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Abstract. Electricity markets are complex environments, involving a large number of different entities, with specific charac-

teristics and objectives, making their decisions and interacting in a dynamic scene. Game-theory has been widely used to sup-

port decisions in competitive environments; therefore its application in electricity markets can prove to be a high potential tool. 

This paper proposes a new scenario analysis algorithm, which includes the application of game-theory, to evaluate and preview 

different scenarios and provide players with the ability to strategically react in order to exhibit the behavior that better fits their 

objectives. This model includes forecasts of competitor players’ actions, to build models of their behavior, in order to define 

the most probable expected scenarios. Once the scenarios are defined, game theory is applied to support the choice of the ac-

tion to be performed. MASCEM (Multi-Agent System for Competitive Electricity Markets) is a multi-agent electricity market 

simulator that models market players and simulates their operation in the market. The scenario analysis algorithm has been 

tested within MASCEM and our experimental findings with a case study based on real data from the Iberian Market are pre-

sented and discussed. 
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1.  Introduction 

All over the world electricity restructuring placed 

several challenges to governments and to the compa-

nies that are involved in generation, transmission and 

distribution of electrical energy. Potential benefits, 

however, depend on the efficient operation of the 

market. Definition of the market structure implies a 

set of complex rules and regulations that should not 

encourage strategic behaviors that might reduce mar-

ket performance and lead to market power [23]. In-

terveners need to rethink their strategies and behavior. 

Several market models exists, with different rules 

and performances creating the need to foresee market 

behavior, regulators want to test the rules before they 

are implemented and market players need to under-

stand the market so they may reap the benefits of a 

well-planned action .  

Usually, during the recent years, electricity market 

players use rather simple strategic behaviors. Most 

entities keep their biddings constant along the time, 

while others base their proposed prices in the genera-

tion costs of their installations. The most elaborated 

strategic behaviors go no further than performing 
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simple averages or regressions of the historic market 

prices. This matter, an highly unexplored and unim-

plemented issue, of huge importance for the maximi-

zation of players profits, supports the need for the 

development of proper market acting strategies. 

The main contribution of this work is to comple-

ment the Multi-Agent Simulator for Electricity Mar-

kets (MASCEM) [19, 25] simulator. MASCEM is a 

modeling and simulation tool that has been devel-

oped by this team for the purpose of studying com-

plex restructured electricity markets operation. 

MASCEM’s ability to model the most relevant mar-

ket players and negotiation mechanisms provides the 

means for an adequate development and study of 

models and techniques to support market players’ 

actions in the best possible way. It provides market 

players with simulation and decision-support re-

sources, being able to give them competitive ad-

vantage in the market. 

The contribution is provided through the develop-

ment of a new computational model, implemented to 

support the development of dynamic pricing strate-

gies, taking advantage of the interactive environment 

between market agents and on the gathered 

knowledge during market participation. The method-

ology is characterized as a scenario analysis algo-

rithm able to support players’ strategic behavior. The 

proposed model includes four innovative components 

which arise as separate, however, complementary 

contributions: (i) scenarios definition, concerning the 

automatic creation of distinct market scenarios based 

on different perspectives and potential states of the 

electricity market evolution along the time; (ii) play-

ers profiles definition, which is an independent com-

putational model directed to the creation of competi-

tor players’ models, in what concerns their character-

istics and expected behavior, performing analysis and 

forecasts of their current and past observed actions 

and continuously gathered information; (iii) possible 

actions definition, aiming at establishing a set of co-

herent and realistic possibilities of actions for the 

supported player to take on an electricity market en-

vironment, taking into account each current context 

(concerning market and competitor players’ states at 

each point in time); (iv) adaptation of the game-

theory concept [5, 16] to the electricity market nego-

tiation environment, both concerning bi-lateral and 

multi-lateral negotiations, which is a major contribu-

tion by itself, in a sense that this adaptation concerns 

such a dynamic and specific context, with so many 

particularities and constraints. 

After this introductory section, Section 2 introduc-

es the theme of multi-agent simulation in electricity 

markets, outlining the main features of MASCEM, 

providing an essential insight of this simulator, con-

tributing to an adequate understanding of the simu-

lated multi-agent environment, in order to properly 

expose the advantages of the proposed work; Section 

3 explores the proposed computational model, in-

cluding the game theory approach for scenario analy-

sis; Section 4 presents a case study based on real 

electricity market data, testing the proposed models 

and comparing its results with the results for the 

same scenario using other two well established meth-

odologies for decision support of players acting in 

electricity markets. Finally Section 5 presents the 

most relevant conclusions and contributions of this 

paper. 

