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Abstract. In this paper, we propose a new version of the Lagrangian
interpolation applied to binary permutation polynomials and, more gen-
erally, permutation polynomials over prime power modular rings. We
discuss its application to obfuscation and reverse engineering.

Keywords: Permutation polynomial · Lagrangian interpolation · Ob-
fuscation.

1 Motivation and Introduction

Permutation polynomials in the context of Galois’ fields are very well studied in
particular for their applications in cryptography. The study of binary polynomi-
als (polynomials with coefficients in an integer ring modulo a power of 2) is less
extensive, but it has been shown recently that they are important for computer
security. As discussed in [8] and in [1], a straightforward application of binary
permutation polynomials is obfuscation. Here we define obfuscation as a way to
write computer programs that prevents reverse engineering of applications while
minimizing the overhead in memory/computation cost.

In comparison with finite field permutation polynomials, the binary polyno-
mials allow fast computation of bijective functions, since they can be directly
implemented with low level arithmetic operations on computers. Moreover their
use adds diversity to obfuscation techniques. The last point is of primary concern
for obfuscation. Indeed, obfuscation usually does not rely on one overwhelming
method, but on an aggregation of several layers of different techniques that aim
to prevent automated attacks. For example, in [1] new classes of polynomials
were considered and proved to be resistant to the attacks defined in [2].
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In this application context, the study of permutation polynomials is purely
algorithmic and a central operation is the computation of the inverse of such a
polynomial.

Newton’s method for inverting binary permutation polynomials is an effective
algorithm, but we present in this paper a new technique based on Lagrangian
interpolation with two important properties:

– In a designer point of view, it is very important to measure the strength of
any obfuscation technique based on binary permutation polynomials. The
interpolation algorithm analyzed in this paper is proven to have a fixed
complexity. This provides a more precise framework when measuring attack
complexities with regard to computational overhead of using a binary per-
mutation polynomial.

– From the reverse engineering point of view, this algorithm enables inversion
techniques in a black-box context (i.e. when an encoding function is given
as an evaluation function only). This is of importance when considering the
reliance of encodings based on binary permutation polynomials since this
algorithm can retrieve the explicit function through interpolation.

In addition, our version of Lagrangian interpolation allows a better under-
standing on how to use binary permutation polynomials. This should prove useful
for future work on the subject.

2 Interpolation of the inverse polynomial over Z2n

2.1 Reduction of integer polynomials

Integer multiples of Newton polynomials may be used to reduce any integer poly-
nomial to a polynomial of relatively small degree (no greater than n+log2 n) that
induces the same function on Z2n . The approach follows Mullen and Stevens [5]
and has recently been used in [1] in the context of inversion of polynomials by
using Largange interpolation and also Newton’s method.

For i ≥ 0, let ti be the largest integer ` such that 2` divides `!, and let dn be
the largest integer i such that n − ti > 0. Note that dn is always odd and not
greater than n+ log2 n. Define

Pi(x) = 2n−ti
i−1∏
j=0

(x− j) for i = 0, 1, . . . , dn, and Pdn+1(x) =

dn∏
j=0

(x− j).

Each polynomial Pi(x), for i = 0, 1, . . . , dn + 1, is an integer multiple of the

Newton polynomial
∏i−1
j=0(x− j) of degree i, and only the last one, Pdn+1(x), is

monic. The ideal I of Z[x] generated by P0(x), . . . , Pdn+1(x) consists precisely
of all integer polynomials that induce the zero function on Z2n . Define the set of
reduced polynomialsRn as the set of all integer polynomials b0+b1x+· · ·+bdnxdn
of degree at most dn, such that, for i = 0, . . . , dn,

0 ≤ bi < 2n−ti .
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For every integer polynomial P (x) there exists a unique reduced polynomial
PR(x) such that P (x) and PR(x) induce the same function on Z2n . The reduction
is performed as follows. First, P (x) is replaced by its reminder modulo the monic
polynomial Pdn+1(x), and this yields a polynomial R(x) of degree at most dn.
If R(x) is reduced we are done. Otherwise, let i be the largest degree such that
the i-coefficient of R(x) is not in the range from 0 to 2n−ti − 1 and let ci be the
value of this coefficient. Then there exists a nonzero q such that ci = 2n−tiq+ r,
where 0 ≤ r ≤ 2n−ti − 1. Thus, the i-coefficient of the polynomial R(x)− qPi(x)
is equal to r, which is in the correct range. Continuing in the same fashion we
may push all coefficients, one by one, in the order from highest to lowest degree,
into the correct range and obtain a reduced polynomial.

