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Abstract. Dynamic vegetation models forced with spatially ecological parameters in the tropical forest biome severely
homogeneous biophysical parameters are capable of produtimits simulation accuracy. Clearer understanding of the bio-
ing average productivity and biomass values for the Ama-physical mechanisms that drive the spatial variability of car-
zon basin forest biome that are close to the observed estbon allocationg,, and Vemax is necessary to achieve further
mates, but these models are unable to reproduce observéahprovements to simulation accuracy.

spatial variability. Recent observational studies have shown
substantial regional spatial variability of above-ground pro-
ductivity and biomass across the Amazon basin, which is be-
lieved to be primarily driven by a combination of soil physi-
cal and chemical properties. In this study, spatial heterogene1
ity of vegetation properties is added to the Integrated Bio-
sphere Simulator (IBIS) land surface model, and the sim-Tropical forests play an important role in the global carbon
ulated productivity and biomass of the Amazon basin arecycle, accounting for about one-third of the global net pri-
compared to observations from undisturbed forest. The maxmary productivity and 55 % of total global forest carbon (Pan
imum RuBiCo carboxylation capacityémas and the woody €t al., 2011; Malhi, 2010). The Amazon contains about 50 %
biomass residence time,) were found to be the most im- of the world’s tropical forests (Pan et al., 2011). It is highly
portant properties determining the modeled spatial varia-diverse in terms of climate, soil physical and chemical prop-
tion of above-ground woody net primary productivity and erties, and species composition (Davidson et al., 2012; Que-
biomass, respectively. Spatial heterogeneity of these propegada et al., 2011; Fyllas et al., 2009; Phillips et al., 2004).
ties may lead to simulated spatial variability of 1.8 times in However, most global vegetation models represent Amazon
the woody net primary productivity (NRJ and 2.8 times in rainforests through a single set of parameters, which do not
the woody above-ground biomass (A@B The coefficient ~ Vary in space and thus fail to represent its complex spatial di-
of correlation between the modeled and observed woody proVersity. Dynamic Global Vegetation Models (DGVMs) are
ductivity improved from 0.10 with homogeneous parameterspowerful tools for understanding past and potential future
to 0.73 with spatially heterogeneous parameters, while the&arbon fluxes and stocks. An accurate representation of spa-
coefficient of correlation between the simulated and observedial and temporal variability of the forest biophysical prop-
woody above-ground biomass improved from 0.33 to 0.8g erties is essential for useful prediction of the future carbon
The results from our analyses with the IBIS dynamic Vege_cycle of Amazon forests. In this work we investigate the im-

tation model demonstrated that using single values for keyPortance of representing spatial heterogeneity in vegetation
properties in a commonly used DGVM.

Introduction
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2256 A. D. A. Castanho et al.: Improving simulated Amazon forest biomass and productivity

Field observations from undisturbed old-growth Amazon lower wood density, lower residence time and therefore lower
forest plots have recently quantified the regional variationabove-ground biomass than the slow-growing forests in the
of many forest attributes such as geological history (Hig-central and eastern Amazon (Phillips et al., 2004). The mech-
gins et al., 2011), soil properties (Quesada et al., 2011), foanisms that determine the spatial variability in plant resi-
liar physiological properties (Fyllas et al., 2009; Lloyd et dence time are still unresolved (Galbraith et al., 2013). It may
al., 2010), above-ground live biomass (Malhi et al., 2006;be due to external factors such as soil physical properties,
Baker et al., 2004b), above-ground wood productivity (Malhi disturbance (e.g. landslides and erosion on steep slopes), or
et al., 2004), net primary productivity (Arag et al., 2009; climate impacts on tree mortality rates, or intrinsic factors
Malhi et al., 2009), and residence time of plant componentssuch as high growth rates intensifying light competition and
(Phillips et al., 2004; Galbraith et al., 2013). These analysesssociated tree mortality. Residence time is strongly corre-
have shown a general east-to-west gradient of tree structurated with soil physical properties, and forest growth rates are
and dynamics in Amazon forests. Forests in the west tendtrongly related to available soil P and climate. However, the
to have higher above-ground productivity and lower above-large-scale variation in biomass appears not to be explained
ground biomass, while those in the east and central Amazoiby any of the edaphic properties alone (Quesada et al., 2012).
are slower growing with higher above-ground biomass (Que- Dynamic global vegetation models predominately charac-
sadaetal., 2012; Malhi et al., 2004; Baker et al., 2004a). Theerize the Amazon forest with tropical broadleaf evergreen
east—west productivity and biomass gradient appears to be rérees as the plant functional type (PFT), which is represented
lated to soil fertility and soil physical properties rather than to by a set of parameters that are invariant in space and time.
climate variations (Quesada et al., 2011). The soil propertieS here is a growing awareness that such an approach is un-
appear to be related to geological history and the exposure ddble to capture spatial variations in key biophysical proper-
more fertile Miocene-age marine or lacustrine sediments irties (Senna et al., 2009; Delbart et al., 2010; Fyllas et al.,
western Amazonia (Higgins et al., 2011). 2012). In this paper we address this issue through data in-

Although the spatial variation in biomass and productiv- tegration and model improvement. We derive the most im-
ity has been measured and described and the relationship fwortant parameters for simulating the spatial variability of
edaphic properties noted, the underlying mechanisms are stilbove-ground woody net primary productivity and biomass.
not well understood (Malhi, 2012). We use the Integrated Biosphere Simulator (IBIS) DGVM

With respect to woody net primary productivity (NP~ with spatially varying observational estimates of key bio-
a number of mechanisms have been discussed in the litergghysical parameters (woody biomass residence titqgg, (
ture. It has been suggested that the variability in wood pro-maximum ribulose-1,5-bisphosphate carboxylase/oxygenase
ductivity could be directly related to a shift in the balance (RuBisCO) carboxylation capacit§may, and NPP allo-
of carbon allocation between roots and wood and/or respi-cation to wood) to simulate AGBand NPR, and evaluate
ration rate (Malhi et al., 2004). It is also possible that the model performance, in comparison to field data. We create
NPRy spatial variability could be driven by variability in basin-wide raster data sets of the key parameters by extrapo-
gross primary productivity (GPP) due to a potential limita- lation of the site-specific heterogeneous parameters. Finally,
tion of photosynthesis by soil P availability (Quesada et al.,we evaluate the impact of using spatially varying parameters
2012; Mercado et al., 2011; Lloyd et al., 2010). Data anal-on simulated AGR and NPR, throughout the Amazon.
yses by Malhi et al. (2004) also suggest that carbon use ef-
ficiency (CUE =NPP/GPP) is higher in the west. This sug-
gests that, in addition to a potentially higher GPP in the west)  Material and methods
there are also potentially higher autotrophic respiration rates
in the less fertile soils of central Amazonia, making the CUE The study area is the Amazon region (Fig. 1). The spatial
less efficient there. The direct effect of climate factors suchanalyses applied are af & 1° horizontal resolution. The
as temperature, shortwave radiation and precipitation have° x 1° spatial resolution has been chosen as a compromise
been argued to be too small to explain the observed variabilbetween the spatial resolution of the model drivers (e.g. cli-
ity in the productivity (Malhi et al., 2004; Senna et al., 2009; mate and soil properties) and computer run-time. In this sec-
Quesada et al., 2012; Galbraith et al., 2013). tion we describe (1) the IBIS dynamic vegetation model