2.  Multi-Agent simulation of competitive 

electricity markets 

The employment of simulation tools is a very ade-

quate way to find market inefficiencies or to provide 

support for market players’ decision. Multi-agent 

based simulation is particularly well fitted to analyze 

dynamic and adaptive systems with complex interac-

tions among constituents [2, 6, 20]. With multi-agent 

simulation tools individual behaviors, as well as sys-

tem behavior and how individual behaviors affect it, 

may be studied in a model that may be enlarged dy-

namically to accomplish new rules or participants.  

Indeed several multi-agent tools have been fruit-

fully applied to the study of restructured wholesale 

power markets [2, 6, 14, 15, 19, 20]. Some of the 

most relevant tools in this domain are: 

 Electricity Market Complex Adaptive System 

(EMCAS) [14]: software agents with negotiation 

competence use strategies based on machine-

learning and adaptation to simulate Electricity 

Markets. 

 Agent-based Modelling of Electricity Systems 

(AMES ) [15]: open-source computational labo-

ratory for studying wholesale power markets, re-

structured in accordance with U.S. Federal En-

ergy Regulatory Commission (FERC); It uses an 

agent-base test bed with strategically learning 

electric power traders to experimentally test the 

extent to which commonly used seller market 

power and market efficiency measures are in-

formative for restructured wholesale power mar-

kets. 



MASCEM was presented to the scientific commu-

nity in 2003 [19], combining agent based-modeling 

and simulation. In its initial form MASCEM provid-

ed the modeling of the most relevant entities that 

participate in electricity markets, as well as some of 

the most common market mechanism found world-

wide. One of MASCEM’s objectives is to be able to 

simulate as many market models and players types as 

possible so it can reproduce in a realistic way the 

operation of real electricity markets. This enables it 

to be used as a simulation and decision-support tool 

for short/medium term purposes but also as a tool to 

support long-term decisions, such as the ones taken 

by regulators. MASCEM includes several negotiation 

mechanisms usually found in electricity markets [22]. 

It can simulate several types of markets, namely: 

pool markets, bilateral contracts, balancing markets 

and forward markets. This implies that each agent 

must decide whether to, and how to, participate in 

each market type. 

In 2011 a new enhanced version of MASCEM arose 

[25], where agents use several distinct strategies 

when negotiating in the market and learning mecha-

nisms in order to best fulfill their objectives. Alt-

hough MASCEM’s purpose is not to explicitly search 

for equilibrium points, but to help understand the 

complex and aggregate system behaviors that emerge 

from the interactions of heterogeneous individuals, 

agents learn and adapt their strategies during a simu-

lation, thus possibly converging toward equilibrium.  

There are also several entities involved in the ne-

gotiations in the scope of electricity markets; 

MASCEM multi-agent model represents all the in-

volved entities and their relationships. MASCEM 

model includes: a Market Facilitator Agent, Seller 

Agents, Buyer Agents, Virtual Power Producer 

(VPP) [26] Agents, VPP Facilitator Agents, a Market 

Operator Agent and a System Operator Agent.  

2.1.  MASCEM strategies for competitor players 

profiles definition 

In order to build suitable profiles of competitor 

agents, it is essential to provide players with strate-

gies capable of dealing with the constant changes in 

competitors’ behavior, allowing adaptation to their 

actions and reactions. For that, it is necessary to have 

adequate forecasting techniques to analyze the data 

properly, namely the historic of other agents past 

actions. The way each agent bid is predicted can be 

approached in several ways, namely through the use 

of statistical methods, data mining techniques [7, 21,  

24], neural networks (NN) [1, 11], support vector 

machines (SVM) [27], or several other methods [4, 

12]. But since the other agents can be gifted with 

intelligent behavior as well, and able to adapt to the 

circumstances, there is no method that can be said to 

be the best for every situation, only the best for one 

or other particular case.  

To take advantage of the best characteristics of 

each technique, we decided to create a method that 

integrates several distinct technologies and approach-

es. The method consists of the use of several fore-

casting algorithms, all providing their predictions, 

and, on top of that, a reinforcement learning algo-

rithm that chooses the one that is most likely to pre-

sent the best answer. This choice is done according to 

the past experience of their responses and also to the 

present characteristics of each situation, such as the 

week day, the period, and the particular market con-

text in which the players are acting. 

