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Linear stability of a vectorial kinetic relaxation scheme with a
central velocity

Clémentine Courtès1 and Emmanuel Franck2

December 3rd, 2018

Abstract

This article deals with the linear stability of an implicit vectorial kinetic relaxation scheme with
a central velocity used to solve numerically some multi-scale hyperbolic systems.
Keywords : linear stability, von Neumann analysis, kinetic relaxation, semi-Lagrangian method,
implicit splitting scheme, eigenvalues.

1 Introduction

Hyperbolic systems are often used to model complex physical phenomena such as multi-scale problems.
In such problems, characteristic waves do not propagate with the same speed: fast waves interact with
slower waves.
Discretizing such physical phenomena is still an open issue. Explicit methods are prohibited due to their
very restrictive CFL condition imposed by fastest scales and implicit methods are computational time-
consuming and memory cost-consuming due to the inversion of ill-conditioned nonlinear systems. In
order to better grasp numerically these multi-scale problems, an alternative is to use kinetic relaxation
methods.
The key idea of these kinetic relaxation methods is to consider the unknown of the hyperbolic system as
the macroscopic moment of a kinetic distribution function. The main advantage is that the distribution
function satisfies a mesoscopic kinetic equation, which is easier to process because it is composed of an
advection equation (at constant speeds) combined with a relaxation term, often chosen of Bhatnagar-
Gross-Krook type (in short BGK) [2]. The relaxation term enables kinetic equation to tend toward
hyperbolic system for an asymptotically small relaxation parameter.
An important degree of freedom in the kinetic relaxation methods is the choice of the number and
the values of the constant advection speeds for the distribution function. We follow here the vectorial
kinetic relaxation method, introduced in [7, 1], which consists of fixing the same (small) set of advection
speeds for each component of the unknown of the hyperbolic system. A suitable choice for multi-scale
problems is the one introduced in [4] and mainly developed in [5], where three advection speeds
λ−, λ0, λ+ are associated to each of the components of the unknown of the hyperbolic system. The
central speed λ0 is added to treat the slowest scale of the physical phenomenon.
From numerical point of view, vectorial kinetic relaxation models are often discretized with numerical
schemes which split the advection part from the relaxation term. There seems to be widespread
agreement that the relaxation term is treated numerically as a source term. The noticeable difference
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between numerical schemes mainly comes from the numerical processing of the advection part. It may
be treated, for example, by an Exact discrete Transport, as in [6] or by a Semi-Lagrangian method as
in [5], which has the advantage to avoid matrices storage and CFL condition. The properties of such
a numerical scheme are detailed in [5], particularly for the consistency. The stability analysis is much
more difficult and is rather sketchy.
The aim of this current paper is precisely to review all results on that stability property. For simplicity,
we restrict our study to the notion of linear stability (or L2-stability). Note that other notions of
stability such as entropic one is briefly discussed in [5]. The outline of the current paper is constructed
as follow. Section 2 gathers the notations of the splitting scheme associated to the vectorial kinetic
relaxation model with a central velocity. Section 3 is a brief reminder of the notion of L2-stability.
This linear stability issue is raised in Section 4 for a Semi-Lagrangian method for the advection part
and in Section 5 for an Exact discrete Transport method.

2 The vectorial kinetic relaxation scheme

Let us consider a 1D linear hyperbolic system ∂tU + ∂xF (U) = 0, with U(t, x) ∈ RN . The flux F is
assumed to be linear : F (U) = AU with the square matrix A ∈MN (R) .
The kinetic relaxation representation. By following the notations introduced in [5], a fixed set of
velocities {λ−, λ0, λ+} with λ− < λ0 < λ+ is associated to each of the N components of U . Then, U
is considered as a macroscopic moment of a kinetic distribution function f ∈ R3N , which satisfies the
following kinetic relaxation equation

∂tf + Λ∂xf =
1

ε
(f eq (U)− f) . (1)

According to the choice of the advection speeds set, we decompose f such as f =
(
f−,f0,f+