2.2 Precise description of the inversion problem

If the degree of the original integer polynomial P (x) is high and/or if its coeffi-
cients are large integers, the reduction procedure may take a long time. We are
not interested in this issue, our quadratic algorithm assumes that P (x) is given
either in reduced form or as a black box that can calculate the sequence of values
P (0), P (1), . . . , P (dn) in Z2n in O(n2) time. Note that if we are given a reduced
polynomial P (x), then we can calculate P (0), P (1), . . . , P (dn) in O(n2) time.

We formulate precisely the input and output for our problem.

Let P (x) be an integer polynomial that induces a permutation on Z2n .
Input: the sequence of values P (0), . . . , P (dn) in Z2n .
Output: the sequence of coefficients b0, b1, . . . , bdn of the unique reduced

polynomial Q(x) that induces the inverse permutation to P (x) on Z2n .

We know with certainty that a polynomial solution exists, since P (x) induces
a permutation on a finite set, which implies that some iteration of P (x), which
is also a polynomial with integer coefficients, induces the inverse permutation.

Our quadratic “time” complexity actually refers to the number of multipli-
cations and/or additions and/or inversions of units in Z2n necessary to calculate
the sequence of coefficients of Q(x). The numbers involved in these calculations
have O(n) digits, but each addition/multiplication/inversion is counted as being
performed in unit time.

We state our main result.

Theorem 1. Let P (x) ∈ Z[x] be a polynomial that induces a permutation on
Z2n , given by its sequence of values P (0), . . . , P (dn) in Z2n . There exists an
algorithm of time complexity O(n2) that determines the sequence of coefficients
b0, b1, . . . , bdn of the unique reduced polynomial Q(x) that induces the inverse
permutation to P (x) on Z2n .

2.3 Binary permutation polynomials

There is a simple characterization of binary permutation polynomials in terms
of the coefficients of the polynomial. Namely, a polynomial P (x) = a0 + · · · +
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amx
m ∈ Z[x] induces a permutation on Z2n if and only if (i) a1 is odd, (ii) the

sum a3 + a5 + a7 . . . is even, and (iii) the sum a2 + a4 + a6 + . . . is even.
The criterion is stated and proved in this form by Rivest [7], but he points

out that it also follows easily from the following more general criterion: P (x)
induces a permutation on Zpn , where p is a prime and n ≥ 2, if and only if (i)
P (x) induces a permutation on Zp and (ii) P ′(a) 6≡ 0 (mod p) for a ∈ Z. The
last criterion is stated in the work of Mullen and Stevens [5], who consider it a
direct corollary of Theorem 123. in the book by Hardy and Wright [3].

The following corollary is crucial for our purposes.

Corollary 1. Let P (x) = a0 + · · ·+amx
m ∈ Z[x] induce a permutation on Z2n .

For all a, b ∈ R, with a 6= b, the Newton quotient ka,b = P (a)−P (b)
a−b is an odd

integer.

Proof. Indeed, ka,b = a1A1 + a2A2 + · · · + amAm, where A1 = 1 and, for i =
2, 3, . . . ,m, Ai = ai−1 +ai−2b+ · · ·+abi−2 + bi−1. If both a and b are even then,
modulo 2, ka,b ≡ a1, if they have different parity then ka,b ≡ a1 + a2 + · · ·+ am,
and if they are both odd, ka,b ≡ a1 + a3 + a5 + . . . . Thus, ka,b is always odd.