The main reinforcement algorithm presents a dis-

tinct set of statistics for each acting agent, for their 

actions to be predicted independently from each other, 

and also for each period. This means that an algo-

rithm that may be presenting good results for a cer-

tain agent in a given period, with its output chosen 

more often when bidding for this period, may possi-

bly never be chosen as the answer for another period. 

The tendencies observed when looking at the historic 

of negotiation periods independently from each other 

show that they vary much from each other, what sug-

gests that distinct algorithms can present distinct lev-

els of results when dealing with such different 

tendencies. 

The way the statistics are updated, and conse-

quently the best answer chosen, can be defined by the 

user. MASCEM provides three alternative rein-

forcement learning algorithms, all having in common 

the starting point. All the algorithms start with the 

same value of confidence, and then, according to 

their particular performance, that value is updated. 

All forecasting algorithms also have the option of 

being attributed a weight value that defines its im-

portance to the system. This means that a strategy 

that has a higher weight value will detach faster from 

the rest in case of either success or failure. The three 

versions are: 

 A simple reinforcement learning algorithm, in 

which the updating of the values is done through 

a direct decrement of the confidence value C in 

the time t, according to the absolute value of the 

difference between the prediction P and the real 



value R. The updating of the values is expressed 

by (1). 

 1t tC C R P     (1) 

 The revised Roth-Erev reinforcement learning 

algorithm [12] that, besides the features of the 

previous algorithm, also includes a weight value 

W, ranging from 0 to 1, for the definition of the 

importance of past experience. This version is 

expressed as in (2). 

   1 1t tC C W R P W      
 

(2) 

 A learning algorithm based on the Bayes theo-

rem of probability [8], in which the updating of 

the values is done through the propagation of the 

probability of each algorithm being successful 

given the facts of its past performance. The ex-

pected utility, or expected success of each algo-

rithm is given by (3), being E the available evi-

dences, A an action with possible outcomes Oi, 

U(Oi|A) the utility of each of the outcome states 

given that action A is taken, P(Oi|E,A) the con-

ditional probability distribution over the possi-

ble outcome states, given that evidence E is ob-

served and action A taken. 
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(3) 

The algorithms used for the predictions are: 

 A feed-forward neural network trained with the 

historic market prices, with an input layer of 

eight units, regarding the prices and powers of 

the same period of the previous day, and the 

same week days of the previous three weeks. 

The intermediate hidden layer has four units and 

the output has one unit – the predicted bid price 

of the analyzed agent for the period in question. 

 Based on Statistical approaches. There are five 

strategies in this category: 

 Average of prices and powers from the 

agents’ past actions database, using the data 

from the 30 days prior to the current simula-

tion day, considering only the same period as 

the current case, of the same week day. This 

allows us to have a strategy based on the 

tendencies per week day and per period;  

 Average of the agent’s bid prices considering 

the data from one week prior to the current 

simulation day, considering only business 

days, and only the same period as the current 

case. This strategy is only performed when 

the simulation is at a business day. This ap-

proach, considering only the most recent days 

and ignoring the distant past, gives us a pro-

posal that can very quickly adapt to the most 

recent changes in this agent’s behavior. And 

is also a good strategy for agents that tend to 

perform similar actions along the week; 

 Average of the data from the four months pri-

or to the current simulation day, considering 

only the same period as the current case. This 

offers an approach based on a longer term 

analysis. Even though this type of strategies, 

based on averages, may seem too simple, they 

present good results when forecasting players’ 

behaviors, taking only a small amount of time 

for their execution; 

 Regression on the data from the four months 

prior to the current simulation day, consider-

ing only the same period of the day; 

 Regression on the data of the last week, con-

sidering only business days. This strategy is 

only performed when the simulation is at a 

business day. 

 Algorithms based on pattern analysis: 

 Sequences in the past matching the last few 

actions. In this approach are considered the 

sequences of at least 3 actions found along the 

historic of actions of this player. The se-

quences are treated depending on their size. 

The longer matches to the recent history are 

attributed a higher importance;  

 Most repeated sequence along the historic of 

actions of this player; 

 Most recent sequence among all the found 

ones. 

 Algorithm based on history matching. Regard-

ing not only the player actions, but also the re-

sult they obtained. This algorithm finds the pre-

vious time that the last result happened, i.e., 

what the player did, or how he reacted, the last 

time he performed the same action and got the 

same result. 

 Algorithm returning the most repeated action of 

this player. This is an efficient method for play-

ers that tend to perform recurrent actions. 