)t, with
f j = (fj,k)k∈{1,...,N} ∈ RN for j ∈ {−, 0,+}. The left hand side of (1) consists on the advection part
with the diagonal matrix Λ = diag (λ−Id, λ0Id, λ+Id) , which contains all the advection speeds (Id is
the N -identity matrix). The right hand side of (1) consists on the BGK relaxation part with ε > 0
the relaxation parameter and f eq = (f eq− ,f

eq
0 ,f

eq
+ )t the equilibrium vector, which is a function of U

and which satisfies some consistency properties.
In order to determine f eq− , f

eq
0 and f eq+ , we perform the decentered flux vector splitting detailed in

[5]. It consists to decompose the hyperbolic flux F into three parts, which commute each other:
F (U) = F−0 (U) +F+

0 (U) + λ0U . In the linear case, the hyperbolic flux F writes F (U) = AU with
A a diagonalizable square matrix (because F is hyperbolic) and the previous decomposition is also
linear: there exist two commuting diagonalizable square matrices A±0 such that

AU = A−0 U +A+
0 U + λ0U . (2)

Decomposition (2) together with U =
∑

j∈{−,0,+} f j (since U is the macroscopic moment of f) enable
to define each f eqj for j ∈ {−, 0,+} as follow, where Id is the identity matrix, (for more details, see [5])

f eq− (U) = − 1

λ0 − λ−
A−0
(
f− + f0 + f+

)
,

f eq0 (U) =

[
Id−

(
1

λ+ − λ0
A+

0 −
1

λ0 − λ−
A−0

)] (
f− + f0 + f+

)
,

f eq+ (U) =
1

λ+ − λ0
A+

0

(
f− + f0 + f+

)
.

(3)
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The numerical scheme. As in [5], we fix ∆t > 0 and ∆x > 0 the time and space steps and denote
fn =

(
fnj,k

)
j∈{−,0,+},k∈{1,...,N}

the distribution vector at time tn = n∆t ∈ [0, T ]. The numerical scheme

chosen to discretize (1) is the following splitting scheme: fn+1 = Rε(∆t,∆x, θ) ◦ T (∆t,∆x)fn.
For convenient, we denote f∗ = T (∆t,∆x)fn.
• The transport step, named T (∆t,∆x), may be either a Semi-Lagrangian scheme (SL hereafter),
defined by

f∗j,k(x) = I∆x
(
fnj,k
)

(x− λj∆t), ∀j ∈ {−, 0,+} and ∀k ∈ {1, .., N}, (4)

where, for any g : R 7→ R, I∆x(g) is a piecewise polynomial interpolation of the values taken by g
on the mesh points, or an Exact discrete Transport scheme (ET hereafter), defined by I∆x = Id (the
identity map)

f∗j,k(x) = fnj,k(x− λj∆t), ∀j ∈ {−, 0,+} and ∀k ∈ {1, .., N}. (5)

Remark 1. Assuming an Exact discrete Transport scheme, as Relation (5), leads to a CFL condition
since it makes λj∆t

∆x be an integer, for all j ∈ {−, 0,+}.

• The relaxation step, named Rε(∆t,∆x, θ), consists on a θ-scheme, with θ ∈ [1
2 , 1], defined by

fn+1−f∗

∆t = θ
feq(Un+1)−fn+1

ε + (1− θ)f
eq(U∗)−f∗

ε .
Since Un+1 = U∗ during the relaxation step, cf [5], it may be rewritten in the form:

fn+1 = f∗ + ω (f eq (U∗)− f∗) with ω =
∆t

ε+ θ∆t
∈ [0, 2]. (6)

The final numerical scheme is thus obtained by combining (4)-(6) for the Semi-Lagrangian choice (or
(5)-(6) for the Exact discrete Transport choice).

3 Linear stability

We restrict our study to a linear (or L2) stability, by a von Neumann analysis.

3.1 A review of L2-stability

Let G be the amplification matrix of a one-step linear scheme (S) : fn+1 = G(∆t,∆x)fn. We recall
the notion of L2-stability in the following definition.

Definition 3.1. The scheme (S) is L2-stable if there exists a constant K > 0 such that, for all ∆t
and ∆x small enough (and possibly satisfying a CFL condition), for all n ≥ 0 such that n∆t ≤ T , one
has ||fn+1||`2 ≤ (1 +K∆t)||fn||`2 .

In terms of amplification matrix, the L2-stability notion translates into the following necessary and
sufficient condition :

√
ρ ([G(∆t,∆x)]∗G(∆t,∆x)) ≤ 1 +K∆t, with, for a square matrix G, ρ(G) the

spectral radius of G and G∗ the adjoint matrix of G. This necessary and sufficient condition is not
always easy to verify so we focus only to the sufficient condition of the following proposition.

