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Abstract—This paper proposes a new evaluation metric
based on the existing ZoneMap metric. The ZoneMap
method, designed to perform a zone segmentation evaluation
and classification, is considered in the context of OCR evalu-
ation. Its limits are spotted, described and a new algorithm,
ZoneMapAlt (ZoneMap Alternative) is proposed to solve the
identified limits while keeping the properties of the original
one. To validate the new metric, experiments have been made
on a dataset of scientific articles. Results demonstrate that
the ZoneMapAlt algorithm provides greater details on seg-
mentation errors and is able to detect critical segmentation
errors.
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I. INTRODUCTION

The aim of this paper is to propose a new metric to
evaluate the performances of a layout extraction (or seg-
mentation) method. Layout extraction methods are often
part of a recognition system and represent a critical step
for the recognition performances. Indeed, poor layout ex-
traction performances can lead to severe recognition errors
because the information is partial or truncated. Therefore,
performance evaluation is an important task that allows
one to be aware of a method quality. It also can be useful
when creating a new method to understand the behavior
and spot errors. In the context of OCR evaluations, the
evaluation of the extracted layout can be used to compare
different approaches.

A segmented document is composed of objects repre-
sented by geometric shapes such as polygons or rectangles
or by their set of pixels. In this paper, we consider that
zones and objects are the same.

Usually, comparing two different segmentations consist
of matching reference objects (the ground truth) with hy-
pothesis objects (output of the system). This matching can
be hard to perform when many errors occur and especially
when these errors accumulate. Figure 1 shows all basic
segmentation errors that can be spotted in documents at
line level. Let h be a hypothesis zone (HZ) and r be
a reference zone (RZ). Let H be the set of hypothesis
zones (HZs) such as H = {h0, h1, ..., hi}, i ∈ R
and R be the set of reference zones (RZs) such as
R = {r0, r1, ..., rj}, j ∈ R. Regarding segmentation
evaluation, a HZ h that includes several RZs is called a
merge. Conversely, a RZ r that includes several HZs from
H is called a split. These two types of errors can happen
vertically, horizontally or both.

Figure 1: Segmentation errors at line level. HM is hori-
zontal merge. HS is horizontal split. VM is vertical merge.
VS is vertical split.

When comparing segmentations, several class of objects
may be present such as TextLine or Graphic. Therefore,
their comparison with RZs can be penalized when the class
expected is not equal to the class of the match. In this case,
the evaluation method assess jointly the classification and
the segmentation of zones. Figure 2 illustrates two exam-
ples of segmentation, Figure 2a shows RZs and Figure 2b
HZs. In this output, all zones are text lines represented by
their minimum bounding box (rectangles). Since all the
objects belong to the same class, the classification part of
the evaluation can be ignored. In Figure 2b, as illustrated
by the dark rectangle (red), merging errors occurred both
vertically (joining two rows of the same column) and
horizontally (joining two columns of the two rows). The
evaluation of this type of segmentation is difficult because
several errors occur in the same area and makes it hard to
match zones in this area.

(a) Ground truth segmentation at line level

(b) System segmentation at line level

Figure 2: Example of (a) ground truth segmentation and
(b) system segmentation.



Recently, the ZoneMap metric [1] has been proposed to
evaluate jointly the segmentation and the classification of
zones. It was developed and used for the evaluation cam-
paign MAURDOR [2] that aimed to evaluate capabilities
of methods on scanned document images. The ZoneMap
algorithm has the following weaknesses:
• It does not take into account the intersection between

reference zones.
• It does not permit many-to-many matching allowing

to handle multiple segmentation errors.
• It groups areas that have an intersection even when

their intersection area is negligible.
We propose to correct these limits in a new version of
ZoneMap dubbed ZoneMapALt.

The paper is organized as follows: Section II presents
methods from the state of the art on performance evalu-
ation of zone segmentation and classification. Section III
describes the ZoneMap algorithm and its limits. Section
IV depicts the newly created algorithm ZoneMapAlt and
shows how the ZoneMap limits are considered. In section
V, experiments are performed to validate the chosen
metric. Finally, section VI concludes the paper and gives
perspectives.

II. RELATED WORKS

Performance evaluation methods can be summarized in
two categories depending on the nature of the document
and ground truth availability: pixel-based or object-based.
Pixel-based methods assess the class assigned to each pixel
and evaluate the document segmentation either globally or
sparately by object type [3]. Object-based methods seek to
assess the quality of a document segmentation at a higher
level (only the object and its geometric representation are
considered and not its pixels). In both cases, these methods
must take into account the location of pixels or objects
along with their type (TextLine, Graphic, ...) and shape.

