
HAL Id: hal-01972846
https://hal.inria.fr/hal-01972846

Preprint submitted on 8 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Continuation-and-environment-passing style
translations: a focus on call-by-need

Hugo Herbelin, Étienne Miquey

To cite this version:
Hugo Herbelin, Étienne Miquey. Continuation-and-environment-passing style translations: a focus on
call-by-need. 2019. �hal-01972846�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/184935259?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01972846
https://hal.archives-ouvertes.fr

Continuation-and-environment-passing style
translations: a focus on call-by-need

Hugo Herbelin1 and Étienne Miquey2

1 Équipe πr2, INRIA, IRIF, Université herbelin@inria
2 Équipe Gallinette, INRIA, LS2N, Université de Nantes

etienne.miquey@inria.fr

Abstract. The call-by-need evaluation strategy for the λ-calculus is an
evaluation strategy that lazily evaluates arguments only if needed, and
if so, shares computations across all places where it is needed. To im-
plement this evaluation strategy, abstract machines require some form
of global environment. While abstract machines usually lead to a better
understanding of the flow of control during the execution, easing in par-
ticular the definition of continuation-passing style translations, the case
of machines with global environments turns out to be much more subtle.
The main purpose of this paper is to understand how to type a continuation-
and-environment-passing style translations, that it to say how to soundly
translate a classical calculus with environment into a calculus that does
not have these features. To this end, we focus on a sequent calculus
presentation of a call-by-need λ-calculus with classical control for which
Ariola et. al already defined an untyped translation [5] and which we
equipped with a system of simple types in a previous paper [32]. We
present here a type system for the target language of their translation,
which highlights a variant of Kripke forcing related to the environment-
passing part of the translation. Finally, we show that our construction
naturally handles the cases of call-by-name and call-by-value calculi with
environment, encompassing in particular the Milner Abstract Machine,
a machine with global environments for the call-by-name λ-calculus.

1 Introduction

1.1 Continuation-passing style translations

The terminology of continuation-passing style (CPS) was first introduced in 1975
by Sussman and Steele in a technical report about the Scheme programming
language [40]. In this report, after giving the usual recursive definition of the
factorial, they explained how the same computation could be driven differently:

“It is always possible, if we are willing to specify explicitly what to do
with the answer, to perform any calculation in this way: rather than
reducing to its value, it reduces to an application of a continuation to its
value. That is, in this continuation-passing programming style, a function
always “returns” its result by “sending” it to another function. This is
the key idea.”

2 H. Herbelin, É. Miquey

Interestingly, by making explicit the order in which reduction steps are com-
puted, continuation-passing style translations indirectly specify an operational
semantics for the translated calculus. In particular, different evaluation strategies
for a calculus correspond to different continuation-passing style translations.

Continuations and their computational benefits have been deeply studied
since then, and there exists a wide literature on continuation-passing style trans-
lations. Among other things, these translations have been used to ease the defini-
tions of compilers [3,14], one of their interests being that they make explicit the
flow of control. As such, continuation-passing style translations de facto provide
us with an operational semantics for control operators, as observed in [15] for
the C operator.

It is well-known since the seminal paper of Griffin that in the realm of the
proofs-as-programs correspondence, control operators gives a tangible compu-
tational content to classical logic [16]. Continuation-passing style translations
therefore bring an indirect computational interpretation of classical logic. This
observation can be strengthened on a purely logical aspect by considering the
logical translations they induce at the level of types: the translation of types
through a CPS mostly amounts to a negative translation allowing to embed
classical logic into intuitionistic logic [16,34].

1.2 Call-by-need

Call-by-need evaluation strategy of the λ-calculus evaluates arguments of func-
tions only when needed, and, when needed, shares their evaluations across all
places where the argument is required. The call-by-need evaluation is at the
heart of a functional programming language such as Haskell. It has in common
with the call-by-value evaluation strategy that all places where a same argument
is used share the same value. Nevertheless, it observationally behaves like the
call-by-name evaluation strategy (for the pure λ-calculus), in the sense that a
given computation eventually evaluates to a value if and only if it evaluates to
the same value (up to inner reduction) along the call-by-name evaluation. In
particular, in a setting with non-terminating computations, it is not observa-
tionally equivalent to the call-by-value evaluation. Indeed, if the evaluation of a
useless argument loops in the call-by-value evaluation, the whole computation
loops, which is not the case of call-by-name and call-by-need evaluations.

These three evaluation strategies can be turned into equational theories. For
call-by-name and call-by-value, this was done by Plotkin through continuation-
passing style semantics characterizing these theories [38]. For the call-by-need
evaluation strategy, a specific equational theory reflecting the intensional behav-
ior of the strategy into a semantics was proposed independently by Ariola and
Felleisen [4], and by Maraist, Odersky and Wadler [28]. A continuation-passing
style semantics was proposed in the 90s by Okasaki, Lee and Tarditi [35]. How-
ever, this semantics does not ensure normalization of simply-typed terms, as
shown in [5], thus failing to ensure a property which holds in the simply-typed
call-by-name and call-by-value cases.

Continuation-and-environment-passing style translations 3

1.3 CPS, abstract machines and sequent calculi

The main difficulty in deriving a CPS translation for a call-by-need calculus is
related to the necessity of sharing computations, a problem which can already be
observed when trying to define an abstract machine. While most of the abstract
machines for the λ-calculus evaluate terms within a local environment by using
closures (e.g. Landin’s SECD machine [24], the Krivine Abstract Machine [22],
etc.), this is not enough for call-by-need calculi. Instead, the call-by-need eval-
uation strategy requires abstract machines with a global environment3. Such
machines demand in particular to explicitly handle addresses (as in the Lazy
Krivine [25]) or a renaming process (as in the Milner Abstract Machine [1]).

It is folklore than continuation-passing style translations for different flavors
of λ-calculi can be advantageously factorized through sequent calculi. The se-
mantics of calculi with control can indeed be reconstructed from an analysis of
the duality between programs and their evaluation contexts. Such an analysis
can be performed in the context of sequent calculi such as Curien-Herbelin’s
λ̄µµ̃-calculus, in which evaluation contexts (and thus continuations) are reified
into concrete object of the syntax [11]. As such, the operational semantics of
sequent calculi are thus really close from the one of abstract machines.

Defining a sequent calculus with the adequate operational semantics can
thus constitute a good intermediate step in order to ease the further definition
of a continuation-passing style translation. Based on this idea, Danvy proposed a
methodology to mechanically obtain CPS translations from the successive deriva-
tions of several semantics artifacts [12]. This methodology is applied in [5] to get
a continuation-passing style translation for a call-by-need calculus with con-
trol using several call-by-need sequent calculi. The λ[lvτ?]-calculus, an abstract
machine-like sequent calculus they defined, as well as the untyped CPS transla-
tion they obtained, are the main objects of study of this paper.

1.4 A typed continuation-and-environment-passing style translation

The main purpose of this paper will be to type the CPS translation from [5],
that is to say to define a type system suitable to be the target calculus of the
translation. In [5], the translation is indeed untyped, therefore failing at proving
the normalization or the soundness of the λ[lvτ?]-calculus. In a recent paper [32],
these properties have been proved by means of a realizability interpretation à la
Krivine. The structure of this interpretation turns out to be very instructive on
the difficulties encountered when trying to type the CPS translation.

First, since the evaluation of terms is shared, the continuation-passing style
translation has actually to be combined with an environment-passing style trans-
formation. Second, as environments can grow during the execution, the realiz-
ability interpretation is defined to be compatible with environments extension4.

3 For a discussion on the benefits and drawbacks of local and global environment, we
refer the reader to [2].

4 Namely, the definitions of pole and truth/falsity values all include a component made
of an environment, and are stable under environment extension.

4 H. Herbelin, É. Miquey

The type translation will internalize this extensibility by means of a variant of
Kripke forcing. Last but not least, the translation has to handle problems related
to the uniqueness of names. In a nutshell, this is due to the fact that terms can
contain unbound variables that refer to elements of the environment. Therefore,
a collision of names can result in self-references and non-terminating terms. We
deal with this by refining the translation to use de Bruijn levels to access el-
ements of the environment, which also have the advantage of making it closer
to an actual implementation. Surprisingly, the passage to de Bruijn levels also
unveils some computational content related to the extension of environments.

The target calculus of our translation will then include typed stores and
a bounded second-order quantification over stores types, written ∀X <:Υ and
reading “for any X extending Υ”, in order to account for store extensions. This
quantification is reminiscent of Cardelli’s System F<: [9], and we will name our
calculus FΥ . Also, since we will use de Bruijn levels to access the elements of a
store (i.e. the variable n refers to the nth cell of the store), an arbitrary extension
of the store may result in the necessity of updating de Bruijn levels to take this
extension into account. To this purpose, we will use explicit coercions to witness
the extension of stores. Interestingly, we will see that the definition of System FΥ
and the structure of the translation are related to the use of global environments
but that they are not peculiar to the call-by-need evaluation strategy.

1.5 Organization of the paper

We briefly outline the organization of the paper.

– Section 2 is devoted to a detailed introduction of the sequent calculi and
abstract machines using global environments that we study in this paper.
We begin with the introduction of the Milner Abstract Machine (MAM) for
the call-by-name λ-calculus in Section 2.1, which we relate in Section 2.2 to a
variant of the call-by-name λ̄µµ̃-calculus with global environments. We then
present the by-need version of the MAM (Section 2.3), and we introduce
a variant with de Bruijn levels of Ariola et al.’s sequent calculus presen-
tation of a call-by-need λ-calculus with control, called the λ[lvτ?]-calculus
(Section 2.4).

– Section 3 focuses on the target system of the typed continuation-and-environment-
passing style translations that we present in the sequel. We first highlight
the guidelines of the translations in Section 3.1 and in particular the Kripke
forcing-like manner of anticipating environments extensions, before intro-
ducing System FΥ in Section 3.2 and some of its properties in Section 3.3.

– Section 4 dwells on two specific continuations-and- environments-passing
style translations: a call-by-need translation in Section 4.1 and a call-by-
name translation in Section 4.2. Both translations are shown to be type-
preserving thanks to the properties of System FΥ .

– Finally, we conclude in Section 5 by emphasizing the connection between
environment and Kripke forcing, before presenting perspectives and further
work.

Continuation-and-environment-passing style translations 5

t, u ::= x | tu | λx.t
π ::= ε | t · π
τ ::= ε | τ [x := t]

tu ? π ? τ →c t ? u · π ? τ
λx.t ? u · π ? τ →β t ? π ? τ [x := u]
x ? π ? τ [x := t]τ ′ →s t

α
? π ? τ [x := t]τ ′

(a) Milner Abstract Machine

t, u ::= x | tu | λx.t
S ::= ε | (t, E) · S
E ::= ε | E[x ::= (t, E′)]

tu ? S ? E →c t ? (u,E) · S ? E
λx.t ? (u,E′) · S ? E →β t ? S ? E[x ::= (u,E′)]

x ? S ? E[x ::= (t, E′)]E′′ →s t ? S ? E′

(b) Krivine Abstract Machine

Fig. 1. MAM vs KAM

2 Computing with global environments

In this section, we recall and introduce several calculi and abstract machines
that have in common that they use a form of global environments to perform
substitutions. As such, what we call global environments somewhat behave like
(lazy) explicit substitutions or particular stores. To draw the comparison with
the usual notions of stores and environments, two things should be observed.
First, the usual notion of store refers to a structure of list that is fully mutable,
in the sense that its cells can be updated at any time and thus values might be
replaced. In our case, cells might be updated but only to replace an unevaluated
term by its corresponding value. Second, the usual notion of environment desig-
nates a structure in which variables are bound to closures made of a term and an
environment. In particular, terms and environments are duplicated, i.e. sharing
is not allowed. Such a structure resembles a tree whose nodes are decorated by
terms, as opposed to a machinery allowing sharing (like ours), whose underlying
structure is broadly a directed acyclic graph.

2.1 The Milner Abstract Machine

Even though it is far from being the most known abstract machine, the Milner
Abstract Machine (MAM) is probably the easiest presentation of an abstract ma-
chine for the (call-by-name) λ-calculus that uses a single global environment [1,2].
A state of this machine is made of three components:

– a code t for a term t which is not considered up to α-conversion,
– a stack π which contains the arguments of the current code, that is to say a

stack of codes,
– a global environment τ , which is a list storing the (delayed) substitutions

generated by the redexes encountered so far.

The machine is given in Figure 1, where we follow the notations of [2] to denote
reduction rules: we write →β for the β-reduction rule, →s for the rule which

6 H. Herbelin, É. Miquey

somehow performs a substitution, and →c for the commutative transition. By
considering invariants of the machine, one can easily prove that the Milner Ab-
stract Machine soundly implements the call-by-name evaluation strategy for the
λ-calculus [1].

It is worth noting that the soundness of the execution crucially relies on the
uniqueness of names in the environment. Incidentally, this requires the possibility
of an on-the-fly α-renaming process. Executing twice a term bounding a variable
x in different contexts (say (λx.t)u and (λx.t)v) could indeed result in linking
two different terms to the same name in the environment. This is avoided by
asking in the →s rule that if x is linked to some term t in the environment τ ,
accessing x results in executing a code t

α
that is α-equivalent to t and such that

any bound name in t
α

is fresh with respect to those in the current stack π and
environment τ . In the sequel, we will explicitly use De Bruijn levels to handle
this kind of issues.

On the contrary, most of the abstract machines of the literature implementing
the call-by-name or call-by-value evaluation strategies for the λ-calculus (e.g.
the Krivine Abstract Machine [22], Landin’s SECD machine [24], Felleisen and
Friedman’s CEK machine [13], Leroy’s ZINC machine [26]) uses many local
environments. In these machines, the concept of closure, that is a term taken
with an environment under which it can be seen as a closed term, plays a central
part. As an example, we give in Figure 1 the definition of the Krivine Abstract
Machine (KAM). In comparison with the MAM, it is interesting to observe that
the definitions of environments and closures are mutually recursive. Notably, it
presents the advantage that the locality of environments makes the α-renaming
process useless. While this design with a local environment presents some benefits
over machines with global ones (among other things in terms of complexity [2]),
it has the drawback of being incompatible with lazy evaluation strategies which
require to share computations and memory bindings.

2.2 The λ̄µµ̃-calculus with global environments

Before dwelling on the by-need variant of the MAM, let us briefly explain how the
MAM could easily be expressed under the shape of a sequent calculus. We present
here a variant of the call-by-name λ̄µµ̃-calculus extended with a global environ-
ment [11]. The syntax of the usual λ̄µµ̃-calculus is divided in three categories:
terms, which represent programs; evaluation contexts (or co-terms); commands,
which are pairs of a term and a context representing a system that contains
both the program and its environment. Then, as in the MAM, we extend the
syntax with environments made of delayed substitutions. The notion of evalua-
tion context is a generalization of the notion of stacks where µ̃a.c can be read
as a context let a = [] in c. As for terms, the µ operator comes from Parigot’s
λµ-calculus [36]: µα binds a context to a context variable α in the same way
µ̃a binds a proof to some proof variable a. In particular, as we shall see now,
it allows terms to capture evaluation contexts and as such plays the role of a
control operator.

Continuation-and-environment-passing style translations 7

Values V ::= λx.t
Terms t, u ::= V | x | µα.c
Co-values E ::= t · E | α
Contexts e ::= E | µ̃x.c

Environment τ ::= ε | τ [x := t] | τ [α := E]
Commands c ::= 〈t || e〉
Closures l ::= cτ

(Let)
(Catch)
(Lookupx)
(Lookupα)
(Beta)

〈t || µ̃x.c〉τ → cτ [x := t]
〈µα.c ||E〉τ → cτ [α := E]

〈x ||E〉τ [x := t]τ ′ → 〈t ||E〉τ [x := t]τ ′

〈V ||α〉τ [α := E]τ ′ → 〈V ||E〉τ [α := E]τ ′

〈λx.t || u · E〉τ →
〈
u
∣∣∣∣ µ̃x.〈t ||E〉〉τ

Fig. 2. Call-by-name λ̄µµ̃-calculus with global environments

The syntax and reduction rules are given in Figure 2, in which terms and
contexts are implicitly considered up to α-conversion in order to preserve the
uniqueness of names in the environment. It is easy to see that on its intuitionistic
fragment (that is without the classical control µα), this calculus behaves exactly
as the MAM5. Observe that the reduction rules for µ is restricted to co-values,
which enforces the call-by-name reduction strategy. Call-by-value is obtained
by relaxing this constraint and by dually constraining the reduction of µ̃ to
values [11]. As for the typing rules, they will be easy to deduce from the type
system we will introduce for the λ[lvτ?]-calculus in Section 2.4, we thus let them
as an exercise for the reader.

2.3 The Milner Abstract Machine By-Need

The call-by-need evaluation strategy of the λ-calculus evaluates arguments of
functions only when needed, and, when needed, shares their evaluations across all
places where the argument is required. Therefore, abstract machines implement-
ing the call-by-need evaluation have to allow for some kind of global environment
in order to share computations [39,10]. The Milner Abstract Machine can easily
be modified to obtain such an abstract machine, called the Milner Abstract ma-
chine by-neeD (MAD) [1]. The main idea consists in adding a dump, which is
used whenever the code is some variable x within an environment τ1[x := t]τ2:
the machine momentarily focuses on the evaluation of t in τ1 while saving the
current stack together with the rest of the environment τ2 and the variable x

5 The reader unfamiliar with the λ̄µµ̃-calculus might be puzzled by the absence of
a syntactic construction for the application of proof terms. Intuitively, the usual
application tu of the λ-calculus is replaced by the application of the proof t to a
stack of the shape u·E. The usual application can be recovered through the following
shorthand: tu , µα.〈r || u · α〉 . It is then an easy exercise to show that the MAM
can be simulated within the λ̄µµ̃-calculus with environments, see Appendix A.