 Second-Guessing the predictions. Assuming that 

the players whose actions we are predicting are 

gifted with intelligent behavior, it is essential to 

shield this system, avoiding being predictable as 

well. So this strategy aims to be prepared to sit-

uations when the competitors are expecting the 

actions that the system is performing. 



 Second-Guess: if the prediction on a player 

action is P, and it is expecting the system to 

perform an action P1 that will overcome its 

expected action, so in fact the player will per-

form an action P2 that overcomes the sys-

tem’s expected P1. This strategy prediction is 

the P2 action, in order for the system to ex-

pect the player’s prediction;  

 Third-Guess: this is one step above the previ-

ous strategy. If a player already understood 

the system’s second guess and is expecting 

the system to perform an action that over-

comes the P2 action, than it will perform an 

action P3 that overcomes the system predic-

tion, and so, this strategy returns P3 as the 

predicted player action. 

 Self Model prediction. Once again if a player is 

gifted with intelligent behavior, it can perform 

the same historical analysis on the system’s be-

havior as the system performs on the others. 

This strategy performs an analysis on its own 

historic of actions, to predict what itself is ex-

pected to do next. From that the system can 

change its predicted action, to overcome the 

players that may be expecting it to perform that 

same predicted action. 

Second-Guess the Self Model prediction. The same 

logic is applied as before, this time considering the 

expected play resulting from the Self Model predic-

tion. 

 

3. Game Theory based Scenario Analysis 

The scenario analysis algorithm supports strategic 

behavior with the aim of providing complex support 

to develop and implement dynamic pricing strategies.  

Each agent develops a strategic bid, taking into ac-

count not only its previous results but also other 

players’ bids and results and expected future reac-

tions. This is particularly suitable for markets based 

on a pool or for hybrid markets, to support Sellers 

and Buyers decisions for proposing bids to the pool 

and accepting or not a bilateral agreement. The algo-

rithm is based on the analysis of several bids under 

different scenarios. The analysis results are used to 

build a matrix which supports the application of a 

decision method to select the bid to propose. Each 

agent has historical information about market behav-

ior and about other agents’ characteristics and past 

actions. This algorithm’s organization is presented in 

Fig. 1. 

 

Fig. 1. Scenario Analysis Algorithm. 

 

To get warrantable data, agents using this method 

perform an analysis of the historical data. With the 

gathered information, agents can build a profile of 

other agents including information about their ex-

pected proposed prices, limit prices, and capacities. 

With these profiles, and based on the agent own ob-

jectives, several scenarios, and the possible advanta-

geous bids for each one, are defined.  

Seller and Buyer agents interact with each other, in 

MASCEM environment, taking into account that 

their results are influenced by competitor’s decisions. 

Game theory is well suited for analyzing these kinds 

of situations [5, 16]. 



3.1.  Scenario definition 

MASCEM is implemented as a Decision Support 

tool, so the user should have the flexibility to decide 

how many and which scenarios should be analyzed. 

To do so, the user must define the scenarios to be 

simulated by specifying the price that competitor 

agents will propose (4): 

 

Pricei =    Probable_Pricei +    Limit_Pricei, 

,  +  = 1 
(4) 

where  and  are scaling factors that can be different 

for each agent and for each scenario.  

Let us suppose that the user selects =0 and =1 for 

every Seller and =1 and =0 for every Buyer; this 

means an analysis of a pessimistic scenario. If the 

user selects =1 and =0 for every agent, then the 

most probable scenario will be analyzed. Using this 

formula the user can define for each agent the pro-

posed prices for every scenario that it desires to con-

sider. 

The Probable_Price is a predicted value concerning 

the expected bidding price of each competitor player. 

This prediction is reached by using the players’ pro-

files definition mechanism, presented in section 2. 

This prediction allows the proposed method to use 

adequate and realistic values when considering other 

players’ actions. 

The Limit_Price corresponds to maximum price that 

can be bided by a seller agent, or the minimum price 

that can be bided by a buyer agent.  

Each scenario considers a fixed number of players, 

each with constant amounts of power. Only the bid-

ding prices for each player vary from scenario to sce-

nario. 

3.2. Bid definition 

An agent should analyze the income that results 

from bidding its limit, desired, and competitive prices 

- those that are just slightly lower (or higher, in the 

buyers’ case) than its competitors’ prices. 

