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Data Fusion-Based Descriptor Approach for Attitude Estimation under

accelerated maneuvers

Aida Makni, Alain Y. Kibangou, and Hassen Fourati

ABSTRACT

This paper proposes the design of an attitude estimation algorithm for

a rigid body subject to accelerated maneuvers. Unlike the current literature

where the process model is usually driven by triaxial gyroscope measurements,

we investigate a new formulation of the state-space model where the process

model is given by triaxial accelerometer measurements. The observation model

is given by triaxial gyroscope and magnetometer measurements. The proposed

model is written as a descriptor system and takes the external acceleration

sensed by the accelerometer into account. Based on this model, a Quaternion

Descriptor Filter (QDF) is developped and its performance is evaluated through

simulations and experimental tests in pedestrian navigation.

Key Words: Attitude estimation, quaternion, descriptor filter, MARG

sensors, external acceleration.

I. Introduction

Attitude estimation of rigid bodies is a prerequisite

for successful navigation in a wide range of applications

including robotics [1], satellite control [2] and

smartphone applications [3]. Attitude estimation is

usually achieved with magnetic, angular rate, and

gravity (MARG) sensors [4], [5]. MARG sensors

usually contain a 3-axis magnetometer, a 3-axis

gyroscope, and a 3-axis accelerometer which measure

the Earth’s magnetic field, the angular velocity, and

the sum of external acceleration and gravity of rigid

body, respectively, when it is under motion [6].

These sensors are often cheap and suffer from high

noise level and bias. Hence it is necessary to derive

efficient fusion methods to get accurate attitude despite

sensors inaccuracies. For this purpose, an abundant

literature can be found with methods including Kalman

filters [7, 8], complementary filters [9, 10], and
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nonlinear observers [11, 12]. The attitude of a rigid-

body can be represented by rotation matrices, Euler

angles, or a quaternion. The latter case gives rise

to a state-space model with quaternion as system

state, while the process model is derived from the

attitude kinematic equation, which depends on angular

velocity measurements provided by the gyroscope. The

observation model is built from accelerometer and

magnetometer measurements. When the accelerometer

measures gravity, the above observation model is

enough to provide a reliable attitude. However,

when the external acceleration is large due to

high-acceleration maneuvers, the accelerometer output

represents the sum of gravity and external acceleration.

In this case, the accelerometer is no longer able to

estimate the gravity direction yielding an erroneous

attitude estimate.

To deal with the impact of external acceleration

on attitude estimation methods, two main approaches

are usually considered in the literature. The first one

is purely software-oriented whereas the second one

needs additional hardware (GNSS receptors). The first

approach follows the detect and correct paradigm,

where correction is usually obtained by giving small

weights to accelerometer measurements in the data

fusion process [1, 13, 14]. Detecting the external
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acceleration can be carried out by setting-up some

thresholds [13, 15], or directly by estimating the

external acceleration for short accelerated periods [14].

In [15], an estimation method based on adaptive

filtering theory is proposed; the covariance matrix of

the accelerometer noise is tuned according to the filter

residual. The underlying assumption is that the external

acceleration is of short duration, which is not always

true. The main idea of the second approach, known as

velocity-aided estimation, is to augment the available

measurements with the linear velocity provided by

GPS/GNSS devices [16]. Although they have been

successfully used in several applications, velocity aided

systems lose performance when GPS data are no longer

available, as in indoor applications.

In this paper, we introduce a third approach with

the following features: (i) it is fully model-oriented, (ii)

it complies with external accelerations of any duration

and magnitude in the case of pedestrian navigation,

(iii) it does not need GPS measurements, (iv) it makes

use of accelerometer measurements to build the process

model instead of gyroscope measurements. Hence,

the resulting model is singular and can be analyzed

through the framework of descriptor systems. In this

modeling approach, both dynamics and constraints on

the variables are taken into account. State estimation

for descriptor systems has been studied several years

ago and is still a promising research area. Some recent

works include [17, 18].

