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Motivation

Preference data is everywhere

customers express preferences about products and services;

users select movies on an internet platform (e.g., Netflix);

genes are ordered based on their expression levels under various experimental
conditions.

A ranking represents a statement about the relative quality or relevance of the items
being ranked: taste, adherence to a specific user profile, relevance to the biological
process under investigation.

Assessors rank items: as panels, users, patients.
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Ingredients for Ranking data

A set of items, to be evaluated: : :

: : :and a pool of assessors to evaluate them

A ranking is simply a linear ordering of the items
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Types of ranking data
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Typical statistical problems
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General setting of the Mallows model

Let Pn, be the space of n-dim permutations

A ranking, R = (R1; :::;Rn), of n labelled items A = fA1; :::;Ang is an element of
Pn, where, for all i , Ri is the rank assigned to item Ai .

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

( )e.g. R = 1, 7, 8, 2, 10, 4, 6, 9, 3, 5

The Mallows model (Mallows, 1957) gives the probability density for R 2 Pn,

P(R j�;ρ) :=
1

Zn(�)
exp

h
�
�

n
d(R;ρ)

i

o ρ 2 Pn: location parameter, shared consensus ranking

o d(�; �): right-invariant (Diaconis, 1988) distance between permutations (example)

o � � 0: scale parameter
o Zn(�): partition function

Flexibility in the choice of the distance (driven by the application), (example)

o Cayley, Hamming, Ulam: measures of disorder ! genomics, cryptography
o Footrule (l1), Spearman (l2), Kendall: domain of preferences ! elections, movies
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The Mallows model: challenge

P(R j�;ρ) :=
1

Zn(�)
exp

h
�
�

n
d(R;ρ)

i

Challenge for inference: computation of the partition function

Zn(�) =
X
r2Pn

exp
h
�
�

n
d(r ; 1n)

i

With Kendall, Cayley and Hamming distances ! Zn(�) has closed form

With footrule and Spearman (i.e. l1 and l2) distances ! no results.
So far solved numerically for very small values of n, as infeasible for larger n.

Our approach:

1 Strategy to compute Zn(�) exactly for moderately large values of n.

2 When needed for larger n, Importance Sampling (IS) scheme.
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Bayesian inference: full rankings

N users rank n items A = fA1; :::;Ang

Data R = fRjg
N
j=1 ! full rankings

Rj = (Rj1; :::;Rjn) 2 Pn: ranking given by user j to the full set of items

Rji : rank given to item Ai by user j .

Statistical model: R1; : : : ;RN j�;ρ
i:i:d
� Mallows(�;ρ)

P (R1; : : : ;RN ;�;ρ) =
1

Zn(�)N
exp

(
�
�

n

NX
j=1

d(Rj ;ρ)

)

Prior: assume independence between ρ and � and no prior information
ρ: uniform over Pn ! �(ρ) = 1

n!
1Pn (ρ)

�: (truncated) exponential prior

Posterior density

� (ρ; �jR1; : : : ;RN) /
1

Zn(�)N
exp

(
��

"
n�1

NX
j=1

d (Rj ;ρ) + �

#)
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Bayesian inference: top�k rankings

N users rank a - possibly different - subset of items Aj � fA1;A2; : : : ;Ang

Typical situation: Each user only assesses her top�kj preferred items

Data R = fRjg
N
j=1 ! partial rankings

Apply data augmentation techniques: estimating the lacking ranks consistently with the
partial observations.

Define augmented full rankings R̃1; : : : ; R̃N , where each R̃j is compatible with the
partial informations in Rj

Posterior density

� (�;ρjR1; : : : ;RN) =
X

R̃12S1

� � �
X

R̃N2SN

P
�
�;ρ; R̃1; : : : ; R̃N jR1; : : : ;RN

�
:

where Sj , set of rankings compatible with Rj ; j = 1; : : : ;N.
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Bayesian inference: transitive pair comparisons

N users do not see all the possible items, but only express binary preferences
between pairs of them

Data fBjg
N
j=1 are sets of pair preferences, of the form (Am1 � Am2 ) if Am1 preferred

to Am2

Define augmented full rankings R̃1; : : : ; R̃N , where each R̃j is compatible with the
partial informations in (the transitive closure of) Bj

Posterior density

� (�;ρjB1; : : : ;BN) =
X

R̃12tc(B1)

� � �
X

R̃N2tc(BN )

P
�
�;ρjR̃1; : : : ; R̃N

�
:
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Bayesian inference: non-transitive pair comparisons

Same setting as before BUT users allowed to be inconsistent in their choices

E.g. It may occur a non-transitive pattern in the data

Bj = fA5 � A2; A2 � A3; A3 � A5; :::g

Ideally we want to “coherentize” the preferences, and estimate the latent truth.