A play is defined as a pair of bid – scenario, so, the 

total number of plays to analyze for each player is 

(5): 

n = number_of_bids   number_of_scenarios (5) 

and the maximum value it can achieve is (6): 

 2 2 2nn    (6) 

considering that agents only bid their limit or ex-

pected prices. However, an agent may bid prices be-

tween its limit and expected prices, or even above 

that limit price. If we consider each agent may bid 

numprices prices, the number of scenarios becomes 

equal to npn, and the number of plays to analyze is 

(7). 

 2 nnumprices n numprices    (7) 

The user is also allowed to choose the number of 

bids that will be considered as possibilities for the 

final bid. In this case, the value of the bids is calcu-

lated depending on an interval of values that can also 

be defined by the user. That interval is always cen-

tered on a trusted value, the value of the market price 

of the same period of the previous day. In this way 

the considered possible bids are always around that 

reference value, and their range of variance depends 

on the bigger or smaller value of the user defined 

interval. 

So, being nb the number of bids defined by the us-

er, int the value defining the interval to be considered, 

and mp the market price from the same period of the 

previous day, the possible bids b1..nb are defined as 

(8) and (9): 

   1b
2

int
mp   (8) 

 , 2,
1

m m-1
int

b b m nb
nb

 
   

 
 (9) 

After defining all the scenarios and bids, market 

simulation is applied to build a matrix with the ex-

pected results for each play. 

The matrix analysis with the simulated plays’ re-

sults is inspired on the game theory concepts for a 

pure-strategy two-player game, assuming each player 

seeks to minimize the maximum possible loss or 

maximize the minimum possible gain.  

After each negotiation period, an agent may in-

crease, decrease or maintain its bid, increasing the 

number of scenarios to analyze. So, after k periods, 

considering only three possible bid updates, the 

number of plays to analyze becomes (10): 

  ( 1)2 3n k nnp n np       (10) 

Game Theory for scenario analysis 

A seller, like an offensive player, will try to max-

imize the minimum possible gain by using the 

MaxiMin decision method. A buyer, like a defensive 

player, will select the strategy with the smallest max-

imum payoff by using the MiniMax decision method.  



Buyers’ matrix analysis leads to the selection of 

only those situations in which all the consumption 

needs are fulfilled. This avoids situations in which 

agents have reduced expenses but cannot satisfy their 

consumption needs completely. 

The state space to be searched is related to the pos-

sible plays of other agents, regarding possible bids 

from one agent. Fig. 2 illustrates this procedure. 

 

 

Fig. 2. Game theory for scenario-space search. 

 

Each bid of a specific agent (e.g. Agi) is analyzed 

by considering several possible scenarios, in order to 

support the decision of this agent. The scenarios are 

evaluated by considering the prices other agents may 

propose, regarding the previous proposed prices. It is 

also considered that each agent may change its price: 

increasing a lot (↑↑), increasing a little (↑), maintain-

ing (─), decreasing a little (↓), or decreasing a lot 

(↓↓) its bid price (A little means from 0 to 10% and a 

lot from 10% to 30%). Here the concepts of little and 

lot will consider the historic data of agents’ bids and 

will be converted to variations in cents. It is im-

portant to observe that it is impossible to consider all 

kind of variations, due to the complexity of the prob-

lem, as we have seen before. The required time for 

solving the problem with a large set of combinations 

would be impractical since a complete market simu-

lation is required for each scenario. 

Each leaf node of the tree in Fig. 2 corresponds to 

a possible scenario. The idea is to evaluate each one 

of these scenarios and apply a MiniMax or MaxiMin 

based algorithm to select the safest bid to be offered 

by agent Agi. 

Notice that our use of game theory is intended for 

supporting one specific agent and not for achieving 

the equilibrium in the market. The idea of the meth-

odology proposed in this paper is to provide a specif-

ic agent with decision support.  

For each simulated scenario (leaf of Fig. 2) we will 

calculate the price Pmarket for each MW.h (Megawatt 

hour), defined as the result of the simulated market. 

For the support of seller agents the evaluation of the 

scenario (in profits, F) is made by the product of the 

energy sold by the supported agent Agi, Energy_Soldi, 

by the profit, obtained from the difference between 

Pmarket and the cost associated to each MW.h sold by 

Agi, Costi, according to (11): 

)(_ imarketi CostPsoldEnergyF   (11) 

Notice that the part of this formula that demands 

the higher processing cost is the calculation of the 

value Pmarket, since it implies to run the simulation of 

the scenario in order to determine the market clearing 

price. 

Additionally, there are two methods for solving 

problems of equality in the evaluation of scenarios. 