8 H. Herbelin, É. Miquey

tu ? π ? τ ? D →c1 t ? u · π ? τ ? D
λx.t ? u · π ? τ ? D →β t ? π ? τ [x := u] ? D
x ? π ? τ [x := t]τ ′ ? D →c2 t ? ε ? τ ? (x, π, τ ′) :: D
v ? ε ? τ ? (x, π, τ ′) :: D →s vα ? π ? τ [x := v]τ ′ ? D

Fig. 3. The Milner Abstract by-neeD machine

on the dump. Then, if this computation eventually produces a value V in an
environment τ ′1, the machine goes back to the former computation within the
updated environment τ ′1[x := V]τ2. The machine is given Figure 3, where envi-
ronments τ and stacks π are defined as in the MAM, and where dumps are given
by the following grammar:

D ::= ε | (x, π, τ) :: D

2.4 The λ[lvτ?]-calculus

If the MAD arguably provides us with the easiest presentation of a lazy ab-
stract machine, it does not directly lead to an operational semantics for con-
trol operators (or, equivalently, to the definition of a continuation-passing style
translation). While the addition to the KAM of the call/cc operator, which
allows to capture the current stack into a continuation, is very natural, it is
less obvious to determine its behavior in the MAD. Especially, it is not clear
a priori how control operators should handle the global environment and the
dump. More generally, the problem of soundly defining a CPS translation for
the call-by-need λ-calculus turns out to be trickier than in the call-by-value and
call-by-name cases. In particular, a first attempt by Okasaki, Lee, Tarditi [35]
was latter shown to be non-normalizing on simply-typed terms [5].

In [5], the authors apply the methodology of Danvy’s semantics artifacts
to mechanically derive a continuation-passing style translation from a sequent
calculus presentation of classical call-by-need. Starting from a specific evaluation
strategy for the λ̄µµ̃-calculus, they finally obtain a small-step sequent calculus,
the λ[lvτ?]-calculus, from which they get an untyped CPS translation almost

for free6. The λ[lvτ?]-calculus can be understood as a refinement of the λ̄µµ̃-
calculus with explicit environments (see Section 2.2). Before introducing our
variant of this calculus using De Bruijn levels, let us first stick to names in order
to emphasize the main differences between both calculi, which are:

– a new binder, written µ̃[x].〈x ||F 〉τ ′, which is used to implement laziness as
we shall explain;

– a subdivision of values (resp. co-values) into two categories of weak and
strong values (resp. catchable and forcing contexts).

6 See Appendix B.1 for the original definition of the λ[lvτ?]-calculus and the corre-
sponding untyped CPS.

Continuation-and-environment-passing style translations 9

Strong values correspond to values strictly speaking. Weak values include vari-
ables, which force the evaluation of terms to which they refer into shared strong
value. Their evaluation may require capturing a continuation. Dually, catchable
contexts are co-values strictly speaking, while forcing contexts are contexts ea-
gerly asking for a strong value, which may trigger the evaluation of terms lazily
stored. In details, the lazy evaluation of terms allows for the following reduction:

〈µα.c || µ̃x.c′〉 → c′[x := µα.c]

In this case, the term µα.c is left unevaluated (“frozen”) in the environment,
until possibly reaching a command in which the variable x is needed. When
evaluation reaches a command of the form 〈x || F 〉τ [x := µα.c]τ ′, the binding is
opened and the term is evaluated in front of the context written µ̃[x].〈x ||F 〉τ ′:

〈x ||F 〉τ [x := µα.c]τ ′ →
〈
µα.c

∣∣∣∣ µ̃[x].〈x ||F 〉τ ′
〉
τ

The reader can think of the previous rule as the “defrosting” operation of the
frozen term µα.c : this term is evaluated in the prefix of the environment τ which
predates it, in front of the context µ̃[x].〈x ||F 〉τ ′ where the µ̃[x] binder is waiting
for a value. This context keeps trace of the part of the environment τ ′ that was
originally located after the binding [x := ...]. This way, if a value V is indeed
furnished for the binder µ̃[x], the original command 〈x || F 〉 is evaluated in the
updated full environment:〈

V
∣∣∣∣ µ̃[x].〈x ||F 〉τ ′

〉
τ → 〈V ||F 〉τ [x := V]τ ′

The brackets in µ̃[x].c are used to express the fact that the variable x is forced
at top-level7. Especially, it allows us to keep the standard redex at the top of a
command and avoids searching through the meta-context for work to be done.
As such, reduction rules of the λ[lvτ?]-calculus are close to the ones of the MAD8.

Last but not least, the different syntactic categories can be understood as
the different levels of alternation in a context-free abstract machine (see [5]): the
priority is first given to contexts at level e (lazy storage of terms), then to terms
at level t (evaluation of µα into values), then back to contexts at level E and so
on until level v. These different categories are directly reflected in the definition
of the untyped continuation-passing style defined in [5] (see Appendix B.1), and
will thus be involved in the definition of our typed translation as well.

De Bruijn levels Ariola et al.’s presentation of the λ[lvτ?]-calculus deeply relies
on the assumption that names of variable are unique and thus on the possibility
of performing α-conversion on-the-fly9. In turns, we will use de Bruijn levels10

7 Unlike meta-contexts of the shape µ̃x.C[〈x ||F 〉] in the λlv-calculus, see [5].
8 In fact, it is an easy exercise to simulate the MAD within the λ[lvτ?]-calculus. We

outline this construction in Appendix A.
9 See Appendix B.2 for more details on problems related to α-conversion

10 De Bruijn levels were originally introduced as a reversed notations for de Bruijn
indices [8]. While they have been much less used, levels have the significant benefits
that variables referring to the same binder have the same name.

10 H. Herbelin, É. Miquey

Strong values v ::= k | λxi.t
Weak values V ::= v | xi
Terms t, u ::= V | µαi.c

Stores τ ::= ε | τ [xi := t] | τ [αi := E]
Commands c ::= 〈t || e〉
Closures l ::= cτ

Forcing contexts F ::= κ | t · E
Catchable contexts E ::= F | αi | µ̃[xi].〈xi ||F 〉τ
Evaluation contexts e ::= E | µ̃xi.c

(Let)
(Catch)
(Lookupα)
(Lookupx)
(Restore)
(Beta)

〈t || µ̃xi.c〉τ → c[xn/xi]τ [xn := t] with |τ | = n
〈µαi.c ||E〉τ → c[αn/αi]τ [αn := E] with |τ | = n
〈V ||αn〉τ → 〈V || τ(n)〉τ

〈xn ||F 〉τ [xn := t]τ ′ →
〈
t
∣∣∣∣ µ̃[xn].〈xn ||F 〉τ ′

〉
τ〈

V
∣∣∣∣ µ̃[xi].〈xi ||F 〉τ ′

〉
τ → 〈V || ↑+in F 〉τ [xn := V](↑+in τ ′) with |τ | = n

〈λxi.t || u · E〉τ →
〈
u
∣∣∣∣ µ̃xi.〈t ||E〉〉τ

Fig. 4. The λ[lvτ?]-calculus with de Bruijn levels

for variables (and co-variables) that are bound in the environment. Just as de
Bruijn indices are pointers to the correct binder, de Bruijn levels are pointers to
the correct cell of the environment. We use the mixed notation11 xi where the
relevant information is x when the variable is bound within a proof (that is by a
binder λ or µ̃), and where the relevant information is i once the variable has been
bound in the environment (at position i). For binders of evaluation contexts, we
similarly use de Bruijn levels, but with variables of the form αi, where, again,
α is a fixed name indicating that the variable is binding evaluation contexts,
and the relevant information is the index i. The corresponding syntax is given in
Figure 4, where the presence of names in the environments is absolutely useless
and only there for readability.

As the environment can be dynamically extended during the execution, the
location of a term in the environment and the corresponding pointer are likely
to evolve (monotonically). Therefore, we need to be able to update de Bruijn
levels within terms (contexts, etc.). To this end, we define the lifted term ↑+in t as
the term t where the free variables xj (resp. αj) with j > n have been replaced
by xj+i (resp. αi+j)

12. The reduction rules are given in Figure 4. Note that we
choose to perform indices substitutions as soon as they come, maintaining the
property that xn always refers to the (n+ 1)th element of the environment.

Regarding the type system, we consider nine kinds of (monolatere) sequents,
one for typing each of the nine syntactic categories. We write them with an
annotation on the ` sign, using one of the letters v, V , t, F , E, e, l, c, τ :

Γ `l l
Γ `c c
Γ `τ τ : Γ ′

Γ `t t : T
Γ `V V : T
Γ `v v : T

Γ `e e : T⊥⊥

Γ `E E : T⊥⊥

Γ `F F : T⊥⊥

11 Note that we could also use usual de Bruijn indices for bound variables within terms.
12 See Appendix B.3 for a formal definition

Continuation-and-environment-passing style translations 11

(k : T) ∈ S
Γ `v k : T

Γ, xn : T `t t : U |Γ | = n

Γ `v λxn.t : T → U

Γ (n) = (xn : T)

Γ `V xn : T

Γ `v v : T

Γ `V v : T

(κ : T) ∈ S
Γ `F κ : T⊥⊥

Γ `t t : T Γ `E E : U⊥⊥

Γ `F t · E : (T → U)⊥⊥
Γ, αn : T⊥⊥ `c c |Γ | = n

Γ `t µαn.c : T

Γ `F F : T⊥⊥

Γ `E F : T⊥⊥

Γ (n) = (αn : T⊥⊥)

Γ `E αn : T⊥⊥

Γ, xi : T, Γ ′ `F F : T⊥⊥ Γ, xi : T `τ τ : Γ ′ |Γ | = i

Γ `E µ̃[xi].〈xi ||F 〉τ : T⊥⊥
Γ `V V : T

Γ `t V : T

Γ, αn : T⊥⊥ `c c |Γ | = n

Γ `t µαn.c : T

Γ `E E : T⊥⊥

Γ `e E : T⊥⊥

Γ, xn : T `c c |Γ | = n

Γ `e µ̃xn.c : T⊥⊥ Γ `τ ε : ε

Γ `τ τ : Γ ′ Γ, Γ ′ `t t : T |Γ, Γ ′| = n

Γ `τ τ [xn := t] : Γ ′, xn : T

Γ `t t : T Γ `e e : T⊥⊥

Γ `c 〈t || e〉

Γ `τ τ : Γ ′ Γ, Γ ′ `E E : T⊥⊥ |Γ, Γ ′| = n

Γ `τ τ [αn := E] : Γ ′, αn : T⊥⊥
Γ, Γ ′ `c c Γ `τ τ : Γ ′

Γ `l cτ

Fig. 5. Typing rules for the λ[lvτ?]-calculus with de Bruijn levels

where types and typing contexts are defined by:

T,U ::= X | T → U Γ ::= ε | Γ, x : T | Γ, α : T⊥⊥

Sequents typing values and terms are asserting a type, with the type written on
the right; sequents typing contexts are expecting a type T with the type written
T⊥⊥; sequents typing commands and closures are black boxes neither asserting
nor expecting a type; sequents typing environments are instantiating a typing
context.

The typing rules are given on Figure 5 where we adopt the convention that
constants k and co-constants κ come with a signature S which assigns them a
type. The typing rules are the same as for the named calculus [32], except for
the one where indices should now match the length of the typing context. As in
the named case, this type system enjoys the property of subject reduction.

Theorem 1 (Subject reduction). If Γ `l cτ and cτ → c′τ ′ then Γ `l c′τ ′.

Proof. The proof proceeds by induction on typing derivation, and is almost the
same as in the case without de Bruijn levels [32, Theorem 1].

3 Quantifying on environment extension: System FΥ

We shall now introduce System FΥ , the calculus that we will use as the target
of several continuation-and-environment-passing style translations. We insist on

12 H. Herbelin, É. Miquey

the fact that our purpose is to isolate the minimal ingredients that are necessary
to define a generic target calculus, independently of the source languages (here
simply typed calculi). We shall warn the reader that our interest in a minimal
and generic system has the trade-off that its definition is quite technical. To
ease the introduction of System FΥ , we first describe the intuitions guiding the
translation of types (which we only outline in this section), highlighting the
different features that it requires. As we will explain, the definition of FΥ will
be partially parameterized by the translation of formulas, making it usable for
translating different calculi with global environments as we will see in Section 4.

3.1 Guidelines of the translation

Before presenting in detail the target system of the translation, let us explain
step by step the rationale guiding the definition of the translation. Because of
the sharing of the evaluation of arguments, the environment associating terms
to variables has to be passed around. Passing the environment amounts to com-
bining the continuation-passing style translation with an environment-passing
style translation. Additionally, the environment is extensible, so, to anticipate
extension of the environment, Kripke style forcing has to be used too, in a way
comparable to what is done in step-indexing translations. To facilitate the com-
prehension of the different steps, we illustrate each of them with the translation
of the sequent13 a : A,α : A⊥⊥, b : B `e e : C.

Step 1 – Continuation-passing style. In a first approximation, let us look only
at the continuation-passing style part of the translation of a λ[lvτ?] sequent.

As shown in [5] and as emphasized by the definition of the realizability in-
terpretation in [32] reflecting the 6 nested syntactic categories used to define
λ[lvτ?], there are 6 different levels of control in call-by-need, leading to 6 mutu-
ally defined levels of interpretation. We define JA → BKv for strong values as
JAKt → JBKE , we define JAKF for forcing contexts as ¬ JAKv, JAKV for weak
values as ¬ JAKF = 2¬ JAKv, and so on until JAKe defined as 5¬ JAKv (where we
use the notations 1¬ A , A→ ⊥ and n+1¬ A , ¬ n¬ A).

As observed in the realizability interpretation [32], hypotheses from a context
Γ of the form α : A⊥⊥ are to be translated as JAKE = 3¬ JAKv while hypotheses
of the form x : A are to be translated as JAKt = 4¬ JAKv. Up to this point, if
we denote this translation of Γ by [[Γ]], in the particular case of Γ `t A the
translation is [[Γ]] ` [[A]]t and similarly for other levels.

Example 1 (Translation, step 1). Up to now, the translation taking into account
the continuation-passing style of a : A,α : A⊥⊥, b : B `e e : C is simply:

Ja : A,α : A⊥⊥, b : B `e e : CK = a : JAKt , α : JAKE , b : JBKt ` JeKe : JCKe
= a : 4¬ JAKv , α : 3¬ JAKv , b : 4¬ JBKv ` JeKe : 5¬ JCKv

13 We omit de Bruijn levels for the moment and we write a : A, b : B, ... instead of
x : T, y : U, ... for the sole purpose of easing readability.

Continuation-and-environment-passing style translations 13

Step 2 – environment-passing style. The continuation-passing style part being
settled, the environment-passing style part should be considered. In particular,
the translation of Γ `t A is not anymore a sequent JΓ K ` [[A]]t but instead
a sequent roughly of the form ` JΓ K → [[A]]t, with actually JΓ K being passed
around not only at the top-level of [[A]]t but also every time a negation is used.
We write this sequent ` JΓ K .t A where .tA is defined by induction on t and A:

JΓ K.tA = JΓ K→ (JΓ K.EA)→ ⊥ = JΓ K→ (JΓ K→ (JΓ K.V A)→ ⊥)→ ⊥ · · ·

Moreover, the translation of each type in Γ should itself be abstracted over the
environment at each use of a negation.

Example 2 (Translation, step 2). Up to now, the continuation-and-environment-
passing style translation of a : A,α : A⊥⊥, b : B `e e : C is:

Ja : A,α : A⊥⊥, b : B `e e : CK = ` JeKe : Ja : A,α : A⊥⊥, b : BK .e C

= ` JeKe : Ja : A,α : A⊥⊥, b : BK→ (Ja : A,α : A⊥⊥, b : BK .t C)→ ⊥ = ...

where:

Ja : A,α : A⊥⊥, b : BK = Ja : A,α : A⊥⊥K, b : Ja : A,α : A⊥⊥K .t B
= Ja : A,α : A⊥⊥K, b : Ja : A,α : A⊥⊥K→ (Ja : A,α : A⊥⊥K .E B)→ ⊥ = ...

Ja : A,α : A⊥⊥K = Ja : AK, α : Ja : AK .E A
= Ja : AK, α : Ja : AK→ (Ja : AK→ .EA)→ ⊥ = ...

Ja : AK = a : ε .t A = a : 4¬ JAKv

Step 3 – Extension of the environment The environment-passing style part being
settled, it remains to anticipate that the environment is extensible. This is done
by supporting arbitrary insertions of any term at any place in the environment.
The extensibility is obtained by quantifying over all possible extensions of the
environment at each level of the negation. In the realizability model, this was
reflected by the compatibility of realizers with any environment extension [32].

For this purpose, we use as a type system an adaptation of System F<: [9]
extended with stores, defined as lists of assignations [x := t]. Store types, denoted
by Υ , are defined as list of types of the form (x : A) where x is a name and A
is a type properly speaking and admit a subtyping notion Υ ′<:Υ to express
that Υ ′ is an extension of Υ . This corresponds to the following refinement of the
definition of JΓ K .t A:

JΓ K .t A = ∀Υ <: JΓ K.Υ → (Υ .E A)→ ⊥
= ∀Υ <: JΓ K.Υ → (∀Υ ′<:Υ.Υ ′ → Υ ′ .V A→ ⊥)→ ⊥ = ...