Idea: assume non-transitive patterns arise because of mistakes made by the users

Identification/correction of mistakes: borrowing strength
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Bayesian inference: non-transitive pair comparisons

Posterior density

� (�;ρjB1; :::;BN) =
X

R̃12Pn

:::
X

R̃N2Pn

P
�
�;ρjR̃1; :::; R̃N

�
P
�
R̃1; :::; R̃N jB1; :::;BN

�

Assumption: P
�
R̃1; :::; R̃N jB1; :::;BN

�
=
QN

j=1
P
�
R̃j jBj

�
P
�
R̃j jBj

�
: Weight of each full rank in the sum

Interpretation: probability of ordering the pairs as in Bj when the latent ranking for

user j is R̃j ! probability of making mistakes in the binary choices
o Random mistake: independent of the pair of items
o Logistic model: the likelihood of a mistake increases if the items are perceived as

similar by the user (details)
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Implementation and examples

Implementation: Metropolis within Gibbs MCMC, with data augmentation

Many applications (require mixture extension):

Sushi benchmark data: full rankings, heterogeneity (*)

Meta analysis of gene expression data: partial rankings (*)

Preference among beach pictures: pairwise comparisons (*)

Sound Data: pairwise comparisons with many non-transitive patterns, due to
difficult perception, heterogeneity (*)

Movie preferences: very sparse pairwise comparison data, comparison with
Collaborative Filtering (*)
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Conclusions

Ongoing work

o R package BayesMallows, available on CRAN

o Conjugate prior for ρ (joint work with I. Antoniano-Villalobos) (idea)

o Genomics application: Mixture of Mallows for detection of differential gene
expression (joint work with V. Djordjilovic)

Future

o Extension to rankings with ties (to model indifference in the preference)

o Integration of covariates (of items and/or of users)

o Variable selection: rank only the items which are worth being ranked

o Un-equal quality of assessors

Thanks for your attention!
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Right-invariance

Definition: Right-invariant distance
A distance function is right-invariant, if d(ρ1;ρ2) = d(ρ1η;ρ2η) for all η;ρ1;ρ2 2 Pn,
where ρη = ρ � η = ρη = (��1 ; :::; ��n ).

Example

4 students, (A1;A2;A3;A4), admitted in a PhD program

initial ranking ρ1 = (1; 3; 4; 2) (admission)

final ranking ρ2 = (3; 4; 1; 2) (general exam)

d(ρ1;ρ2) can be thought of as a measure of the goodness of judgement of the PhD
admission board.

If the students are relabelled in a different ordering, for example (A4;A2;A1;A3),
then ρ1η = (2; 3; 1; 4) and ρ2η = (2; 4; 3; 1), where η = (4; 2; 1; 3) determines the
relabelling of the students.

Natural to assume d(ρ1;ρ2) = d(ρ1η;ρ2η), because the situation depicted is the
same.

A1 A2 A3 A4

�!
A4 A2 A1 A3

ρ1 1 3 4 2 ρ1η 2 3 1 4
ρ2 3 4 1 2 ρ2η 2 4 3 1
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Right-invariance

Consequence of right-invariance
For any ρ1;ρ2 2 Pn, it holds d(ρ1;ρ2) = d(ρ1ρ

�1
2 ; 1n), where 1n = (1; 2; :::; n).

Then Zn(�;ρ) is free of ρ, as

Zn(�;ρ) =
X
r2Pn

e�
�

n
d(r ;ρ) =

X
r2Pn

e�
�

n
d(rρ�1

;1n) =
X
r 02Pn

e�
�

n
d(r 0;1n) = Zn(�)

Common right-invariant distances between permutations ρ1;ρ2 2 Pn

Footrule (l1): dF (ρ1;ρ2) =
Pn

i=1
j�1i � �2i j

Spearman (l2): dS(ρ1;ρ2) =
Pn

i=1
(�1i � �2i )

2

Kendall: minimum number of adjacent transpositions which convert ρ1 into ρ2

Cayley: minimum number of transpositions which convert ρ1 into ρ2

Ulam: minimum number of deletion-insertion operations to convert ρ1 into ρ2.

Hamming: minimum number of substitutions required to convert ρ1 into ρ2.

Go back
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Distances: why important

Consider the following two permutations:

σ = (1; 2; 3; 4; 5; 6; 7; 8; 9; 10)

τ = (9; 10; 3; 4; 5; 6; 7; 8; 1; 2)

First and second elements of σ, are at the bottom of τ .

If σ and τ represent preferences about movies ! very different profiles.