The spatial variability of above-ground biomass across theused, (2) the field data used in calibration and validation, and
Amazon basin has also been discussed in the literature. FielB) the sequence of model simulation exercises.
data have indicated the importance of wood density, canopy
height and plant allometry in biomass estimates (Baker etal.2.1 IBIS 2.6. Integrated Biosphere Simulator
2004b; Malhi et al., 2006; Feldpausch et al., 2011). Woody
biomass residence time has been suggested to be an impdBIS is a comprehensive model of terrestrial biospheric
tant factor for better representation of above-ground biomasprocesses (Foley et al., 1996; Kucharik et al., 2000). The
in vegetation models (Delbart et al., 2010). Field data showmodel uses an integrated framework based on land sur-
that the fast-growing forests in the western Amazon haveface biophysics (canopy and soil physics, plant physiology),
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Fig. 1. Locations of the main field observation data: woody above-ground biomass (Malhi et al., 2006); woody net primary productivity
(Malhi et al., 2004); maximum carboxylation capacity of RuBisCO and specific leaf area index (Fyllas et al., 2009); total soil Pposphorus
(Quesada et al., 2010); woody carbon allocation (Malhi et al., 2011); woody residence time (Galbraith et al., 2013). Shaded areas include the
Amazonian sensu stricto (Amazon basin below 700 ma.s.l., light gray) with an estimated ar&z66fmillion km?, Amazon River basin

(light gray including southeast Planalto, western Andes in dark gray) and tropical forest areas in the north (Guiana, dark gray) (Eva et al.,
2005). Each field site that provided data is marked by a hexagon, which is divided into 6 wedges. Each wedge corresponds to a particular
variable (see key in lower right). If a particular field variable is available at a site, the wedge corresponding to it is black. For example if
woody above-ground biomass (A@Bwas collected at a particular site, the lower left wedge is black.

vegetation phenology, vegetation dynamics and competitionyolumetric water content are simulated for each layer. The

terrestrial carbon and nutrient cycling. IBIS has been pre-soil water infiltration rate is based on the Green—-Ampt for-

viously validated and applied to the Amazon (Senna et al.mulation (Green and Ampt, 1911; Li et al., 2005, 2006). The

2009; Delire and Foley, 1999; Foley et al., 2002; Coe et al.,model has 12 PFTs that compete for light and water, using

2007). In those studies the model adequately simulated thdifferent ecological strategies. Nutrient competition is not

carbon, energy and water budgets of the basin. However, theurrently included. The model allows for one or more PFT

authors in those studies pointed out the need for better spger grid cell that combined define a vegetation type. In IBIS

tial representation of parameters to improve model perforthe Amazon basin is predominantly represented by the tropi-

mance in comparison with observations across the Amazorcal broadleaf evergreen tree PFT. The goal of this study is to

Detailed descriptions of the model can be found in those pubelarify the importance for carbon cycle simulation of using

lications. more detailed spatially-varying parameters within this single
The IBIS land surface module is derived from the land sur-plant functional type.

face transfer model (LSX) (Thompson and Pollard 1995a,

b). Land surface processes are represented by two vegeta-1.1  Model review

tion layers (woody and herbaceous plants), and six soil lay-

ers (to simulate the diurnal and seasonal variations of heat, tnis section we perform a brief review of the main

and moisture in the total soil depth). The dynamics of soll processes that involve NPP allocationy and Vemax in

www.biogeosciences.net/10/2255/2013/ Biogeosciences, 10, 2255-2272, 2013
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simulated woody above-ground productivity and above-composition and dynamics of the Amazonian forest in or-

ground biomass in the IBIS numerical model. der to better understand their relationship to soil and climate
NPP allocation refers to the partitioning of new growth (Malhi et al., 2002; Peacock et al., 2007). The RAINFOR

into different plant tissues including wood, leaf and fine root. field data are in generally based on one-hectare plots (see

Allocation is very important for simulating the carbon cy- references for more detailed information). In this study, plot

cle as it directly influences long-term carbon storage (Malhidata are aggregated to the 1-degree horizontal resolution used

et al., 2011). Furthermore, the amount of carbon allocatedy IBIS.

to leaves influences the total canopy photosynthesis, and the

amount of carbon allocated to roots influences the amoung.2.1 Carbon allocation

of water uptake and nutrient acquisition, among other pro-

cesses. Carbon partitioning varies between numerical mod¥fhere are few plot measurements of carbon allocation to

els. Some models use a dynamic carbon allocation, whilestems, roots, and leaves reported in the literature. Malhi et

others are based on a predefined ratio between main plarmatl. (2011) compiled a carbon allocation database for tropical

compartments fixed by each PFT (Malhi et al., 2011). Theforests worldwide. They report the partition of carbon be-

original configuration of IBIS used a fixed partitioning of net tween wood, fine roots and leaves for 10 plots in the Amazo-

C of 50 % to wood ), 30 % to leavesy) and 20 % to roots  nian basin that represent 6 sites at the 1° grid cell resolu-

(o) for the tropical broadleaf evergreen trees PFT (Eqg. 1). tion of the model (Table 1). The authors showed that in gen-

eral there is nearly equal allocation of new carbon between
NPF = a;NPP 1) wood, leaves and fine roots. Afd@g et al. (2009) suggested

The biomass residence time) defines the lifetime of a unit ~ that the C allocation partition appears related to soil texture
of biomass in the plant. Many global vegetation models as_rathe_r than soil fertility. The au_tho_rs |denF|f|ed that carbon al-
sume a predefined and constant value &r each PFT and location to roots decreases with increasing soil clay content.
for each plant compartment (wootk{), leaf () and fine root Th_ey argue that thi; happens _because, in well—drgined sandy
(w)). For tropical broadleaf evergreen trees in IBtg s set soils, roots grow Wlth less reS|§tance from the s.0|l and have
to 25yr, while @) and () are set to 1 yr. Other global vege- faster water absorption. Following t.he hypothesis of Aiag
tation models assume a constagtor tropical forests, rang- €t &l (2009) we tested the correlation between percent sand
ing from 20 to 200 yr. The woody biomass residence time is acontent with both fine-root and leaf carbon. We obtained a

key parameter for accurately simulating biomass stocks in aisimilar correlation to their study (Fig. 2, Eq. 3 in Table 1).
ecosystem. The change in the biomai® of an individual The carbon allocation between wood, leaves and fine roots

plant compartment ( wood, leaf or fine root) over a period for the whole basin is estimated based on the regressions

of time is described in Eq. (2): (Eg. 3, Table 1) applied to the soil texture map (QL_Jesada

et al., 2010). The correlations between carbon allocation and

dM; — o:NPP— % ) soil texture are available for a small number of sites, and may
dr ' T be limited by other factors that are either not well known or

« represents the fraction of net primary productivity (NPP) '€ not well represented by this limited database. Applying
allocated to biomass poe| and is the residence time of Eqg. 3 to the entire basin, the estimated woody carbon allo-

that pool, expressed in years (Foley et al., 1996). cation for the region varies between 30 and 40 % (Fig. 5a,
Vemax refers to the photosynthetic capacity of the plant. It °2ckground map). This estimate does not reproduce the am-

is the carboxylation capacity of the enzyme RuBisCO, which plitude of the.sne—specmc meagurement of carbon allocation

catalyzes the C@reaction during its assimilation process in (2950 %) (Fig. 5a, bullets), which suggests that the assump-

leaves (RUBIsCO is the GOeceptor molecule in the Calvin tion of this hypothesis does not critically affect the final re-

cycle). It is directly related to the GPP of the plant, and in SUltS (Supplement Table B).

