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Abstract
The Lie algebra of tensors on a Hilbert space is used to

obtain optimal controls for a class of nonlinear systems.
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1. Introduction

In this paper we shall consider the optimal control of a nonlinear
analytic system by writing the system in the form of an infinite-dimensional
bilinear system. This approach has been used before; see Takata Ib],

Banks Lﬂ , Banks and Ashtiani Eﬂ. However we shall use the theory of
tensors (cf.Greub, [5]) and consider the Lie algebra of tensors generated

by the operators in the associated bilinear system. Thislsimplifies consider-
ably the approach taken by Banks and Yew [ﬁj, where a "power series' in the
tensor operators is obtained for the optimal control. We show here that
particularly simple results hold if the Lie algebra is nilpotent.

In section 2 we shall introduce some simple tensor notation and in
section 3 the bilinear realisation of nonlinear systems will be considéred.

The application of simple Lie algebra theory to the bilinear representation
will be discussed in section 4, and finally, in section 5, a very simple
example will be considered. The example is chosen mainly for its illustrative
clarity rather than its applicability.

2, Notation and Terminology

We shall use the elementary theory of tensors on a Hilbert space,

n
usually written in component form. Thus, a tensor ¢ e@ &, for some
k=1
n, will be written ¢, +e.. where 0<i,<» for 1<j<n. If A is a tensor
n 2 I n J n 9
operator in ;ﬁ(@g £7), i.e. a bounded operator from @ & to itself we shall
k=1 k=1
denote its componentwise operation, in an expression of the form Y= A9, by
o  —
. oo 1 n
. , = L...3 A b
Ljeeeed Jl—o i =o T 1 n
1 n
n .
(Matrix multiplication then becomes ¢&= E Ai¢i .) Finally the transpose
; j=1 1. wsesl
A' of A is the tensor defined by (A')J1 73y = A,l n .
fpeeeed Jp oeeeedy

3. Bilinear Realisation of Nonlinear Systems

In this section we shall consider a general (analytic) nonlinear system

% = f(x,u) s XE Rf (3.1}
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where u is assumed, for simplicity, to be a scalar control. As in

Banks Dﬂ, we shall associate with this system the 'augmented' system

%X = f(x,u)

(3.2)

o =v

where we restrict the controls to be differentiable. Now introduce the

functions
il in 3
¢i U Xl...xn u ., (3.3)
1 n
We have
de. 5 3 ; : ; y
s 00 n = . .
i e - | - L mi +jx11 L mydtly
Py L T ESRAESTRERRE
Since f is analytic it has a Taylor series of the form
_ L z % k oy qn 8

fk(x,u) = g =0 "t an=0 g=g C <

X e e
Kk 1 ﬁl“‘%\ﬁ 1 n

for some constants C . Hence
al. o R
dé, o n o o o0 o, +1 i, o, =1, o +i o
—11---1n1 - Z E "--Z z ikcz . Bx]-]_ 1...ka k — n 1’1ul+ﬁ
dt k=l 0,=0 a =0 g=0 © “1""""n 1
i a
1 e J=-1
+ ] X e X u
n ] o0 o0 ) k
= 7 P s 3 ¥ e Cy v abo 4i . o, <1 o 1 A
k=l =0 o =0 B=0 1 ShP T e T T e O T
+ ¢, ;Y (3.4)
ll"'lnj 1
We shall denote the infinite dimensional rank (n+l) tensor ¢i i i by
preet
¢ 5 i.e.
(9. o= oo
igeeed ijeeed ]

Equation (3.4) can then b#written in the form



do = Ab+ B (3.5)

where A is the tensor operator defined by

co

(A0)., . . e v .ok
Ly wimaids ] = Z z i, C b, . . PR
1t n 25 8=0 k al...anﬁ dfil,...,ak+1k 1,...,un+1n,J+B

lo~13
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and B is the tensor operator defined by

(Bo). s x5 . om
igeeel ] J¢i1

Remark 3.1 We must remember that (3.5) is a tensor differential equation and

i I
1n_]

that A and B are operators on a space of tensors.

Remark 3.2 1If ueﬁ? » m>1 , then in an exactly similar way to that given above,

we can show that

m

de = A0 + 7§ v.;B.o (3.6)

dt i=1
where

a, = v

i i

and the Bi operators are defined in an obvious way. (In this case

® = (¢. y ”

11...1n31...]m)

where

¢i : i = x.l1 xln qu qu )

1" " 1" " m 1 """ 1 """ m

It has been shown by Banks and Ashtiani [3] that with suitable scaling, if the

solutions of (3.1) are bounded then we can regard equation (3.5) (or(3.6)) as
n+l

being defined on the space ® 22 , i.e. the tensor product of
k=1

nti copies of 22.

Remark 3.3 The tensor operators A and B can be written in the forms
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and
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(The coefficients C? i 13 are interpreted as 0 if any of the indices
Il
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4. Optimal Control of Nonlinear Systems

i ,j are zero).
n

Consider now the nonlinear control system
x = f(x,u) (4.1)

together with the simple quadratic cost function

I = Jg u’de + =(T)Fx(D) (4.2)
Now replace (4.1) by the augmented system (3.2), i.e.

x = f(x,u) (4.3)

us=v

We have seen that this system is equivalent to a system of the form

& = A® + vBO (4. 4)
v § 2 Nl 2 )
where & ¢® 2 and A,Be ZL(® 2 ¥s Since we are now using v as a control
k=1 k=1
rather than u we must replace the cost function (.42) by
T, = Iy v% a4 8 (D)ra(D) (4.5)

hetd
where FEXZ(Q§%22) is defined by
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where the last term is chosen to weight u2 at time T.