If σ and τ represent genomes ! just one translocation in the genome

Normalized Spearman (l2): dS(σ; τ ) � 0:5
Normalized Cayley: dC (σ; τ ) � 0:28

Go back
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The Mallows density

Go back
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Exact computation of Zn(�)

Zn(�) =
X
r2Pn

e�
�

n
d(r ;1n) =

=
X
di2D

jLi je
��

n
di

where

d(r; 1n) 2 D = fd1; :::; dhg, h depends on n and d(�; �)

Li = fr 2 Pn : d(r; 1n) = dig � Pn, i = 1; :::; h.

Sufficient to know jLi j, for all values di 2 D ! Easier, but still unfeasible for large n

Special cases solution (from the computer programming field)

Footrule distance; D = f0; 2; 4; :::; bn2=2cg, jLi j is the sequence A062869 tabulated
for n � 50 in the On-Line Encyclopedia of Integer Sequences (OEIS)

Spearman’s distance: Df0; 2; 4; :::; 2
�
n+1

3

�
g, jLi j is the sequence A175929 tabulated

only until n � 14 in the OEIS
Go back
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Importance Sampling approximation of Zn(�)

Let R1; : : : ;RK sampled from auxiliary distribution q(R), then

Ẑn(�) = K�1

KX
k=1

exp
�
�(�=n)d(Rk ; 1n)

�
q(Rk )�1:

Pseudo-likelihood approach: Let fi1; : : : ; ing be a uniform sample from Pn; giving the
order of the pseudo-likelihood factorization. Then

P (Rin j1n) =
exp [�(�=n)d (Rin ; in)] � 1[1;:::;n](Rin )P

rn2f1;:::;ng
exp [�(�=n)d (rn; in)]

;

P
�
Rin�1 jRin ; 1n

�
=

exp
�
�(�=n)d

�
Rin�1 ; in�1

��
� 1[f1;:::;ngnfRin

g](Rin�1 )P
rn�12f1;:::;ngnfRin

g
exp [�(�=n)d (rn�1; in�1)]

;

.

.

.

P
�
Ri2 jRi3 ; : : : ;Rin ; 1n

�
=

exp
�
�(�=n)d

�
Ri2 ; i2

��
� 1�

f1;:::;ngnfRi3
;:::;Rin

g

�(Ri2 )P
r22f1;:::;ngnfRi3

;:::;Rin
g

exp [�(�=n)d (r2; i2)]
;

P
�
Ri1 jRi2 ; : : : ;Rin ; 1n

�
= 1�

f1;:::;ngnfRi2
;:::;Rin

g

�(Ri1 ):

Go back
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IS approximation of Zn(�)

Example: n = 50, footrule distance

Mukherjee (2016) limit: asymptotic approximation of Zn(�)
Go back
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Effect of the approximation of Zn(�) on inference

10 20 30 40 50

10
20

30
40

50

Exact

0.0

0.1

0.2

0.3

0.4

0.5

10 20 30 40 50

10
20

30
40

50

IS K = 108

0.0

0.1

0.2

0.3

0.4

0.5

10 20 30 40 50

10
20

30
40

50

IS K = 104

0.0

0.1

0.2

0.3

0.4

0.5

10 20 30 40 50

10
20

30
40

50

Asymptotics

0.0

0.1

0.2

0.3

0.4

0.5

10 20 30 40 50

10
20

30
40

50

Exact

0.0

0.2

0.4

0.6

0.8

10 20 30 40 50

10
20

30
40

50

IS K = 108

0.0

0.2

0.4

0.6

0.8

10 20 30 40 50

10
20

30
40

50

IS K = 104

0.0

0.2

0.4

0.6

0.8

10 20 30 40 50

10
20

30
40

50

Asymptotics

0.0

0.2

0.4

0.6

0.8

Go back
Marta Crispino Bayesian Mallows model 8 / 24



Conjugate prior for ρ (joint work with I. Antoniano-Villalobos)

Consider a sample of rankings R1; :::;RN jρ; �
i:i:d
� MS(�;ρ), where MS(�; �) is the

Mallows density with � = �=n, and Spearman (l2) distance,

d(ρ;σ) =

nX
i=1

(�i � �i )
2

Assume � known, then

P(R1; :::;RN ; �;ρ) =

NY
j=1

1

Z(�)
exp

(
��

nX
i=1

(Ri � �i )
2

)
/ exp

(
2�N

nX
i=1

�i R̄i

)
;

where R̄i = 1
N

PN

j=1
Rji , i = 1; :::; n, is the sample average of the i�th rank.