IBIS it is defined initially for tropical broadleaf evergreen

trees as 65 (umol CON—2s1). 2.2.2 Woody residence timex,)
2.2  Field observation database and basin-wide Woody biomass residence time,j has been estimated from
extrapolations field measurements, and a strong spatial variability has been

reported (25-100yr) (Phillips et al., 2004). Spatially varying
We have assembled a wide range of published data from,, is included as an input parameterization in the model. In
field observations at several sites across the Amazon basithis work we use the compiled data ey from Galbraith et
(Fig. 1). The sites are all in undisturbed old-growth forest, al. (2013), which is in terms of carbon residence time, more
with most of them being part of the RAINFOR network appropriate for this study. The data set includes analyses of
(“Rede Amabnica de Inventarios Forestales”, Amazon For- 129 plots across Amazonia for 5-25yr time series between
est Inventory Network; http://www.rainfor.org/). The RAIN- 1971 and 2011 (Table 1) (Galbraith et al., 2013). There are 34
FOR project is an international effort to monitor structure, 1° x 1° grid cells associated with these sites (Fig. 1). There

Biogeosciences, 10, 2255-2272, 2013 www.biogeosciences.net/10/2255/2013/
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0.6 to depth from 0 to 0.3 m) at the site level and the respective
Fine Root soil class (Fig. 3). The relationship between total P and the
- 0.5 r labile P pools is not linear and could depend on external fac-
QS: - tors such as soil texture for example. The P map estimate we
v Q 0.4 present here is focused on the large-scale variability of P in
T _s soil where total P varies from 50 -500 mg Ky The total
5 g 03 ¢ §oi| P correlates significantly-¢£ = 0.65, p < 0.005) with P
g < 0.2 =0.0039x # 0.137 in leaves.
2 § ‘/ y R =097 Quesada et al. (2011) presented a map of basin-wide distri-
8 0.1 p<0.004 bution of soil coverage for each reference soil group. Based
on the relationship presented in Fig. 3 and the soil class map,
0.0 we created a spatial map of total soil P content (the average
0 20 40 60 80 100 by depthfrom 0to 0.3 m) of each £ 1° grid cell in the Ama-
sand % Quesada et al., 2010 zon (Fig. 4). Due to the large variability of soil types within
(@) 0.50 ’ the grid cell, we expect to see discrepancies between the site
0.45 J‘\ Leaf level measurement and the P content derived for the grid cell.
' ¢ The derived total soil P map qualitatively reproduces the east
= o 0.40 Py ¢ (100 mgkg'1) to west (450 mg kg?) increase in fertility as
38 0.35 observed in the independent site level measurements. Lowest
c ;030 total soil P occurs in northern Brazil and southern Venezuela,
B © 025 A which coincides with the highest values of soil sand con-
3 _°E’ 0.20 * tent (Fig. 4). Total derived P values are estimated to exceed
E g 0.15 V'=-0.0025% + 0.44 300mg kgl_in a portion of central Amazqnia, but therg are
0.10 R2=0.69 no observations to corroborate these estimates. Lacking fur-
0.05 p<0.04 ther field measurements to validate our map, we use it cau-
0.00 tiously in this study as a means of understanding the sensi-
0 20 20 60 80 100 tivity of simulated biomass to fertility variation.
(b) Sand % Quesada et al., 2010 2.2.4 Maximum carboxylation capacity of RuBisCO

Fig. 2. The relationship between fraction of NPP allocation to fine (Vemax)
roots and percentage of sand in gal), same for carbon allocation
to leaves and percentage of sand in b)l (Malhi et al., 2011; ~Maximum carboxylation capacity of RuBisCQdnay) and
Quesada et al., 2010). specific leaf area index (SLA) are important properties for
simulating photosynthesis. We collected the existing data
on these to explore their spatial distribution in the Amazon
are strong indications that, is correlated to soil physical Basin and to use as input parameterizations in the model.
properties (Quesada et al., 2012); however the mechanisnisyllas et al. (2009) analyzed leaf properties at 62 RAIN-
that would explain the spatial variability of, are not com-  FOR plots across the Amazon Basin. These data, when av-
pletely understood (Quesada et al., 2012, Galbraith et al.eraged to our grid cell of°Lx 1°, represent 22 data points
2013). For this reason we scale o the entire basin, using  (Fig. 1, Table 1). The authors present data for leaf mass per
simple kriging interpolation of the field data points (Fig. 5b). unit area (the inverse of SLA), and leaf concentration of the
main growth-limiting nutrients such as N and P. Their analy-
2.2.3 Total soil phosphorus (Ptot) ses showed that soil fertility is one of the most important pre-
dictors for observed higher nutrient concentration in leaves.
Phosphorus (P) is known to be a limiting factor for produc- Mercado et al. (2009) noted a correlation betw&ghax 0b-
tivity of mature tropical forests (Vitousek, 1984; Lloyd et al., served from the field and the concentrations of P in leaves.
2010; Mercado et al., 2011); therefore it is used in this studyWe developed a similar regression equation to that of Mer-
to represent the soil fertility limitation in our model. The to- cado et al. (2009, 2011) but betwe®gnax and total P con-
tal available P in this work is used to estimate the maximumcentration in soil instead of the P concentration in leaves
carboxylation capacity of RuBisCO. Quesada et al. (2010)(Fig. 3b, Eq. 4 in Table 1).
performed extensive collection and analyses of soil data at The advantage of this empirical regression with respect to
71 sites with varying soil properties throughout Amazonia. soil P is the ability to estimat&;mnax for the whole basin
The 71 sites are grouped into 26:% 1° grid cells (Table 1, based on Eg. (4) (Table 1) and the map of total soil P con-
Fig. 1). Based on field data (Quesada et al., 2010; 2011) weentration (Fig. 4). Thé/.max Spatial distribution shows the
defined a relationship between total soil P measured (averageame spatial structure as the P map, with a gradient from

www.biogeosciences.net/10/2255/2013/ Biogeosciences, 10, 2255-2272, 2013
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< % ) 5% < depth from 0 to 0.3 m). The dots represent averaged field plot mea-
@) 90 e surements in one-degree grid cells (Quesada et al., 2010). The total
soil phosphorus map (background) is derived based on soil class
—_ 80 - scr map and the relationship between site level total soil P content and
> o A z o : _
P g 70 o soil class (Fig. 3).
(@]
& 60 A 44
© 250 . . .
R 40 parameters, as described in Domingues et al. (2005, 2010).
5 (12 | y = 0.10x + 30.04 More detailed physiological analyses are important for a bet-
x5 30 RZ=0.77 ter definition of the relation betweerimaxand the P limita-
§ s 20 p<0.005 tion. There are no clear relationships between SLA and other
10 biophysical properties; therefore we interpolated the site val-
0 | ‘ ‘ ues to the entire basin using the kriging interpolation method
0 200 400 600 goo  (Fig. 5d).
i -1
Total Soil Phosphorus [mg kg™] 2.2.5 Above-ground woody net primary productivity
(b) Quesada et al., 2010 (NPP,)
w