In case of a seller, the MaxiMin algorithm chooses 

the bid that offers the maximum gain, from the worst 

possible scenario. In case of more than one scenario 

being evaluated with equal value as worst scenario, 

the options for choosing among them are: 

A greedy approach, choosing the scenario, among 

the equally worst ones, that presents the bid that al-

lows the higher payoff from all the possible bids; 

An average of the results of all possible bids for 

these scenarios, choosing the one that gets the worst 

average as the worst possible scenario. 

The user is able to choose among these two meth-

ods for solving the problems of equality. He can also 

choose a third option that is a mechanism that choos-

es automatically among these two options, according-

ly to the success that each of them is presenting. This 

mechanism uses a reinforcement learning algorithm, 

with initial equal values of confidence for the two 

options. As the time evolves, the values of success of 

each option are updated, and the one that presents the 

best confidence in each run, is the one chosen. 

The updating of these confidence values is per-

formed by running the two options and saving the 

answer proposed by each one. Later, after the bid is 

chosen as the agent’s action for the actual market, 

this method analyzes the market values and checks 

which of the outputs proposed by each method would 

have led to the best results. 

This procedure is similar to the one used for updat-

ing the values of the players’ profile definition meth-

odology, by comparing the values proposed by each 



of the algorithms used for forecasting with the actual 

actions the each player performed in the market.  

The scenario analysis algorithm is implemented in 

JAVA
1
, for a smoother integration with MASCEM 

simulator. However, for efficiency issues, the majori-

ty of data analysis methods, namely the pattern anal-

ysis and history matching algorithms for players’ 

profiles definition, are implemented in LPA Prolog
2
. 

The neural network was developed in MatLab
3
 

4.  Experimental findings 

This section presents three simulations undertaken 

using MASCEM, referring to the same 16 consecu-

tive days, starting from Friday, 15th October, 2010. 

The data used in this case study has been based on 

real data extracted from the Iberian market – OMIE 

[17].  

These simulations involve 7 buyers and 5 sellers 

(3 regular sellers and 2 VPPs). This group of agents 

was created with the intention of representing the 

Spanish reality, reduced to a smaller group, contain-

ing the essential aspects of different parts of the mar-

ket, allowing a better individual analysis and study of 

the interactions and potentiality of each of those ac-

tors. This group of agents results from the studies 

presented in [25]. 

For these simulations we will consider different 

biddings for each agent. Seller 2, which will be our 

test reference, will use the proposed method with 

different parameters in each of the three simulations. 

This allows comparing the performance of this meth-

od when using distinct parameterizations and taking 

conclusions on its suitability and the influence of the 

different parameters presented in Section 3. This sec-

tion additionally presents the comparison between 

the results obtained by each of the three considered 

parameterizations and the results obtained by using 

two other strategies which are well established and 

with verified performance and results, in order to 

determine in what degree the proposed game theory 

based strategy is best or worst suited for providing 

decision support to market players. These strategies 

are: 

 The AMES strategy is used by the AMES elec-

tricity markets simulator [15] to provide support 

to the modelled players when bidding in the 

market. This strategy is based on a study of the 

                                                           
1
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3
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efficiency and reliability of the Wholesale Pow-

er Market Platform (WPMP), a market design 

proposed by the U.S. Federal Energy Regulatory 

Commission for common adoption by all U.S. 

wholesale power markets [9, 10]. The AMES 

strategy was adapted by the authors of this paper 

in a previous work [18], to suit it to the purposes 

of asymmetrical and symmetrical pool markets, 

such as the Iberian Market – OMIE [17]. This 

strategy uses a reinforcement learning algorithm 

- the Roth-Erev algorithm [12] to choose from a 

set of the possible actions (or Action Domain) 

which is based on the companies’ production 

costs analysis. Additionally, the Simulated An-

nealing heuristic [3] is implemented to acceler-

ate the convergence process. 

 The SA-QL strategy [24] is similar to the AMES 

strategy in its fundamentals: the use of a rein-

forcement learning algorithm to choose the best 

from a set of possible actions. The differences 

concern two main aspects: the used reinforce-

ment learning algorithm is the Q-Learning [13] 

algorithm; and the set of different possible bids 

to be used by the market negotiating agent is de-

termined by a focus on the most probable points 

of success (in the area surrounding the expected 

market price). This strategy also uses the Simu-

lated Annealing heuristic to accelerate the pro-

cess of convergence. 