Object-based methods are often faster to compute than
pixel-based methods, especially when working with high
resolution images[4]. In the concern of gaining efficiency,
pixel-based methods often represent pixels as polygons
transformed into a set of intervals [5] [6] [7] (or uses
the run-length encoding [8]). As for object-based methods,
they do not consider the content of the objects (pixels) and
encode only their shape represented by either polygons [9]
[10] or, in more precise contexts, by rectangles [1] [4] [10].
Often, the bounding box (rectangle) is used because it is
simpler to process than polygon and also represents the
minimum rectangle completely including the object. Other
data representation exists, such as graphs. The graphs are
used to match higher level representation of pixels where
nodes are segments (association of several consecutive
pixels having the same class), as in [11] or an object, as in
[12] where the authors use the graph probing technique.
This latter technique performs the comparison by counting
similar nodes or as in [13], a document model composed
of a hierarchy of bounding box representations is used to
perform an empirical measure of matching based on the
graph-like model.

Object-based methods employs object overlap to match
objects [1] [4] [9] [10] [14] [15] by utilizing the inter-
section area as a matching criteria. They are, therefore
tributary of intersections between objects which, when
they are multiple and complex, can be hard to match. In the
case of an object being represented by pixel intervals, the
overlap of interval pairs is used [5] [6] [7] [8] to generate
the overlap matrix of intervals (matching or not) used to
deduce segmentation errors.

To qualify segmentation errors, 5 types of segmen-
tation errors which are the most frequent, as described
in [9], are: noise assimilated to an object (False alarm),
object from the ground truth missed (Miss), object over-
segmentation (Split), object under-segmentation (Merge),
simultaneous object over- and under-segmentation (Split
& Merge). Liang et al. [10] use different terms to classify
segmentation results based on relations cardinality which
convey the same effects: one-to-one (Match), one-to-zero
(Miss), zero-to-one (False Alarm), one-to-many (Split),
many-to-one (Merge), many-to-many (Multiple errors).

The ZoneMap algorithm [1] and the PETS tool [8]
consider objects classification errors in their metrics in
addition to the layout assessment. They allow us both to
evaluate jointly the segmentation and the object classifica-
tion. Penalties are assigned to compared objects that do not
have the same class. A more recent method [16] proposes
to combine the object-based approach with the pixel-based
approach by using a hierarchical structure of the ground
truth. Objects are divided into sub-objects called elemental
patterns (parts of objects) which allows one to assess them
at pixel level and also to evaluate objects from the results
of each of their elemental patterns.

The method we propose in this paper is object-based.
It faces the same segmentation error types cited in [10].
It corrects the limits of the ZoneMap algorithm using
a new reliable matching method which considers previ-
ously matched objects to avoid counting several time the
same intersection area. It also allows us to assess more
complex segmentation errors by enabling many-to-many
associations. The ZoneMap metric and its limits are further
described in Section III.

III. ZONEMAP ALGORITHM AND LIMITS

A. ZoneMap Algorithm

Let L = {hi, rj}, i, j ∈ R be the set of links between
pairs of RZs and HZs.

The ZoneMap algorithm acts in three steps: first, force
links are computed between intersecting zones, then, zones
are grouped based on these links. Finally, zone groups are
classified by their configuration from which the error score
EZoneMap is computed.

1) Computing Link Force: Links are computed for each
intersecting zone between RZs and HZs. The link force
between ri and hj is given by the equation 1:

Link(ri, hj) = (
ri ∩ hj
ri

)2 + (
ri ∩ hj
hj

)2 (1)



Figure 3: Example of link force values depending on the
configuration of the zones.

Figure 3 illustrates the link force variation for several
zones configurations.

2) Zone Grouping: The goal of the second step is to
associate RZs with HZs to form groups. Only non-zero
link forces are retained. Links are sorted in decreasing
order of force. For each link l which associates the zones
ri and hj : If ri or hj is in a group (not both at the same
time) then we insert the zone that does not belong to a
group into the group of the other one. If ri and hj do not
belong to a group, we create a new group that contains
both.

Inserting a zone into a group can only succeed if the
final group does not contains more than one RZ and more
than one HZ at the same time (i.e. many-to-many matching
not allowed). If a zone could not be inserted, nothing will
be done. At the end of this step, zones that do not belong
to any group are considered missing if it is a RZ, or falsely
detected if it is a HZ.

3) Computing the EZoneMap: The next step is to
compute the error Ek of each group k in leading to the
global error EZoneMap given by the equation 2.