Fig. 3. (a) Total soil phosphorus aggregated by soil type, based o . .
fieglgd dagta)from Amasonia?showing?hegaveragg and sytgndard devi:J,—he above-grqund WO_Od net primary pI’Ode:tIVIty (NHP,
tion for each soil clasgb) regression betweeFgmax (Mercado et field database is us_ed in this work for comparison to the sim-
al., 2009) and total soil P (average depth from 0 to 0.3 m; Quesad&/lated NPR. IBIS, like many other ecosystem models, sim-
et al., 2010), excluding CUZ and SCR field site (Supplement D).  ulates a generic woody biomass pool that includes all above-
ground wood and coarse roots. Therefore, to facilitate com-
parison with the field data, which is above-ground woody
productivity only, the simulated woody net primary pro-
west to east (Fig. 5c). There is in general a good agreeductivity was divided by 1.21 to remove the below-ground
ment between field estimates ¥max(Mercado et al., 2009)  coarse-root fraction of the simulated NPP wood as suggested
and the estimated map in this work (Fig. 5c). The San Carin Houghton et al. (2001). Malhi et al. (2004) present a large
los do Rio Negro (SCR, Venezuela) site represents a sigdata set of above-ground coarse wood productivity in 104
nificant outlier, as the observektmax at this site (ranging  neotropical forest plots. Their sites are all located at an el-
around 65 umol m?s~1; Mercado et al., 2011) is consider- evation lower than 1000 m, in mixed-age old-growth humid
ably higher than the estimated value based on soil P conterfbrest, and with no human disturbance. For comparison with
(ranging around 35 pumolT# s, Fig. 5¢). The reason for our simulated results these data are aggregated t6 tha<l
this difference is not clear but may be due to the large differ-grid cell resolution of this study, representing 25 grid-points
ences between foliar P (Fyllas et al., 2009) and soil P for thisacross Amazonia (Fig. 1, Table 1). There is high productiv-
specific site (Quesada et al., 2010). The limitation of the lin-ity in west and low productivity in central and eastern Ama-
ear regression betweéftmax and total soil P is that it does  zonia, varying in space from 0.15 up to 0.55 kg-&yr 1,

not reproduce the saturation Wmax due to high levels of  with an overall variability of 260 % (or 0.55/0.15 = 3.6 times)
P content. One example of this is the hikmax value esti-  (Fig. 6a).

mated in Cuzco Amazonico (CUZ, Peru) (Fig. 5¢) due to the
elevated total soil P in this site (Fig. 4). Mercado et al. (2011)
suggested the use of a modified photosynthesis model that
includes both P and N limitation of the main photosynthetic

Biogeosciences, 10, 2255-2272, 2013 www.biogeosciences.net/10/2255/2013/
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Table 1. List of field data used in this study with the respective reference in the literature. The original number of plots from each study is
presented in column A, the respective number of grid cell$ at 1° resolution is presented in column B. The methods for upscaling and

the regression equations used are presented. The table is divided into field data used for input parameterization in the model and field data o
woody net primary productivity and woody above-ground biomass used for model output validation.

Property Paper #plots #gridcellsin  Method of Regression
[unit] studied region  upscaling equations
(A) B
Model parameterization
Carbon allocation Malhi et al. (2011), 10 6 Use Eq. (3) to retrieve Equation (3)
towood, leaves and  Aragao et al. (2009) carbon allocation as a Croot = 0.0039 Sand[%] + 0.137
roots [fraction] function of sand R2=0.97; p <0.004
fraction given by Cleaf = —0.0025 Sand[%] + 0.44
Quesada et al. (2010) R? =0.69; p < 0.04
soil texture map Cwood = 1— Croot— Cleaf
Woody biomass Galbraith et al. (2013) 129 34 Kriging interpolation — —
residence time [yr]
Soil total phos- Quesada etal. (2010) 71 26 Use relation obtaine@Soil total P site level)x (soil
phorus content (P) (Fig. 3a) to retrieve class site Level)
[mgkg] soil total P as a func- Fig. 3a

tion of soil class
given by Quesada et
al. (2011) soil class

map
Maximum carboxy-  Fyllas et al. (2009) 62 22 Use Eq. (4) to retrieve Equation (4)
lation capacity of (Phosphorus leaf site) Vemaxas a function of  Vomax= 0.1013 P
RuBisCO ('cmay) soil total phosphorus  [mg kg*l] +30.037
[umol CO, m—2s71] map (defined above) R2=0.77 p < 0.005
Specific leaf area Fyllas et al. (2009) 62 22 Kriging interpolation  —
index (SLA)
[m?kg~1]
Model output validation data
Woody net primary Malhi et al. (2004) 104 25 - -
productivity (NPRy)
[kg-C m2yr—1
Woody above-ground Malhi et al. (2006) 227 69 - -
biomass (AGR;)
[kg-C m~2]
2.2.6 Above-ground woody biomass (AGR) with a spatial variability of 120% (or 20/9=2.2times)

among forest sites (Fig. 6b).

Malhi et al. (2006) present a synthesis of data on woody2.3 Model configuration

above-ground live biomass of old-growth lowland tropical

forest for 227 plots across South America. This data wadn order to quantify the response of IBIS to spatially varying
rescaled to the one-degree grid resolution, resulting in 69arameters, we performed a suite of simulations in 4 different
sites for comparison with our simulation results (Fig. 1, categories (Table 2). The first category is a simulation over
Table 1). The spatial distribution of biomass shows highthe entire Amazon basin that uses the original configuration
biomass in the slow-growing central Amazonia forest andof the IBIS model. This simulation serves as a reference to
Guyana, with low biomass in the western faster-growingthe other experiments and is referred to as the control sim-
forests and the dryer southern and eastern margins. The oldation (CA). The second simulation assumes the original
served woody biomass ranges from 9 up to 20kg-Gm  configuration CA but alters the allocation of NPP to wood,
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Fig. 5. Site-specific field data (dots) and the extrapolated map (backgra@)darbon allocation to wood [fraction], where the extrapolated
map is based on sand fraction m#&p) woody biomass residence time [years], where the extrapolation is by kriging interpolation of site
data;(c) maximum carboxylation capacity of RuBisCO [umol gm—z s_l], where the extrapolation method is based on total soil P map;
(d) specific leaf area index [frkg—1], where the extrapolation is by kriging interpolation of site data.