2.4 Solving the associated linear system

Fix n, and to simplify notation, set d = dn.
For i = 0, . . . , d, set xi = P (i) and yi = Q(xi) = i. We need to solve, over

Z2n , the linear system of equations

V [x0, x1, . . . , xd](b0, b1, . . . , bd)
T = (y0, y1, . . . , yd)

T ,

where V = V [x0, x1, . . . , xd] = [vi,j ](d+1)×(d+1) is the (d + 1) × (d + 1) Vander-

monde matrix in which vi,j = xji .
We will use the following two results by Oruç and Phillips.

Theorem 2 (Oruç-Phillips 2000 [6]). Let x0, x1, . . . , xm be distinct. An ex-
plicit LDU decomposition of the Vandermonde matrix V = V [x0, x1, . . . , xm] is
given by V = LDU , where D is the diagonal matrix

Diag(1, x1−x0, (x2−x1)(x2−x0), . . . , (xm−xm−1)(xm−xm−2) . . . (xm−x0)),

L is the lower triangular matrix L = [`i,j ] given by

`i,j =

j−1∏
t=0

xi − xj−1−t
xj − xj−1−t

, 0 ≤ j ≤ i ≤ m,

and U is the upper triangular matrix U = [ui,j ] given by

ui,j = τj−i(x0, . . . , xi) 0 ≤ i ≤ j ≤ m,

with the understanding that empty products are equal to 1 (thus all diagonal
entries in both L and U are equal to 1), and τr(x0, . . . , xi) is the complete sym-
metric function evaluated at x0, . . . , xi, that is,

τr(x0, . . . , xi) =
∑

λ0+λ1+···+λi=r

xλ0
0 xλ1

1 . . . xλi
i .
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Example 1. For m = 4, we have

L =



1 0 0 0 0

1 1 0 0 0

1 x2−x0

x1−x0
1 0 0

1 x3−x0

x1−x0

(x3−x1)(x3−x0)
(x2−x1)(x2−x0)

1 0

1 x4−x0

x1−x0

(x4−x1)(x4−x0)
(x2−x1)(x2−x0)

(x4−x2)(x4−x1)(x4−x0)
(x3−x2)(x3−x1)(x3−x0)

1



U =


1 x0 x20 x30 x40
0 1 x0 + x1 x

2
0 + x0x1 + x21 x30 + x20x1 + x0x

2
1 + x31

0 0 1 x0 + x1 + x2 x20 + x0x1 + x21 + x0x2 + x1x2 + x22
0 0 0 1 x0 + x1 + x2 + x3
0 0 0 0 1


The entries of U can be obtained recursively, by u0,j = xj0, ui,i = 1, and

ui,j = ui−1,j−1 + ui,j−1 · xi, for 1 ≤ i < j. (1)

Theorem 3 (Oruç-Phillips 2000 [6]). Let x0, x1, . . . , xm be distinct. The
matrix L from the explicit LDU decomposition of the Vandermonde matrix
V = V [x0, x1, . . . , xm] given in Theorem 2 decomposes as the product

L = L(1)L(2) . . . L(m)

of subdiagonal (m+ 1)× (m+ 1) matrices L(k) = [`
(k)
i,j ] with 1s on the diagonal

and the subdiagonal entries given, for j = 0, . . . ,m− 1, by

`
(k)
j+1,j =


0, 0 ≤ j < m− k,
j−(m−k)−1∏

t=0

xj+1 − xj−t
xj − xj−1−t

, m− k ≤ j ≤ m.

Example 2. For m = 4, the following table provides the subdiagonal entries:

j `
(1)
j+1,j `

(2)
j+1,j `

(3)
j+1,j `

(4)
j+1,j

0 0 0 0 1

1 0 0 1 x2−x1

x1−x0

2 0 1 x3−x2

x2−x1

(x3−x2)(x3−x1)
(x2−x1)(x2−x0)

3 1 x4−x3

x3−x2

(x4−x3)(x4−x2)
(x3−x2)(x3−x1)

(x4−x3)(x4−x2)(x4−x1)
(x3−x2)(x3−x1)(x3−x0)

The subdiagonal entries can be calculated recursively as follows. For fixed j

and k = m− j, we have `
(k)
j+1,j = 1, and for k > m− j + 1,

`
(k)
j+1,j = `

(k−1)
j+1,j ·

xj+1 − xm−k+1

xj − xm−k
. (2)
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Going back to our situation, we see that the entries of U and D are inte-
gers and, as such, are well defined over Z2n . The entries of L and L(k) are not
necessarily integers, but they are still well defined over Z2n .