Proposition 1. Sufficient condition : In space Fourier variables f̂n(ξ) with ξ ∈ [0, 2π
∆x ], a sufficient

condition to ensure the L2-stability is as follow:
sup

ξ∈[0, 2π
∆x

]

ρ (G(∆t, ξ)) < 1, or sup
ξ∈[0, 2π

∆x
]

ρ (G(∆t, ξ)) = 1 and the eigenvalues of G(∆t, ξ) with modulus equal

to 1 are simple.

3



3.2 Amplification matrix for the vectorial kinetic relaxation scheme

To deal with the L2-stability, we have to first compute the amplification matrix.
Reformulation of the relaxation step in the linear case. Since A−0 and A+

0 commute and are
both diagonalizable, they are diagonalizable in the same basis to obtain A±0 = B0D

±
0 B
−1
0 with D±0

the diagonal matrices D±0 = diag
(
λk(A

±
0 )
)
k∈{1,..,N} and B0 an invertible matrix. The diagonal term

λk(A
±
0 ) corresponds to the kth eigenvalue of A±0 .

Relaxation step (6) is thus rewritten under the following bloc matrices form:fn+1
−

fn+1
0

fn+1
+

 = B0Rε(∆t, ω)B−1
0

f∗−
f∗0
f∗+

 (7)

with B0 = diag(B0, B0, B0), B−1
0 = diag(B−1

0 , B−1
0 , B−1

0 ) and Rε(∆t, ω) the relaxation amplification
matrix defined by blocs by

Rε(∆t, ω) = diag(Id, Id, Id) + ωR̃ε(∆t),

with R̃ε(∆t) =
− 1
λ0−λ−

D−
0 − Id − 1

λ0−λ−
D−

0 − 1
λ0−λ−

D−
0

Id −
(

1
λ+−λ0

D+
0 − 1

λ0−λ−
D−

0

)
− 1
λ+−λ0

D+
0 + 1

λ0−λ−
D−

0 Id −
(

1
λ+−λ0

D+
0 − 1

λ0−λ−
D−

0

)
1

λ+−λ0
D+

0
1

λ+−λ0
D+

0
1

λ+−λ0
D+

0 − Id

 .

Fourier analysis. We introduce the Fourier variable (in space) f̂n in L2([0, 2π
∆x ]) defined by f̂n(ξ) =∑

x∈{mesh points} f
n(x)eixξ, ∀ξ ∈ [0, 2π

∆x ].
With this Fourier decomposition, transport step of the scheme rewrites :f̂∗−(ξ)

f̂∗0(ξ)

f̂∗+(ξ)

 =

T−(∆t, ξ) 0
T0(∆t, ξ)

0 T+(∆t, ξ)


f̂n−(ξ)

f̂n0 (ξ)

f̂n+(ξ)

 ,

with
• Tj(∆t, ξ) = TSLj (∆t, ξ) the amplification factor of the Semi-Lagrangian scheme (4),
• or Tj(∆t, ξ) = eiλj∆tξId in the case of an Exact discrete Transport scheme (5).

Since relaxation step does not depend on the space, Relation (7) is also true with f̂n+1 (resp. f̂∗)
instead of fn+1 (resp. f∗).

Eventually, the total amplification matrix is equal to

G(∆t, ξ, ε, ω) = B0Rε(∆t, ω)B−1
0

T−(∆t, ξ) 0
T0(∆t, ξ)

0 T+(∆t, ξ)

 , (8)

with Tj(∆t, ξ) = TSLj (∆t, ξ) for the scheme (4)-(6), or with Tj(∆t, ξ) = eiλj∆tξId for the scheme
(5)-(6), for j ∈ {−, 0,+}.

4 Linear stability for the Semi-Lagrangian step

Let us ensure our first linear stability result.
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Proposition 2. Let the hyperbolic flux F be linear and be decomposed into F (U) = AU = A−0 U +
A+

0 U + λ0U , with A+
0 and A−0 two commuting and diagonalizable matrices.

The numerical scheme (4)-(6) with the advection speeds set {λ−, λ0, λ+}N , with λ− < λ0 < λ+ and
equilibrium (3) is L2-stable on the following conditions :

• ω ∈ [0, 1],

• Id−
(

1
λ+−λ0

A+
0 − 1

λ0−λ−A
−
0

)
is a positive semidefinite matrix,

• A+
0 (resp. A−0 ) is a positive (resp. negative) semidefinite matrix.

