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ABSTRACT

The use of numerical range concepts for assessing robust stability of multi-
variable feedback systems is investigated. The characterization of
perturbations by their numerical range allows a more detailed description

of their gains and phases and allows a robust stability theovem similar

in structure to that of Postlethwaite et al with the possibility of arbitrary

large perturbations.
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Introduction

The problem of robust stability of incompletely known feedback systems has
merited much attention recently[1] -[8] . The problem considered is
exemplified by a consideration of the closed-loop feedback system shown in
Fig.l. where it is assumed that the plant G is described by the strictly
proper mx{ transfer function matrix G(s) and K(s) is the properfxm forward
path controller. The controller is assumed to be designed to ensure closed-
loop stability for the configuration when G is replaced by a nominal model
Go(s). It will be assumed that G and Go are related by the multiplicative

perturbation rule.

G(s) = (Im+ A(s)) G (s) (L)
O

where A(s) is a stable perturbation representing modelling errors. The robust
stability problem is to ensure the stability of the closed-loop system for
all possible Ain a defined set chosen by the designer to contain all possible

perturbations met by the system in practice.

The general approach taken in previous work comes under the heading of
application of small gain methods based on the intuition that small enough
perturbations will not violate the stability requirement. Typical of these
methods is the use of singular values (22 induced norms) to represent gains
as described in [1] and [2] where the class of allowable perturbation is

described by an eigenstructure beunding relation of the form
o (b (s))S L(s),s€Q (2)
on the Nyquist contour @ , where £ (s) is a known or postulated scalar upper

bound. The derived sufficient conditions for robust stability then take the

form (assuming invertibility of Q).
o (I+ Q(s)) > &(s), s €8 (3)

where Q=G0K and ﬁ is used to denote the inverse of the matrix M. Other studies
such as [3] and the related work in [4] and [8] use matrix valued versions of
(2) to identify explicitly the form of variation of elements of A and can lead
to less conservative results.

A universal problem in 'nmorm-based' methods is the neglect of the phase
information in A. This is unfortunate as classical control design tells us
that the answer to the question of whether a perturbation is stabilizing or
destabilizing depends crucially on both the gain (norm) and phase of that

perturbation.



In fact, if the phase is advantageous, the gain could be arbitrarily large
but stability retained. Some useful results have been provided in[Z] which
inciude phase information but these alsc require boudedness conditions on
the condition numbers of the perturbation and limit the phase spread to less

than m radians.

it is the purpose of this paper to present some new results on robust
stability using a naw perturbation characterization (the numerical range)

that allows the incorporation of both gain and phase information. Other
advantages of the approach are the graphical nature of the results which make
them eminently suitable for CAD and the possibility of coping with situations
whers perturbation gains are unbounded. The price to be paid for these
powerful features is the need for the nominal closed-loop system to satisfy

phase spread conditions as expressed in terms of conditions on a numerical

range.

Perturbation and the Numerical Range.

. o ’ m p
The numerical range [9], Llu] of an mxm matrix M on C regarded as a Hilbert
space with innsy produdt <x,y» = x y is defined to be the compact, convex set

in €

V(M) = { 28C: 2 = x Mx, xxx = 1} (4)

{
ViMy = | | V{M,8) (5)
0o £0<n
where
. ; o g =38 :
YiM,8)y & Az @ € o, (8 g efe " z)<o m(@}} (6)
and .
_ . . . -0 ig &
a](ejf &y (OF< .ﬁmiqwgﬁ} are the (real) eigenvalues of (e M+ e M )/?

Alternatively it can sd {with respect to set inclusiomn) by evaluating

the intersection in ¢(5) over & finite number of values of 'rotation'®, with

consequent benefits for computational complexity.

The location and shape of V(M) provides information on the location of the

sp(My € V(M) (73



This indicates that V(M) is usefully sensitive to the (eigenvalue ) gains
and phases of M as it is trivially verified that V(gM)= g V(M) for any

complex scalar g ie V(gM) is just the set V(M) rotated through arg g and
scaled by lgl . The potential gain and phase variation of eigenvalues of

M are described more explicitly by the size and shape of V(M) in the sense
that

i0 i0
71-!"3 e %, 0Z0, Bzo }9 O‘SG =0, £7,

{z = ce 579

i

(a)  Let P(M;

i

or P(M) C (when we let the "phase spread'@z-@ =271} be the

1
smallest closed come of vertex the origin containing V(M), then the phases
of the eigenvalues of Mlie in the closed interwal[él,gz .

