0.02 0.02 0.02 0.03 -0.04 0.01 -0.03 
kH 0.00 -0.02 -0.01 0.00 0.00 -0.01 0.00 -0.03 0.01 0.00 
KX -0.01 -0.02 0.00 0.01 0.00 -0.01 -0.02 0.07 0.02 0.02 
DTAN 0.00 0.00 0.00 0.00 0.00 -0.01 -0.01 0.02 0.00 0.01 
DTNN -0.01 -0.31 -0.02 0.04 0.00 0.02 0.15 -0.05 0.00 -0.15 
DO2 -0.10 -0.01 -0.08 0.16 -0.20 0.30 0.01 0.05 0.15 -0.03 
DNO3 0.01 0.01 -0.01 -0.01 0.01 0.00 0.01 -0.07 0.00 -0.01 
DN2 -0.02 -0.05 0.01 0.02 -0.01 0.00 -0.01 -0.03 -0.02 0.01 
DS 0.00 0.00 0.01 0.00 0.00 0.01 -0.01 -0.02 -0.01 0.01 
LB 0.28 0.14 0.03 -0.35 0.45 -0.29 -0.03 -0.07 -0.04 0.04 
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Table A2.4 Result of sensitivity analysis of scenario 4. Standardized regression coefficients (βk,i) of the 
linearized model for ten selected model outputs. Values abs(βk,i)>0.1 are highlighted in bold. 

Output → TAN TNN Nitrate N2 gas DO AOB AnAOB NOB HB Inerts 

R2 0.66 0.58 0.69 0.61 0.93 0.95 0.61 0.09 0.84 0.64 

Parameter ↓           

μmax,AOB -0.30 -0.20 0.25 0.25 -0.58 -0.52 -0.13 -0.07 -0.25 0.17 
KO2,AOB 0.51 0.42 -0.47 -0.46 0.60 0.57 0.31 0.05 0.31 -0.35 
KNH3,AOB 0.08 0.06 -0.07 -0.07 0.13 0.13 0.05 -0.01 0.06 -0.06 
KHNO2,AOB 0.04 0.05 -0.04 -0.04 -0.01 0.02 -0.06 -0.07 -0.02 0.05 
bAOB 0.15 0.13 -0.17 -0.14 0.07 -0.20 0.18 0.08 0.40 -0.17 
μmax,NOB 0.00 0.00 0.00 0.00 -0.01 0.00 0.01 0.08 -0.02 -0.01 
KO2,NOB 0.01 0.01 -0.01 -0.01 0.00 0.01 -0.04 -0.06 -0.03 0.04 
KHNO2,NOB -0.05 -0.06 0.05 0.05 0.04 0.00 0.07 0.04 0.06 -0.07 
bNOB 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.08 0.01 0.00 
μmax,AnAOB -0.24 -0.27 0.27 0.26 0.13 -0.05 -0.33 -0.03 -0.10 0.33 
KO2,AnAOB -0.44 -0.50 0.49 0.47 0.22 -0.08 -0.47 -0.04 -0.14 0.47 
KNH3,AnAOB -0.01 -0.02 0.01 0.01 0.02 0.00 0.02 0.08 0.05 -0.02 
KHNO2,AnAOB -0.02 -0.02 0.01 0.02 0.00 -0.01 0.20 -0.05 0.06 -0.19 
bAnAOB 0.04 0.03 -0.07 -0.03 -0.01 0.04 -0.18 0.02 0.33 0.17 
μmax,HB -0.01 -0.02 0.00 0.01 0.01 -0.01 0.01 -0.06 0.11 -0.01 
KO2,HB -0.04 -0.04 0.00 0.04 0.03 0.00 0.04 0.05 0.00 -0.04 
KS,HB -0.01 0.00 0.02 0.00 0.00 0.02 0.02 0.01 -0.19 -0.02 
KTNN,HB 0.02 0.02 -0.01 -0.02 0.01 0.02 -0.02 0.03 -0.13 0.02 
KNO3,HB 0.04 0.04 -0.03 -0.04 0.00 0.01 -0.04 -0.02 -0.03 0.04 
KTAN,HB 0.04 0.05 -0.04 -0.04 0.00 0.02 -0.03 0.05 -0.02 0.03 
ηHB -0.02 -0.02 -0.03 0.03 0.00 -0.02 0.00 -0.08 0.37 -0.01 
bHB -0.02 -0.02 0.02 0.02 0.01 0.00 0.02 0.02 -0.08 -0.02 
YAOB -0.03 0.00 -0.01 0.02 0.07 0.16 0.04 -0.01 0.11 -0.05 
YNOB 0.01 0.01 0.00 -0.01 -0.02 -0.01 -0.02 -0.04 0.01 0.02 
YAnAOB 0.07 0.05 0.19 -0.08 -0.05 -0.08 0.08 -0.04 -0.05 -0.07 
YHB 0.00 0.00 0.01 0.00 0.01 0.00 0.01 0.07 0.30 -0.02 
fi 0.03 0.04 -0.01 -0.03 0.00 0.00 -0.08 0.02 -0.17 0.08 
iNXI 0.01 0.01 -0.01 -0.01 0.00 0.00 -0.02 0.08 -0.02 0.02 
iNXB -0.04 -0.01 0.01 0.01 0.06 0.04 0.04 0.04 0.03 -0.04 
kH 0.01 0.01 -0.01 -0.01 0.01 0.01 0.01 0.05 0.03 -0.01 
KX 0.01 0.01 -0.01 -0.01 0.01 0.01 0.00 0.02 -0.01 0.00 
DTAN -0.03 -0.04 0.03 0.03 0.01 0.00 0.03 -0.04 -0.02 -0.03 
DTNN 0.00 0.00 -0.01 0.00 0.00 0.01 0.08 -0.01 -0.04 -0.08 
DO2 -0.02 0.00 -0.01 0.02 -0.16 0.33 0.00 -0.06 0.13 -0.03 
DNO3 -0.05 -0.05 0.04 0.05 0.00 0.00 0.06 -0.02 0.03 -0.06 
DN2 -0.01 -0.01 0.01 0.01 0.00 -0.01 -0.02 -0.04 -0.02 0.02 
DS 0.01 0.01 -0.01 -0.01 -0.01 -0.01 -0.02 0.01 0.00 0.02 
LB 0.02 -0.03 0.03 0.00 0.34 -0.38 -0.03 -0.03 -0.06 0.06 
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