Remark 2. Note that here a matrix is said to be positive semidefinite (resp. negative semidefinite) if
all its eigenvalues are nonnegative (resp. nonpositive).

Remark 3. Sufficient conditions which involve in Proposition 2 are exactly the same as the ones
required for the entropy stability property, proved in [5].

To prove Proposition 2, we follow the main guidelines of [6] which suggest to study the Gershgorin
discs of the amplification matrix, for more details see [9].

Definition 4.1. Let G = (gij)i,j ∈ MN (C) be a complex square matrix. The kth-Gershgorin disc
corresponds to the disc Dk = {z ∈ C, |gkk − z| ≤

∑
j 6=k |gjk|}, for k ∈ {1, ..., N}.

Theorem 4.2 (Gershgorin’s theorem). Let G = (gij)i,j ∈MN (C) be a complex square matrix. Every
eigenvalue of G belongs at least to one Gershgorin disc of G.

Proof of Proposition 2. As the Semi-Lagrangian step is unconditionally stable [3], we may omit the
Semi-Lagrangian amplification factors TSLj (∆t, ξ) for j ∈ {−, 0,+} in our study. It only remains to
consider eigenvalues of Rε(∆t, ω).

Let λ be an eigenvalue of Rε(∆t, ω) = (rε,ij)i,j∈{1,...,3N}. According to Theorem 4.2, there exists
k̄ ∈ {1, ..., 3N} such that |rε,k̄k̄ − λ| ≤

∑
j 6=k̄ |rε,jk̄|. Then by a triangular inequality, |λ| ≤ |rε,k̄k̄ − λ|+

|rε,k̄k̄| ≤
∑3N

j=1 |rε,jk̄|. However, one has

• for k̄ ∈ {1, ..., N}

3N∑
j=1

|rε,jk̄| =
∣∣∣∣1− ω λk̄(A−0 )

λ0 − λ−
− ω

∣∣∣∣+

∣∣∣∣ω − ω( λk̄(A+
0 )

λ+ − λ0
− λk̄(A

−
0 )

λ0 − λ−

)∣∣∣∣+

∣∣∣∣ω λk̄(A+
0 )

λ+ − λ0

∣∣∣∣ ,
• for k̄ ∈ {N + 1, ..., 2N}

3N∑
j=1

|rε,jk̄| =
∣∣∣∣−ω λk̄(A−0 )

λ0 − λ−

∣∣∣∣+

∣∣∣∣1− ω + ω

(
1−

(
λk̄(A

+
0 )

λ+ − λ0
− λk̄(A

−
0 )

λ0 − λ−

))∣∣∣∣+

∣∣∣∣ω λk̄(A+
0 )

λ+ − λ0

∣∣∣∣ ,
• for k̄ ∈ {2N + 1, ..., 3N}

3N∑
j=1

|rε,jk̄| =
∣∣∣∣−ω λk̄(A−0 )

λ0 − λ−

∣∣∣∣+

∣∣∣∣ω − ω( λk̄(A+
0 )

λ+ − λ0
− λk̄(A

−
0 )

λ0 − λ−

)∣∣∣∣+

∣∣∣∣1 + ω
λk̄(A

+
0 )

λ+ − λ0
− ω

∣∣∣∣ .
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Hypotheses of Proposition 2 enable to remove modulus in the previous relations and to obtain for all
k̄ ∈ {1, ..., 3N},

∑3N
j=1 |rε,jk̄| = 1.

Hence, all eigenvalues of Rε(∆t, ω) have a modulus smaller than 1 which implies the L2- stability
of the numerical scheme (4)-(6).

Example 1. Here is a non-exhaustive list of flux decompositions which enable to obtain a L2-stable
scheme for scalar case when F (u) = au = a−0 u+ a+

0 u+ λ0u:
• (Rusanov) We choose λ− ≤ min(0, a), λ0 = 0 and max(0, a) ≤ λ+ and we define a+

0 = λ+

(
a−λ−
λ+−λ−

)
and a−0 = −λ−

(
a−λ+

λ+−λ−

)
. A particular Rusanov decomposition consists to choose −λ− = λ+ = |a|.