EZoneMap =

100×
N∑

k=1

Ek

area(R)

with Ek = (1− αc)Es + αcEc

(2)

Es is the surface error while Ec is the classification
error of the zone. αc ∈ [0,1] is the weight given to the
classification error to adjust the influence of segmentation
and classification during the evaluation. The calculation of
Es and Ec depends on the group configuration.

Let Hk be a set of HZs and Rk be a set of RZs that
belong to the kth group. A set of groups is obtained where
each group is in one of the following configurations:

1) False Alarm: The group contains only one HZ. It
means this zone has no match with RZs, therefore
the system has over-detected this zone.

Es = area(Hk) (3a)

Ec = Es (3b)

2) Miss: The group contains only one RZ. It means
that this zone has no match with HZs, therefore the
system has under-detected this zone.

Es = area(Rk) (4a)

Ec = Es (4b)

3) Match: The group contains only one HZ and one
RZ.

Es = area(Hk ∪Rk −Hk ∩Rk) (5a)

Ec = d(tH , tR)× area(Hk ∩Rk) + Es (5b)

d(tH , tR) ∈ [0, 1] is the distance between the two
zone classes.

4) Split: The group contains only one RZ and more
than one HZ. It means that the RZ has been seg-
mented into several parts. αMS ∈ [0, 1] is the
split/merge coefficient and |Hk| is the cardinality
of Hk.

Es = area(Hk ∩Rk) ∗ αMS ∗ |Hk| (6a)

Ec = (|Hk|−1+minhj∈Hk
d(tH , tR))×area(Hk∩Rk)

(6b)
5) Merge: the group contains more than one RZ and

one HZ. It means that RZs have been merged.
The calculation of the fusion error is the same as for

the split, but with HZ and RZ inverted. When the score
EZoneMap is equal to zero its means that there is no error.

A EZoneMap score can be above 100 when there are a
lot of False Alarm errors. In this case, the total erroneous
surface can be superior to the sum of RZs area.

B. Limits of the ZoneMap Metric

As said in the introduction, the ZoneMap algorithm is
not suited to handle complex segmentation errors (multiple
split and/or merge errors). Moreover, it does not always
deduce the correct type of segmentation error when there
are intersections between RZs. Two limits arise. The
first is about not taking into account existing reference
intersections (RIL) and assigning zones without a min-
imum intersection. Figure 4 illustrates the segmentation
of RIL. Zones represented by letters are RZs and zones
represented by numbers are HZs. The results of the
ZoneMap algorithm in Table I show that h1 merges rA
and rB . This error relates an association of the zones
without taking into account the associations previously
carried out. Regarding h1 and rA, their intersection is
assimilated to their matching. Therefore, this intersection
area cannot be used again to match with another zone
for both participating zones. When trying to match h1
with rB , one should remove from h1 the previously used
intersection area before trying to match it with rB . The
dark area in Figure 4 corresponds to the intersection area
of rA and rB and is responsible for the match of h1 with
rA and rB . The algorithm should match rA with h1 and
inform us that rB has been missed.

Figure 4: ZoneMap RIL. In green, RZs. In red, HZs



Table I: Results of ZoneMap on RIL.

Group # Reference zone(s) Hypothesis zone(s) Segmentation type

1 A, B 1 Merge

The second limit describes the inability of the algorithm
to perform many-to-many (MTML) associations. Figure 5
represents the segmentation of MTML. Table II contains
the results for this limit and shows that h1 matches with rA
and h2 matches with rB . This result is not acceptable since
all zones are interconnected. The result should translate
the fact that h1 merges rA and rB but also segments
rA and rB . It should be the same for h2. However, the
results produced by ZoneMap are far from the ideal error
classification. The impossibility of making many-to-many
associations limits the possible outcomes and therefore the
accuracy of the evaluation.

Figure 5: ZoneMap MTML. In green, the RZs. In red,
the HZs

Table II: Results of ZoneMap on MTML.

Group # Reference zone(s) Hypothesis zone(s) Segmentation type

1 A 1 Match
2 B 2 Match

We propose to improve the ZoneMap metric by propos-
ing a new algorithm that handles the limits previously
described. The proposed approach is reported in Section
IV.

IV. ZONEMAPALT

Let L′ = {hi, rj}, i, j ∈ R be the set of processed links
(also called validated). The Algorithm 1 illustrates the
proposed matching technique. The aim of this algorithm
is to take care of intersection between RZs. This is done
by considering compared zones only once. Considering
RIL of ZoneMap, the intersection between rA and h1
can only be counted once. Counting the intersection area
only once disallows other zones to be matched with a
part of a zone that has already been used in a match.
Therefore, intersections between rA and h1 should be
removed from both zones for the next matches. One
important characteristic of ZoneMapAlt is its ability to
perform many-to-many zone alignments. Indeed, it allows
the identification and analysis of complex segmentation
errors that are critical for the application.