The paper is organized as follows: Some notations

and definitions are stated in Section II before deriving

the new model and the corresponding filter in Section

III. Then an evaluation of the proposed approach is

carried out in Section IV by means of numerical

simulations and comparisons with relevent methods.

Experimental tests under high accelerations scenario

and agressive movements are proposed in Section V

before concluding the paper.

II. Background: quaternion algebra and sensor

measurement models

The rigid body attitude in 3D motion is

determined when the orientation axes of the body frame

B(XB , YB , ZB) are specified with respect to a local

Earth-fixed frame N(XN , YN , ZN ). The XN (resp.

ZN )-axis points towards the North (resp. the Earth’s

interior perpendicularly). The YN -axis completes the

right-handed coordinate system, pointing East (NED:

North, East, Down). The attitude and the altitude are

two decoupled variables and thus the change of attitude

is not affected by the altitude variation.

In this paper, the unit norm quaternion is used to

represent the attitude. It is defined as:

q = [q0 ~qT ]T = [q0 q1 q2 q3]
T ∈ R

4, (1)

where q0 and ~q are the scalar and the vector parts of the

quaternion, respectively. The rotation matrix between

N and B is given by:

C(q) =









2q20 + 2q21 − 1 2q1q2 + 2q0q3 2q1q3 − 2q0q2

2q1q2 − 2q0q3 2q20 + 2q22 − 1 2q2q3 + 2q0q1

2q1q3 + 2q0q2 2q2q3 − 2q0q1 2q20 + 2q23 − 1









.

(2)

In this paper, the sensor configuration for attitude

estimation consists of a 3-axis gyroscope, a 3-

axis accelerometer and a 3-axis magnetometer. As

commonly adopted [19], their outputs are respectively

given by:

yg = ω + bg + δg, (3)

ya = C(q)(G+ ap) + δa, (4)

ym = C(q)m+ δm, (5)

where yg, ya and ym ∈ R
3 denote the outputs

expressed in B, ω = [ωx ωy ωz]
T and bg are

respectively the true angular velocity and the gyroscope

bias expressed in B, ap = [apx apy apz]
T denotes

the persistent external acceleration vector (non-

gravitational acceleration), G = [0 0 g]T is the

gravity vector (g = 9.81m/s2), m = [mx my mz]
T

represents the theoretical components of Earth’s

magnetic field measured in N . Actually, the parameters

of the theoretical geomagnetic field m depends on

the location on Earth [20]. The accelerometer drift is

usually negligible and is not considered in this paper.

Remark II.1 The static bias of the gyroscope bg, is

a slow-varying signal. In practice, it can be easily

estimated by taking the long term average of the

measurements when the gyroscope is not subject to

any motion. Therefore, we neglect the bias term in the

filter design but in the simulation and experimental

sections, we subtract it from the measurements. As a

consequence, the gyroscope output in Eq.(3), can be

rewritten as:

yg = ω + δg. (6)

In the sequel, we adopt the following assumption

and notations:

Assumption II.2 δg, δa, and δm are assumed to be

mutually independent and identically distributed with

known covariance matrices Rg = σ2
gI3, Ra = σ2

aI3,

and Rm = σ2
mI3, respectively. I3 being the 3× 3

identity matrix.
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We denote by [x×] the skew matrix associated with a

vector x = [x1 x2 x3]
T ∈ R

3:

[x×] =





0 −x3 x2

x3 0 −x1

−x2 x1 0



 . (7)

The quaternion product ⊗ of two unit-norm quaternions

qa = [qa0 ~qa
T ]T and qb = [qb0 ~qb

T ]T is defined as:

qa ⊗ qb =

(

qa0 −~qa
T

~qa qa0I3 + [~qa
×]

)(

qb0
~qb

)

, (8)