• (Upwind) We choose λ− ≤ min(λ0, a) and max(λ0, a) ≤ λ+ and we define a+
0 = 1a>λ0(a − λ0) and

a−0 = 1a<λ0(a− λ0), with 1 the indicator function.
• (Lax-Wendroff) We choose −λ− = λ+ = λ > 0 with

√
α|a| ≤ λ ≤ α|a| and λ0 = 0 and we define

a±0 = 1
2

(
a± αa2

λ

)
with α ∈ [1, 2].

For more details about these flux decompositions, we refer the readers to [5].

Remark 4. Proposition 2 is also valid for the scheme (5)-(6) (with an Exact discrete Transport step).
However, the following section improves those results.

5 Linear stability for the Exact discrete Transport step

For simplicity, we focus only on the scalar linear case: ∂tu + a∂xu = 0 with u(t, x) ∈ R and a ∈ R,
which implies B0 = 1 in (8). The Exact discrete Transport step enables to improve sufficient conditions
of Proposition 2, in particular in the range of admissible ω.

Proposition 3. Let the scalar hyperbolic flux F be linear and be decomposed into F (u) = au =
a−0 u+ a+

0 u+ λ0u.
The numerical scheme (5)-(6) with the advection speeds set {λ−, λ0, λ+}, with λ− < λ0 < λ+ and
equilibrium (3) is L2-stable on the following conditions :

• ω ∈ [0, 2],

• 1−
(

a+
0

λ+−λ0
− a−0

λ0−λ−

)
≥ 0,

• a+
0 ≥ 0 and a−0 ≤ 0,

• One of the three following equalities is satisfied : a+
0 = 0 or a−0 = 0 or 1−

(
a+

0
λ+−λ0

− a−0
λ0−λ−

)
= 0.

Remark 5. As the scalar case is considered here, condition 1−
(

a+
0

λ+−λ0
− a−0

λ0−λ−

)
≥ 0 may be written

in the simplest form: λ− ≤ a ≤ λ+. In deed, in the scalar case,

1−
(

a+
0

λ+ − λ0
− a−0
λ0 − λ−

)
=

λ+ − a

λ+ − λ0
+

a−0 (λ+ − λ−)

(λ+ − λ0)(λ0 − λ−)
=

a− λ−

λ0 − λ−
− a+

0 (λ+ − λ−)

(λ+ − λ0)(λ0 − λ−)
.

The nonnegativity of this quantity together with the hypotheses λ− < λ0 < λ+, a+
0 ≥ 0 and a−0 ≤ 0

implie that λ− ≤ a ≤ λ+.

Instead of using Gershgorin discs to prove Proposition 3, we need a more specific tool to localize
the eigenvalues and we use Rouché’s theorem, as suggested in [8].
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Theorem 5.1 (Rouché’s theorem). Let γ be a closed simple path in Ω ⊂ C and assume that γ has an
interior. Let f and g be holomorphic (analytic) on Ω and |f(ζ)− g(ζ)| < |f(ζ)| for all ζ on γ. Then
f and g have the same number of zeros in the interior of γ.

Proof of Proposition 3. Let us define A+
0 =

a+
0

λ+−λ0
and A−0 =

a−0
λ0−λ− . In the scalar case, the amplifica-

tion matrix writes G(∆t, ξ, ε, ω) = (
1− ωA−

0 − ω
)
eiλ−∆tξ −ωA−

0 e
iλ0∆tξ −ωA−

0 e
iλ+∆tξ

ω
(
1−

(
A+

0 −A
−
0

))
eiλ−∆tξ

(
1− ω

(
A+

0 −A
−
0

))
eiλ0∆tξ ω

(
1−

(
A+

0 −A
−
0

))
eiλ+∆tξ

ωA+
0 e

iλ−∆tξ ωA+
0 e

iλ0∆tξ
(
1 + ωA+

0 − ω
)
eiλ+∆tξ

 .

The characteristic polynomial of G is as follow: χ(X) = µ0 + µ1X + µ2X
2 −X3, with

µ0 = (1− ω)2ei(λ++λ0+λ−)∆tξ,

µ1 = (1− ω)
[
(−1− ωA−0 )ei(λ0+λ+)∆tξ + (−1 + ωA+

0 )ei(λ0+λ−)∆tξ

+(−1 + ω(1−A+
0 +A−0 ))ei(λ++λ−)∆tξ

]
,

µ2 = (1− ω + ωA+
0 )eiλ+∆tξ + (1− ω + ω(1−A+

0 +A−0 ))eiλ0∆tξ

+ (1− ω − ωA−0 )eiλ−∆tξ.