(b) If the upper and lower numerical radii of V(M) are defined by

v, () 2 sup {jz]: z € VODY, V_(M=inf {|z]: z € V(D} (8)

respectively, then the gains of the eigenvalues of M lk in EV_(M),V+(M)].

(¢} TFor any potential eigenvalue phase 96[61,92], the corresponding

pigenvalue gain must be in the range [V_(M,@), V+(M,O )] where

V+{M§@): sup 1azo, aelae V(M }, V_(M,8)= inf {a2o0, aelO e v H(9)

Te a certain degree, the shape of V(M) also provides information on the
eigenstructure of M. More precisely, the eigenvectors of M are orthonormal

if, and omly if, ¥ is mormal when [Q} V(M) is just the closed convex hull

o (sp(M)) of the spectrum sp(M) of M., Notes that co (sp(M)) is a polygon
with, at most, msides.

Mativated py the above discussion and the conclusion that the numerical range is
a gain/phase sensitive measure of important spectral dynamic properties of

any transfer funection matriz, it will be assumed in this paper that the

allowable plant perrurhations are vrepresented by the set inclusion relatiom,

(s} , s & Q (10)

where ' the complex phase specified by the designer. In
essence, the location and shape of &(s) represents the designers view of the
potential variation of the eigenvalues of A(s) and its deviations from
normality.

To illustrate the caleulation of a suitable 8(s), suppose that G and A are

expressed as



o

5 -sT
. | . ki _ sT. )
G(s) diag {Wl"i'snfj} 15‘]5111(;0('3} A (8) diag{ mj} 15i5m (11)

representing G as the nominal model with first order measurement dynamics
that are to be ignored during the design phase. If the measurement time

constants are uncertain but known to be in the range o STjs T , 4<ism,
(s}

then a suitable choice of 8(s) is just

ey =1 1 28T
8(s) twj co ({1+5Tk} isksm) (12
0sT.sT
1 [0}
igjsm

and iz illustrated in Fig.2. for s on the imaginary axis in terms of the
Nvauist locus of ~s/(l+s). Note the explicit gain/phase information in
the representation in the fact that 6(s) lies in the phase range

-0 Ggaé “wfz'with gains in the range o <gs !sTO/(1+sTO)| and the
QPsexvatiGn that perturbation gains decrease to zero if the phases move to

-/ This description of perturbation contrasts sharply with the singular

9
value approach (2) (interpreted as locating the spectrum of A(s) in lz[&ﬂ(s})
which essentially represents uncerfainty by the circle of centre the

origin and vadius |STO/(1+ST0)| and ignores phase structure entirely. The
work described in [2] includes some phase information but locates the
gpectrum of A in the sector Ssv(s) illustrated in Fig.2. and cannot describe

the gain reduction in the vicinity of - n/2,

Robust Stability Analysis

Assuming that K stabilizes the nominal plant GO and noting that
. -1
I +8(s)K(s)| = 1 +0( i1 #(1 + 1l
1 ek | = [T )| 1 +(1 +0s) "als) 8(s) | (13)

it followe that K ztabilizes G = (I+A) GO if
3 »““-j., .
|1 +p(1 +Q()} Q) M) | $ 0,588 p e[ o,1] (14)

The derivation of robust stability conditions is, in effect, the derivation
of conditions on the design O and perturbation A such that (14) holds true.
For example, (2) and (3) imply the validity of (14). Our concern here 18

with the use of numerical range descriptions, however:




Theorem 1: If the control K stahilizes the nominal plant Gg,it will also

stabilize all perturbed plants (1) with modelling error A satisfying (10) if

(1 +VQE) A (-6, =0 , 560 (15)

where 8_(s) = Jo,1] 6() £ {z = p u: b €Jo,ljy € 8N}

Proof: We show that (14) holds true, for, if not, we can choose p €j]o,1]and

*
s € 2 and a vector x satisfying x x=1 such that

x*(I+&(s))x + p X*A (8) x = o0 (16)

The first term lies in 1+V(Q(s)) whilst the second lies in pV(A(s))C:éo(s) which

contradicts (15).