We consider two vectors b and r in R
3, and

their associated quaternions bq = [0 bT ]T and rq =
[0 rT ]T in R

4. The quaternion product can be

expressed as:

q ⊗ bq = Ω(b)q, (9)

rq ⊗ q = Υ(r)q, (10)

where

Ω(x) =

(

0 −xT

x −[x×]

)

, ∀x ∈ R
3, (11)

and

Υ(x) =

(

0 −xT

x [x×]

)

, ∀x ∈ R
3. (12)

We also consider the following linear mapping from R
4

to R
4×3 defined as:

Ξ(y) =

(

−~yT

y0I3 + [~y×]

)

, ∀y = [y0 ~yT ]T ∈ R
4

(13)

It can be shown that the following relation is fulfilled

[7]:

Ω(x)y = Ξ(y)x. (14)

The quaternion conjugate of q, denoted by q−1 is

given by:

q−1 = [q0 − q1 − q2 − q3]
T . (15)

III. Attitude estimation as filtering of a

descriptor system

3.1. System modeling

The discrete-time equation of attitude kinematics

is given by [2]:

qk+1 = [I4 +
∆t

2
Ω(ωk+1)]qk, (16)

where, ωk+1 and ∆t denote respectively the

angular velocity and the sampling period.

In attitude estimation, it is usual to resort to Eq.(16) as

the process model, while the following two equations

constitute the observation model:

ya,k = C(qk)(G+ ap,k) + δa,k, (17)

ym,k = C(qk)m+ δm,k. (18)

The accelerometer output in Eq.(17) can be written

such as ya,k = ya0,k + δa,k, where ya0,k is the

true acceleration vector. We consider the quaternion

vectors Ya,k = [0 yTa0,k]
T , Ḡ = [0 GT ]T and āp,k =

[0 aTp,k]
T associated respectively with ya0,k, G and

ap,k. Ya,k is related to Ḡ and āp,k through the quaternion

qk as follows [7]:

Ya,k = q−1

k ⊗ (Ḡ+ āp,k)⊗ qk. (19)

Left multiplying qk on both sides of Eq.(19) and by

applying the quaternion product according to Eqs.(9)

and (10), we can write:

qk ⊗ Ya,k = Ω(ya0,k)qk, (20)

(Ḡ+ āp,k)⊗ qk = Υ(G+ ap,k)qk. (21)

Substracting the right-hand sides of Eqs.(20) and

(21) and substituting ya0,k by ya,k − δa,k, lead to the

following model [7]:

04×1 = Hacc,kqk −
1

2
Λ(qk)ap,k + wq

acc,k, (22)

where Hacc,k and wq
acc,k are respectively the matrix

containing the accelerometer measurements ya,k and

the quaternion-dependent noise vector related to the

accelerometer noise, given by:

Hacc,k =
1

2

(

0 −(ya,k −G)T

(ya,k −G) −[(ya,k +G)×]

)

, (23)

wq
acc,k = −

1

2
Ξ(qk)δa,k. (24)

Λ(qk) is the matrix defined by:

Λ(qk) =

(

−~qk
T

−[~qk
×] + q0,kI3

)

. (25)

Following the same steps we get the model related to

the magnetometer measurements:

04×1 = Hmg,kqk + wq
mg,k, (26)

c© 0000 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society
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where Hmg,k is a 4× 4 matrix containing the

magnetometer measurements ymg,k:

Hmg,k =
1

2

(

0 −(ym,k −m)T

(ym,k −m) −[(ym,k +m)×]

)

.

(27)

The quaternion-dependent noise vector wq
mg,k related to

magnetometer noise is given by:

wq
mg,k = −

1

2
Ξ(qk)δm,k, (28)

On the other hand, given an estimate q̂k, a gyroscope-

based attitude prediction can be obtained as:

qωk+1 = [I4 +
∆t

2
Ω(yg,k+1)]q̂k. (29)

From Eq.(6) and using the linearity of Ω(.), we get:

Ω(yg,k+1) = Ω(ωk+1) + Ω(δg,k+1).