Such a quantification is reminiscent of Kripke forcing [21]: thinking of store types
Υ as worlds, the accessible worlds from Υ are precisely all the possible Υ ′<:Υ .
To emphasize this correspondence, we give here the translation of the arrow both
in Kripke models and in our setting, where the forcing translation is interleaved
with the continuation/environment-passing parts:

Υ Bv T → U , ∀Y <:Υ. Y → (Y Bt T)→ (Y BE U)→ ⊥
ω A⇒ B , ∀ω′ ≥ ω. ω′ A ⇒ ω′ B

14 H. Herbelin, É. Miquey

Example 3 (Translation, step 3). The translation, now taking into account store
extensions, of a : A,α : A⊥⊥, b : B `e e : C becomes:

Ja : A,α : A⊥⊥, b : B `e e : CK = ` JeKe : Ja : A,α : A⊥⊥, b : BK .e C
= ` JeKe : ∀Υ <: Ja : A,α : A⊥⊥, b : BK.Υ → (Υ .t C)→ ⊥ = ...

where:

Ja : A,α : A⊥⊥, b : BK = Ja : A,α : A⊥⊥K, b : Ja : A,α : A⊥⊥K .t B
= Ja : A,α : A⊥⊥K, b : ∀Υ <: Ja : A,α : A⊥⊥K.Υ → (Υ .E B)→ ⊥ = ...

Ja : A,α : A⊥⊥K = Ja : AK, α : Ja : AK .E A
= Ja : AK, α : ∀Υ <: Ja : AK.Υ → (Υ .V A)→ ⊥ = ...

Ja : AK = a : ε .t A = a : ∀Υ.Υ → (Υ .E A)→ ⊥

The only remaining step is to take into account de Bruijn levels both inside
the source and target languages. Therefore, in the target language stores are
simply defined as lists of terms while store types are lists of types (that is to
say A,A⊥⊥, . . . instead of a : A,α : A⊥⊥, . . .). Interestingly, de Bruijn levels will
give a computational content to the subtyping relation Υ ′<:Υ through explicit
coercions σ : Υ ′<:Υ mapping each type in Υ to the corresponding type in Υ ′.

3.2 System FΥ

The target language of the continuation-and-environment-passing style trans-
lations we will present in the next section thus includes the different features
that we previously evoked. Namely, the target language is defined as the usual
λ-calculus extended with stores (that are lists of terms) and coercions to keep
track of store extension and to update pointers. As for its type system, it contains
simple types as in the source language and a bounded second-order quantifica-
tion over store types. We refer to this language as System FΥ which syntax of
terms is given by:

(Terms)

(Coercions)
(Stores)

t, u ::= k | x | λx.t | tu | λs.t | tσ | λδ.t | tτ
| split τ at n along σ as δ1, x, δ2 in t

σ ::= ε | s | σ+ |⇑σ | σ′ ◦ σ
τ ::= [] | δ | [t]t | [t]E | ττ ′

while types are defined by the following grammar:

(Types)
(Store types)
(Simple types)
(Typing contexts)

A,B ::= X | A→ B | ∀Y <:Υ.A | Υ .τ Υ ′ → A
Υ ::= ∅ | Υ, Y | Υ, F
T, U ::= X | T → U F ::= T, T⊥⊥

Γ ::= · | Γ, x : A | Γ, s : Y <:Υ | Γ, δ : Υ .τ Υ
′

As we shall explain thereafter, the variable Y is actually a shorthand for a vector
of second-order variables. We also assume that types contain at least a constant
for each atomic type X of the original system, and we still denote this constant

Continuation-and-environment-passing style translations 15

(x : A) ∈ Γ
Γ ` x : A

(Ax)
(k : A) ∈ S
Γ ` k : A

(c)
Γ, x : A ` t : B

Γ ` λx.t : A→ B
(λ)

Γ ` t : A→ B Γ ` u : A
Γ ` t u : B

(@)

Γ, δ : Υ0 .τ Υ1 ` t : B

Γ ` λδ.t : Υ0 .τ Υ1 → B
(τI)

Γ ` t : Υ0 .τ Υ1 → B Γ ` τ : Υ0 .τ Υ1

Γ ` t τ : B
(τE)

Γ, s : Y <:Υ ` t : A Y /∈ FV (Γ)

Γ ` λs.t : ∀Y <:Υ.A
(∀I)

Γ ` t : ∀Y <:Υ.A Γ ` σ : Υ ′<:Υ

Γ ` t σ : A{Y := Υ ′}
(∀E)

Γ ` τ : Υ0, T, Υ1

Γ ` σ : Υ ′
0, T, Υ

′
1<:Υ0, T, Υ1

Γ, δ0 : Υ ′
0, x : Υ ′

0 Bt T, δ1 : Υ ′
0, T .τ Υ

′
1 ` t : B

Γ ` split τ at |Υ0| along σ as δ0, x, δ1 in t : B
(split)

Γ `τ : Υ ′
0, T

⊥⊥, Υ ′
1

Γ `σ : Υ ′
0, T

⊥⊥, Υ ′
1<:Υ0, T

⊥⊥, Υ1
Γ, δ0 : Υ ′

0, x : Υ ′
0 BE T, δ1 : Υ ′

0, T
⊥⊥.τ Υ

′
1 ` t : B

Γ ` split τ at |Υ0| along σ as δ0, x, δ1 in t : B
(split⊥⊥)

Γ ` [] : ∅ .τ ∅
(ε)

Γ ` t : Υ Bt T
Γ ` [t]t : Υ .τ T

(τt)
Γ ` t : Υ BE T

Γ ` [t]E : Υ .τ T
⊥⊥

(τE)

(δ : Υ0 .τ Υ) ∈ Γ
Γ ` δ : Υ0 .τ Υ

(τax)
Γ ` τ : Υ0 .τ Υ Γ ` τ ′ : (Υ0, Υ) .τ Υ

′

Γ ` ττ ′ : Υ0 .τ Υ, Υ
′ (ττ ′)

Γ ` ε : ∅<: ∅
(<:ε)

(s : Υ ′<:Υ) ∈ Γ
Γ ` s : Υ ′<:Υ

(<:ax)
Γ ` σ : Υ ′<:Υ

Γ ` σ+ : (Υ ′, F)<: (Υ, F)
(<:+)

Γ ` σ : Υ ′<:Υ

Γ `⇑σ : (Υ ′, F)<:Υ
(<:⇑)

Γ ` σ : Υ ′<:Υ Γ ` σ′ : Υ ′′<:Υ ′

Γ ` σ′ ◦ σ : Υ ′′<:Υ
(<:◦)

Fig. 6. Typing rules of System FΥ

by X. This allows us to define an embedding ι from the original type system to
this one by:

ι(X) = X ι(T → U) = ι(T)→ ι(U)

To alleviate notations, we will identify ι(T) and T in the sequel of the paper.
Regarding the reduction rules of the language, there are only four of them,

three witnessing the usual β-reduction (for application to terms, stores and co-
ercions) and one to split stores with respect to a given index:

(λx.t)u→ t[u/x] (λδ.t) τ → t[τ/δ] (λs.t)σ → t[σ/s]

split τ0[u]τ1 at n along σ as δ1, x, δ2 in t→ t[τ0/δ0, u/x, τ1/δ1]

where |τ0| = JσK(n). For the last rule, we assume that the coercion σ is com-
putable (that is without variables) and JσK refers to the partial function from N
to N associated to σ. We will come back to this in the next section, we refer the
reader to Example 4 for a comprehensive example on coercions.

16 H. Herbelin, É. Miquey

We shall attract the reader’s attention on several aspects of the typing rules,
which are given in Figure 6 and include three kinds of typing sequents: one for
terms, one for stores and one for coercions. First, observe that we introduce a
new symbol Υ .τ Υ

′ to denote the fact that a store has a type conditioned by Υ
(which should be the type of the (missing) beginning of the store). In order to
ease the notations, we will sometimes write Υ instead of ∅ .τ Υ in the sequel.

Second, notice that the typing rules to form and split stores are parameterized
by two translations of simple types written Υ Bt T and Υ BE T . These notations
are shorthands which we will define later when typing the continuation-and-
environment-passing style translation in Section 4 (we will for instance translate
a sequent Γ `t t : T by ` JtKt : JΓ K Bt T). In particular, this will allow us
to use the same type system for different translations, since Υ Bt T will be
defined differently depending on whether we consider a call-by-need or call-by-
name translation. Incidentally, this also means that the rules to type stores
force elements of the store to have types following the structure of types obtained
through the translations. Even though this could appear as a strong requirement,
it appears naturally when using coercion to witness the inclusion Υ ′<:Υ . Indeed,
with de Bruijn levels we need to update pointers when inserting a new element,
and such an operation would not have any sense (and in particular would be
ill-typed) for an element that is not of type Υ Bt T 14. Besides, note that each
element of the store has a type depending on the type of the head of the store.
Once again, this is natural and only reflects what was already happening in the
source language or within the realizability interpretation.

Last, but not least, we shall explain that the quantification ∀Y <:Υ.A is actu-
ally a (voluntarily) simplifying notations hiding the need for considering vectors
of second order variables. Indeed, remember that we need to anticipate arbitrary
insertions of any terms at any place. For instance, this means that a store [t]t[u]E
of type .τ T,U

⊥⊥ might be arbitrarily extended into a store τ0[t]tτ1[u]Eτ2 of type
.τ T0, T,T1, U

⊥⊥,T2 where T i = Ti0, . . . , Tin and where we write T0, T,T1 for
the flatten list T00, T01, . . . , T, T10, Therefore, we should strictly speaking
consider the second-order variable Y in the quantification ∀Y <:Υ.A as a vector
of vector of types, whose length is fully determine by the one of Υ . Writing Y p

k

for the vector of types Yk0, . . . , Ykp, we should then formally define ∀Y <:Υ.A
as:

∀Y p0 . . . ∀Y pn .(Y p00 Υ (0)Y p11 Υ (1) . . . Y pnn)<:Υ → A

where n = |Υ |. Observe in particular that the vector of vectors Y |Υ | = Y p0 , . . . ,Y pn

is interleaved with the types in Υ , so that we only quantify over the extensions
while the type of the extended store is defined by interleaving the quantified
types and the existing ones.

We do not want to enter here into too many details about vectors and the
definition of our subtyping relation, but readers familiar with type theory should
easily be convinced that both are perfectly definable in any language with a form

14 One could circumvent this by tagging each cell of the store with a flag (using a sum
type) indicating whether the corresponding elements have a type of this form or not,
but here it would only make the translation more complex.

Continuation-and-environment-passing style translations 17

of dependent types allowing for the definition of (sized) vectors. In particular,
such a structure could be defined in Coq or Agda without any further difficul-
ties. Even though considering the size of vectors will be crucial to ensure the
correctness of the definition in Figure 6, to ease the notations we will omit them
most of the time and stick to our simplified quantification ∀Y <:Υ . For most of
the definitions and proofs, it is enough to know that any store type has a size
(which might depend on some integers), and that consequently, any typed store
τ : Υ also has a size which coincides with the one of its type15.

3.3 Properties

We shall now state a few properties of system FΥ , and in particular of coercions.

Properties of system FΥ We begin with stating basic properties of the system
that are independent of the translations Υ Bt T and Υ BE T that parameterize
the type system. First, it is clear that the type system is compatible with the
following weakening rule:

Γ ` t : A Γ ⊆ Γ ′
Γ ′ ` t : A

(Γw)

We can verify the safety of types with respect to reductions:

Proposition 2 (Subject reduction) For any context Γ , any type A and any
terms t, t′, if Γ ` t : A and t→ t′, then Γ ` t′ : A.

Proof. See Appendix D.

Normalization It should be clear to the reader that system FΥ could be defined
through a more expressive language including a form a dependent types and a
second-order quantification. In particular, it could be expressed within many
type theories or proof assistants, which especially implies that typed terms are
normalizing. Combined this with Ariola et al.’s result of operational correctness
for the CPS translation16, this would provide us with an normalization proof
for the λ[lvτ?]-calculus. Once again, we could make this statement more formal

but as we already dispose of a proof of normalization for the λ[lvτ?]-calculus, we
prefer to focus on the details of the different translations.

Coercions We say that a coercion is in normal form if it contains neither
variables nor compositions of coercions. Formally, these coercions are given by
the following grammar:

Normal forms σ ::= ε | σ+ | ⇑σ
15 In particular, when considering a variable δ : Y , we define |δ| as |Y |.
16 Indeed, once the coercions erased, our translation is essentially Ariola et al.’s trans-

lation, hence we could benefit from their result of computational correctness.

18 H. Herbelin, É. Miquey

Interestingly, when two coercions are in normal form, it is possible to compose
them to compute another normal form. In other word, we can define the com-
position function −�− between coercions in normal form by:

σ+
1 � σ

+
0 , (σ1 � σ0)+

σ+
1 � ⇑σ0 ,⇑(σ1 � σ0)

⇑σ1 � σ0 ,⇑(σ1 � σ0)

ε� σ0 = σ+
1 � ε , ε

We can verify that this function is sound with respect to the typing rule for
composing coercions:

Lemma 3 (Composition of normal forms) If σ, σ′ are coercions in normal
forms such that ` σ : Υ <:Υ ′ and ` σ′ : Υ ′<:Υ ′′, then ` σ′ � σ : Υ <:Υ ′′.

Proof. Direct by structural induction on σ′.

This lemma suggests us that we can actually consider a slightly larger frag-
ment that includes compositions, since we are able to compute them to get
normal form. We define computable coercions as being coercions of the shape:

Computable coercions σ ::= ε | σ+ | ⇑σ | σ′ ◦ σ

We can in fact safely reduce properties of computable coercions to the ones of
normal forms:

Proposition 4 (Computing normal forms) For any computable σ, if Γ `
σ : Υ ′<:Υ then there exists σn in normal form such that Γ ` σn : Υ ′<:Υ .

Proof. By induction on typing derivations, using the previous lemma for σ′ ◦ σ.

It is worth noting that for any σ, Υ, Υ ′, if ` σ : Υ ′<:Υ , then σ is necessarily
computable. We then deduce as a corollary of the previous proposition:

Corollary 5 If ` σ : Υ ′<:Υ , then |Υ | ≤ |Υ ′|.

Proof. Using the previous proposition, we can reduce this to the case of σ in
normal forms. The proof then proceed by easy structural induction on σ.

If a computable coercion is typed by ` σ : Υ ′<:Υ , we can actually identify it
with a partial monotone function from [0, |Υ |] to [0, [Υ ′|] which intuitively maps
the index of every type in Υ to its corresponding index in Υ ′.

Formally, if σ is a coercion in normal form (if it is computable we first re-
duce it to a computation in normal form), we define its domain dom(σ) and its
codomain codom(σ) by:

dom(ε) , 0 dom(σ+) , dom(σ) + 1 dom(⇑σ) , dom(σ)

codom(ε) , 0 codom(σ+) , codom(σ) + 1 codom(⇑σ) , codom(σ) + 1

We then associate to σ the partial function JσK from [0,dom(σ)] to [0, codom(σ)]
defined by:

JεK , {0 7→ 0}
Jσ+K , JσK ∪ {dom(σ) 7→ codom(σ)} J⇑σK ,

{
n < dom(σ) 7→ JσK(n)
n = dom(σ) 7→ JσK(n) + 1

Continuation-and-environment-passing style translations 19

Notice that JσK is always a strictly monotone function. We can check that these
definitions are indeed in adequacy with the intuition we gave above:

Proposition 6 (Associated function) If σ is in normal form and s.t. ` σ :
Υ ′<:Υ , then:
1. dom(σ) = |Υ |
2. codom(σ) = |Υ ′|

3. ∀n < |Υ |, Υ ′(JσK(n)) = Υ (n)
4. JσK(|Υ |) = |Υ ′|

Proof. See Appendix D.

This proposition thus opens the way for proving properties of computable coer-
cions through their associated functions.

Example 4. As an example, we let the reader verify that for any types T,U, T0, T1,
if we denote by σ for the coercion ⇑((⇑ε)++) which is in normal form, we have:

– `⇑((⇑ε)++) : T0, T, U, T1<:T,U

– dom(σ) = 2, codom(σ) = 4
– JσK :

0 7→ 1
1 7→ 2
2 7→ 4

T U
0 1 2

0 1 2 3 4

T0 T U T1

σ

Visually, this corresponds to the situation pictured on the right.

Last, we introduce the following shorthands:

σ0+ , σ σ(k+1)+ , (σ+)k+ ⇑0σ , σ ⇑k+1σ ,⇑k(⇑σ)

id0 = ∅ idn+1 = (idn)+ shiftkn ,⇑kidn

that will be useful when defining the translations. Indeed, we have that:

Lemma 7 (Shifts) For any Υ0, Υ
′
0, Υ1, writing n = |Υ0| and k = |Υ1| we have:

Γ ` σ : Υ ′0<:Υ0

Γ ` σk+ : Υ ′0Υ1<:Υ0Υ1 Γ ` shiftkn : Υ0Υ1<:Υ0

Proof. Both proofs are easy inductions on |Υ1|.

Lifting terms and stores Finally, we conclude this section by showing how
terms and stores can be lifted using coercions for their types to remain consistent
while extended stores are passed in the translations. First, we show that the
bounded quantification can be composed with a subtyping relation witnessed by
a coercion σ, by precomposing terms with σ. Given a coercion σ of type Υ ′<:Υ
and a term t whose type is of the shape ∀Y <:Υ.A, we define:

(↑σt) , λs.t (s ◦ σ)

Lemma 8 The following rule is admissible:

Γ ` t : ∀Y <:Υ.A Γ ` σ : Υ ′<:Υ
Γ ` (↑σt) : ∀Y <:Υ ′.A

(↑σ)

Proof. See Appendix D.

20 H. Herbelin, É. Miquey

When the translations Υ Bt T and Υ BE T are of the shape ∀Y <:Υ...., this
definition can be scaled to stores by setting:

↑σ(ε) , ε ↑σ([t]tτ) , [↑σt]t(↑σ
+

τ) ↑σ([t]Eτ) , [↑σt]E(↑σ
+

τ)

Observe that in a store [t]t[u]tτ , t is lifted with σ while u is lifted with σ+ (and
so on recursively). This is due to the fact that if σ is of type Υ ′<:Υ and the
store of type Υ .τ T,U, ..., the term t is then of type Υ Bt T and can be lifted
with σ. In turns, u is of some type Υ, T Bt U and thus requires to be lifted with
a coercion of type Υ ′, T <:Υ, T , that is to say σ+. More generally, we deduce
from the former lemma the following corollary that will be crucial when typing
the translation of terms:

Corollary 9 If Υ Bt T (resp. Υ BE T) is of the shape ∀X <:Υ.F (X,A) (resp.
∀X <:Υ.G(X,T)), then the following rules is admissible:

Γ ` τ : Υ0 Bτ Υ Γ ` σ : Υ1<:Υ0
Γ ` (↑στ) : Υ1 .τ Υ

Proof. See Appendix D.