We shall now consider the problem (4.4) with the cost function (4.5)
to replace (4.1) and (4.2). Although the two problems are not equivalent,
it seems reasonable to minimise the control u at the final time and the
square of G over [0, T],

The Hamiltonian for this problem is

2 ‘
H=v" + ) ((Ap+vBo)

and so we obtain the equations

£y

A ==(A'A+wA'B) , MNT) =T o(D) (4.7)

3 = Ad+vBo (4.8)
and

2v = -\"Bd (4.9)
Sinee v = i% (A'BO) = —A'Ehﬂﬂ@ » we have that the optional control is a
constant if B commutes with A (as tensor operators). More generally we have

Lemma 4.1 For any constant tensor operator X we have

g-t(n'xqa) = A'[x,AﬂzB:[ ) (4.10)

Proof From (4.7) and (4.8) we have

'] ®

k Xo+A0"Xo= —(A"A+vA'B) X0 +A'X(A+vB)®

d (A'X9)

dt

A [x,A+vB]2, ©

Now consider the Lie algebra generated by the tensor operators A,B;
i.e. the set of linear combinations of all brackets generated by A and B.
Denote this Lie albegra by T(A,B) and denote the Lie algebra of all tensor
operators (of rank 2(n+1)) by T. In order to consider finite~dimensional

Lie algebras we shall truncate the bilinear representation (3.5) of the
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original nonlinear system (3.2) so that the tensors involved have
indices ranging from 0 to, say,2. Since the system is analytic and
we are controlling the system in some bounded region, as £ increases
we shall obtain an accurate representation of the nonlinear system.
We shall denote the corresponding Lie algebrashy TQ(A,B) and Tg‘
However, to avoid further confusing subscripts we shall not write AE’BQ
etc. for the truncated tensors, but use the same notation A and B,
leaving it to the context to indicate which is intended.

Since TR is a finite-dimentional Lie algebra (of dimension

21(n+1)) and TQ(A,B) is a subalgebra of T£ it follows that TR(A,B) is

a finite-dimensional Lie algebra of dimension m£5g2(n+l). Let Xl""’

Xmg be a basis TR(A,B) and define

V1 = =2v = [\"Bd
= pt
v2 A X1®
- ¥
vmﬂl_i_l = A de).
Thus,
v1 = A'[B,é]@
v, = A']:Xl,A+vB:[tI>

o

L "-’{Xm,ﬂq-vB]é

)
Now, each term of the form [?i’é]’ [?i,ﬁj belongs to TR(A,B) and so we may write

2

LTI

i
I~ B8
™
=

I~ H

[x,.4] =
J

e , T
for some constants @.,,B, .. Similarly, ;Bgé]ETn(AﬁB) g0
137 ij =R 5
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m

(B, s] =3 b.X. ,
j=1 g
for some constants bj. Substituting into (4.11) we have
. Wy
v = ¥ bV
1 Tt j j+l
(4.12)
. e v, W :
L1 = u..v.+1 + 1 Bi.v.+1 2§}Ep+1
j=l 1_1 J 2 j=l J .]
Write
T
U8 (Ve sy wwe g W b
12 My 4
Then (4.12) is of the form
o= £(u)
for some function f, Suppose Mo is a guess at y(0). Then solving

(4.12) (numerically) gives nu(t), tg[Oﬂf], which can then be used to find
x(t) from

o = Ap+y Bo 0(0)= 2,

(again numerically). Then the cost functional becomes

&
= 2 . ¥ v “
J(]JO) - -é }il(tsuo)dt + ¢ (T:ho)rq) (T:HO)

which is a function of m g+l variables and can be optimised numerically.

If the algebra TQ(A,B) is nilpotent certain simplifications can be
made. Recall that a Lie algebra L is nilpotent if

(Ad L)k =0
for some k»o where (AdL)X=[L,X], XeL.
Lemma 4.2. If Xc(Ade(A,B))QB then-%t (A"Xd) = A"Yo+vp'Zo
where Y,ZE(AdTi(A,B))Z+1B. Hence if TR(A,B) is nilpotent and (Ad Tg(A,B))k=O
then\'X¢ = constant for any

Xe(AdT, (4,8))7 .

Proof. This follows from lemma 4.1, since

d
FeATH8) = A [X,A+VB:]®

-A"(AdA)Xp - vA' (AdB)X ¢. T

It is then easy to see that equations (44%) can be written in the form



H
where b = (b
For example,

2y
and

Ly

DR
1, ;

if (Ad T, (A,B))2 = 0, then

b'u
-

I‘u+§-l Au,

bm )" and I', A are nilpotent matrices.

= 0'[B, Ao

, A+uB | @

o[l

80 v = 0 and the optimal control is of the form v* = ¢ e, t.

5. Example

To illustrate the theory developed above we consider the

B
J{u) =
Then we have
¥ =
% ow
and putting
o =
it follows that
¢§ =
Hence,
At -
1]
and so
ak!
1]
Thus,

ko A ke _ L.k 4
Clj - [A,Bjij i8,, 6,

However, [C, A:I
L
i.e. uwk

L2

2
X u

T
fo u2dt+x2(T)

v
o T Thy
= I i g jﬁlf‘d?'
idl j+1 ij 3 1=l
omn e m .n kﬂ mn_.
Bq = 1(J"]'I)éfwléj LA T 130 1+1 j

J
[C,B] = 0 and so the optimal control u* is of the form

cl‘t-!—c2

2
C. L7/ 4 _t+
1 /2 Catiey for some constants c.,cC

12592 C3"

simple system



6. Conclusions

In this péper we have derived a general method for reducing the optimal
control of certain nonlinear systems to simple numerical optimisation. The
application of the method to the study of controllability, stabilizability etec.
of nonlinear systems would also be desirable and this will be considered in
future papers.
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