One can easily show that (using Eqs.(16) and (29)):

qωk+1 = qk+1 + w̃k+1, (30)

with w̃k+1 = [I4 +
∆t
2
Ω(ωk+1)]ǫ

q
k + ∆t

2
Ω(δg,k+1)q̂k

and ǫqk = q̂k − qk is the quaternion estimation error.

Using the identity defined in Eq.(14) and replacing q̂k
by ǫqk + qk , we obtain:

w̃k+1 = [I4 +
∆t

2
Ω(ωk+1)]ǫ

q
k +

∆t

2
Ξ(qk)δg,k+1

+
∆t

2
Ξ(ǫqk)δg,k+1. (31)

In what follows, we derive an alternative model

for attitude where qωk+1 (calculated from gyroscope

measurements) is used as an observation while the

accelerometer measurements are used to build the

process model. Therefore, the unknown external

acceleration will impact only the process model.

Before defining the state-space model, let consider the

following assumption:

Assumption III.1 The external acceleration ap,k is

modeled as:

ap,k+1 = ap,k + ǫp,k (32)

where ǫp,k is the modeling error assumed to be a white

noise with covariance matrix Rp.

Now, we can state the following proposition:

Proposition III.2 Consider the sensors outputs yg,k+1,

ya,k+1 and ym,k+1 (defined in Eqs.(3)-(5)) and

qωk+1 the predicted quaternion (pseudo-measurement)

resulting from Eq.(29). Under Assumption III.1, the

attitude dynamics can be represented by the following

descriptor system:

Hacc,k+1qk+1 = Hacc,kqk − ãp,k+1 + vk+1,(33)

zk+1 = Nk+1qk+1 + nk+1, (34)

where qk is the discrete-time quaternion, Hacc,k is

defined in Eq.(23) and ãp,k+1 ∈ R
3 is an unkown input

which depends on the external acceleration ap,k. It is

given by:

ãp,k+1 = −
1

2
Λ(qk+1 − qk)ap,k, (35)

vk+1 is the process noise defined by:

vk+1 =
1

2
Ξ(qk+1)δa,k+1 −

1

2
Ξ(qk)δa,k +

1

2
Λ(qk+1)ǫp,k.

(36)

zk+1, Nk+1 and nk+1 are respectively the

observation vector, matrix and noise: zk+1 =

(

qωk+1

04×1

)

,

Nk+1 =

(

I4
Hmg,k+1

)

, nk+1 =

(

w̃k+1

wq
mg,k+1

)

.

Proof. We consider Eq.(22) written for two consecutive

time-samples k and k + 1. By substracting the two

equations and taking the difference ǫp,k, we directly

get Eq.(33) where vk+1 and ãp,k+1 are respectively the

process noise (defined in Eq.(36)) and the unknown

input (Eq.(35)).

The first observation vector is defined in Eq.(30)

while the second observation vector is related to

the magnetometer measurments according to Eq.(26).

Therefore, Eqs.(33) and (34) define a descriptor

system since by construction rank(Hacc,k+1) = 2 , i.e.

Hacc,k+1 is rank deficient.

The term ãp,k+1 is unknown and needs to be estimated.

By extending the state of the system, the state-space

model in Eqs.(33) and (34) can be rewritten as follows:

Ek+1xk+1 = Akxk + vk+1, (37)

zk+1 = N̄k+1xk+1 + nk+1, (38)

where xk+1 =

(

qk+1

ãp,k+1

)

, Ek+1 = [Hacc,k+1 I4],

Ak = [Hacc,k 04×4] and N̄k+1 =

(

I4 04×4

Hmg,k+1 04×4

)

.