In the three particular studied cases, the previous characteristic polynomial writes

χ(X) =
{

(1− ω)eiν1∆tξ −X
}
χ̃(X), (9)

where χ̃(X) = (1− ω)ei(ν2+ν3)∆tξ −Xei
(
ν2+ν3

2

)
∆tξ

[(2− ω) cos(Ξ) + iωη sin(Ξ)] +X2, with

• Case a+
0 = 0 : ν1 = λ+, ν2 = λ0, ν3 = λ−, Ξ = λ0−λ−

2 ∆tξ, η = 1 + 2
a−0

λ0−λ− ,

• Case a−
0 = 0 : ν1 = λ−, ν2 = λ0, ν3 = λ+, Ξ = λ0−λ+

2 ∆tξ, η = 1− 2
a+

0
λ+−λ0

,

• Case 1 − a
+
0

λ+−λ0
+

a
−
0

λ0−λ−
= 0 : ν1 = λ0, ν2 = λ+, ν3 = λ−, Ξ = λ+−λ−

2 ∆tξ, η =
a+

0
λ+−λ0

+

a−0
λ0−λ− .

Particular cases ω = 0 or ω = 2: In these two cases, the three roots are transparent:{
eiν1∆tξ, [cos(Ξ)± i sin(Ξ)] e

i
(
ν2+ν3

2

)
∆tξ
}

=
{
eiν1∆tξ, eiν2∆tξ, eiν3∆tξ

}
for ω = 0 and{

−eiν1∆tξ,
[
±
√

1− η2 sin2(Ξ) + iη sin(Ξ)
]
e
i
(
ν2+ν3

2

)
∆tξ
}

for ω = 2.

Equality (2) in the scalar case enables to simplify η: η = −ν2−2a+ν3
ν2−ν3

. Conditions λ− < λ0 < λ+,
λ− ≤ a ≤ λ+, a−0 ≤ 0 and a+

0 ≥ 0 imply that η ∈ [−1, 1]. Thus, the square root
√

1− η2 sin2(Ξ) is
well defined. If −1 < η < 1, the roots are simple since 1 − η2 sin2(Ξ) 6= 0. Otherwise, the roots for
ω = 2 simplify into

{
−eiν1∆tξ, eiν2∆tξ,−eiν3∆tξ

}
if η = 1 and

{
−eiν1∆tξ,−eiν2∆tξ, eiν3∆tξ

}
if η = −1.

To conclude with ω ∈ {0, 2}, all these roots have a modulus equal to 1 and are simple.
General case ω ∈]0, 2[: Obviously, according to (9), one of the three roots of χ is (1−ω)eiν1∆tξ which
has a modulus strictly smaller than 1 if ω ∈]0, 2[. We have to determine the two other roots.

• If Ξ ≡ 0[π], χ̃ writes χ̃±(X) := (1− ω)ei(ν2+ν3)∆tξ ± [2− ω]e
i
(
ν2+ν3

2

)
∆tξ

X +X2.
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The roots of χ̃− are (2−ω)±ω
2 e

i
(
ν2+ν3

2

)
∆tξ and those of χ̃+ are −(2−ω)±ω

2 e
i
(
ν2+ν3

2

)
∆tξ. They are all simple

and their modulus are equal to 1 or to |1− ω| < 1 since ω ∈]0, 2[.

• If Ξ 6≡ 0[π], we define ψ such as ψ(X) := χ̃(X) for ω = 1, which gives

ψ(X) = X

[
−ei

(
ν2+ν3

2

)
∆tξ

[cos(Ξ) + iη sin(Ξ)] +X

]
.

The key point is to compare the zeros of both χ̃ and ψ in the unit ball, as in [8].
Roots of ψ. The roots of ψ are X1 = 0 and X2 = ei(

ν2+ν3
2 )∆tξ [cos(Ξ) + iη sin(Ξ)] .

The modulus of X2 is |X2|2 = cos2(Ξ)
[
1− η2

]
+ η2 ∈

[
η2, 1

[
, since η ∈ [−1, 1].