Proposition
Let ppn be the n-dim permutation polytope, that is, the convex hull of the elements
of Pn. Then R̄ = (R̄1; :::; R̄n) 2 ppn.
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Conjugate prior for ρ (joint work with I. Antoniano-Villalobos)

Keeping � fixed, the conjugate prior for ρ 2 Pn is

�(ρjρ0; �0) =
1

Z�(�0;ρ0)
exp

"
��0

nX
i=1

(�0i � �i )
2

#
1(ρ0 2 ppn)1(�0 2 R+)

/ exp

"
2�0

nX
i=1

�i�0i

#

The posterior density for ρ is

�(ρjR1; :::;RN) / exp

(
2(�0 + �N)

nX
i=1

�i

h
�N

�0 + �N
R̄i +

�0

�0 + �N
�0;i

i)

i.e. �(ρjR1; :::;RN) same parametric density of the prior, with updated parameters

ρN =
�N

�0 + �N
R̄ +

�0

�0 + �N
ρ0

�N = �0 + �N

The result reminds Diaconis and Ylvisaker (1979)
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Conjugate prior for ρ (joint work with I. Antoniano-Villalobos)

Example: n = 3, N = 40, � = 0:5, ρ = (3; 2; 1).
Sample and obtain R̄ = (2:25; 2:125; 1:625).

ρ0 = (1; 2; 3), varying �0 = 0; 10; 20; 30. ρ0 = (1; 2:5; 2:5), varying �0 = 0; 10; 20; 30.

Go back
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Non-transitive pairwise preferences

Mouse click mistake:

P(mistake j �;Rj) = �; � 2 [0; 0:5)

Logistic model

logitP(mistake jRj ; �0; �1) = ��0 � �1

dR j ;m

n � 1

where dR j ;m = jRj1 � Rj2j if Bj;m = (O1 � O2).

Go back
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Sound data: non-transitive pair comparisons (with N. Barrett)

How important is 3-D spatial motion to our understanding of human agency?

n = 12 abstract sounds, made from the action of a cellist while playing, each
obtained starting at the best representation of the original gesture, and then
reducing or removing some aspects of the sound

SOUND1
Full sonification, the best one can make to capture motion - based on what we know
about our perception and hearing

SOUND7
Like the previous one, with pitch modulation removed

SOUND10
The ‘worst’ sonification, spatial variation is flattened, both pitch and volume variations
removed.

Go back
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Sound data: non-transitive pair comparisons (with N. Barrett)

A group of N = 46 listeners repeatedly presented with pairs of sounds and asked to
choose the one that most evokes the sense of human causation (or physicality)

To what extent listeners report non-transitive sets of preferences?

The percentage of listeners who report at least one non-transitivity is 80%.

We expect the listeners to be clustered: differences in the interpretation of the test and
in how people listen to sounds ! Mixture model generalization of the main model

Go back
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Sound data: non-transitive pair comparisons (with N. Barrett)

Posterior consensus ranking ρ of the 3 clusters

Expert explanation of the clusters:
Cluster 1: listeners who like slower spatial variation

Cluster 2: listeners who are listening spatially

Cluster 3: negative preference for spatial motion

Go back
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Sound data: non-transitive pair comparisons (with N. Barrett)

Posterior probabilities for all the sonifications of being ranked among the top-4 for the 3
clusters

Go back
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Sound data: non-transitive pair comparisons (with N. Barrett)

Probability that the best sonified sounds are amongst the top-4 ranked sounds (obtained
thanks to the estimated individual rankings).
SAA: index measuring listeners’ awareness of spatial audio (3 is highly aware)

Spatial listening is a skill that is enhanced through training Go back
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Sushi data: full rankings

N = 5000 Japanese people interviewed: each gives his/her
complete ranking of n = 10 sushi variants (items)

Go back
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Sushi data: full rankings

MAP estimate

Go back
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Beaches data: pairwise comparisons

n = 15 images of tropical beaches shown in pairs to N = 60 users (25 random pairs
each)

Question: “Which of the two beaches would you prefer to go to in your next
vacation?”

Go back
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Beaches data: pairwise comparisons

We can also estimate the individual rankings

Go back
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Meta-analysis in Genomics: top�k rankings

Context:

Studies of differential gene expression between two conditions produce a list of
genes, ranked according to their level of differential expression as measured by some
test statistics.

Little agreement among gene lists found by independent studies comparing the same
conditions leads to difficulties in finding a consensus list over all available studies.
This situation raises the question of whether a consensus top list over all available
studies can be found.

Biologists are often concerned with the few most relevant genes in the specific
context of the pathology, to set in place further more detailed lab experiments.

N = 5 studies comparing prostate cancer patients with healthy controls, based on
differential gene expression

Each study produces top�25 (i.e. k = 25) list of genes (unique genes n = 89)
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Meta-analysis in Genomics: top�k rankings

The fact that n >> N, and having partial data, both contribute to keeping precision
small

However, the posterior probability for each gene to be among the top-10 or top-25 is
not so low, thus demonstrating that our approach can provide a valid criterion for
consensus (with uncertainty quantification).

Go back
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Bayesian Mallows model VS Collaborative Filtering (with Q. Liu)
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