4 Continuation-and-environment-passing style
translations

We are now equipped to define typed continuation-and-environment-passing
style translations to system FΥ . These translations exactly follows the intu-
itions outlined in Section 3.1. We first focus on the case of the (call-by-need)
λ[lvτ?]-calculus, and then illustrate the generality of our method by giving a
translation for the call-by-name λ̄µµ̃-calculus with environments. Theses trans-
lations also apply to the MAD and the MAM through the adequate embeddings
(see Appendix A). A call-by-value translation is also given in Appendix G.

4.1 A typed call-by-need translation for the λ[lvτ?]-calculus

Translation of terms We can now take advantage of the features of system
FΥ to type Ariola et al.’s untyped translation for the λ[lvτ?]-calculus (given
in Figure 13). This translation was obtained by refining the reduction system
(see Figure 11) into a context-free abstract machine (that is to say an abstract
machine in which it can be decided which reduction rule to apply by analyzing
only the term or the context independently) [5]. The translation of terms is
nothing more than the untyped translation of Ariola et al. rephrased to handle
De Bruijn levels and coercions. Along the translation, we maintain two invariants
on de Bruijn levels:

1. Stores are always consistent, that is, in a store τ [t]oτ
′, t has its levels coherent

with its prefix τ , and ignores its suffix τ ′. In terms of types, if τ is of type
Υ , t will be of a type Υ Bo −.

Continuation-and-environment-passing style translations 21

Jλxi.tKv σ τ uE , JtKt σ+ τ [u] ↑shift
1
|τ|E

Jt · EKF σ τ v , v id|τ | τ (↑σJtKt) (↑σJEKE)

JvKV σ τ F , F id|τ | τ (↑σJvKv)

JxiKV σ τ F , split τ at i along σ as δ0, x, δ1

in x id|δ0| δ0 (λsδ′0V.V (shiftpn+k) (δ′0[↑t V]t ↑s
+

δ1) (↑σ
′
F))

where n = |δ0| = JσK(i), k = |δ′0| − n, p = |δ1|+ 1, σ′ = sp+

and ↑tV = λsδE.E id|δ| δ (↑sV)

JαiKE σ τ V , split τ at i along σ as δ0, x, δ1 in x (shift
|δ1|+1

|δ0|) τ V

Jµ̃[xi].〈xi ||F 〉τ ′KE σ τ V , V shift
|τ ′|+1

|τ | τ [↑tV]t(↑σ
+

Jτ ′Kτ) (↑σ
′
JF KF)

where k = |τ ′|+ 1, σ′ = σk+

JV Kt σ τ E , E id|τ | τ (↑σJV KV)

JEKe σ τ t , t id|τ | τ (↑σJEKE)

JcτKl σ τ ′ , JcKc σ′ τ ′(↑σJτKτ)

where k = |τ ′|, σ′ = σk+

Jτ0[xi := t]Kτ , Jτ0Kτ [JtKt]t JεKτ , ε

JkKv , k

JκKF , κ

Jµαi.cKt σ τ E , JcKc σ+ τ [E]E

Jµ̃xi.cKe σ τ t , JcKc σ+ τ [t]t

J〈t || e〉Kc σ τ , JeKe σ τ (↑σJtKt)

Jτ0[αi := E]Kτ , Jτ0Kτ [JEKE]E

Fig. 7. Call-by-need translation of terms

2. Continuations/terms that are passed with a store are always consistent with
it, i.e. they do not need to be lifted and their types match the store type.

Let us spend a few lines to explain the definitions of two cases, namely
Jµ̃[xi].〈x ||F 〉τ ′KE and JxiKV . In the untyped translation, we have:

Jµ̃[x].〈x ||F 〉τ ′KE τ V , V τ [x :=↑t V]Jτ ′Kτ JF KF
JxKV τ [x := t]τ ′ F , t τ (λτλV.V τ [x :=↑t V]τ ′ F)

Let us first focus on the Jµ̃[xi].〈x||F〉τ ′KE . In the named version, its translation
is a term which waits for a store τ and a value V , then forms a store looking like
τ [x := JV K]τ ′ and passes it to V with the continuation JF KF . Now, when using de
Bruijn levels, the continuation is somehow expecting a fragment τ0 of the store
τ that is passed, together with a coercion σ witnessing that τ is an extension of
τ0 (let us loosely write σ : τ <: τ0 to simplify our explanation). Therefore, only
the value V has its de Bruijn levels consistent with τ , JF KF and Jτ ′Kτ will have
to be updated. In details, Jτ ′Kτ was expecting τ0[↑t V], we thus update it with
σ+ which witnesses τ [↑t V]<: τ0[↑t V]. On the other hand, F was waiting for
τ0[↑t V]τ ′, we thus need to update it with σk+, where k = |τ ′| + 1. Finally, we

22 H. Herbelin, É. Miquey

JΓ `e e : T⊥⊥K , ` JeKe : JΓ KΓ Be T
JΓ `t t : T K , ` JtKt : JΓ KΓ Bt T
JΓ `E E : T⊥⊥K , ` JEKE : JΓ KΓ BE T
JΓ `V V : T K , ` JV KV : JΓ KΓ BV T
JΓ `F F : T⊥⊥K , ` JF KF : JΓ KΓ BF T

JΓ `v v : T K , ` JvKv : JΓ KΓ Bv T
JΓ `c cK , ` JcKc : JΓ KΓ Bc ⊥
JΓ `l lK , ` JlKl : JΓ KΓ Bc ⊥
JΓ `τ τ : Γ ′K , ` JτKτ : JΓ KΓ .τ JΓ ′KΓ

JεKΓ , ε JΓ, xi : T KΓ , JΓ KΓ , T JΓ, αi : T⊥⊥KΓ , JΓ KΓ , T⊥⊥

Υ Bc T , ∀Y <:Υ. Y → ⊥
Υ Be T , ∀Y <:Υ. Y → (Y Bt T)→ ⊥
Υ Bt T , ∀Y <:Υ. Y → (Y BE T)→ ⊥
Υ BE T , ∀Y <:Υ. Y → (Y BV T)→ ⊥

Υ BV T , ∀Y <:Υ. Y → (Y BF T)→ ⊥
Υ BF T , ∀Y <:Υ. Y → (Y Bv T)→ ⊥
Υ Bv X , X

Υ Bv T → U ,
∀Y <:Υ. Y → (Y Bt T)→ (Y BE U)→ ⊥

Fig. 8. Call-by-need translation of judgments and types

need to give to V a coercion witnessing the extension of τ into τ [↑t V]tJτ ′Kτ ,
that is to say shiftk|τ |. In the end, we obtain the following definition:

Jµ̃[xi].〈xi ||F 〉τ ′KE σ τ V , V id|τ | (τ [↑tV]t(↑sJτ ′Kτ)) (↑σ
′
JF KF)

As for JxiKV , it is a term waiting for a coercion σ and a store τ , which it will
split at JσK(i) as τ0, t, τ1 to execute the term t with its prefix τ0 (with which it is
already consistent) and a continuation inlining the translation of µ̃[xi].〈xi ||F〉τ ′.

The translation of terms is given in Figure 7, where we assume that for each
constant k of type T (resp. co-constant κ of type T⊥⊥) of the source system, we
have a constant of type T in the signature of the target language that we also
denote by k (resp. κ of type T → ⊥).

Translation of types Regarding the translation of types, it follows exactly the
intuition we presented in Section 3.1, so that we mostly already said everything
about it. To summarize the construction, we start by embedding the types and
typing contexts of the source calculus thanks to the ι function. A typing context
Γ = x1 : T1, . . . xn : Tn is then translated into the store type JΓ KΓ = T1, . . . , Tn.
This allows us to translate a sequent, for instance Γ `t t : T , into a judgment
` JtKt : JΓ KΓ Bt T . The type JΓ KΓ Bt T can be understood as the types of
terms translated at level t, which are waiting for any store extending JΓ KΓ and
a continuation at the inferior level (that is E) for the same base type T :

JΓ KΓ Bt T = ∀Y <: JΓ KΓ . Y → (Y BE T)→ ⊥

It is worth noting that the translation −Bt− is defined internally in system FΥ ,
which allows in particular the recursive definition Y BE T to makes sense (since

Continuation-and-environment-passing style translations 23

Jλxi.tKV σ τ uE , JtKt σ+ τ [u] ↑shift
1
|τ|E

Jt · EKE σ τ v , v id|τ | τ (↑σJtKt) (↑σJEKE)

JxiKt σ τ E , split τ at i along σ as δ0, x, δ1 in x (shift
|δ1|+1

|δ0|) τ E

Jµ̃xi.cKe σ τ t , JcKc σ+ τ [t]t

(a) Translation of terms (excerpt)

JΓ `V V : T K , ` JV KV : JΓ KΓ BV T
Υ BV T → U , ∀Y <:Υ. Y → (Y Bt T)→ (Y BE U)→ ⊥

(b) Translation of types and judgments (excerpt)

Fig. 9. Call-by-name continuation-and-environment-passing style translation

Y is at the moment an interleaving of types in Γ and second-order variables that
are not the images of types in the source calculus). As we already explained, the
different levels e, t, E, V, F, v of translation reflect the dynamics of the (context-
free) reduction system of the λ[lvτ?]-calculus, that is to say the different syntactic
categories which are examined successively during the reduction17.

The resulting translation is given in Figure 8.

Correctness We are finally equipped to state the main theorem of this paper,
that is the correctness of the translation with respect to types.

Theorem 10. The translation is well-typed, i.e.:

1. If Γ `v v : T then JΓ `v v : T K
2. If Γ `F F :T⊥⊥then JΓ `F F : T⊥⊥K
3. If Γ `V V : T then JΓ `V V : T K
4. If Γ `E E :T⊥⊥then JΓ `E E : T⊥⊥K
5. If Γ `t t : T then JΓ `t t : T K

6. If Γ `e e : T⊥⊥ then JΓ `e e : T⊥⊥K
7. If Γ `c c then JΓ `c cK
8. If Γ `l l then JΓ `l lK
9. If Γ `τ τ then JΓ `τ τ : Γ ′K

Proof. The proof is done by induction on typing derivations, the interesting parts
of the different cases corresponding to the previous lemmas. The complete proof
is given in Appendix E, together with a few auxiliary lemmas.

4.2 A typed call-by-name translation for the λ̄µµ̃-calculus with
environments

To emphasize that FΥ is a generic target calculus for typed continuation-and-
environment-passing style translations, we give the example of a call-by-name
translation for the call-by-name λ̄µµ̃-calculus with environments (see Figure 2).
We spare the reader from the redefinition of its reduction rules and type system

17 The context-free reduction rules are given in Appendix C.

24 H. Herbelin, É. Miquey

using de Bruijn levels, which is fully deducible from the ones of the λ[lvτ?]-
calculus when considering only the levels e, t, E, V and typing terms and contexts
at the appropriate level.

Similarly, we do not wish to enter into too many details about the translation
of terms and types. We follow the same process as for the λ[lvτ?]-calculus, by
refining the dynamic of the calculus into a context-free abstract machine (see
Appendix C.2). This machine only has four level of alternation, as reflected by
the syntax, and so does both translations of terms and types. The definition of
the translation almost comes for free modulo the careful treatment of de Bruijns
levels. Most of the definitions are identical (or simpler) than in the call-by-need
case, the main difference lying in the fact that in call-by-name, terms remains
unevaluated in the store, thus avoiding the need for an extra layer of alternation
to handle their (shared) evaluation. We give a few cases of these translations in
Fig. 16 (for the full translation see Appendix F). Once again, we have:

Theorem 11. The translation is well-typed.

5 Conclusion and perspectives

5.1 Conclusion

In this paper, we presented a variant of the λ[lvτ?]-calculus with de Bruijn levels.
We showed how this calculus could be equipped with a type system in order
to define a typed continuation-and-environment-passing style translation to a
target language that we called System FΥ . We believe that the principles guiding
the typing of the translation emphasized its computational content, whose three
main ingredients are the following:

1. a continuation-passing style translation,
2. an environment-passing style translation,
3. a Kripke forcing-like manner of typing the extensibility of the environment.

The latter is particularly highlighted by the use of de Bruijn levels, since levels
are shifted using coercions when extending the store, these coercions thus giving
a computational content to the subtyping relation (i.e. to store extension). To
enhance the fact that our technique is generic, we illustrated it on several flavors
of calculi with environment, namely the call-by-need λ[lvτ?]-calculus and the
call-by-name and call-by-value λ̄µµ̃-calculi with environments.

5.2 About environments and forcing

Actually, the connection between (Kripke) forcing and the environment-passing
style translation does not come as a surprise. Indeed, the translation on types
logically accounts for the compilation of the calculus with environments to a
calculus without environments. In the realm of functional programming, memory
states are given a meaning through the state monad. For instance, the monadic
translation of an arrow enriches it with a state S:

JT → UK , S × T → S × U

Continuation-and-environment-passing style translations 25

In particular, the result of a function may depend on the current state. If one
observes precisely the realizability interpretation in [32], it is very similar to the
definition of truth and falsity values: for a type T , its interpretation is roughly
of the shape T × τ . It is folklore that the state monad can be categorically inter-
preted by means of presheaves construction [37,29]. Interestingly, Kripke models
are a particular case of presheaves semantics [33]. Cohen forcing construction
is also interpreted in terms of presheaves [27], and this interpretation scales to
type theory [19,18]. Therefore, the state monad and the forcing translation were
already known to be connected. Last but not least, the analysis of Cohen forcing
in the framework of Krivine classical realizability [23,30] relies on an extension
of Krivine abstract machine with a cell (which contains the forcing condition).
In short, our typed environment-passing style translation is just another obser-
vation of the connection between forcing translations and explicit environments
as a side-effect.

5.3 Further work

This work naturally raises the question of studying the logical strength of the
translations. Indeed, we were initially interested in a computational translation
of classical arithmetic with dependent choice to System F. Both systems are
indeed known to be logically equivalent, and such a translation has been defined
in the converse direction by Blot [7]. In a recent paper [31], the second author
defined dLPAω, a sequent calculus for classical arithmetic with dependent choice,
which is a reformulation based on the λ[lvτ?]-calculus of the first author’s dPAω

system [17]. While the present CPS translation can be tailored for dLPAω, as
such we still do not know whether it can be typed using only System F. On
the one hand, System FΥ seems to be stronger than Systems F or F<: in that
it allows a restricted form of dependent types: the second-order quantification
range over vectors of arbitrary size. On the other hand, it is probably weaker
than a higher order calculus with unrestricted dependencies in types, like the
calculus of constructions (which is logically as strong as Fω). Yet, it might also
be the case that a clever analysis of the translations could lead to a bound on
the size of the store extension at each step. This would offer a way to remove
this dependency and to embed the target language into System F.

Furthermore, following Kesner’s work, several recent papers have been us-
ing intersection type system to characterize normalizing by-need terms [20,6].
Even though these calculi are not classical, it might be interesting to adapt her
approach to our framework. Specifically, we have the intuition that intersection
types could be an alternative to our subtyping relation in the target language of
the translation.

Last, we would like to study whether our construction is compatible with
more complex source type systems. We indeed showed in this paper that it was
generic for different simply-typed calculi, the next step would then naturally be
to get a construction that is suitable for other type systems such as Systems F
or Fω.