 

The common parameters in all the simulations us-

ing the game theory strategy are: the selection of the 

automatic mechanism for solving the problems of 

equality among scenarios; for all seller agents the 

limit price is fixed as 0 c€/kWh, for it does not make 

sense to bid negative values; for all buyer agents the 

limit price is 20 c€/kWh, a high value for allowing 

the players to consider a good margin of prices. Also, 

the selected reinforcement learning algorithm for the 

players’ profiles definition has been the revised Roth-

Erev, with equal value of the algorithms weight. The 

past experience weight W value is set to 0.4, a small 

value to grant higher influence to the most recent 

results, so that it can quickly learn and catch new 

tendencies in players’ actions. For each scenario the 

scaling factors for competitors’ probable price  and 

limit price , will be equal for every competitor agent, 

in order to give the same importance to the price 

forecast of each agent. These scaling factors will only 

vary from scenario to scenario, but always maintain-

ing the equality among agents. 

 

http://www.java.com/
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The variations introduced in each simulation are: 

 In the first simulation Seller 2 will use the sce-

nario analysis method with a small number of 

considered scenarios and possible bids. This test 

will allow us to perceive if a restrict group of 

scenarios, and consequent advantage in pro-

cessing speed, will be reflected on a big differ-

ence in the results quality. For this simulation 

the number of considered scenarios is 3, the 

number of considered bids is 5, and the interval 

for the possible bids definition is 8. Considering 

the 3 scenarios, the first will attribute to all 

agents =1 and =0; the second =0,95 and 

=0,05; and the third =0,9 and =0,1. These 

values give higher importance to the most prob-

able prices, in order to consider the most realis-

tic scenarios. 

 In the second simulation Seller 2 will use the 

scenario analysis method with an intermediate 

number of considered scenarios and possible 

bids. The number of considered scenarios is 5, 

the number of considered bids is 7, and the in-

terval for the possible bids definition is 8. Con-

sidering the 5 scenarios, the first will attribute to 

all agents =1 and =0; the second =0,95 and 

=0,05; the third =0,9 and =0,1; the fourth 

=0,8 and =0,2; and the fifth =0,7 and =0,3. 

 Finally, in the third simulation Seller 2 will use 

the method with a higher number of considered 

scenarios and possible bids, in order to obtain a 

more detailed analysis. The number of consid-

ered scenarios is 7, the number of considered 

bids is 10, and the interval for the possible bids 

definition is 10, granting also a bigger interval 

for considered bids. Considering the 7 scenarios, 

the first will attribute to all agents =1 and =0; 

the second =0,95 and =0,05; the third =0,9 

and =0,1; the fourth =0,8 and =0,2; the fifth 

=0,7 and =0,3; the sixth =0,5 and =0,5; 

and the seventh =0,2 and =0,8. 

After the simulations, the incomes obtained by 

Seller 2 using the proposed method with each of 

the three combinations of parameters can be com-

pared. This agent’s power production to be negoti-

ated in the market will remain constant at 50MW 

for each period throughout the simulations. Re-

garding the costs of all players, they are defined as 

null, for facilitating the comparison of the results. 

The other players’ bids are defined as follows: 

 Buyer 1 – This buyer buys power independently 

of the market price. The offer price is 18.30 

c€/kWh (this value is much higher than average 

market price). 

 Buyer 2 – This buyer bid price varies between 

two fixed prices, depending on the periods when 

it really needs to buy, and the ones in which the 

need is lower. The two variations are 10.00 and 

8.00 c€/kWh. 

 Buyer 3 – This buyer bid price is fixed at 4.90 

c€/kWh. 

 Buyer 4 – This buyer bid considers the average 

prices of the last 4 Wednesdays. 

 Buyer 5 – This buyer bid considers the average 

prices of the last 4 months. 

 Buyer 6 – This buyer bid considers the average 

prices of the last week (considering only busi-

ness days). 

 Buyer 7 – This buyer only buys power if market 

prices are lower than average market price. 

 Seller 1 – This seller needs to sell all the power 

that he produces. The offer price is 0.00 c€/kWh. 

 Seller 3 – This seller bid considers the average 

prices of the last 4 months with an increment of 

0.5 c€/kWh. 

 VPP 1 – Includes 4 wind farms and offers a 

fixed value along the day. The offer price is 3.50 

c€/kWh. 

 VPP 2 – Includes 1 photovoltaic, 1 co-

generation and 1 mini-hydro plants; the offer 

price is based on the costs of co-generation and 

the total forecasted production. 