Proposition 1. Let P (x) ∈ Z[x] induce a permutation on Z2n .
(a) Each entry of L is has odd denominator in its simplest form.
(b) Each entry of L(k), for k = 1, . . . , d has odd numerator and odd denomi-

nator in its simplest form.

Proof. (a) By Corollary 1, we have, for 0 ≤ j ≤ i ≤ d,

`i,j =

j−1∏
t=0

xi − xj−1−t
xj − xj−1−t

=

j−1∏
t=0

P (yi)− P (yj−1−t)

P (yj)− P (yj−1−t)
=

j−1∏
t=0

(yi − yj−1−t)ki,j−1−t
(yj − yj−1−t)kj,j−1−t

=

j−1∏
t=0

(i− j + 1 + t)ki,j−1−t
(1 + t)kj,j−1−t

=

(
i

j

) j−1∏
t=0

ki,j−1−t
kj,j−1−t

,

where each k∗,∗ is an odd integer.
(b) Let d− k ≤ j ≤ d and set s = j − (d− k)− 1. By Corollary 1, we have,

`
(k)
j+1,j =

s∏
t=0

xj+1 − xj−t
xj − xj−1−t

=

s∏
t=0

P (yj+1)− P (yj−t)

P (yj)− P (yj−1−t)
=

s∏
t=0

(yj+1 − yj−t)kj+1,j−t

(yj − yj−1−t)kj,j−1−t

=

s∏
t=0

(1 + t)kj+1,j−t

(1 + t)kj,j−1−t
=

s∏
t=0

kj+1,j−t

kj,j−1−t
,

where each k∗,∗ is an odd integer.

We are ready to prove the main result.

Proof (Proof of Theorem 1). Recall that, in our situation, m = d = dn <
n+ log2 n and we are solving the system LDUb = y. The recursive formulas (1)
and (2) show that the entries of U and the subdiagonal entries in all L(k),
k = 1, . . . , d, can be calculated in O(n2) steps. The diagonal entries of D can
also be calculated recursively in O(n2) steps. The inverse of L(k) is obtained by
simply changing the sign in all subdiagonal entries. Therefore, we can calculate

y′ = L−1y = L(m)−1L(m−1)−1 . . . L(1)−1y in O(n2) steps.
We then solve the system DUb = y′ by backward substitution in O(n2)

steps. Note that the i-entry of D has the form 2tifi, where fi is odd. Because of
our constraints on the coefficients of reduced polynomials, we are seeking only for
solutions for bi in the range 0 ≤ bi < 2n−ti , and a solution exists and is unique
in this range. More precisely, once bi+1, . . . , bd are substituted in, we need to
solve for bi from an equation of the form 2tifibi = gi (mod 2n), for some odd fi
and some gi ∈ Z2n . We already know that a solution exists, so it must be that
gi = 2tig′i for some g′i ∈ Z2n . After canceling the term 2ti we solve for bi from
fibi = g′i (mod 2n−ti) by inverting fi, and thus produce the unique solution in
the range 0 ≤ bi < 2n−ti .
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2.5 Another solution

If we are not interested in producing the coefficients of the inverse polynomial
Q(x), but rather just in calculating the values of Q(x) at various points, a slightly
different algorithm exists and we outline it here.

Let Un be the ring of units of the ring Z2n . Without loss of generality we
may assume that P (x) separately permutes Un, the odds, and its complement,
the evens (if it does not, we may replace P (x) by P (x) + 1).