Condition (15) is easily checked graphically and hence is well suited for CAD.

It has a number of equivalent forms, namely,

o #1+V(Qs)) +8 () 5868 (17)

- 1 ¢ V(Q(s)) + 5, () L s 6 Q (18)

The final form seems to be most consistent with classical methodologies by its
inclusion of the (-1,0) point and states simply that the (-1,0) point must not
(in a manner reminiscent of the INA method [11] P [12])lie in the set generated
by the algebraic sums of all points in V(é(s)) and 60(5). One important
immediate observation is that the robust stability condition can permit the
analysis of arbitrarily large perturbations as represented by situations

where &(s) and 50(5) is unbounded. Although obvious by a graphical argument,
it is of theoretical interest to underline the point by the following special

case satisfying positivity conditions:

Corollaty 1.1: The plant Go is robust stable with respect to the perturbation

(10) in the presence of the control K if there exists real valued scalar
functions Y(s) and e(s) defined on §{I such that
= A - Y A
() 4 (e Ip(S)Q(S) + e 1w(sz (s)) > (=cos w(s)+e(s))1m ,5 € R
(19)

and kN
(b) éO(S)C:{z: Re ely(s)z 2~e(s)f , s @49 (20)

Proof; We use contradiction . by supposing that (15) is violated i.e.

o =1+ o+ with « € V(Q (s))and B € SO(S). Multiplying by elw(s) and taking




iy(s)

real parts yields a contradiction as Re e ol > = cosyP(s)+ e(s) and

Re ei¢(s)8 z =£(s) from (a) and (b).

A more familiar form of this result is obtained when we can choose Y(s)=o
and s(s)sl, More precisely, if Q (and hence Q) is (strictly) positive

real [13] in the sense that
%
Q(s) + Q(s) > o , 5 €Q (21)

then rcbust stability is guaranteed with respect to any perturbations A(s)
generating a set 6(s) (and hence 60(5)) located in the closed hflf gpace

{z: Re z > - 1}. A similar conclusion holds when Q (and hence Q) is positive-
real with §(s) located in the open half-space {z: Re z >-1% but the proof

is omitted for brevity. A typical example of the application of the ideas can
be obtained by considering the situation described by (11) where G0 and XK are
such that Q=GOK is positive real on . The robustness of the design to the

uncertainty in measurement dynamics is guaranteed as an inspection of (12)

indicates that &(s) (and hence éo(s)) lies in {z: Rez > =13 for all s € Q.

4, Discussion.

The potential usefulness of the numerical range analysis can be highlighted
by comparing the results with the singular value approach. The two main
areas to be considered are the benefits to be gained by use of numerical
ranges in perturbation characterization and the benefits and implicit

constraints in the robust stability theorem.

The use of the numerical range in perturbation characterization has been
motivated in section 2 in terms of its ability to represent gain-phase
structures and the example (11) indicates that it can be a less conservative
representation of gain-phase structure by allowing phase information and
variations of gain with phase to be included. These results can be
extended by examination of the relationships between the maximum and

minimum gains predicted by numerical range and singular value methods.




Theorem 2: For any mxm complex matrix M, we have the interlacing property

ogV. M s g s V, M) sgo () (22)
Proof: If A= X*MX, x*x=gthen |1| < o(M) proving the last inequality. If
M=UH, UU*=I, H=H* is a polar decomposition of M and Hx=g (M)x, x*x =1, we
have A= x'Mx = g(M) x*Ux so that V_(M) g x| ¢ o(M). Finally we prove
that o(M) ¢ v+(M) by the observation that any eigenvalue A of M gsatisfies

|2]g V, 00 (by(7)) and o) = 2] [2].