Since the reinforcement learning algorithm for the 

players’ profiles definition treats each period of 

the day as a distinct case, the analysis of the de-

velopment of the performance must be done for 

each period individually. Fig. 3 presents the evolu-

tion of Seller 2 incomes in the first period of each 

considered day, along the 16 days, using each of 

the three considered combinations of parameters. 
a) 

 
 



b) 

 
c) 

 
 

Fig. 3. Incomes obtained by Seller 2 in the first period of the con-

sidered 16 days, using: a) the first parameterization, b) the second 

parameterization, c) the third parameterization. 

Fig. 4 presents the results of Seller 2 in the twelfth 

period of each considered day. 

 
a) 

b) 

c) 

 

Fig. 4 Incomes obtained by Seller 2 in the twelfth period of the 

considered 16 days, using: a) the first parameterization, b) the 

second parameterization, c) the third parameterization. 

 

Comparing the graphs presented in Fig. 3, it can be 

concluded that the first simulation was clearly the 

most disadvantageous for Seller 2 for this period. The 

second and third simulations present very similar 

results in what concerns the incomes obtained by this 

agent in the first period. 

The results of the twelfth period show the first pa-

rameterization worst results when compared with the 

other two. However, in this case, the third parameter-

ization clearly obtained better results than the second 

one. The global results for all periods of the consid-

ered 16 days, presented in Fig. 5, support this ten-

dency. Fig. 5 additionally presents the comparison 

between the three parameterizations of the game the-

ory strategy and the other two strategies’ perfor-

mance: The AMES strategy, and the SA-QL. 

 



 

Fig. 5. Total incomes obtained by Seller 2 for the considered 16 

days. 

 

From Fig. 5 it is visible that the first parameteriza-

tion presents a large difference from the other two, 

and a smaller difference between the results achieved 

by the second and third parameterizations can be 

clearly seen. The comparison of the different parame-

terizations’ performances allows taking an important 

conclusion: when it is required for the simulations to 

improve the processing times, a criterious reduction 

of the search space may not represent a significant 

decrease of the method’s effectiveness. As proven by 

simulation 2, which even though considering fewer 

scenarios and possible bids than the parameterization 

of simulation 3, its results were still acceptable for 

situations for which the method’s processing time is 

crucial. 

Regarding the comparison between the use of the 

game theory strategy and the other two comparing 

strategies, it is visible that the first parameterization 

of the proposed strategy achieves lower results than 

the two reference strategies. This was expected and it 

is easily justified by the low number of scenarios and 

possible bids that this parameterization concerned. 

The second parameterization achieves very similar 

results to the ones obtained by the two reference 

strategies. This means that, even using an intermedi-

ate number of scenarios and bids, the proposed game 

theory strategy is capable of achieving levels of per-

formance that are similar to the results of reference 

and well established strategies. In what concerns to 

the third parameterization, it is capable of achieving 

best results than any of the other strategies, for the 

considered days. This is a motivating result, suggest-

ing that the proposed method is able to provide better 

results to a market negotiating player’s actions, when 

the parameters are suitably defined. 

5. Conclusions and Future work 

This paper proposed a computational model for 

bid definition in electricity markets. The proposed 

method uses a scenario analysis algorithm based on 

the principles of game theory to evaluate and preview 

different scenarios and react strategically. The pro-

posed method is integrated in MASCEM, an electric-

ity market simulator developed by the authors’ re-

search centre. 

The model proves to be adequate for providing de-

cision support to electricity markets players, allowing 

an analysis of different scenarios, taking into account 

the predictions of competitor players’ actions. 

The results presented in the experimental findings 

section show that it can achieve good results when 

using suitable parameterizations, as in simulation 3. 

These good results are also shown not to be directly 

proportional to the scenarios search space, which is a 

relevant aspect when dealing with timely exigent 

simulations. This conclusion facilitates the adaptabil-

ity of the decision making process regarding the 

method’s efficiency and effectiveness. 

Additionally, when comparing the results of the 

proposed game theory strategy with the performance 

of two other well documented and reference strate-

gies, it was found that this strategy is capable of 

achieving best results when the parameters are de-

fined correctly. In fact, even when opting by a faster 

but less broad approach (parameterization with less 

considered scenarios and a smaller action domain), 

the game theory strategy was still able to achieve 

results in the same range as the reference strategies.  

Considering the improvement of this method, fur-

ther work will be done in what concerns a detailed 

analysis in the neighborhood of the scenario selected 

by the algorithm. To achieve this, an evolutionary 

approach will be included and combined with the 

game theory. 
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