26 H. Herbelin, É. Miquey

References

1. Accattoli, B., Barenbaum, P., Mazza, D.: Distilling abstract machines. In:
Proceedings of the 19th ACM SIGPLAN International Conference on Func-
tional Programming. pp. 363–376. ICFP ’14, ACM, New York, NY, USA
(2014). https://doi.org/10.1145/2628136.2628154, http://doi.acm.org/10.1145/
2628136.2628154

2. Accattoli, B., Barras, B.: Environments and the Complexity of Ab-
stract Machines. In: The 19th International Symposium on Principles
and Practice of Declarative Programming. Namur, Belgium (Oct 2017).
https://doi.org/10.1145/3131851.3131855, https://hal.archives-ouvertes.fr/
hal-01675358

3. Appel, A.W.: Compiling with Continuations. Cambridge University Press, New
York, NY, USA (1992)

4. Ariola, Z., Felleisen, M.: The call-by-need lambda calculus. J. Funct. Program.
7(3), 265–301 (1993). https://doi.org/10.1017/S0956796897002724

5. Ariola, Z.M., Downen, P., Herbelin, H., Nakata, K., Saurin, A.: Classical call-by-
need sequent calculi: The unity of semantic artifacts. In: Schrijvers, T., Thiemann,
P. (eds.) Functional and Logic Programming - 11th International Symposium,
FLOPS 2012, Kobe, Japan, May 23-25, 2012. Proceedings. pp. 32–46. Lecture
Notes in Computer Science, Springer (2012). https://doi.org/10.1007/978-3-642-
29822-6

6. Balabonski, T., Barenbaum, P., Bonelli, E., Kesner, D.: Foundations of strong
call by need. Proc. ACM Program. Lang. 1(ICFP), 20:1–20:29 (Aug 2017).
https://doi.org/10.1145/3110264, http://doi.acm.org/10.1145/3110264

7. Blot, V.: An interpretation of system f through bar recursion. In: 32nd Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS). pp. 1–12 (June
2017). https://doi.org/10.1109/LICS.2017.8005066

8. de Bruijn, N.: Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the church-rosser the-
orem. Indagationes Mathematicae (Proceedings) 75(5), 381 – 392 (1972).
https://doi.org/http://dx.doi.org/10.1016/1385-7258(72)90034-0

9. Cardelli, L., Martini, S., Mitchell, J.C., Scedrov, A.: An extension of system F
with subtyping, pp. 750–770. Springer Berlin Heidelberg, Berlin, Heidelberg (1991),
http://dx.doi.org/10.1007/3-540-54415-1_73

10. Crégut, P.: Strongly reducing variants of the krivine abstract machine.
Higher-Order and Symbolic Computation 20(3), 209–230 (Sep 2007).
https://doi.org/10.1007/s10990-007-9015-z

11. Curien, P.L., Herbelin, H.: The duality of computation. In: Proceed-
ings of ICFP 2000. pp. 233–243. SIGPLAN Notices 35(9), ACM (2000).
https://doi.org/10.1145/351240.351262

12. Danvy, O., Millikin, K., Munk, J., Zerny, I.: Defunctionalized Interpreters for Call-
by-Need Evaluation, pp. 240–256. Springer Berlin Heidelberg, Berlin, Heidelberg
(2010)

13. Felleisen, M., Friedman, D.P.: Control operators, the SECD-machine, and the
lambda-calculus. In: 3rd Working Conference on the Formal Description of Pro-
gramming Concepts (1986)

14. Felleisen, M., Sabry, A.: Continuations in programming practice: Introduction and
survey (1999), https://www.cs.indiana.edu/~sabry/papers/continuations.ps,
manuscript

https://doi.org/10.1145/2628136.2628154
http://doi.acm.org/10.1145/2628136.2628154
http://doi.acm.org/10.1145/2628136.2628154
https://doi.org/10.1145/3131851.3131855
https://hal.archives-ouvertes.fr/hal-01675358
https://hal.archives-ouvertes.fr/hal-01675358
https://doi.org/10.1017/S0956796897002724
https://doi.org/10.1007/978-3-642-29822-6
https://doi.org/10.1007/978-3-642-29822-6
https://doi.org/10.1145/3110264
http://doi.acm.org/10.1145/3110264
https://doi.org/10.1109/LICS.2017.8005066
https://doi.org/http://dx.doi.org/10.1016/1385-7258(72)90034-0
http://dx.doi.org/10.1007/3-540-54415-1_73
https://doi.org/10.1007/s10990-007-9015-z
https://doi.org/10.1145/351240.351262
https://www.cs.indiana.edu/~sabry/papers/continuations.ps

Continuation-and-environment-passing style translations 27

15. Felleisen, M., Friedman, D.P., Kohlbecker, E., Duba, B.: A syntactic
theory of sequential control. Theor. Comput. Sci. 52(3), 205–237 (Jun
1987). https://doi.org/10.1016/0304-3975(87)90109-5, http://dx.doi.org/10.

1016/0304-3975(87)90109-5

16. Griffin, T.G.: A formulae-as-type notion of control. In: Proceedings of
the 17th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages. pp. 47–58. POPL ’90, ACM, New York, NY,
USA (1990). https://doi.org/10.1145/96709.96714, http://doi.acm.org/10.

1145/96709.96714

17. Herbelin, H.: A constructive proof of dependent choice, compatible with classical
logic. In: Proceedings of the 27th Annual IEEE Symposium on Logic in Computer
Science, LICS 2012, Dubrovnik, Croatia, June 25-28, 2012. pp. 365–374. IEEE
Computer Society (2012). https://doi.org/10.1109/LICS.2012.47, http://dx.doi.
org/10.1109/LICS.2012.47

18. Jaber, G., Lewertowski, G., Pédrot, P.M., Sozeau, M., Tabareau, N.: The defini-
tional side of the forcing. In: Proceedings of the 31st Annual ACM/IEEE Sympo-
sium on Logic in Computer Science. pp. 367–376. LICS ’16, ACM, New York, NY,
USA (2016). https://doi.org/10.1145/2933575.2935320

19. Jaber, G., Tabareau, N., Sozeau, M.: Extending type theory with forcing. In: Pro-
ceedings of the 2012 27th Annual IEEE/ACM Symposium on Logic in Computer
Science. pp. 395–404. LICS ’12, IEEE Computer Society, Washington, DC, USA
(2012). https://doi.org/10.1109/LICS.2012.49

20. Kesner, D.: Reasoning About Call-by-need by Means of Types, pp. 424–441.
Springer Berlin Heidelberg, Berlin, Heidelberg (2016)

21. Kripke, S.A.: Semantical considerations on modal logic. Acta Philosophica Fennica
16(1963), 83–94 (1963)

22. Krivine, J.L.: A call-by-name lambda-calculus machine. In: Higher Order and Sym-
bolic Computation (2004)

23. Krivine, J.L.: Realizability algebras: a program to well order r. Logical Methods
in Computer Science 7(3) (2011)

24. Landin, P.J.: The mechanical evaluation of expressions. The Computer Journal
6(4), 308–320 (1964). https://doi.org/10.1093/comjnl/6.4.308

25. Lang, F.: Explaining the lazy krivine machine using explicit substitution and
addresses. Higher-Order and Symbolic Computation 20(3), 257–270 (Sep 2007).
https://doi.org/10.1007/s10990-007-9013-1

26. Leroy, X.: The ZINC experiment: an economical implementation of the ML lan-
guage. Technical report 117, INRIA (1990)

27. MacLane, S., Moerdijk, I.: Sheaves in Geometry and Logic. Springer (1992).
https://doi.org/10.1007/978-1-4612-0927-0

28. Maraist, J., Odersky, M., Wadler, P.: The call-by-need lambda calculus. J. Funct.
Program. 8(3), 275–317 (1998). https://doi.org/10.1017/S0956796898003037

29. Melliès, P.A.: Local States in String Diagrams, pp. 334–348. Springer International
Publishing, Cham (2014)

30. Miquel, A.: Forcing as a program transformation. In: LICS. pp. 197–206. IEEE
Computer Society (2011)

31. Miquey, E.: A sequent calculus with dependent types for classical arith-
metic. In: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic
in Computer Science. pp. 720–729. LICS ’18, ACM, New York, NY, USA
(2018). https://doi.org/10.1145/3209108.3209199, http://doi.acm.org/10.1145/
3209108.3209199

https://doi.org/10.1016/0304-3975(87)90109-5
http://dx.doi.org/10.1016/0304-3975(87)90109-5
http://dx.doi.org/10.1016/0304-3975(87)90109-5
https://doi.org/10.1145/96709.96714
http://doi.acm.org/10.1145/96709.96714
http://doi.acm.org/10.1145/96709.96714
https://doi.org/10.1109/LICS.2012.47
http://dx.doi.org/10.1109/LICS.2012.47
http://dx.doi.org/10.1109/LICS.2012.47
https://doi.org/10.1145/2933575.2935320
https://doi.org/10.1109/LICS.2012.49
https://doi.org/10.1093/comjnl/6.4.308
https://doi.org/10.1007/s10990-007-9013-1
https://doi.org/10.1007/978-1-4612-0927-0
https://doi.org/10.1017/S0956796898003037
https://doi.org/10.1145/3209108.3209199
http://doi.acm.org/10.1145/3209108.3209199
http://doi.acm.org/10.1145/3209108.3209199

28 H. Herbelin, É. Miquey

32. Miquey, É., Herbelin, H.: Realizability Interpretation and Normalization of Typed
Call-by-Need λ-calculus With Control. In: FOSSACS 18 - 21st International Con-
ference on Foundations of Software Science and Computation Structures. Thessa-
lonique, Greece (Apr 2018). https://doi.org/10.1007/978-3-319-89366-2˙15

33. Moerdijk, I., van Oosten, J.: Topos theory (2007), http://www.staff.science.
uu.nl/~ooste110/syllabi/toposmoeder.pdf

34. Murthy, C.: Extracting constructive content from classical proofs. Ph.D. thesis,
Cornell University (1990)

35. Okasaki, C., Lee, P., Tarditi, D.: Call-by-need and continuation-
passing style. Lisp and Symbolic Computation 7(1), 57–82 (1994).
https://doi.org/10.1007/BF01019945

36. Parigot, M.: Proofs of strong normalisation for second order classical natural de-
duction. J. Symb. Log. 62(4), 1461–1479 (1997)

37. Plotkin, G., Power, J.: Notions of Computation Determine Monads, pp. 342–356.
Springer Berlin Heidelberg, Berlin, Heidelberg (2002)

38. Plotkin, G.D.: Call-by-name, call-by-value and the lambda-calculus. Theor. Com-
put. Sci. 1(2), 125–159 (1975). https://doi.org/10.1016/0304-3975(75)90017-1

39. Sestoft, P.: Deriving a lazy abstract machine. J. Funct. Program. 7(3), 231–264
(May 1997). https://doi.org/10.1017/S0956796897002712

40. Sussman, G.J., Steele, Jr., G.L.: An interpreter for extended lambda calculus. Tech.
rep., Massachusetts Institute of Technology, Cambridge, MA, USA (1975)

https://doi.org/10.1007/978-3-319-89366-2_15
http://www.staff.science.uu.nl/~ooste110/syllabi/toposmoeder.pdf
http://www.staff.science.uu.nl/~ooste110/syllabi/toposmoeder.pdf
https://doi.org/10.1007/BF01019945
https://doi.org/10.1016/0304-3975(75)90017-1
https://doi.org/10.1017/S0956796897002712

Continuation-and-environment-passing style translations 29

tu ? π ? τ →c t ? u · π ? τ
λx.t ? u · π ? τ →β t ? π ? τ [x := u]
x ? π ? τ [x := t]τ ′ →s t

α
? π ? τ [x := t]τ ′

a. Milner Abstract Machine

〈t || µ̃x.c〉τ → cτ [x := t]
〈µα.c ||E〉τ → cτ [α := E]

〈V ||α〉τ [α := E]τ ′ → 〈V ||E〉τ [α := E]τ ′

〈x ||E〉τ [x := t]τ ′ → 〈t ||E〉τ [x := t]τ ′

〈λx.t || u · E〉τ →
〈
u
∣∣∣∣ µ̃x.〈t ||E〉〉τ

b. The λ̄µµ̃-calculus with global environments

Fig. 10. Milner Abstract Machine and λ̄µµ̃-calculus

A Simulations of Milner Abstract Machines with sequent
calculi

A.1 The MAM and the call-by-name λ̄µµ̃-calculus with global
environments

It is quite obvious that the call-by-name λ̄µµ̃-calculus with global environments
allows us to faithfully simulate reductions of the MAM (which we recall in
Fig. 10). We first define the following compilation function from states of the
MAM to closures of the λ̄µµ̃-calculus:

Jt ? π ? τK , 〈JtKt || JπKπ〉JτKτ

with:

JxKt , x

Jλx.tKt , λx.JtKt
JtuKt , µα.〈JtKt || JuKt · α〉

Ju · πKπ , JuKt · JπKπ
JεKπ , κ

Jτ [x := t]Kτ , JτKτ [x := JtKt]
JεKτ , ε

where κ is a fixed co-constant materializing the end of the execution.
It is then quite easy to verify that reductions of the MAM are preserved

through the compilation process (modulo the fact that we consider terms of the
λ̄µµ̃-calculus up to α-conversion). Formally, to avoid considering the contexts
stored in the environment, we first define a substitution function for co-variables.
We write (cτ){τ ′} for the closure cτ in which all the co-variables α bound in τ ′

are recursively substituted by the terms to which they are bound:

(cτ){τ ′[x := t]} , (cτ){τ ′}
(cτ){τ ′[α := E]} , ((cτ)[E/α]){τ ′}

(cτ){ε} , cτ

We then say that two closures cτ and c′τ ′ are equal up to co-variables substitu-
tions, which we denote by cτ ≡ c′τ ′, whenever (cτ){τ} = (c′τ ′){τ ′}.

30 H. Herbelin, É. Miquey

Proposition 1 (MAM simulation). If S,S ′ are two states of the MAM such

that S 1→ S ′, then there exists a closure c′τ ′ such that we have JSK +→ c′τ ′ and
(c′τ ′) ≡ JS ′K.

Proof. Trivial induction on reduction rules of the MAM.

In other words, we showed that a variant of the λ̄µµ̃-calculus with global en-
vironments where catchable contexts would be immediately substituted instead
of being stored is exactly simulating the MAM through the compilation function.

A.2 The MAD and the λ[lvτ?]-calculus

Similarly, we can prove that the λ[lvτ?]-calculus allows us to simulate reductions
of the MAD. The compilation function from states of the MAD to closures of
the λ[lvτ?]-calculus is almost the same, except that we know need to take the
dump into account. As we explain in Section 2.4, the dump is somehow inlined
in the λ[lvτ?]-calculus through the binder µ̃[x].〈x ||F 〉τ ′. Following this intuition,
the definition of the translation is almost direct:

Jt ? π ? τ ? DK , 〈JtKt || JπKJDKD
π 〉JτKτ

with:

JxKt , x

Jλx.tKt , λx.JtKt
JtuKt , µα.〈JtKt || JuKt · α〉

Ju · πKeπ , JuKt · JπKeπ
JεKeπ , e

Jτ [x := t]Kτ , JτKτ [x := JtKt]
JεKτ , ε

J(x, π, τ) :: DKD , µ̃[x].〈x || JπKJDKD
π 〉JτKτ JεKD , κ

Once again, it is straightforward to check that:

Proposition 2 (MAD simulation). If S,S ′ are two states of the MAD such

that S 1→ S ′, then there exists a closure c′τ ′ such that we have JSK +→ c′τ ′ and
(c′τ ′) ≡ JS ′K.

Proof. Trivial induction on reduction rules of the MAD.

Continuation-and-environment-passing style translations 31

Strong values v ::= λx.t | k
Weak values V ::= v | x
Terms t, u ::= V | µα.c

Environments τ ::= ε | τ [x := t] | τ [α := E]
Commands c ::= 〈t || e〉
Closures l ::= cτ

Forcing contexts F ::= t · E | κ
Catchable contexts E ::= F | α | µ̃[x].〈x ||F 〉τ
Evaluation contexts e ::= E | µ̃x.c

(Let)
(Catch)
(Lookupα)
(Lookupx)
(Restore)
(Beta)

〈t || µ̃x.c〉τ → cτ [x := t]
〈µα.c ||E〉τ → cτ [α := E]

〈V ||α〉τ [α := E]τ ′ → 〈V ||E〉τ [α := E]τ ′

〈x ||F 〉τ [x := t]τ ′ →
〈
t
∣∣∣∣ µ̃[x].〈x ||F 〉τ ′

〉
τ〈

V
∣∣∣∣ µ̃[x].〈x ||F 〉τ ′

〉
τ → 〈V ||F 〉τ [x := V]τ ′

〈λx.t || u · E〉τ →
〈
u
∣∣∣∣ µ̃x.〈t ||E〉〉τ

Fig. 11. The λ[lvτ?]-calculus

B The λ[lvτ?]-calculus

B.1 Definitions

We recall here the definition of Ariola et al.’s λ[lvτ?]-calculus [5]. The syntax and
reduction rules are given in Fig. 11, while the type system, defined in [32], is
given in Fig. 12. Finally, Ariola et al.’s original untyped CPS translation is given
in Fig. 13.

B.2 The necessity of α-renaming

The original presentation of the λ[lvτ?]-calculus deeply relies on the assumption
that names of variable are unique and thus on the possibility of performing α-
conversion on-the-fly. Consider for instance a command formed by a term of the
shape t = µα.

〈
u
∣∣∣∣ µ̃x.〈x ||α〉 〉 and a context of the shape e = µ̃x. 〈 x || F 〉 .

Such a command is perfectly typable (if u and F are) in the type system in-
troduced in [32], however, reducing this command (without α-conversion) would
loop forever because of the auto-reference [x := x] in the environment:〈
µα.
〈
u
∣∣∣∣ µ̃x.〈x ||α〉〉 ∣∣∣∣∣∣ µ̃x.〈x ||F 〉〉→ 〈x ||F 〉[x := µα.

〈
u
∣∣∣∣ µ̃x.〈x ||α〉〉]

→
〈
µα.
〈
u
∣∣∣∣ µ̃x.〈x ||α〉〉 ∣∣∣∣∣∣ µ̃[x].〈x ||F 〉

〉
→
〈
u
∣∣∣∣ µ̃x.〈x ||α〉〉[α := µ̃[x].〈x ||F 〉]

→ 〈x ||α〉[α := µ̃[x].〈x ||F 〉, x := u]

→
〈
x
∣∣∣∣ µ̃[x].〈x ||F 〉

〉
[α := µ̃[x].〈x ||F 〉, x := u]

→ 〈x ||F 〉[α := µ̃[x].〈x ||F 〉, x := u, x := x]→ . . .