The ideal I ′ of integer polynomials that induce the zero function on Un is
described in [4]. It is generated by Pi(x) = 2n−i−ti

∏i−1
j=0(x − (2j + 1)), for

i = 0, 1, . . . , d′n, and Pd′n+1(x) =
∏d′n
j=0(x − (2j + 1)), where d′n is the largest

integer i such that n− i− ti > 0. Every integer polynomial that permutes Un has
a unique representative modulo I ′, which is a polynomial of degree at most d′n
with the i-coefficient in the range from 0 to 2n−i−ti − 1. The maximum degree
d′n is approximately half of dn. We may calculate, by using the same approach as
above (the Vandermonde matrix will have dimension (d′n+ 1)× (d′n+ 1) and the
interpolation is preformed for xi = P (2i + 1), i = 0, . . . , d′n) the coefficients of
the unique reduced polynomial Q(x) modulo I ′ that inverts the values of P (x)
on Un (and not necessarily on its complement).

By a similar approach, the coefficients of another polynomial, Q(x), of degree
at most d′n that inverts the values of P (x) on the complement of Un may be

calculated. The two polynomials Q(x) and Q(x) may then be used to calculate
the values of Q(x) (use the former for odd x and the latter for even). Since the

degrees of Q(x) and Q(x) are, in general, smaller than the degree of Q(x), this
approach may be faster if we need to calculate many values of Q(x).

3 Interpolation of the inverse polynomial over Zpn

Fix a prime p and n > 1.

We claim that the same inversion technique works equally well for permuta-
tion polynomials over the ring Zpn .

The ideal of integer polynomials that induce the zero function on Zpn is
generated by the polynomials

Pi(x) = pn−tp,i
i−1∏
j=0

(x− j) for i = 0, 1, . . . , dp,n, and Pdp,n+1(x) =

dp,n∏
j=0

(x− j).

where, for i ≥ 0, tp,i is the largest integer ` such that p` divides `!, and dp,n
is the the largest integer i such that n − tp,i > 0. Each integer polynomial is
equivalent, as a function over Zpn , to a unique reduced polynomial, that is,
polynomial b0 + b1x + · · · + bdp,nx

dp,n of degree at most dp,n, such that, for
i = 0, . . . , dp,n, we have 0 ≤ bi < pn−tp,i (see [5, Theorem 2.1]).

We prove an analog of Corollary 1.
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Proposition 2. Let P (x) = a0 + · · · + amx
m ∈ Z[x] induce a permutation on

Zpn . For all a, b ∈ Z, with a 6= b, the Newton quotient ka,b = P (a)−P (b)
a−b is an

integer that is not divisible by p.

Proof. Since P (x) induces a permutation on Zpn , it induces a permutation on
Zp and P ′(a) 6≡ 0 (mod p), for all a.

We work modulo p.
Let a 6= b and, moreover, a−b 6≡ 0. If we assume ka,b ≡ 0, then P (a)−P (b) ≡

(a− b)ka,b ≡ 0, a contradiction, since P (x) permutes Zp.
Let a 6= b, but a ≡ b. Then, for i ≥ 2, we have Ai = ai−1 + ai−2b + · · · +

abi−2 + bi−1 ≡ iai−1 and ka,b ≡ a1 + 2a2a+ · · ·+mama
m−1 ≡ P ′(a) 6≡ 0.

The rest of the proof is exactly the same as in the binary case, except, of
course, that the analog of Proposition 1 should state that, in their simplest
form, all denominators of the entries in L are integers not divisible by p, and all
numerators and denominators of the entries in L(k), k = 1, . . . , dp,n, are integers
not divisible by p. Thus, L and L(k) are well defined over Zpn .

Thus we may state a more general version of our main result.

Theorem 4. Let p be a prime and P (x) ∈ Z[x] a polynomial that induces a
permutation on Zpn , given by its sequence of values P (a), P (a+1), . . . , P (a+dp,n)
in Zpn for some a ∈ Zpn (not necessarily 0). There exists an algorithm of time
complexity O(n2) that determines the sequence of coefficients b0, b1, . . . , bdp,n of
the unique reduced polynomial Q(x) that induces the inverse permutation to P (x)
on Zpn .
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