20
0.5 18
0 0.4 16
0.3 14
0.2 12
. 0.1

20°s 10
s 5 - 0 5 5 5 8

(a) 80 W 60 W 40 W (b) 80 W 60 W 40 W

Fig. 6. (a)Estimated wood net primary productivity (NRfkg-C m-2 yr—1]) and(b) wood live above-ground biomass (AGHKg-C m*2]),
based on field data by Malhi et al. (2004) and (2006), respectively. Dots represent the average from measurement plots aVexatfed to 1
grid cell.

foliage and roots so that it is more consistent with observa-site level with the parameters from our database (Fig. 5, dots
tions, allocating one-third for each component (34 %, 33 %and Table 1). Comparison of these simulations (SS) with CA
and 33 %, respectively) (SA3a) (Malhi et al., 2011). In theseand SA3a and with observations provides an understanding
tests, constant parameter values are assigned and fixed of the ability of the model to simulate the productivity and
space for the entire Amazon basin (homogeneous parametelbiomass at individual locations. The fourth simulation cate-
ization). The third simulation category referred to as the sitegory uses the basin-wide spatially varying parameter values
level simulation (SS) tests the importance of using the spa{Fig. 5, background map and Table 1) derived in this study.
tially heterogeneous field data to represent the fundamentalhe results of this exercise (referred to as RS), when com-
parameters. In these simulations the model is run only at thgpared to CA, SA3a and the observations, quantify the value
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of using best estimates of basin-wide parameters to derivdhe index of agreement varies from 0 to 1 where 0 means a
productivity and biomass values across the Amazon. We convery poor agreement and 1 the maximum agreement.
sidered spatial variation in carbon allocation to wood, leaves

and fine roots, woody biomass residence time, maximum car-

boxylation capacity of RuBisCOVgmay) and SLA (Table 2). 3 Results

The specific parameter values and simulation runs are sum- . . . , :
marized in Table 2 3.1 Comparison of simulations and field observations

the Sheffield et al. (2006) database, which is a combination o € performed a series of sensitivity analyses with the model

global observation-based data sets and reanalysis data from identify the factors affec_ting the spgtial variability of IBIS-
the National Center for Environmental Prediction — National simulated woody productivity and biomass (Supplement A

Center for Atmospheric Research (NCEP-NCAR). The dataand B). The sensitivity analyses indicated that spatially vary-

set is available from 1970 to 2008 (39yr), has one-degreéng values of maximum RuBisCO were important for ac-

spatial resolution and 3 h time resolution, which was linearly fg;?;gni'éntl:ﬁgwagfi d'\éz‘}t&i)ﬁ(es duzzlfr:g e;g!??;?e\gﬁtvgcc;gf for
interpolated to one hour.

The model simulations were run for a total of 680yr reproducing the spatial variability in above-ground biomass
(1329-2008). The long simulation was required to allow the($upplemgnt Table B). In this secyon we guannfy how the
slow carbon pools to come to equilibrium. There was an ini—S't(:"'spec'f!C observed parameter mfor_matlon (SS, Table 2)
tial spin-up of 386 yr (from 1329-1715) under constant pre_aﬁ‘ected simulated productivity and biomass compared to
industrial atmospheric COvalues (278 ppm). The spin-up the homogeneous parameter assumption (CA and SA3a, Ta-

. : - ble 2). These heterogeneous parameterization simulation re-
simulation started from near bare ground until soil carbon,

vegetation structure and biomass achieved an equilibriumsur[S (SS) were compared to observations available for wood

state. The runs were continued from 1715 up to 2008 withprOdUCtIVIty and above-ground biomass (Fig. 7).
increasing prescribed atmospheric £xoncentrations (from
278 to 386 ppm). During the entire 680 yr run the prescribed

climate was applied cyclically. “The simulated NPR in the control simulation (CA, where
Soil texture data was based on the IGBP-DIS global soilcarhon allocation to wood is defined as 50%,) is systemat-

and Quesada et al. (2010) data set. The control simulatiofyqly overestimated compared to the observations (Fig. 7a,

(CA) and regional simulation (RS) used the regional mapyark square). The simulated NRfh (SA3a, where carbon

of texture, while the site level simulations used site level yj5cation to wood is defined as 34 %) is in better agreement

soil texture information from Quesada et al. (2010). The soilyyith the average observed values (Fig. 7a, dark triangles).

depth is considered homogeneous with 10 m in all simula-Tpe spatial variation of the observed NfPRas not repro-
tions. There are 6 soil layers with thicknesses from the topq,ced in these simulations.

layer to the bottom of 0.25, 0.375, 0.625, 1.25, 2.5, 5mdepth.  gimilar analyses were performed for the above-ground

_ No'land use changes or other disturbances (e.g. fire) wergjomass comparison (Fig. 7b). The simulated biomass in the
incorporated in the simulations. Therefore, the results are fogonrol (CA) does not reproduce the spatial variation, but
potential vegetation conditions (the vegetation in equilibrium gyerage values are similar to the observed (Fig. 7b, dark
with the prescribed soil and climate). Potential vegetationgqyare). If only one of the parameters is corrected, for ex-
simulations were chosen because they should be most comymple carbon allocation (SA3a, dark triangle), the estimated
parable to the field data, which were collected in undisturbedyiomass deviates strongly from the observations (Fig. 7b),
old-growth tropical forest plots which is consistent with results with the DVM ORCHIDEE
(Delbart et al., 2009).

The model was forced with prescribed climate based or}/\/

3.1.1 Homogeneous parameterization

2.4 Statistical Analyses L
y 3.1.2 Heterogeneous parameterization

The simulated variables are averaged for the last 10 yr of simThe results from simulations that include the combined ef-

ulation (1999-2008) and compared to the field data within afects of all site level heterogeneous parameterizations are
grid cell, which represent an average of the period of sam-presented in this section (Fig. 7, red and black).

pling. For statistical comparison we use the correlation co- The NPR, analyses are made for two series of data. The

efficient, linear regression and the index of agreement (Will-first considers only the data points where field estimates of
mott, 1982). The index of agreement provides information onVgmax are available (Fig. 7a and c, in red), hereinafter Se-

how correlated and how distant the simulated data points areies A. The second data series includes data points where
from the reference (observation), while the correlation coef-the Vymax has been extrapolated to all other locations where

ficient might have a high value just because the data are welhere are NPR measurements (Table 1), hereinafter Series B

correlated even if not necessarily close in absolute values(Fig. 7c, in black). The full set of NRfthat include sites
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Fig. 7. Comparison of IBIS-simulated values with field observations. Figures on th@]afjare comparisons of woody above-ground net
primary productivity. Figures on the rigfth, d) are comparisons of woody above-ground live biomggsand(b) are IBIS-simulated results,
only for grid cells where th&/cmax (Series A) and woody residence time (Series B) are known; wbjland(d) are the IBIS-simulated
results for the full series of data where NPBnd AGRB,, field data are available (Series A+B and C +D).

with known Vemax from field and extrapolatedemax in this correlation is not improved (coefficient of correlation 0.66
work is called Series A+ B (Fig. 7c, in red and black). compared to 0.79). This indicates, as expected, that the re-
The NPR, from simulation SS with heterogeneous param- gionalized parameter data are not as good as site-specific
eterization (Fig. 7a, red circles) shows better agreement witHield estimates. However, the conclusions for the regional-
the observations when compared to the previous homogeization of NPR, are still limited to a validation against only
neous assumption SA3a (Fig. 7a, triangles). The coefficienilO data points that are not representative of the entire basin.
of correlation improves from 0.10 to 0.71, the regression Similar to NPR,, AGB,, comparisons were made for two
slope (error) improves from-0.04(0.03) to 0.6(0.2), and in- series: one including only the data points where woody resi-
tercept (error) from 0.35(0.05) to 0.16(0.07) (Table 3, Se-dence time estimates are known (Fig. 7b, in red), referred to
ries A). The slope coefficient improves but is still low, in- as Series C. The second data series includes locations where
dicating that NPE is overestimated by the model where ob- the woody residence time is extrapolated to all other {/GB
served values are low (Fig. 7a). The NP$tmulated by IBIS  data collection points, called Series D (Fig. 7d, in black).
with the new spatial parameterization agrees better with thélhe full set of simulated AGR values derived from both di-
observed spatial variability. The index of agreement (Fig. 7arect measurements of residence time and the extrapolations
Table 3) increases from 0 (SA3a, Series A) to 0.7 (SS, Seis called Series C+D (Fig. 7d, in red and black). The hetero-
ries A). geneous woody residence time data has the strongest influ-
The comparison of results of Series B (extrapolated pa-ence on the simulated spatial variability of A@EFig. 7b,
rameterization) in simulation RS with SA3a (Table 3, Fig. 7c red circles). The data series SS captures the spatial vari-
in black only) shows that some locations are closer to the obability of the AGB, much better than the SA3a simulation
servations (index of agreement 0.4 compared to 0.3) but thevith homogeneous parameterizations (dark triangles). The
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Table 2. Summary of the parameterization setup for each of the simulation experiments: the control simulation (CA) with the original IBIS-
prescribed homogeneous parameterization; the SA3a with corrected carbon allocation, with homogeneous parameterizations in space; sit
level simulation (SS) with heterogeneous parameterizations represented; and the regional simulation (RS) with the upscale of the respective
parameters.