32 H. Herbelin, É. Miquey

(k : X) ∈ S
Γ `v k : X

(k)
Γ, x : A `t t : B

Γ `v λx.t : A→ B
(→r)

(x : A) ∈ Γ
Γ `V x : A

(x)
Γ `v v : A

Γ `V v : A
(↑V)

(κ : A) ∈ S
Γ `F κ : A⊥⊥

(κ)
Γ `t t : A Γ `E E : B⊥⊥

Γ `F t · E : (A→ B)⊥⊥
(→l)

(α : A) ∈ Γ
Γ `E α : A⊥⊥

(α)

Γ `F F : A⊥⊥

Γ `E F : A⊥⊥ (↑E)
Γ `V V : A

Γ `t V : A
(↑t)

Γ, α : A⊥⊥ `c c
Γ `t µα.c : A

(µ)
Γ `E E : A⊥⊥

Γ `e E : A⊥⊥
(↑e)

Γ, x : A `c c
Γ `e µ̃x.c : A⊥⊥

(µ̃)
Γ, x : A,Γ ′ `F F : A⊥⊥ Γ `τ τ : Γ ′

Γ `E µ̃[x].〈x ||F 〉τ : A⊥⊥ (µ̃[])

Γ `t t : A Γ `e e : A⊥⊥

Γ `c 〈t || e〉
(c)

Γ, Γ ′ `c c Γ `τ τ : Γ ′

Γ `l cτ
(l)

Γ `τ ε : ε
(ε)

Γ `τ τ : Γ ′ Γ, Γ ′ `t t : A

Γ `τ τ [x := t] : Γ ′, x : A
(τt)

Γ `τ τ : Γ ′ Γ, Γ ′ `E E : A⊥⊥

Γ `τ τ [α := E] : Γ ′, α : A⊥⊥
(τE)

Fig. 12. Typing rules for the λ[lvτ?]-calculus

While a simple α-conversion of one of the x binding solves the problem, this
becomes much more subtle to handle through a CPS translation without renam-
ing (as the one in Figure 13 originally defined in [5]). Indeed, since “different”
variables named x (that is variables which are bound by different binders) are
translated independently (e.g. J 〈 t || e 〉 K is defined from JeK and JtK), there is
no hope to perform α-conversion on the fly during the translation. Thus, the
problem becomes unsolvable after the translation, and the problem of renaming
should be tackled together with the definition of the translation of terms. For
instance, through this translation, the same closure is again a program that will
loop forever:

JcεK = JeKe ε JtKt = Jµ̃x.〈x ||F 〉Ke ε JtKt
= J〈x ||F 〉Kc [x := JtKt]
= JxKx [x := JtKt] JF KF
= Jµα.

〈
u
∣∣∣∣ µ̃x.〈x ||α〉〉Kt ε (λτλV.V τ [x := λτE.E τ V] JF KF)

= J
〈
u
∣∣∣∣ µ̃x.〈x ||α〉〉Kt [α := λτλV.V τ [x := λτE.E τ V] JF KF]

= Jµ̃x.〈x ||α〉Ke [α := λτλV.V τ [x := λτE.E τ V] JF KF] JuKt
= J〈x ||α〉Kc [α := λτλV.V τ [x := λτE.E τ V] JF KF , x := JuKt]
= JαKE [α := λτλV.V τ [x := λτE.E τ V] JF KF , x := JuKt] JxKV
= (λτλV.V τ [x := λτE.E τ V]) [α := λτλV.V τ [x := λτE.E τ V] JF KF , x := JuKt] JxKV
→ JxKV [α := λτλV.V τ [x := λτE.E τ V] JF KF , x := JuKt, x := JxKt]

Continuation-and-environment-passing style translations 33

Jc τKl τ0 , JcKc τ0τ ′

J〈t || e〉Kc τ , JeKe τ JtKt

JεKτ , ε

Jτ ′[x := t]Kτ , Jτ ′Kτ [x := JtKt]
Jτ ′[α := E]Kτ , Jτ ′Kτ [x := JEKE]

JEKe τ t , t τ JEKE
Jµ̃x.cKe τ t , JcKc τ [x := t]

JV Kt τ E , E τ JV KV
Jµα.cKt τ E , JcKc τ [α := E]

JαKE τ [α := E]τ ′ V , E τ [α := E]τ ′ V

Jµ̃[x].〈x ||F 〉τ ′KE τ V , V τ [x := λτE.E τ V]Jτ ′Kτ JF KF

JvKV τ F , F τ JvKv
JxKV τ [x := t]τ ′ F , t τ (λτλV.V τ [x := λτE.E τ V]τ ′ F)

JκKF , κ

Jt · EKF τ v , v τ JtKt JEKE

JkKv , k

Jλx.tKv τ uE , JtKt τ [x := u] E

Fig. 13. Ariola et al. untyped CPS translation

Observe that as the translation is defined modulo administrative reduction, the
first equations indeed are equalities, and that when the reduction is performed,
the two “different” x are not bound anymore. Thus, there is no way to achieve any
kind of α-conversion to prevent the formation of the cyclic reference [x := JxKV].
This is why we need either to be able to perform α-conversion while executing
the translation of a command, assuming that we can find a smooth way to do
it, or to explicitly handle the renaming.

In order to ensure the correctness of our translation, we address the problem
at the source in the λ[lvτ?], using de Bruijn levels. As we observed in the previous
example, the issue arises when adding a binding [x := ...] in an environment that
already contained a variable x. We thus need to ensure the uniqueness of names
within the environment. A simple solution consists in renaming the variables
bound in the environment by the position at which they occur in the environ-
ment, which is obviously unique. Before presenting formally the corresponding
system and the adapted translation, let us reduce the same example using this
idea. We use a mixed notation for names, writing x when a variable is bound
by a λ or a µ̃, and xi (where i is the relevant information) when it refers to a
position in the environment. The same reduction is now safe if we replace stored

34 H. Herbelin, É. Miquey

variables by their de Bruijn levels:

〈
µα.
〈
u
∣∣∣∣ µ̃x.〈x ||α〉〉 ∣∣∣∣∣∣ µ̃x.〈x ||F 〉〉→ 〈x0 ||F 〉[0µα.〈u ∣∣∣∣ µ̃x.〈x ||α〉〉]

→
〈
µα.
〈
u
∣∣∣∣ µ̃x.〈x ||α〉〉 ∣∣∣∣∣∣ µ̃[x].〈x ||F 〉

〉
→

〈
u
∣∣∣∣ µ̃x.〈x ||α0〉

〉
[0µ̃[x].〈x ||F 〉]

→ 〈x1 ||α0〉[0µ̃[x].〈x ||F 〉, 1u] →
〈
x1
∣∣∣∣ µ̃[x].〈x ||F 〉

〉
[0µ̃[x].〈x ||F 〉, 1u]

→ 〈x1 ||F 〉[0µ̃[x].〈x ||F 〉, 1u, 2x1] →
〈
u
∣∣∣∣ µ̃[x].〈x ||F 〉[2x1]

〉
[0µ̃[x].〈x ||F 〉]

where the exponents 0, 1, ... to number the cells are only there to ease the read-
ability.

Another solution would have consisted in defining the translation using an
explicit renaming function. In broad lines, the translation of terms (resp. con-
texts, closures, etc.) should be of the form J−Kσt where σ is a substitution used to
rename variables. To compact the notations, we write [xm|αγ |...] for the renaming
substitution [x := m,α := γ, ...], where we adopt the convention that the most
recent binding is on written on the right. As a binding [x := n] overwrites any
former binding [x := m], we write [αγ |xn] instead of [xm|αγ |xn]. Using this trick, the
translation of the former command would be (where m and n are fresh names
generated during the translation):

JcεKε = JeKεe ε JtKεt = Jµ̃x.〈x ||F 〉Kεe ε JtKεt

= J〈x ||F 〉K[
x
m]
c [m := JtKt]

= JxK[
x
m]
t [m := JtKεt] JF K[

x
m]
F

= Jµα.
〈
u
∣∣∣∣ µ̃x.〈x ||α〉〉K[xm]

t ε (λτλV.V τ [m :=↑t V] JF K[
x
m]
F)

= J
〈
u
∣∣∣∣ µ̃x.〈x ||α〉〉K[xm|αγ]t [γ := λτλV.V τ [m :=↑t V] JF K[

x
m]
F]

= Jµ̃x.〈x ||α〉K[
x
m|
α
γ]

e [γ := λτλV.V τ [m :=↑t V] JF K[
x
m]
F] JuK

[xm|
α
γ]

t

= J〈x ||α〉K[x:=m,α:=γ,x:=n]c [γ := λτλV.V τ [m :=↑t V] JF K[
x
m]
F , n := JuK

[xm|
α
γ]

t]

= JαK
[xm|

α
γ |
x
n]

E [γ := λτλV.V τ [m :=↑t V] JF K[
x
m]
F , n := JuK

[xm|
α
γ]

t]JxK
[xm|

α
γ |
x
n]

V

= (λτλV.V τ [m :=↑t V]) [γ := λτλV.V τ [m :=↑t V] JF K[
x
m]
F , n := JuK

[xm|
α
γ]

t] JxK
[αγ |

x
n]

V

→ JxK
[αγ |

x
n]

V [γ := λτλV.V τ [m :=↑t V] JF K[
x
m]
F , n := JuK

[xm|
α
γ]

t ,m := JxK
[αγ |

x
n]

t]

= JxK
[αγ |

x
n]

V [γ := λτλV.V τ [m :=↑t V] JF K[
x
m]
F , n := JuK

[xm|
α
γ]

t ,m := JxK
[αγ |

x
n]

t]

We observe that in the end, the variable m is bound to the variable n, which is
now correct. While this method has the benefit of avoiding the reformulation of
the source calculus with de Bruijn levels, it has the flaw of hiding a part of the
computational content related to the renaming process (that is Kripke forcing).

Continuation-and-environment-passing style translations 35

B.3 De Bruijn levels

We give here the formal definition of the lifted term ↑+in t, the term t where all
the free variables xj with j > n (resp. αj) have been replaced by xj+i (resp.
αi+j). Given i, n two natural numbers, we define:

↑+in (cτ) , (↑+in c)(↑+in τ)

↑+in (〈t || e〉) , 〈↑+in t || ↑+in e〉

↑+in (κ) , κ
↑+in (t · E) , (↑+in t) · (↑+in E)

↑+in (αj) , αj (if j < n)

↑+in (αj) , αj+i (if j ≥ n)

↑+in (µ̃[xj].〈xj ||F 〉τ) , µ̃[↑+in xj].(↑+in 〈xj ||F 〉τ)

↑+in (µ̃xj .c) , µ̃(↑+in xj).(↑+in c)

↑+in ε , ε

↑+in (τ [xj := t]) , ↑+in (τ)([↑+in xj :=↑+in t]

↑+in (τ [αj := E]) , ↑+in (τ [↑+in αj :=↑+in E]

↑+in (k) , k
↑+in (λxj .t) , λ(↑+in xj).(↑+in t)

↑+in (xj) , xj (if j < n)

↑+in (xj) , xj+i (if j ≥ n)

↑+in (µαj .c) , µ(↑+in αj).(↑+in c)

36 H. Herbelin, É. Miquey

C Context-free abstract machines

C.1 The named context-free abstract machine for the
λ[lvτ?]-calculus

〈t || µ̃x.c〉eτ → ceτ [x := t]
〈t ||E〉eτ → 〈t ||E〉tτ

〈µα.c ||E〉tτ → ceτ [α := E]
〈V ||E〉tτ → 〈V ||E〉Eτ

〈V ||α〉Eτ [α := E]τ ′ → 〈V ||E〉Eτ [α := E]τ ′〈
V
∣∣∣∣ µ̃[x].〈x ||F 〉τ ′

〉
Eτ → 〈V ||F 〉V τ [x := V]τ ′

〈V ||F 〉Eτ → 〈V ||F 〉V τ

〈x ||F 〉V τ [x := t]τ ′ →
〈
t
∣∣∣∣ µ̃[x].〈x ||F 〉τ ′

〉
τ

〈v ||E〉V τ → 〈v ||F 〉V τ

〈v || u · E〉F τ → 〈v || u · E〉vτ

〈λx.t || u · E〉vτ →
〈
u
∣∣∣∣ µ̃x.〈t ||E〉〉eτ

Fig. 14. Context-free abstract machine for the λ[lvτ?]-calculus [5]

C.2 Context-free abstract machine for the call-by-name
λ̄µµ̃-calculus with environments

〈t || µ̃xi.c〉eτ → c[xn/xi]eτ [xn := t] with |τ | = n
〈t ||E〉eτ → 〈t ||E〉tτ

〈µαi.c ||E〉tτ → c[α.n/αi]eτ [αn := E] with |τ | = n
〈xn ||E〉tτ → 〈τ(n) ||E〉t
〈V ||E〉tτ → 〈V ||E〉Eτ

〈V ||αn〉Eτ → 〈V || τ(n)〉Eτ
〈V || u · E〉Eτ → 〈V || u · E〉V τ

〈λx.t || u · E〉vτ →
〈
u
∣∣∣∣ µ̃x.〈t ||E〉〉eτ

Fig. 15. Context-free abstract machine for the call-by-name λ̄µµ̃-calculus with envi-
ronments

Continuation-and-environment-passing style translations 37

D Properties of System FΥ

We give here the properties of System FΥwith their proofs.

Properties of system FΥ First, it is clear that the type system is compatible
with a weakening rule:

Lemma 12 (Weakening) The following rule is admissible:

Γ ` t : A Γ ⊆ Γ ′
Γ ′ ` t : A

(Γw)

Proof. Easy induction on typing derivations. In the case of second-order quan-
tification, we might need to rename the second-order variable X if it occurs in
Γ ′ and not in Γ .

We can verify type safety with respect to reductions:

Proposition 2 (Subject reduction). For any context Γ , any type A and any
terms t, t′, if Γ ` t : A and t→ t′, then Γ ` t′ : A.

Proof. The proof is standard and does not bring much information. We start by
proving the following statements for safe substitutions:

1. If Γ, x : A,Γ ′ ` t : B and Γ ` u : A, then Γ, Γ ′ ` t[u/x] : B.
2. If Γ, δ : Υ0 .τ Υ1, Γ

′ ` t : B and Γ ` τ : Υ0 .τ Υ1, then Γ, Γ ′ ` t[τ/δ] : B.
3. If Γ, s : Y <:Υ, Γ ′ ` t : B and Γ ` σ : Υ ′<:Υ , then Γ, Γ ′[Υ ′/Y] ` t[σ/s] :
B[Υ ′/Y].

Each of the three statements is proved together with the similar statements for
typing judgments for stores and coercions by mutual induction on typing deriva-
tions. The proof of subject reduction is then direct by induction on reduction
rules using the previous statements to conclude.

Normalization It should be clear to the reader that system FΥ could be defined
through a more expressive language including a form a dependent types and a
second-order quantification. In particular, it could be expressed within many
type theories or proof assistants, which especially implies that typed terms are
normalizing. Once again, we could make this statement more formal but as we
already dispose of a proof of normalization for the λ[lvτ?]-calculus, we prefer to
focus on the details of the different translations.

Coercions We recall the definition of coercions in normal forms:

Normal forms σ ::= ε | σ+ | ⇑σ

38 H. Herbelin, É. Miquey

We define the composition function −�− between coercions in normal form by:

σ+
1 � σ

+
0 , (σ1 � σ0)+

σ+
1 � ⇑σ0 ,⇑(σ1 � σ0)

⇑σ1 � σ0 ,⇑(σ1 � σ0)

ε� σ0 = σ+
1 � ε , ε

We can verify that this function is sound with respect to the typing rule for
composing coercions:

Lemma 3 (Composition of normal forms). If σ, σ′ are coercions in normal
forms such that ` σ : Υ <:Υ ′ and ` σ′ : Υ ′<:Υ ′′, then ` σ′ � σ : Υ <:Υ ′′.

Proof. Direct by structural induction on σ′.

We define computable coercions as being coercions of the shape:

Computable coercions σ ::= ε | σ+ | ⇑σ | σ′ ◦ σ

Proposition 4 (Computing normal forms). For any computable σ, if Γ `
σ : Υ ′<:Υ then there exists σn in normal form such that Γ ` σn : Υ ′<:Υ .

Proof. By induction on typing derivations, using the previous lemma for the
(<:◦) -rule.

It is worth noting that for any σ, Υ, Υ ′, if ` σ : Υ ′<:Υ , then σ is necessarily
computable. We then deduce as a corollary of the previous proposition:

Corollary 5. If ` σ : Υ ′<:Υ , then |Υ | ≤ |Υ ′|.

Proof. Using the previous proposition, we can reduce this to the case of σ in
normal forms. The proof then proceed by easy structural induction on σ.

If σ is a coercion in normal form (if it is computable we first reduce it to a
computation in normal form), we define its domain dom(σ) and its codomain
codom(σ) by:

dom(ε) , 0 dom(σ+) , dom(σ) + 1 dom(⇑σ) , dom(σ)

codom(ε) , 0 codom(σ+) , codom(σ) + 1 codom(⇑σ) , codom(σ) + 1

We then associate to σ the partial function JσK from [0,dom(σ)] to [0, codom(σ)]
defined by:

JεK , {0 7→ 0}
Jσ+K , JσK ∪ {dom(σ) 7→ codom(σ)} J⇑σK ,

{
n < dom(σ) 7→ JσK(n)
n = dom(σ) 7→ JσK(n) + 1

Proposition 6 (Associated function). If σ is in normal form and s.t. ` σ :
Υ ′<:Υ , then:

Continuation-and-environment-passing style translations 39

1. dom(σ) = |Υ |
2. codom(σ) = |Υ ′|

3. ∀n < |Υ |, Υ ′(JσK(n)) = Υ (n)
4. JσK(|Υ |) = |Υ ′|

Proof. The first two items are proved by a straightforward induction on typing
derivations. The third and forth items are then proved together, again by induc-
tion on typing derivations: the case (<:ε) is trivial; while for (<:+) and (<:⇑) it
suffices to unfold the definition, using the first items to connect |Υ | and dom(σ).

Let us define id0 = ∅ and idn+1 = (idn)+, we have that:

Proposition 13 (Subtyping) In the empty context, the subtyping relation <:
is an order relation on store types.

1. For any Υ , the rule ` id|Υ | : Υ <:Υ
(<:id)

is admissible.
2. If ` σ : Υ <:Υ ′ and ` σ′ : Υ ′<:Υ ′′, then ` σ′ ◦ σ : Υ <:Υ ′′.
3. If ` σ : Υ <:Υ ′ and ` σ′ : Υ ′<:Υ , then Υ = Υ ′.

Proof. Straightforward using the previous lemma to reduce it to the case of
coercions in normal forms. The first two items are straightforward. As for the
third one, it is a direct consequence of Proposition 6, since JσK and Jσ′K are
two strictly monotone functions from [0, |Υ |] to itself (by Corollary 5 we have
|Υ ′| = |Υ |), they are necessarily the identity. Equivalently, we could have seen
that necessarily σ is of the shape σ+

0 (and so is σ′), so that Υ ′ = Υ ′0, T and
Υ = Υ0, T , from which we can conclude by an easy induction.