Since Ξ 6≡ 0[π], |X2| does not be equal to 1. The function ψ has thus two roots strictly contained in
the open unit ball.
Comparison between χ̃ and ψ on the unit circle. For θ ∈ R, one has

|χ̃(eiθ)− ψ(eiθ)| = |1− ω|
∣∣∣∣ei(ν2+ν3)∆tξ − ei(θ+

(
ν2+ν3

2

)
∆tξ)

[cos(Ξ)− iη sin(Ξ)]

∣∣∣∣ .
Multiplying by | − e−i

(
θ+

(
ν2+ν3

2

)
∆tξ

)
| and taking the complex conjugate give

|χ̃(eiθ)− ψ(eiθ)| = |1− ω|
∣∣∣∣−e−i( ν2+ν3

2

)
∆tξ+iθ

+ [cos(Ξ) + iη sin(Ξ)]

∣∣∣∣ .
Computation of ψ on the unit circle. One has |ψ(eiθ)| =∣∣∣∣−ei( ν2+ν3

2

)
∆tξ

[cos(Ξ) + iη sin(Ξ)] + eiθ
∣∣∣∣ =

∣∣∣∣cos(Ξ) + iη sin(Ξ)− e−i
(
ν2+ν3

2

)
∆tξ+iθ

∣∣∣∣ . The latest equality
is obtained by a multiplication by | − e−i

(
ν2+ν3

2

)
∆tξ|.

Use of Rouché’s theorem 5.1. One chooses the closed simple path γ be equal to the unit circle.
Since ω ∈]0, 2[, one has |χ̃(eiθ) − ψ(eiθ)| = |1 − ω||ψ(eiθ)| < |ψ(eiθ)| for all θ ∈ R. By Rouché’s
theorem 5.1, χ̃ has the same number of roots in the open unit ball than ψ.

All in all, each case of ω leads to three roots of χ with modulus strictly less than 1 or equal to 1
and simple. The L2-stability is thus a consequence of Proposition 1.

Example 2. The three first flux decompositions of Example 1 satisfy hypotheses of Proposition 3.
They are also satisfied by the Lax-Wendroff decomposition only with the extremal choice |a| = λ/α
or |a| = λ/

√
α. (Note that the L2-stability may be proved by a directe computation with α = 1 and

λ ≥ |a| in the particular choice ω = 1).

References
[1] D. Aregba-Driollet and R. Natalini, Discrete kinetic schemes for systems of conservation laws, in

Hyperbolic Problems: Theory, Numerics, Applications. International Series of Numerical Mathe-
matics (vol 129), Birkhäuser, Basel, (1999), 1–10.

[2] P. L. Bhatnagar, E. P. Gross and M. Krook, A model for collision processes in gases. I. Small
amplitude processes in charged and neutral one-component systems, Physical review, 94 (1954),
511–525.

8



[3] F. Charles, B. Després and M. Mehrenberger, Enhanced convergence estimates for semi-
Lagrangian schemes. Application to the Vlasov–Poisson equation, SIAM Journal on Numerical
Analysis, 51 (2013), 840–863.

[4] D. Coulette, E. Franck, P. Helluy, M. Mehrenberger and L. Navoret, High-order implicit palin-
dromic discontinuous Galerkin method for kinetic-relaxation approximation, preprint, (2018).

[5] D. Coulette, C. Courtès, E. Franck and L. Navoret, Vectorial kinetic relaxation model with central
velocity. Application to implicit relaxation schemes, preprint, (2018).

[6] B. Graille, Approximation of mono-dimensional hyperbolic systems: A lattice Boltzmann scheme
as a relaxation method, Journal of Computational Physics, 266 (2014), 74–88.

[7] R. Natalini, A discrete kinetic approximation of entropy solutions to multidimensional scalar
conservation laws, Journal of Differential Equations, 148 (1998), 292 – 317.

[8] M. Rheinländer, Stability and multiscale analysis of an advective lattice Boltzmann scheme,
Progress in Computational Fluid Dynamics, 8 (2008), 56–68.

[9] D. Serre, Matrices: Theory and Applications, Graduate Texts in Mathematics, vol. 216, Springer
New York, 2010.

9


	Introduction
	The vectorial kinetic relaxation scheme
	Linear stability
	A review of L2-stability
	Amplification matrix for the vectorial kinetic relaxation scheme

	Linear stability for the Semi-Lagrangian step
	Linear stability for the Exact discrete Transport step