Homogeneous Heterogeneous
Parameterization Parameterizations

(CA) (SA3a) (SS) (RS)

Control simulation ~ CA with change Site level simu- Regional simulation

IBIS original setup  in C allocation lation Site-based Regional estimated

observation data data

Carbon allocation to wood, % Constantin space  Constantin space  Dots in Fig. 5a Map in Fig. 5a
leaves and roots 50 % Wood 34 % Wood

30% Leaves 33 % Leaves

20 % Roots 34 % Roots
Woody biomass residence years Constantinspace 25 Constantinspace 25 Dots in Fig. 5b Map in Fig. 5b
time
Maximum carboxylation pumolCQO, Constantinspace 75 Constantin space 75 Dots in Fig. 5¢ Map in Fig. 5¢
capacity of RuBisCO m—2s-1
(Vemax)
Specific leaf area index m?kg~!  Constantinspace 25 Constantin space 25 Dots in Fig. 5d Map in Fig. 5d
(SLA)

Table 3. Statistical summary of the comparison of woody net primary productivity between IBIS-simulated results and field estimates. The
table presents the number of data points within the studied area, mean and standard deviation, regression slope, intercept and correlatio
coefficient, and index of agreement (d). The statistical analyses were made for all sites excluding four outliers (JEN, CAQ, SCR, CUZ,
discussed in Supplement D). The statistical analyses were divided in groups of data point as follows: Series A and B represent the series
of all data points that have available NPReld information; Series A represents the series of data wher&dhgy was estimated based

on field information; and Series B represents all other data points wherg REIEB was known and/cmax was extrapolated based on the
methodology described in this work.

Woody NPP # data Mean aslope bintercept Correlation d index of
[kg-C m~2yr—2] points (Stdev) (Stdev) (Stdev) coefficient R agreement
Willmott

etal. (1982)

Observed Series A 10 0.31(0.06)

Observed Series B 9 0.27(0.04)

SA3a Series A 10 0.34(0.03) —0.04 (0.15) 0.35 (0.05) -0.1 0

SA3a Series B 10 0.36 (0.03) 0.49 (0.14) 0.22(0.04) 0.79 0.3

SS Series A 9 0.34(0.05) 0.58 (0.20) 0.16 (0.07) 0.71 0.7

RS Series B 9 0.34(0.04) 0.62(0.30) 0.17(0.08) 0.66 0.4

coefficient of correlation of simulated woody above-ground (Table 4, Series C, SS). Some outliers were identifyed and
biomass improves from 0.22 with homogeneous parameteriare discussed in detail in Supplement D.
zation (SA3a, Series C) to 0.80 with spatial varying param- The statistical analyses of AGBrom Series D (with the
eters (SS, Series C). The regression analyses show a sigxtrapolated woody residence time) provide a measure of the
nificant improvement of the slope(error) from 0.05(0.05) to value of the extrapolation adopted in this work (Table 4, Se-
1.06(0.18), and intercept(error) from 6.5(0.8)t@.8(2.8)  ries D). The results show improvement of all statistical pa-
(Table 4, Series C). The index of agreement in Series C im+ameters comparing the regional simulation (RS, Series D)
proved from 0 with homogeneous parameterization (Table 4to the homogeneous assumption (SA3a, Series D). The coef-
Series C, SA3a) to 0.8 with heterogeneous parameterizatioficient of correlation improved from-0.006 to 0.52 and the
index of agreement from 0 to 0.6. As expected, the results
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Table 4. Statistical summary of the comparison of wood above-ground biomass between IBIS-simulated results and field estimates. The table
presents the number of data points within the studied area, mean and standard deviation, regression slope, intercept and correlation coefficien
and index of agreement (d). The statistical analyses were made for all sites excluding three (CUZ, CHN and AMB, in Supplement D). The
statistical analyses were divided in groups of data point as follows: Series C and D represent the series of all data points that have available
AGBy, field information; Series C represents the series of data where the woody residence time was estimated based on field information; and
Series D represents all other data points where g@&8&ld was known and woody residence time was extrapolated based on the methodology
described in this work.

Woody AGB # data Mean aslope bintercept Correlation d indice of
[kg-C m_2] points (Stdev) coefficient R agreement
Observed Series C 21 15.4(2.3)

Observed Series D 42 14.3(2.8)

SA3a Series C 21  7.3(0.5) 0.05 (0.05) 6.5 (0.8) 0.22 0
SA3a Series D 42 7.6 (0.6) —0.002 (0.050) 7.6 (0.8) —0.006 0

SS Series C 21 13.7(2.3) 1.06 (0.18)-2.8 (2.8) 0.80 0.8
RS Series D 42 13.1(2.6) 0.44 (0.71) 6.9 (1.1) 0.52 0.6

derived from extrapolated parameters (RS, Series D) are itively compared to the estimated biomass map from Malhi et
poorer agreement with the results derived from SS Series @l. (2006). Both maps suggest higher biomass occurs in the
where residence time is site measured, with a lower slope&entral and northeastern Amazon and lower biomass in the
(0.44) and intercept of 6.9 and larger variance of the distri-west and south. In the central Amazon the highest biomass
bution differences (6.5 compared to 3.3 in Series C). values in the Malhi et al. (2006) data set are clustered around
the sites of measurement, which is most likely an effect of
extrapolation from the few data points available (Malhi et
al., 2006). The gradient of biomass in the transition to the sa-
vanna environment in the southeast diverges in the absolute

In this section we present the basin-wide simulated WOOOIyvalues from the Malhi et al. (2006) estimates. There is little

ggggg gi)rr?ucr)]fjjr ?;Zgicg¥ltgngg|§|3$§;sg (;:::rlr?g?e?sR(% field data for this region, making validation difficult.
ble 1, Fig. 5). Quantitative validation of simulated NpP&hd
AGB,, was discussed in Sect. 3.1 (Table 3, Series B; Tay  Dpiscussion

ble 4, Series D) at the specific locations in the basin. Quali-

tatively, there is much greater spatial variation of the NPP From this modeling exercise we have identified six major
and AGB, across the basin in the RS simulation (Fig. 8¢ andpoints regarding the controls on and importance of spatial

d) compared to CA (Fig. 8aand b). variation in above-ground productivity and biomass.
The simulated NPR spatial variability (Fig. 8c) follows

the soil total phosphorus map patterns (Fig. 4). There is4.1 Homogeneous parameterizations and climate alone