We interpret this result as stating that the numerical range is a less
conservative estimate of largest eigenvalue gain than the singular value
but a more conservative estimate of the smallest gain. The conservatism at
the lower gain is not regarded as a limitation in error characterization as
it is expected thatA=o is a possible perturbation when Vﬁjﬂ)==gﬂﬂ)=o and
o & &(s) Sg(s). The more interesting situation occurs in estimation of
the largest gain where %&(M) <€ ;;(M). There is here a substantial benefit.
It is, however, limited as & (M) and v;(M) are topologically equivalent norms
on L(Cm) satisfying [10], -
_],:_—_
2

i.e. a benefit of, at most, 100% is available, the actual benefit depending

(M)

P

V, () < o (M) (23)

on the eigemstructure of M as v;(M) = ¢ (M), if M is normal [10], [11].

Tt is also possible to produce relationships between the phase-spreads

predicted by numerical range and singular value methods [Z] :

. . 4 . . . i@:
Theorem 3: 1f M=UH 1s a poiar decomposition of M and U has eigenvalues e @39

1¢jsm , satisfying @1 £ 0,8 «0e8 @m’ then

8, & Q1 <0 g 0Oy (24)

L 43
i x % % igp *
Proof: Let z U=e 'z , 2 #=1 and note that z Mz = ¢ =z Hz € V(M).

b




In effect, the numerical range is more conservative that singular value

methods [21 in predicting maximum phase spreads. In the case of ﬁm—ﬁls i
this may have noticeable effects (Fig.3(a)) but more generally, with Qm =
ﬁl

situations, the overall shape of V(M) will carry much more information than

> 7 , both techniques can only predict a phase spread of 2m. In such

singular values (Fig.3(b)), by limiting gain variations as a function of
phase direction.

Turning now to the stability theorem 1, note that the origin lies in the
closure of 60(5) and, in the commonly expected case of o € 6(s), lies in
ﬁo(s). An implicit constraint in the theorem therefore is that the control

K should be such that (equation (18),
-1 ¢ V(Q(s)) , s € & (25)

This can easily be checked graphically and is strongly related to the

principal phase structure in the polar decomposition [2]:

Theorem 4: With the notation of theorem 3 and O € V(M), we have @m—ﬁl <

Proof: By convexity, if 0 ¢ V(M), we have 62 o @1 < 1 , the result following
from (24)

Condltlon (25) is now seen to require that the spread of the principal phases
of T # Q is less thann The result is hence closely related to that of [2}
but, in contrast, places no constraint on the gain/condition number and phase
of the perturbations. It seems therefore that it is more generally applicable.

It is however necessary to investigate other potential problems.

It is expected, in general, that the results of application of theorem 1
will be, at least, comparable with other approaches with the in-built advantage
of a more detailed, gain-phase sensitive error characterization. However, in

the worst case of phase distribution, (15) will require that
v (I #Q(s)) >V, (8(s8)) , s €0 (26)

(an inequality that is the numerical range analogue of (3)). Bearing in mind
theorem 2, the relative merits of numerical range and singular value methods
will depend upon the degree to which Vﬁ(ﬁ(s)) improves upon 2(s) as a

representation of gain variations and the degree to which VLﬂI+Q) underestimates



o (I+Q). In the worst case of V+(6(s))

1t

%2(s), the numerical range

prediction will be more conservative. Remember, however, that this is

a worst case analysis and will not be met in many applicatioms. 1In fact,

Corollary 1.1. indicates that the singular value method can be infinitely

more conservative than the numerical range as it cannot cope with unbounded

perturbation sets.

Conclusions

A conceptually new method of approaching robust stability theory has
been described using the numerical range as a basis for both error
characterization and stability studies. The numerical range is seen to
be a less conservative description of modelling error variation in terms
of gain and permits a more detailed representation of gain and phase
structure when compared with singular value methodologies. In the
application of the stability theorem, the approach is capable of dealing
with arbitrary large modelling errors in situations where the phase is
not destabilizing. It can hence be significantly less conservative than
singular value methods but, in woritcase situations it can be more
conservative. The results are hence best viewed as an additional tool
in the designers armoury and used in conjunction with singular value
methods by, for example, application of different methods over different
frequency ranges covering 2. Finally, noting the work in[}d}, it may be

possible to extend the ideas to cover nonlinear perturbations.
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Fig.l. Multivarviable Feedback Scheme
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Fig.3. Relative form of numerical range and singular regions.