Last, we introduce the following shorthands:

σ0+ , σ σ(k+1)+ , (σ+)k+ ⇑0σ , σ ⇑k+1σ ,⇑k(⇑σ) shiftkn ,⇑kidn

Indeed, we have that:

Lemma 7 (Shifts). For any Υ0, Υ
′
0, Υ1, writing n = |Υ0| and k = |Υ1| we have:

Γ ` σ : Υ ′0<:Υ0

Γ ` σk+ : Υ ′0Υ1<:Υ0Υ1 Γ ` shiftkn : Υ0Υ1<:Υ0

Proof. Both proofs are easy inductions on |Υ1|.

Lifting terms and stores Finally, we conclude this section by showing how
terms and stores can be lifted using coercions for their types to remain consistent
while extended stores are passed in the translations. First, we show that the
bounded quantification can be composed with a subtyping relation witnessed by
a coercion σ, by precomposing terms with σ. Given a coercion σ of type Υ ′<:Υ
and a term t whose type is of the shape ∀Y <:Υ.A, we define:

(↑σt) , λs.t (s ◦ σ)

40 H. Herbelin, É. Miquey

Lemma 8. The following rule is admissible:

Γ ` t : ∀Y <:Υ.A Γ ` σ : Υ ′<:Υ
Γ ` (↑σt) : ∀Y <:Υ ′.A

(↑σ)

Proof. We assume that Y is fresh with respect to FV (Γ), otherwise it suffices
to rename it. Unfolding the definition of ↑σt, we can derive:

Γ ` t : ∀Y <:Υ0.A

Γ, s : Y <:Υ1 ` t : ∀Y <:Υ0.A
(Γw)

Γ ` σ : Υ1<:Υ0 Γ, s : Y <:Υ1 ` s : X <:Υ1
(<:ax)

Γ, s : Y <:Υ1 ` s ◦ σ : Y <:Υ0
(<:◦)

Γ, s : Y <:Υ1 ` t (s ◦ σ) : A
(∀E)

Y /∈ FV (Γ)

Γ ` λs.t (s ◦ σ) : ∀Y <:Υ1.A
(∀I)

where we use Lemma 12 to weaken Γ, σ : X <:Υ1.

When the translations Υ Bt T and Υ BE T are of the shape ∀Y <:Υ...., this
definition can be scaled to stores by setting:

↑σ(ε) , ε ↑σ([t]tτ) , [↑σt]t(↑σ
+

τ) ↑σ([t]Eτ) , [↑σt]E(↑σ
+

τ)

Observe that in a store [t]t[u]tτ , t is lifted with σ while u is lifted with σ+ (and
so on recursively). This is due to the fact that if σ is of type Υ ′<:Υ and the
store of type Υ .τ T,U, ..., the term t is then of type Υ Bt T and can be lifted
with σ. In turns, u is of some type Υ, T Bt U and thus requires to be lifted with
a coercion of type Υ ′, T <:Υ, T , that is to say σ+. More generally, we deduce
from the former lemma the following corollary that will be crucial when typing
the translation of terms:

Corollary 9. If Υ Bt T (resp. Υ BE T) is of the shape ∀X <:Υ.F (X,A) (resp.
∀X <:Υ.G(X,T)), then the following rules is admissible:

Γ ` τ : Υ0 Bτ Υ Γ ` σ : Υ1<:Υ0
Γ ` (↑στ) : Υ1 .τ Υ

Proof. The former lemma directly gives us that

Γ ` t : Υ0 Bt T Γ ` σ : Υ1<:Υ0
Γ ` (↑σt) : Υ1 Bt T

Γ ` t : Υ0 BE T Γ ` σ : Υ1<:Υ0
Γ ` (↑σt) : Υ1 BE T

The proof then simply proceeds by induction on the structure of τ .

Continuation-and-environment-passing style translations 41

E Proof of well-typedness

We give here the complete proof of the correction of the translation of terms
with respect to types. We begin by making a few observations that will be useful
in the proof of the main theorem.

First of all, it is easy to check that the rules for forming stores and witnessing
extensions are safe through the translation:

Lemma 14 (Store formation) The following rules are admissible:

Γ ` τ : Υ0 .τ Υ Γ ` t : Υ0, Υ Bt T

Γ ` τ [t]t : Υ0 .τ Υ, T
(τ [t])

Γ ` σ : Υ <: JΓ0KΓ
Γ ` σ+ : Υ, T <: JΓ0, T KΓ

The same holds for Γ ` E : Υ0, Υ BE T and Γ ` τ [E]E : Υ0 .τ Υ, T
⊥⊥.

Proof. Straightforward typing derivations. For instance, for the left-hand side
we have:

Γ ` τ : Υ0 .τ Υ

Γ ` t : Υ0, Υ Bt T

Γ ` [t]t : Υ0, Υ .τ T
(τt)

Γ ` τ [t]t : Υ0 .τ Υ, T
(ττ ′)

Since the translation of types satisfies the hypothesis of Corollary 9, we de-
duce from the previous lemma that:

Corollary 15 For any level o of the hierarchy e, t, E, V, F, v, the following rule
are admissible:

Γ ` t : Υ0 Bo T Γ ` σ : Υ1<:Υ0
Γ ` (↑σt) : Υ1 Bo T

(↑σ)
Γ ` τ : Υ0 Bτ Υ Γ ` σ : Υ1<:Υ0

Γ ` (↑στ) : Υ1 .τ Υ

Lemma 16 (Lifting values) The following rule is admissible:

Γ ` V : Υ BV T

Γ `↑tV : Υ Bt T
(↑)

Proof. We can derive (weakening contexts on-the-fly to ease readability):

ΠE

Γ ` V : Υ BV T s : Y <:Υ ` s : Y <:Υ
(<:ax)

Γ, s : Y <:Υ `↑sV : Y BV T
(↑σ)

Γ, s : Y <:Υ, δ : Y,E : Υ BE T ` E id|δ| δ (↑sV) : ⊥
(@)

Γ ` λsδE.E id|δ| δ (↑sV) : Υ Bt T
(λ)

where we used Corollary 15 and ΠE is the following derivation:

E : Υ BE T ` E : Y BE T
(Ax)

δ : Y ` id|δ| : Y <:Y
(<:id)

δ : Y,E : Υ BE T ` E id|δ| : Y → Y BV T → ⊥
(∀E)

δ : Y ` δ : Y
(Ax)

δ : Y,E : Υ BE T ` E id|δ| δ : Y BV T → ⊥
(@)

Observe that we implicitly use the fact that since δ : Y , by definition |δ| = |Y |.

We are finally equipped to prove the main theorem:

Theorem 10. The translation is well-typed, i.e.:

42 H. Herbelin, É. Miquey

1. If Γ `v v : T then JΓ `v v : T K
2. If Γ `F F :T⊥⊥then JΓ `F F : T⊥⊥K
3. If Γ `V V : T then JΓ `V V : T K
4. If Γ `E E :T⊥⊥then JΓ `E E : T⊥⊥K
5. If Γ `t t : T then JΓ `t t : T K

6. If Γ `e e : T⊥⊥ then JΓ `e e : T⊥⊥K
7. If Γ `c c then JΓ `c cK
8. If Γ `l l then JΓ `l lK
9. If Γ `τ τ then JΓ `τ τ : Γ ′K

Proof. We reason by induction over typing derivations. We (ab)use of Lemma 12
to make the derivations more compact by systematically weakening contexts as
soon as possible, and compact the first (∀I) and (λ) rules in one rule.

1. Strong values JkKv = k, which has the desired type by hypothesis.

� Case λxi.t. In the source language, we have:

Γ, xi : T `t t : U |Γ | = i

Γ `v λxi.t : T → U

Hence, we get by induction a proof Πt of JtKt : JΓ, xi : T KBtU and we can derive:

Πt

` JtKt : ∀Y ′<: JΓ, xi : T K.Y ′ → Y ′ BE U → ⊥ Πσ

s : Y <: JΓ K ` JtKt s+ : (Y, T)→ (Y, T)BE U → ⊥
(∀E)

Πτ

σ : Y <: JΓ K, τ : Y, u : Y Bt T ` JtKt s+ τ [u] : (Y, T)BE U → ⊥
(@)

ΠE

s : Y <: JΓ K, τ : Y, u : Y Bt T,E : Y BE U ` JtKt s+ τ [u] ↑shift
1
|τ|E : ⊥

(@)

` λsτuE.JtKt s+ τ [u] ↑shift
1
|τ|E : ∀Y <: JΓ K.Y → Y Bt T → Y BE U → ⊥

(λ)

where:

– ΠE is a proof of E : Y BE U `↑shift
1
|τ|E : (Y, T)BE U (derivable according

to Corollary 15);
– Πτ is a proof of τ : Y, u : Y Bt T ;` τ [u] : Y, T (derivable according to

Lemma 14);
– Πσ is simply:

σ : Y <: JΓ K ` σ : Y <: JΓ K
(<:ax)

s : Y <: JΓ K ` s+ : Y, T <: JΓ, xi : T K
(<:+)

2. Forcing contexts

� Case JκKF . JκKF = κ, which has the desired type by hypothesis.

� Case Jt.EKF . In the source language, we have:

Γ `t t : T Γ `E E : U⊥⊥

Γ `F t · E : (T → U)⊥⊥

Continuation-and-environment-passing style translations 43

Therefore, we have by induction hypothesis that ` JtKt : JΓ KΓ Bt T and ` JEKt :
JΓ KΓ BE U , so that we can derive:

v : Y Bv T → U ;` v : ∀Y ′<:Y : Y ′ → Y ′ Bt T → Y ′ BE U → ⊥
(Ax)

Πσ

τ : Y, v : Y Bv T → U ;` v id|τ | : Y → Y Bt T → Y BE U → ⊥
(∀I)

Πτ

τ : Y, v : Y Bv T → U ;` v id|τ | τ : Y Bt T → Y BE U → ⊥
(@)

Πt

σ : Y <: JΓ K, τ : Y, v : Y Bv T → U ` v id|τ | τ (↑σJtKt) : Y BE U → ⊥
(@)

ΠE

σ : Y <: JΓ K, τ : Y, v : Y Bv T → U ` v id|τ | τ (↑σJtKt) (↑σJEKE) : ⊥
(@)

` λστv.v id|τ | τ (↑σJtKt) (↑σJEKE) : ∀Y <: JΓ KΓ .Y → Y Bv T → U → ⊥
(λ)

where:

– ΠE is a proof of σ : Y <: JΓ K ` (↑σ JEKE) : Y BE U , derived from the
induction hypothesis for t and Corollary 9;

– Πt is a proof of σ : Y <: JΓ K ` (↑σJtKt) : Y Bt T , derived from the induction
hypothesis for E and Corollary 9;

– Πτ is the axiom rule τ : Y ` τ : Y ;
– Πσ is a proof of id|τ | : Y <:Y (Proposition 13).

3. Weak values

� Case JvKV . In the source language, we have:

Γ `v v : T

Γ `V v : T

Hence, we have by induction hypothesis that ` JvKv : JΓ KΓ Bv T and we can
derive:

F : Y BF T ` F : ∀Y ′<:Y.Y ′ → Y ′ Bv T → ⊥ ΠY

σ : Y <: JΓ K, F : Y BF T ` F id|τ | : Y → Y Bv T → ⊥
(@)

τ : Y ;` τ : Y

σ : Y <: JΓ K, τ : Y, F : Y BF T ` F id|τ | τ : Y Bv T → ⊥
(@)

Πv

σ : Y <: JΓ K, τ : Y, F : Y BF T ` F id|τ | τ (↑σJvKv) : ⊥
(@)

` λστF.F id|τ | τ (↑σJvKv) : ∀Y <: JΓ K.Y → Y BF T → ⊥
(λ)

where:

– Πv is a proof of σ : Y <: JΓ K ` (↑σJvKv) : Y BvT , derivable from the induction
hypothesis and Corollary 9.

– Πτ is the axiom rule τ : Y ;` τ : Y
– ΠY is a proof of id|τ | : Y <:Y (Proposition 13)

� Case JxiKV . In the source language, we have:

Γ (i) = (xi : T)

Γ `V xi : T

44 H. Herbelin, É. Miquey

so that Γ is of the form Γ0, xi : T, Γ1 with i = |Γ0|. By definition, we have:

JxiKV =λστF. split τ at i along σ as δ0, x, δ1

inx id|δ0| δ0 (λsδ′0V.V (shiftpn+k) (δ′0[↑t V]t ↑sδ1) (↑σ
′
F))

where n = |δ0| = JσK(i), k = |δ′0| − n, p = |δ1| + 1, σ′ = sp+ and ↑t V =
λsδE.E id|δ| δ (↑sV).

x : Y0 Bt T ` x : Y0 Bt T
(Ax)

` id|δ0| : Y0<:Y0

(<:ax)

x : Y0 Bt T ` x id|δ0| : Y0 → Y0 BE T → ⊥
(∀E)

δ0 : Y0 ` δ0 : Y0

(Ax)

δ0 : Y0, x : Y0 Bt a ` t id|δ0| δ0 : Y0 BE T → ⊥
(@)

ΠE

F : Y BF T, δ0 : Y0, x : Y0 Bt a, δ1 : Y0, T .τ Y1 ` x id|δ0| δ0 E : ⊥
(@)

Πσ Πτ

σ : Y <: JΓ KΓ , τ : Y, F : Y BF T ` split τ at i along σ as δ0, x, δ1 inx id|δ0| δ0 E : ⊥
(split)

` λστF. split τ at i along σ as δ0, x, δ1 inx id|δ0| δ0 E : ∀Y <: JΓ KΓ .Y → Y BF T → ⊥
(λ)

where:

– Πσ is the axiom rule:

σ : Y <: JΓ0KΓ , T, JΓ1KΓ ` σ : Y0, T, Y1<: (JΓ0KΓ , n : T, JΓ1KΓ)
(<:ax)

remembering the fact that the notation σ : Y <: JΓ KΓ hides an interleaving
of vectors of second-order variables with the types in JΓ KΓ . In particular, Y0
is again a notation for an interleaving between such vectors and JΓ0KΓ , and
besides, we have that σ(|Γ0|) = σ(i) = |Y0| = n.

– Πτ is the axiom rule: τ : Y ` τ : Y
(τax)

– E = λsδ′0V.V (shiftpn+k) (δ′0[↑t V]t ↑sδ1) (↑σ
′
F) and ΠE is the following

derivation:

V : Y ′
0 BV T ;` V : Y ′

0 Bt T
(Ax)

Lemma 7

Γ,` (shiftpn+k) : Y ′
0 , T, Y1<:Y ′

0

Γ, V : Y ′
0 BV T ` V (shiftpn+k) : (Y ′

0 , T, Y1)→ (Y ′
0 , T, Y1)BF T → ⊥

(∀E)

Π′
τ

Γ, s : Y ′
0 <:Y0, V : Y ′

0 BV T ` V (shiftpn+k) (δ′0[↑t V]t ↑s
+

δ1) : (Y ′
0 , T, Y1)BF T → ⊥

(@)

Πf

Γ, s : Y ′
0 <:Y0, δ

′
0 : Y ′

0 , V : Y ′
0 BV T ` V (shiftpn+k) (δ′0[↑t V]t ↑s

+

δ1) (↑σ
′
F) : ⊥

(@)

Γ ` λsδ′0V.V (shiftpn+k) (δ′0[↑t V]t ↑s
+

δ1) (↑σ
′
F) : Y0 BE T

(λ)

where Γ = δ1 : Y0, T) .τ Y1, F : (Y0, T, Y1)BF T .

– ΠF is the following proof, obtained by Corollary 15:

F : (Y0, T, Y1)BF T ;` F : (Y0, T, Y1)BF T
(Ax)

Lemma 7

s′0 : Y ′
0 <:Y0 ` σ′ : Y ′

0 , T, Y1<:Y0, T, Y1

(Ax)

F : (Y0, T, Y1)BF T ;σ1 : Y ′
0 <:Y n0 ` (↑σ

′
F) : (Y ′

0 , T, Y1)BF T
(↑σ)

Continuation-and-environment-passing style translations 45

– Π ′τ is the following derivation, where we used Lemmas 14 and 16:

δ′0 : Y ′
0 ` δ′0 : Y ′

0

(Ax)
V : Y ′

0 BV T ` V : Y ′
0 BV T

(Ax)

V : Y ′
0 BV T `↑tV : Y ′

0 Bt T
(↑)

Y ′
0 <:Y0, δ

′
0 : Y ′

0 , V : Y ′
0 BV T ` δ′0[↑t V] : Y ′

0 , T
(τ [t])

Πδ1

δ1 : (Y0, T) .τ Y1, s : Y ′
0 <:Y0, δ

′
0 : Y ′

0 , V : Y ′
0 BV T ` δ′0[↑t V]t ↑s

+

δ1 : Y ′
0 , T, Y1

(τ<:)

– Πδ1 is obtained by Corollary 15:

δ1 : (Y0, T)Bτ Y1 ` δ1 : (Y0, T)Bτ Y1

(Ax)
s : Y ′

0 <:Y0 ` s : Y ′
0 <:Y0

(<:ax)

s : Y ′
0 <:Y0 ` s+ : Y ′

0 , T <:Y0, T
(<:+)

δ1 : (Y0, T)Bτ Y1; s : Y ′
0 <:Y0 ` (↑s

+

δ1) : Y ′
0 , T Bτ Y1

4. Catchable contexts

� Case JF KE . This case is similar to the case JvKV .