3.2 Regional Simulation Analyses (RS)

higher productivity in the west where the fertility is higher
and also in central west Amazonia where P content is higher
and the soil is silt. The productivity decreases in central and

do not capture the spatial variability of woody
above-ground productivity (NPP,) and biomass
(AGBy,) present in the field data

east Amazonia and increases again in the northeast. There
is a region of low NPR in northern Brazil and southern The results suggest that models may be able to simulate av-
Venezuela due to the low estimated soil fertility in that area.erage NPR and AGRB, in reasonable agreement with ob-
A qualitative comparison of this simulation with a published servations but sometimes because of compensation of errors.
satellite-derived map of NPP in Amazonia (Nunes et al.,For example, in simulation CA (the woody carbon allocation
2012) suggests similarities in spatial variability. A detailed parameter is 50 % and the woody residence time is 25yr)
analysis of the comparison of these simulations includingthe resulting average biomass is in relatively good agreement
land use change and other disturbances and comparison withith observations (Fig. 7b, dark square). As discussed earlier,
satellite products is in progress and will be addressed in ahose parameter values, although commonly used, have been
different study. shown by observations to be incorrect. Using a high woody
The biomass map shows a west-to-east trend of higheallocation rate (50% vs 34 % observed) and low residence
biomass in central and northeastern Amazonia (RS, Fig. 8d)ime (25yr vs. 25-100yr observed) causes a large carbon
that is qualitatively consistent with the observed field data.allocation each year but low turnover rate and coincidently
The simulated spatial variability is linked to the woody resi- total biomass in good agreement with observations. In addi-
dence time map. The biomass map (Fig. 8d) can be qualitation, the simulated results using homogeneous parameters do

Biogeosciences, 10, 2255-2272, 2013 www.biogeosciences.net/10/2255/2013/



A. D. A. Castanho et al.: Improving simulated Amazon forest biomass and productivity 2267

s

(¢,

(¢,

80° W 60° W 40°W 80° W 60° W 40° W

Fig. 8. Woody above-ground net primary productivity (left column, NPRg-C m-2 yr~1]) and the woody above-ground live biomass
(right column, AGRy [kg-C m~2]). The first row presents the regional simulation under the control scenario (CA). The second row presents
the IBIS-simulated map based on the upscaled parameterization (RS).

not capture the observed spatial variability of NFR60 %,  and 45 % from the basin average minimum (Table B). IBIS
the highest value is 3.6 times higher than the lowest valueand most numerical models underestimate or do not explic-
Malhi et al., 2004) and AGB (120 %, highest value is 2.2 itly consider mortality rates due to short- or long-term dis-
times higher than the lowest value; Malhi et al., 2006) acrosgurbances such as temperature extremes, drought or flooding
the Amazon basin (Fig. 7a and b dark square). (Phillips et al., 2010; Galbraith et al., 2013). However, be-
There is relatively large spatial variation in the Amazon cause the observed data were collected at sites specifically
climate. However, field data analyses have shown poor corehosen to be free of recent disturbance, lack of climate-stress
relation between climate variables and large-scale variationmortality is not a factor in the simulated low sensitivity to
of productivity and biomass patterns in the basin (Malhi etclimate variation. Therefore, the low variability as a func-
al., 2004; Quesada et al., 2012; Galbraith et al., 2013). Artion of climate in the IBIS simulations appears to be a robust
analysis of the spatial patterns of productivity (Malhi et al., indication of the scale of the actual variability imparted by
2004) found no obvious relationship between the spatial disclimate.
tribution of wood productivity and precipitation, dry season
length, or radiation, but the authors did find some decline in
woody productivity with increasing temperature. However,
the lower temperature in western Amazonia is indirectly cor-
related to higher soil fertility in that region, making it diffi-
cult to directly correlate temperature and productivity given
the strong correlation between productivity and soil fertility.

In analyses of basal area spatial patterns, Malhi et al. (2006) ) ) N )
found some correlation with dry season length and precipi_Observatlons suggest that soil fertility plays an important

tation. The decline in basal area, however, was evident onI;fC"e in creating spatial variation of productivity across the

with extreme water stress and long dry season length (moré&mMazon basin, but little is known about the specific pathways
than 4 months). (Quesadaetal., 2012; Arag et al., 2009, Malhi et al., 2004).

The spatial variation of climate in the Amazon basin im- Some of the possible factors that have been explored are dif-

parts simulated productivity and biomass variation of 35 opferences in gross primary productivity, respiration rates, and
carbon allocation between carbon pools.

4.2 Maximum carboxylation capacity of RuBisCO
activity (Vemax) as a function of soil fertility is the
primary variable controlling the simulated
variation of woody above-ground productivity
across the Amazon
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Malhi et al. (2004) suggest that carbon allocation may benian sites. A detailed analysis of field information on the res-
related to the spatial variability of NRP due to shifts in  piration rates, available biomass in decomposition state and
allocation to roots in less fertile soils. Alternatively the au- how the model reproduces these processes needs to be ad-
thor's data analyses also suggest that carbon use efficienayressed in the future. A factor that may be contributing to a
(CUE =NPP/GPP) is higher in the west, which suggests thageneral overestimation of NRHs the simulated Leaf Area
in addition to a potentially higher GPP in the higher fer- Index (LAI). The LAI in the model is systematically higher
tility soils of the western Amazon, there are also poten-than the observations, which would cause an increase in sim-
tially higher autotrophic respiration rates in the lower fer- ulated NPP. Each year, because of increasing atmospheric
tility soils of central Amazonia. We found that alteration of CO, there is more carbon to allocate, and the allocation in
GPP and autotrophic respiration achieved through a changthe model is constant in time as is the residence time of the
in leaf photosynthetic capacity (related to maximum car-leaves. Therefore, the LAl in the model increases with time.
boxylase capacity of RuBisCO) is the strongest candidate ta'he assumption of constant allocation and residence time is
explain the spatial variability of productivity. The sensitiv- probably too simplistic, but the right balance of changes in
ity tests show that spatial variation of RuBisCO (from 75— carbon allocation between the plant components in space and
40pumolCQm~2s71, SA5, Table A) leads to a simulated time is poorly known.

60-80 % change in NRP(Table B). A shift in woody car- In our analyses we observed that the differences of sim-
bon allocation from 50 % to 25 % imparts a 60 % change inulated NPR, from the observations do not appear to be re-
NPRy (Table B). Our analyses suggest th@fax driven by  lated to misrepresentation of carbon allocation. For example,
soil fertility plays a stronger role than carbon allocation in if we define woody carbon allocation to a value that min-

the spatial variability of NP. imizes the NPR error, then the carbon allocation to wood
would have to be unrealistically low (0.15-0.25 compared to
4.3 Heterogeneous parameterizations of key the observed values 0.25-0.5). There are most likely other
biophysical properties based on site-specific data unknown factors contributing to the lack of good agreement,
improves the simulated woody above-ground including shorter timescale variability of parameter response
productivity compared to homogeneous to drought, fertility and disturbance for which we do not
parameterizations yet have data. Further improvements of these parameters are

clearly required and are discussed in suggestion for future
We estimated the maximum carboxylation capacity of Ru-work below.
BisCO as a function of site-observed total soil P from Que-
sada et al. (2010). This estimate was based on the establishgd, Woody residence time is the most important
correlation betweerV;max and leaf P content (Mercado et mechanism affecting the magnitude and spatial
al., 2009, 2011), and the understanding that leaf nutrients distribution of simulated AGB
are directly related to soil nutrients (Fyllas et al., 2009), The
spatial heterogeneity of other parameters of minor effect in

the NPR, calculation, such as carbon allocation, woody res_Our results of the IBIS sensitivity analyses suggest that

