

Replacing fossil fuels with biomass at the central power plants

Peter Glarborg

DTU Chemical Engineering Department of Chemical and Biochemical Engineering

Engineering challenges in the power industry

Current challenges for the power sector

Targeting sustainability

- 2020
- 2050

DTU Chemical Engineering, Technical University of Denmark

Current power supply

- Wind turbines
- Hydro power
- Solar power
- Thermal power plants
 - Required for balancing
 - Supply district heating
 - Mainly based on coal
 - Challenges
 - Conversion to biomass
 - Flexibility (load, fuel)
 - Electrical efficiency
 - Financial sustainability

Biomass Fuels in Europe

- Woody biomass fuels:
 - Bark
 - Industrial wood chips
 - Sawdust
 - Forest wood chips
 - Waste wood
 - Pellets, briquettes
- Herbaceous biomass fuels:
 - Straw, cereals
 - Grasses (miscanthus, giant reed)
- Alternative biomass fuels:
 - Kernels, shells, olive stones, shea nuts

F. Frandsen

Use alternative fuels on power plants

Central power plants

Present: High electrical efficiency Low fuel-flexibility

Vision: 100% fuel flexibility Retain electrical efficiency

DTU Chemical Engineering, Technical University of Denmark

Nightmares of a plant operator

Diagram of coal-fired power plant

Solid Fuel Characteristics

Fuel	Water content (Wt %)	Heating Value (MJ/Kg)	Density (Kg/m ³)
Straw	15	14 – 15	100
Straw + grains	15	14 – 15	200
Grains	15	15	700
Straw pellets	8	16	600
Wood chips	40	10 – 11	200 – 300
Saw dust	20	15	160
Wood pellets	6	17 – 18	660
Coal	10	25 - 28	800 - 1000

Grindability of solid fuels

Bio-dust combustion

Differences in properties to coal:

- Particle size and form
- Pyrolysis behavior
- Char reactivity

Fuel conversion aspects:

- Ignition, flame stability
- Energy release profile
- NO formation
- Burnout

Critical:

- Burner design
- Fuel quality
- Particle size distribution

Wood burner flame seen from above

AMV1: Flame attachment

- Flame detachment and re-attachment
- 1 m flame lift
- Stable for several seconds

DTU Chemical Engineering, Technical University of Denmark

Johansen et al., 2013

AMV1: Temperature from optical diagnostics

DTU Chemical Engineering, Technical University of Denmark

Johansen et al., 2013

The major challenge: the inorganic elements

DTU Chemical Engineering, Technical University of Denmark

F. Frandsen

Ash generating elements – typical levels

High K+Cl content: Sticky and corrosive ash

Corrosion

Deposition

The big chemical scoop of coal-straw co-firing:

DTU Chemical Engineering, Technical University of Denmark

F. Frandsen

Biomass combustion: SCR catalyst deactivation

- Biomass is increasingly used for heat and power production alone or with other fuels
- Accelerated deactivation of SCR catalysts has been observed when firing biomass

Potassium speciation in ash: concerns

	Deposition	Corrosion	SCR deactivation	Fly ash quality
KCI	XXX	XXX	XXX	XXX
K ₂ SO ₄	XX	Х	XXX	
K-silicates	XX			
K-alumina- silicates	Х			

- Deposition and corrosion: High K+Cl fuels → low superheater temperatures → low electrical efficiency
- Fly ash quality: biomass share in co-combustion with coal ≤20% for use in concrete production

GREEN: Power Generation from Renewable Energy

- Biodust combustion on central power plants – issues:
 - Fuel availability and quality
 - Handling and pretreatment
 - Combustion process
 - Deposition and corrosion
 - Flue gas cleaning technology
 - Solid residue
- Disciplines
 - Agricultural science
 - Materials science
 - Thermodynamics
 - Fluid dynamics
 - Combustion chemistry
 - Catalysis
 - Inorganic chemistry

The GREEN Research Center

- Objectives: to facilitate an efficient conversion of coal-fired power plants to biomass, retaining a high electrical efficiency with a broad fuel-band
- Partners:

DTU Chemical Engineering, DTU Mechanical Engineering, Aarhus University B&W Energy, DONG Energy, Vattenfall Stanford University, Lund University, HNE Eberswalde, University of North Texas

- Associated partners: Clausthal University, Haldor Topsøe
- Schedule: 2011-2015

GREEN Work Packages

- WP1 Agricultural biomass quality (AU with HNEE)
- WP2 Fuel characterization (KT with SU, LU, VF, and DEP)
- WP3 Burner design (KT and Risø with BWE, VF, and DEP)
- WP4 Ash transformation, deposition and additives (KT with LU, UNT, VF, and DEP)
- WP5 Model based development and testing of advanced corrosion resistant super-heater materials (MEK with KT, DEP and VF).
- WP6 Deactivation of SCR catalysts (KT with DEP and VF)
- WP7 Utilization of ash as fertilizer (AU)

DTU

From molecular science to advanced technology

How do we work

Laboratory experiments

Model development

Pilot scale measurements

Full scale measurements

Concluding remarks: biomass for power

- Denmark worldwide leader in biomass for power and heat since early 1990's, facilitated by strong RD&D efforts
- The Danish power supply structure in rapid transition, imposing needs for adaption of current thermal technologies to biomass
- Short term needs: Adaption of current thermal technologies to biomass
 - Accept a large variation in biomass fuel type and fuel pellet particle sizes
 - Facilitate fast shifts between different wood and straw fuel types and fossil fuels
 - Ensure high plant availability and high electrical efficiency when using biomass fuels
- Long term needs: Novel technologies
 - Adapt to large changes in electricity output on short timescales

Acknowledgements

- Helpful discussions and input from
 - Kim Dam-Johansen
 - Flemming Frandsen
 - Anker Degn Jensen
 - Peter Arendt Jensen
- Funding from
 - DONG Energy
 - Vattenfall
 - Danish Strategic Research Council
 - -Other