� Case Jµ̃[xi].〈xi ||F 〉τ ′KE . In the source language, we have:

Γ, xi : T, Γ ′ `F F : T⊥⊥ Γ, xi : T `τ τ ′ : Γ ′ |Γ | = i

Γ `E µ̃[xi].〈xi ||F 〉τ ′ : T⊥⊥

We have by induction hypothesis a proof of ` Jτ ′Kτ : JΓ, xi : T KΓ Bτ JΓ ′KΓ and
a proof ΠF of ` JF KF : JΓ, xi : T, Γ ′KΓ BF T . We can thus derive:

V : Y BV T ` V : Y Bt T
(Ax)

` shift
|τ ′|+1

|τ | : (Y, T, JΓ ′KΓ)<:Y

V : Y BV T ` V shift
|τ ′|+1

|τ | : (Y, T, JΓ ′KΓ)→ (Y, T, JΓ ′KΓ)BF T → ⊥
(∀E)

Πτ

σ : Y <: JΓ KΓ , τ : Y, V : Y BV T ` V shift
|τ ′|+1

|τ | τ [↑tV]t(↑σ
+

Jτ ′Kτ) : (Y, T, JΓ ′KΓ)BF T → ⊥
(@)

ΠF

σ : Y <: JΓ KΓ , τ : Y, V : Y BV T ` V shift
|τ ′|+1

|τ | τ [↑tV]t(↑σ
+

Jτ ′Kτ) (↑σ
′
JF KF) : ⊥

(@)

` λστV.V shift
|τ ′|+1

|τ | τ [↑tV]t(↑σ
+

Jτ ′Kτ) (↑σ
′
JF KF) : JΓ KΓ BF T

(λ)

where:

– k = |τ ′|+ 1, σ′ = σk+

– ΠF is the following proof, obtained by Corollary 15:

` F : (JΓ KΓ , T, JΓ ′KΓ)BF T
Lemma 7

σ : Y <: JΓ KΓ ` σk+ : Y, T, JΓ ′KΓ <: JΓ KΓ , T, JΓ ′KΓ

σ : Y <: JΓ ′KΓ ` (↑σ
′
F) : (Y, T, JΓ ′KΓ)BF T

46 H. Herbelin, É. Miquey

– Πτ is the following proof:

τ : Y ` τ : Y
(Ax)

V : Y BV T ` V : Y BV T
(Ax)

V : Y BV T `↑tV : Y Bt T
(↑)

τ : Y, V : Y BV T ` τ [↑tV]t : Y, T
(τ [t])

Πτ ′

τ : Y, V : Y ′ BV T ;σ : Y <: JΓ KΓ ` τ [↑tV]tJτ ′Kτ : (Y, T, JΓ ′Kσ[x:=n])
(ττ ′)

– Πτ ′ is the following proof, obtained from the induction hypothesis for τ ′ and
Corollary 15:

` Jτ ′Kτ : JΓ KΓ , T Bτ JΓ ′KΓ

σ : Y <: JΓ KΓ ` σ : Y <: JΓ KΓ
(<:ax)

σ : Y <: JΓ KΓ ` σ+ : Y, T <: JΓ KΓ , T
(<:+)

;σ : Y <: JΓ KΓ `↑σ
+

Jτ ′Kτ : Y, T Bτ JΓ ′KΓ

5. Terms

� Case JV Kt. This case is similar to the case JvKV .

� Case Jµαi.cKt. In the λ[lvτ?]-calculus, we have:

Γ, αi : T⊥⊥ `c c |Γ | = i

Γ `t µαi.c : T

Hence we have by induction a proof of ;` JcKc : JΓ, xi : T⊥⊥KΓ Bc ⊥ and we can
derive:

` JcKc : JΓ, xi : T⊥⊥KΓ Bc ⊥ Πσ

σ : Y <: JΓ KΓ , τ : Y ` JcKc σ+ : (Y, T⊥⊥)→ ⊥
(∀E)

Πτ

σ : Y <: JΓ KΓ , τ : Y,E : Y BE T ` JcKc σ+ τ [E]E : ⊥
(@)

` λστE.JcKc σ+ τ [E]E : JΓ KΓ Bt T
(λ)

where

– Πσ is the following derivation (since |τ | matches |Y |):

σ : Y <: JΓ KΓ ` σ : Y <: JΓ KΓ
(<:ax)

σ : Y <: JΓ KΓ ` σ+ : (Y, T⊥⊥)<: JΓ, xi : T⊥⊥KΓ
(<:+)

– ΠE is also obtained by Lemma 14:

τ : Y ` τ : .τ Y
(Ax)

E : Y BE T ` E : Y BE T
(Ax)

τ : Y,E : Y BE T ;` τ [E]E : .τ Y , T
⊥⊥

(τ [E])

6. Contexts

Continuation-and-environment-passing style translations 47

� Case JEKe. This case is similar to the case JvKV .

� Case Jµ̃xi.cKe. This case is similar to the case Jµαi.cKt.

7. Commands

� Case J〈t || e〉Kc. In the λ[lvτ?]-calculus we have:

Γ `t t : T Γ `e e : T⊥⊥

Γ `c 〈t || e〉

thus we get by induction two proofs of ;` JtKt : JΓ KΓBtT and ;` JeKc : JΓ KΓBeT .
We can then derive:

` JeKe : JΓ KΓ Be T σ : Y <: JΓ KΓ ` σ : Y <: JΓ KΓ
(<:ax)

σ : Y <: JΓ KΓ , τ : Y ` JeKe σ : Y → Y Bt T → ⊥
(∀E)

τ : Y ` τ : Y
(Ax)

σ : Y <: JΓ KΓ , τ : Y ` JeKe σ τ : Y Bt T → ⊥
(τE)

Πt

σ : Y <: JΓ KΓ , τ : Y ` JeKe σ τ (↑σJtKt) : ⊥
(@)

` λστ.JeKe σ τ (↑σJtKt) : JΓ KΓ Bc ⊥
(λ)

where:

– Πt is obtained using Lemma 8:

` JtKt : JΓ KΓ Bt T σ : Y <: JΓ KΓ ` σ : Y <: JΓ KΓ
(<:ax)

σ : Y <: JΓ KΓ `↑σJtKt : Y Bt T
8. Closures

� Case Jcτ ′Kl. In the λ[lvτ?]-calculus, we have:

Γ, Γ ′ `c c Γ `τ τ ′ : Γ ′

Γ `l cτ ′

where n matches |Γ |. We thus get by induction two proofs ` Jτ ′Kτ : JΓ KΓBτ JΓ ′KΓ
and ` JcKc : JΓ, Γ ′KΓ Bc ⊥. We can derive:

` JcKc : JΓ, Γ ′KΓ Bc ⊥ Πσ

σ : Y <: JΓ KΓ ` JcKc σ′ : (Y, JΓ ′KΓ)→ ⊥
(∀E)

τ : Y ` τ : Y
(Ax)

Π ′τ
σ : Y <: JΓ KΓ ` τ(↑σJτ ′Kτ) : Y JΓ ′KΓ

(ττ ′)

σ : Y <: JΓ KΓ , τ : Y ` JcKc σ′ τ(↑σ
′
Jτ ′Kτ) : ⊥

(τE)

` λστ.JcKc σ′ τ(↑σJτ ′Kτ)
(λ)

where k = |τ ′|, σ′ = σk+ and:

– Πσ is a proof of σ : Y <: JΓ KΓ ` σk+ : (Y, JΓ ′KΓ)<: JΓ, Γ ′KΓ obtained by
Lemma 7;

– Πτ ′ is the following proof also obtained by Corollary 15:

` Jτ ′Kτ : JΓ KΓ Bτ JΓ ′KΓ ` σ : Y <: JΓ KΓ
(<:ax)

` (↑σJτ ′Kτ) : Y Bτ JΓ ′KΓ

9. Stores

48 H. Herbelin, É. Miquey

� Case Jτ [xi := t]Kτ . We only consider the case τ [xi := t], the proof for the
case τ [αi := E] is identical. This corresponds to the typing rules:

Γ `τ τ : Γ ′ Γ, Γ ′ `t t : T |Γ, Γ ′| = i

Γ `τ τ [xi := t] : Γ ′, xi : T

By induction, we obtain two proofs of ` JτKτ : JΓ KΓ Bτ JΓ ′KΓ and ` JtKt :
JΓ, Γ ′KΓ Bt T . We can thus derive by Lemma 14:

` JτKτ : JΓ KΓ Bτ JΓ ′KΓ ` JtKt : JΓ, Γ ′KΓ Bt T
` JτKτ [JtKt] : JΓ KΓ Bτ JΓ ′KΓ , T

(τ [t])

Continuation-and-environment-passing style translations 49

Jλxi.tKV σ τ uE , JtKt σ+ τ [u] ↑shift
1
|τ|E

Jt · EKE σ τ v , v id|τ | τ (↑σJtKt) (↑σJEKE)

JαiKE σ τ V , split τ at i along σ as δ0, x, δ1 in x (shift
|δ1|+1

|δ0|) τ V

JV Kt σ τ E , E id|τ | τ (↑σJV KV)

JxiKt σ τ E , split τ at i along σ as δ0, x, δ1 in x (shift
|δ1|+1

|δ0|) τ E

JEKe σ τ t , t id|τ | τ (↑σJEKE)

J〈t || e〉Kc σ τ , JeKe σ τ (↑σJtKt)
JcτKnl σ τ

′ , JcKc σ′ τ ′(↑σ
′
JτKτ)

where k = |τ ′| − n, σ′ = σk+

Jτ0[xi := t]Kτ , Jτ0Kτ [JtKt]t
JεKτ , ε

JkKV , k

JκKE , κ

Jµαi.cKt σ τ E , JcKc σ+ τ [E]E

Jµ̃xi.cKe σ τ t , JcKc σ+ τ [t]t

Jτ0[αi := E]Kτ , Jτ0Kτ [JEKE]E

(a) Translation of terms

JΓ `e e : T⊥⊥K , ` JeKe : JΓ KΓ Be T
JΓ `t t : T K , ` JtKt : JΓ KΓ Bt T
JΓ `E E : T⊥⊥K , ` JEKE : JΓ KΓ BE T
JΓ `V V : T K , ` JV KV : JΓ KΓ BV T

JΓ `c cK , ` JcKc : JΓ KΓ Bc ⊥
JΓ `l lK , ` JlK|Γ |

l : JΓ KΓ Bc ⊥
JΓ `τ τ : Γ ′K , ` JτKτ : JΓ KΓ .τ JΓ ′KΓ

Υ Bc T , ∀Y <:Υ. Y → ⊥
Υ Be T , ∀Y <:Υ. Y → (Y Bt T)→ ⊥
Υ Bt T , ∀Y <:Υ. Y → (Y BE T)→ ⊥
Υ BE T , ∀Y <:Υ. Y → (Y BV T)→ ⊥

Υ BV X , X

Υ BV T → U ,
∀Y <:Υ. Y → (Y Bt T)→ (Y BE U)→ ⊥

(b) Translation of types and judgments

Fig. 16. Call-by-name continuation-and-environment-passing style translation

F A typed call-by-name translation

We first rephrase the reduction rules to use De Bruijn levels:

〈t || µ̃xi.c〉τ → c[xn/xi]τ [xn := t] with |τ | = n
〈µαi.c ||E〉τ → c[αn/αi]τ [αn := E] with |τ | = n
〈xn ||E〉τ → 〈τ(n) ||E〉τ
〈V ||αn〉τ → 〈V || τ(n)〉τ

〈λxi.t || u · E〉τ →
〈
u
∣∣∣∣ µ̃xi.〈t ||E〉〉τ

We give in Fig. 16 the full translation for the call-by-name λ̄µµ̃-calculus with
global environment. Once again, we have:

Theorem 11. The translation is well-typed, i.e.:

50 H. Herbelin, É. Miquey

1. If Γ `V V : T then JΓ `V V : T K
2. If Γ `E E :T⊥⊥ then JΓ `E E : T⊥⊥K
3. If Γ `t t : T then JΓ `t t : T K
4. If Γ `e e : T⊥⊥ then JΓ `e e : T⊥⊥K

5. If Γ `c c then JΓ `c cK
6. If Γ `l l then JΓ `l lK
7. If Γ `τ τ then JΓ `τ τ : Γ ′K

Proof. The proof is very similar (and easier) than the proof in the call-by-need
case, by induction on typing derivations. In particular, all the lemmas proved in
Section 4.1 also hold for the call-by-name translation.

It is interesting to observe that even though terms are stored once and for
all in call-by-name, the use of a global environment forces us to quantify over
arbitrary extensions of the store. Indeed, through the translation each (typed)
term t is waiting for a store whose type should match its former typing context.
Yet, many computations may happen before JtKt is evaluated, corresponding to
other branches of the global typing derivation. As a consequence, the store may
contain arbitrarily more elements at that time.

Example 5. Consider a term x : A, y : B `t u : C, through the translation we
will thus have ` JuKt : A,B Bt C → D. Now, imagine that we dispose of three
values V0, V1, V2 respectively of types A,B,C, we can thus construct three closed
terms t0, t1, t2 such that, given a continuation, ti is going to produce arbitrary
computations (and in particular store arbitrarily many terms, let us denote the
resulting store by τi : Ui) before returning Vi to its continuation. These terms
can thus be assigned the types (A→ D)→ D, (B → D)→ D, (C → D)→ D,
and the closed term tu , t0(λx.t1(λy.t2u)) can thus be typed by ` tu : D. Now,
if tu is evaluated in an initially empty store, at the moment where uV2 will be
evaluated, the store will be τ0[x := V0]τ1[y := V1]τ2 of type U0, A, U1, B, U2.

Continuation-and-environment-passing style translations 51

G A typed call-by-value translation

To illustrate the generality of our construction, we give one more example by
giving a typed continuation-and-environment-passing style translation from the
call-by-value λ̄µµ̃-calculus with explicit environments. The syntax of the calculus
is given by:

Values V ::= λxi.t | xi | k
Terms t, u ::= V | µαi.c

Co-values E ::= t · e | αi | κ
Contexts e ::= E | µ̃xi.c

Environment τ ::= ε | τ [xi := V] | τ [αi := E]
Commands c ::= 〈t || e〉
Closures l ::= cτ

while the reduction rules are given by:

(Catch)
(Let)
(Lookupx)
(Lookupα)
(Beta)

〈µαi.c || e〉τ → c[αn/αi]τ [αn := e] with |τ | = n
〈V || µ̃xi.c〉τ → c[xn/xi]τ [xn := V] with |τ | = n
〈V ||αn〉τ → 〈V || τ(n)〉τ
〈xn ||E〉τ → 〈τ(n) ||E〉τ
〈λxi.t || u · e〉τ →

〈
u
∣∣∣∣ µ̃xi.〈t || e〉〉τ

Since only values can be stored in environments, we will use the following
parameters for FΥ :

Γ ` t : Υ BV T
Γ ` [t]t : Υ .τ T

(τt)
Γ ` t : Υ BE T

Γ ` [t]E : Υ .τ T
⊥⊥

(τE)

The translation of terms, which is naturally obtained by first examinating a
small steps reduction system, is defined by:

Jλxi.tKV σ τ uE , u id|τ | τ (λsδv.JtKt (s ◦ σ)+ τ [v] ↑sE
JxiKV σ τ , split τ at i along σ as δ0, x, δ1 in x (shift

|δ1|+1
|δ0|) τ

JkKV , k

Jt · eKe σ τ V , V id|τ | τ (↑σJuKt) (↑σJeKe)
JαiKE σ τ V , split τ at i along σ as δ0, x, δ1 in x (shift

|δ1|+1
|δ0|) τ V

Jµ̃xi.cKe σ τ t , JcKc σ+ τ [t]t
JκKE , κ

JV Kt σ τ e , e id|τ | τ (↑σJV KV)

Jµαi.cKt σ τ E , JcKc σ+ τ [E]E

J〈t || e〉Kc σ τ , JeKe σ τ (↑σJtKt)
JcτKnl σ τ

′ , JcKc σ′ τ ′(↑σ
′
JτKτ)

where k = |τ ′| − n, σ′ = σk+

Jτ0[xi := t]Kτ , Jτ0Kτ [JtKt]t
Jτ0[αi := E]Kτ , Jτ0Kτ [JEKE]E

JεKτ , ε

52 H. Herbelin, É. Miquey

As for the translations of types and judgments, it is very similar to the
translation in the call-by-name and call-by-need settings, but adapted to match
the alternation of levels in the translation of terms. Namely, since terms at level
t are first analyzed, then context at level e, then values, the translation follows
the same hierarchy:

JΓ `t t : T K , ` JtKt : JΓ KΓ Bt T
JΓ `e e : T⊥⊥K , ` JeKe : JΓ KΓ Be T
JΓ `V V : T K , ` JV KV : JΓ KΓ BV T
JΓ `E E : T⊥⊥K , ` JEKE : JΓ KΓ BE T

JΓ `c cK , ` JcKc : JΓ KΓ Bc ⊥
JΓ `l lK , ` JlK|Γ |l : JΓ KΓ Bc ⊥
JΓ `τ τ : Γ ′K , ` JτKτ : JΓ KΓ .τ JΓ ′KΓ

Υ Bc T , ∀Y <:Υ. Y → ⊥
Υ Bt T , ∀Y <:Υ. Y → (Y Be T)→ ⊥
Υ Be T , ∀Y <:Υ. Y → (Y BV T)→ ⊥
Υ BV T , ∀Y <:Υ. Y → (Y BE T)→ ⊥

Υ BE X , X

Υ BE T → U ,
∀Y <:Υ. Y → (Y BV T)→ (Y Bt U)→ ⊥

Once again, we can check that:

Theorem 17. The translation is well-typed, i.e.:

1. If Γ `V V : T then JΓ `V V : T K
2. If Γ `e e : T⊥⊥ then JΓ `e e : T⊥⊥K
3. If Γ `t t : T then JΓ `t t : T K

4. If Γ `c c then JΓ `c cK
5. If Γ `l l then JΓ `l lK
6. If Γ `τ τ then JΓ `τ τ : Γ ′K

	Continuation-and-environment-passing style translations: a focus on call-by-need