. k o : oody residence time is the most important mechanism af-
idence time, and specific leaf area, were also derived baseﬁ*ctin the magnitude and spatial distribution of simulated
on published site field data. The IBIS-simulated NRRing 9 9 P

heteroaeneous parameterization was compared to Neld AGBy. This result is in agreement with the analyses of
gene P P W Senna et al. (2009) and Delbart et al. (2010). Spatial varia-
data (Malhi et al., 2004). . . : o
! tion of woody residence time within the range of 25 to 100 yr
As presented in the Results (Sect. 3) the use of hetero- . S
L . ; ._changes simulated AGBby 180 % from the basin minimum
geneous parameterizations in IBIS based on field data S'g(TabIe B)
nificantly improved the simulation of NRR(correlation co- ’
efficient —0.1 to 0.71, respectively, for the homogeneous

and heterogeneous parameterization, Table 3). The simi4.5 Heterogeneous parameterizations of key

lated NPR, values at the lower end of the observations were biophysical properties based on site-specific data
not well captured by the model as indicated by a slope of ~ improves the simulated woody above-ground
0.5840.20 and an offset of 0.1:6 0.07 (Table 3). This could biomass when compared to homogeneous

be due to an overestimation of tH&mayx for low-fertility parameterizations

sites or by other factors that are not captured by the model.

For example, lowland areas may have higher respiration rate®/e used field data available for 21 sites across the Ama-
than what the model predicts, due to the higher temperaturegon basin to represent the spatial heterogeneity of woody
and/or the higher respiratory costs due to slower plant growthresidence time (Phillips et al., 2004; Galbraith et al., 2013).
in less fertile soils (Malhi et al., 2004). These effects may notThe spatial variability of other parameters of minor effect
be fully represented in IBIS and may contribute to the overesin AGB,, such as carbon allocatioMgmay and specific leaf
timation of the low end of NPR, in central and east Amazo- area index were also included in the simulation of AGB.
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The comparison of the simulated A@Bvith observations  al. (2012) who have argued that woody residence time is cor-
showed an improvement in the coefficient of correlation from related with soil physical properties such as soil depth, soil
0.22 in the homogeneous experiments (SA3a) to 0.80 in thestructure and topography. However, residence time has also
heterogeneous ones (SS) (Table 4). The regression fitis mudikeen found to be well correlated with soil fertility within
closer to the 1:1 relation. The good agreement comes fromthe Amazon (Phillips et al., 2004; Galbraith et al., 2013).
two factors: one is that the AGB simulated by the model There are also other soil conditions, such as rooting depth
was based on residence times estimated from field data; thimitations, low drainage capacity, poor soil structure, and
other is that most of the sites for comparisons of biomasgopographic position that might affect woody residence time
come from direct measurement of individual trees (Baker et(Quesada et al., 2012). Delbart et al. (2010) presented an al-
al., 2004b). As a result, both model and field measurementernative solution of dynamic estimation of woody residence
methodologies used the most accurate information availableime as a function of NPP, whereby the function was de-

fined based on the empirical correlation between them. This

4.6 The regional maps of key parameter values NPP-based assumption is, however, only valid for a forest in
developed in this study significantly improve equilibrium, and the NPP needs to be well estimated by the
simulated AGB,, compared to simulations using model. This combination of poorly known governing factors
homogeneous parameterization assumptions makes it difficult to mechanistically determine residence time

across the Amazon. We believe that our prescribed approach
The quality of the regional maps of the physiological proper-using a simplified interpolation is a good starting point, al-
ties depends on three factors: (1) the number of site level datthough we cannot assume residence times will remain un-
points available; (2) how representative these sites are of thehanged under future scenarios of climate change.
larger scale; and (3) how well we understand what drives the
spatial variability of these properties. We developed a set of ,
extrapolations of the observed field data to the entire Ama-> Conclusions
zon basin in order to introduce greater heterogeneity into th
simulations of NPR and AGRB,. Unfortunately there are rel-
atively few field data sites (Table 1) and the processes th

Srhis work has presented efforts at incremental improvement
a?f numerical modeling of tropical broadleaf evergreen forests
. - in the Amazon. It has identified some of the most impor-
govern the spatial variability are not completely understood, . :
. . . tant and relevant parameters for the simulation of C fluxes
which makes our regional maps somewhat speculative. . )
: . . .and stocks by a DGVM and shown the importance of spatial
The VemaxWas extrapolated to the entire basin using a soil . ) ) )
. i X nd temporal representation of functional diversity of trop-
map of P and the regression equation between field-base . . . )
iCal ecosystem modeling. This project has also helped iden-

Vemaxand P (Table 1, Fig. 5¢). The comparison O.f SImUIatedt|1‘y several areas of research in data collection and model de-
NPRy (from the extrapolatedmay) With observations was . .
. . velopment that could lead to further improvements in model
represented by a few points £ 9). Although the simulated ! . .
o ) . representation of tropical forest environments.
results for some of the individual data points were improved, . : . T
Accuracy of regional simulations is still limited by data

itwas not significant > 0.5) considering the small size of scarcity of field data. Data needs include (1) expansion of the
the sample. ) o o
. . . . network of field data monitoring to a better characterization
We estimated woody biomass residence time for the en- : . ) .
. ; . N : . of the basin, (2) examination of the physiological processes
tire basin based on a simple kriging interpolation (Fig. 5b). . o . :
that govern the spatial variability of the main parameteriza-

The large-scale spatial variability showed a trend of lower . . .
i ; . . . tions, and (3) development of new satellite and airborne mea-
7w in west than in central and east Amazonia, which is in : : : .
o . . . surements of key biophysical properties and mechanisms.
qualitative agreement with the observations. The compari- : T . )
Accuracy is also limited by poor numerical representation

son of the basin-wide simulations suggests that this first at-

: ; . . . of several important biophysical properties. Model improve-
tempt at spatially varying biophysical parameters improved . ) : :
. . L . ments include (1) dynamic representation of disturbances
the simulations. For example, the coefficient of correlation of

simulated AGR, with observations at 46 locations increased E:JOChha;:;Td rtéscees(,:ggggjcinssﬁrﬁ;)fcz)é Ir:l]tﬁg}/c?rn;:ngg;?t%driz-
(0.52, RS) compared to the more standard homogeneous p phy b P y b

rameters € 0, CA) (Table 4). The results showed that the fFient limitation and tree mortality as a funqtlon of drought
. . o stress, and (3) development of more-dynamic representations
proposed map of woody residence time, despite its uncer- : g . .
T 4 . of PFTs to better characterize the functional diversity of trop-
tainties, was a better option than a homogeneous assumption

. . ical forests.
for the entire basin. ; L .
. : . L Continued stepwise improvement in models and data col-
Given the importance of the woody residence time in sim-

ulating the AGRy, it is fundamental to understand the factors lection Sl.JCh as those Qescrlbed here will y.|elq greater un-
. e : : derstanding of the spatial and temporal variations of forest
that govern its spatial distribution. However there is no single

mechanism that is known to control its geographic pattern.Carbon stocks throughout the tropics.
Many authors have explored this topic including Quesada et
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