The principle of the ZoneMapAlt algorithm is as follows
((line x) is a line reference in the algorithm):

• For each link, there are 3 main conditions:

1) (line 7-12) If hj is associated with at least one
RZ. In this case, the union of all rk (Ur) associ-
ated with hj is computed. Then, the intersection
of hj with Ur is subtracted from hj . Also, the
intersection of ri with Ur is subtracted from ri.

2) (line 13-17) If ri is associated with at least
one HZ. In this case, the union of all hm (Uh)
associated with the ri is computed. Then, the
intersection of ri with Uh is subtracted from ri.

3) (line 18-26) If the intersection of ri and hj
relatively to ri is above a threshold β, the
association is accepted. The link between the
two polygons is marked with the cardinality of
the relation (that is, the number of ri and hj for
this relation).

For each matched zones, sub-zones have been extracted
to use only intersecting areas. This can lead to remaining
sub-zones that have not been used at all. These sub-zones
are a Miss if it is a RZ and a False Alarm if it is a HZ.
To determine if a zone (target zone) has been missed or
falsely detected, one can remove successively from the
target zone each zone, that been matched with it. If the
resulting area is above zero, then it is a remaining zone
that must be added in a single group.

A new configuration called Multiple that characterizes
an area that has suffered several segmentation errors has
been introduced. This case might happen depending on
the segmentation algorithm performances and the structure
of the surface analyzed. In order to heavily penalize this
configuration, the erroneous surface is multiplied by a
coefficient γM ∈ [0; 1] as well as by the number of zones
concerned. The surface error of a Multiple segmentation
error zone is given by the equation 7. The classification
error in this configuration is done by the equation 8

Es = area(Rk ∩Hk) ∗ γM ∗ |Rk +Hk| (7)

Ec = (|Hk +Rk| − 2 +minh∈Hk,r∈Rk
d(tH , tR)) (8)

A user threshold β ∈ [0, 1] has been introduced to
determine whether the intersection is important enough
relatively to the RZ. It is set empirically to 0.2 and works
well on text lines. When this threshold is set to 0, the
algorithm maximizes the amount of associated zones. It
means that an intersection of one pixel is enough to
associate two zones together. The main consideration is
that a zone can be responsible for several errors and
the zones with the strongest links are considered to have
priority over the association.

V. METRICS VALIDATION

A. Solving the Limiting Cases

To evaluate the ZoneMapAlt algorithm, we compared
its result with ZoneMap on the two identified limits. The
results obtained by ZoneMapAlt on Figure 4 and Figure 5
are shown in Table III and Table IV. All experiments were
performed with the user threshold β equal to 0.2.

Regarding the results on both limits, the ZoneMapAlt
provides more details on segmentation errors. In fact,



begin
Compute links L
Sort links by descending order
for Lk ∈ L do

hj ←− Lk.h
ri ←− Lk.r
if ∃ r | {Lk.h, r} ∈ L′ then

// Remove reference association
Ur ←−

⋃
∀rk|{Lk.h,rk}∈L′

rk

hj ←− hj − (hj ∩ Ur)
ri ←− ri − (ri ∩ Ur)
Conf.Merge← card(∀rk | {Lk.h, rk} ∈
L′)

end
if ∃ h | {h, Lk.r} ∈ L′ then

// Remove hypothesis association
Uh ←−

⋃
∀hm|{hm,Lk.r}∈L′

hm

ri ←− ri − (ri ∩ Uh)
Conf.Split← card(∀hm | {hm, Lk.r} ∈
L′)

end
if (area(hj ∩ ri)/area(ri)) > β then

if not Conf.Split & not Conf.Merge then
Conf.Match←− 1

end
ComputeError(conf ,ri,hj)
Lk ∈ L′

end
end

end
Algorithme 1 : ZoneMapAlt Algorithm

Table III: ZoneMapAlt results on RIL.

Group # Reference zone(s) Hypothesis zone(s) Segmentation type

1 A 1 Match
2 B - Miss

for RIL, the rB is correctly classified as a missed zone
instead of getting assigned to the group containing rA
and h1. MTML is more complex, more details can be
observed by ZoneMapAlt algorithm. The best match (rA
and h1) is used as a match classification type then the next
ones are classified regarding what classification was done
previously. This allows penalizing heavily one zone that
is at the end of the list so that it conveys the complexity
of the segmentation error.

B. Real Case Example

To validate ZoneMapAlt, a real case example is dis-
cussed (see Figure 2a for its RZs and in Figure 2b for its
HZs). Figure 6 shows the visual detection of the Multiple
class. When many-to-many associations are possible, it

Table IV: ZoneMapAlt results on MTML.

Group # Reference zone(s) Hypothesis zone(s) Segmentation type

1 A 1 Match
2 B 1,2 Split
3 A,B 2 Merge
4 A,B 1,2 Multiple

means that at least one area connects the other ones
(ambiguous case) otherwise it would be a split or merge.
Since configuration Multiple is based on many-to-many
associations, it identifies areas that are responsible for
the severe errors. These errors are severe because areas
involved contain not only the information concerning their
line but also the adjacent lines which will make it difficult
to recognize.

Figure 6: ZoneMapAlt result on a real example showing
Multiple segmentation error class.

C. ZoneMap and ZoneMapAlt Comparison

In order to compare ZoneMap and ZoneMapAlt a
common dataset is used. The goal is not to evaluate one
segmentation method on a specific dataset but to compare
the EZoneMap differences between the two methods. This
is why the dataset was created locally from INIST 1

collections. It is composed of 97 single-page and multi-
column articles with headers, footnotes and references.
These are documents with a very simple physical structure
with few output variations. They are issued by several
publishers and from several sources. They represent sci-
entific articles in French, English, German and Spanish,
from several different times (from 1942 until 2000), with
different fonts. To perform the experiments, the OCRopus
OCR [17] segmentation algorithm was selected.

The comparison of EZoneMap scores between ZoneMap
and ZoneMapAlt algorithms are shown in Table V. The
main difference between the two scores is that ZoneMap
classifies zones as Missed and False alarmed when
ZoneMapAlt classify them as Split, Merge or Multiple.
This can be observed with the increase of EZoneMap score
in the second limiting case. Indeed, for the ZoneMap algo-
rithm on MTML there are two Match therefore remaining
areas are Missed and False alarm while ZoneMapAlt
produces Match, Split, Merge and Multiple with also
some Miss and False alarm. The introduction of the type
Multiple can only increase the EZoneMap as in this case
the surface error is greater than any other configuration
types. On the other hand, as shown by the first limiting
case, missed RZs that are touching other RZs will no
longer be assigned to their adjacent neighbors as long
as the overlapping ratio between zones (Algorithm 1 line
18) is above β. In this case, the EZoneMap will decrease
because a Missed is less severe than a Split.

D. Influence of β Parameter

Figure 7 shows the number of classification errors
depending on the β parameter value. When β = 0, the

1Institute for scientific and technical information, Nancy, France



Table V: Average comparison of ZoneMap and ZoneMapAlt algorithms on 97 documents.

Method EZoneMap Match Miss False Alarm Split Merge Multiple Total Error

ZoneMapAlt 15,42 3 120 647 99 738 186 214 1 543 215 783 24 640 527 918
ZoneMap 14,57 3 120 647 111 926 216 526 4 484 176 033 0 508 969

ZoneMapAlt - ZoneMap 0,85 0 -12 188 -30 312 -2 941 39 750 24 640 18 949

number of matched zones is maximized. When β = 1,
the number of matched zones is minimized. One can
observe that when β increases the number of Multiple
errors decreases, which means that the remaining inter-
section between two zones is not sufficient to associate
them together. Moreover, when the number of matches
decreases, the number of false alarms and misses increase.
It does not increase for the same amount of error because
when a zone has a missed and a match part, when the
match is removed the number of miss stay the same.

Figure 7: Number of match, miss, false alarm, split, merge
and multiple errors for the whole range of value of β.

VI. CONCLUSION

In this paper, we proposed a new metric ZoneMapAlt
based on the ZoneMap metric. This metric allows one
to perform the evaluation of a segmentation algorithm.
It takes into account the segmentation and classification
of zones jointly. A user threshold β is introduced to
control the matching sensitivity of the algorithm which
makes the algorithm flexible. A new segmentation er-
ror type called Multiple is used to qualify the zones
responsible for several errors and allows many-to-many
matches. The experiments show that ZoneMapAlt provides
more information on segmentation errors than ZoneMap,
classifies them more accurately and is able to find zones
that produce critical errors.

In the future, we plan to combine the ZoneMapAlt
matching process with hierarchical pixel-based methods
to allow even more precise evaluations.
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