The filter design based on this state-space model

(Eq.(37)), is described in what follows. We call it

Quaternion Descriptor Filter (QDF).

c© 0000 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society
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3.2. Filter design

The main idea of QDF is to estimate the state

vector xk+1 at time k + 1, represented by x̂k+1, based

on the estimate x̂k and the observation vector zk+1

defined in Eq.(38). First, we check the uniqueness

of the solution. From [17] we know that the system

defined by Eqs.(37) and (38) has a unique solution,

if the matrix

(

Ek+1

N̄k+1

)

, has full column rank. In our

case, rank

(

λEk+1 −Ak

N̄k+1

)

= 8, by construction, i.e.

the matrix pencil has full column rank. Second, we

define ǫk = x̂k − xk as the state estimation error and we

rewrite Eqs.(37) and (38) as follows:

yk+1 = Fk+1xk+1 + βk+1, (39)

where

yk+1 =

(

Akx̂k

zk+1

)

, Fk+1 =

(

Ek+1

N̄k+1

)

, and

βk+1 =

(

Akǫk − vk+1

nk+1

)

.

Assumption III.3 We assume that wq
acc,k represents all

the stochastic behaviour due to accelerometer noise.

Therefore, Hacc,k will be considered as deterministic.

Lemma III.4 Under Assumption III.3, the covariance

matrix of βk+1 can be approximated by Vk+1 =
diag(Vacc,k+1, R̃k+1, Vm,k+1), where diag(.) stands for

a block diagonal matrix and Vacc,k+1, R̃k+1 and Vm,k+1

are respectively the covariance matrices corresponding

to the errors Akǫk − vk+1, w̃k+1 and wq
mg,k+1

.

Vacc,k+1 = Hacc,kP
q
kH

T
acc,k +

1

2
Ξ(q̂k)RaΞ

T (q̂k)

+
∆t2

16
Ξ(Ω(yg,k+1)q̂k)RaΞ

T (Ω(yg,k+1)q̂k)

+
∆t2

16
Λ(Ω(yg,k+1)q̂k)RpΛ

T (Ω(yg,k+1)q̂k)

+
1

4
Λ(q̂k)RpΛ

T (q̂k),

(40)

R̃k+1 = [I4 +
∆t

2
Ω(yg,k+1)]Pk[I4 +

∆t

2
Ω(yg,k+1)]

T

+ (
∆t

2
)2Ξ(q̂k)RgΞ

T (q̂k)

+ (
∆t

2
)2σ2

g(Tr(Pk)I4 − Pk),

(41)

Vm,k+1 =
1

4
Ξ(q̂k)RmΞT (q̂k)+

∆t2

16
Ξ(Ω(yg,k+1)q̂k)RmΞT (Ω(yg,k+1)q̂k),

(42)

where P q
k is the covariance matrix of the quaternion

estimation error ǫqk, and Tr(•) denotes the matrix trace.

Proof. From the expression of βk+1, we compute the

covariance matrices (See the Appendix for more details)

and we obtain the following results:

Vacc,k+1 = Hacc,kP
q
kH

T
acc,k +

1

2
Ξ(qk)RaΞ

T (qk)+

+
∆t2

16
Ξ(Ω(ωk+1)qk)RaΞ

T (Ω(ωk+1)qk)

+
∆t2

16
Λ(Ω(ωk+1)qk)RpΛ

T (Ω(ωk+1)qk)

+
1

4
Λ(qk)RpΛ

T (qk),

R̃k+1 = [I4 +
∆t

2
Ω(ωk+1)]Pk[I4 +

∆t

2
Ω(ωk+1)]

T

+ (
∆t

2
)2Ξ(qk)RgΞ

T (qk)

+ (
∆t

2
)2σ2

g(Tr(Pk)I4 − Pk).

In practice, the estimated quaternion q̂k and the output

value of gyroscope yg,k+1 substitute respectively the

actual quaternion qk and the true angular velocity value

ωk+1, to compute Vacc,k+1, R̃k+1 and Vm,k+1. Also

considering Assumption III.3, we get Eqs.(40)-(42).

The attitude estimation problem can be considered

as a Weighted Least Square (WLS) problem which

consists in finding the state xk+1 in Eq.(39) by

minimizing the following cost function:

J =|| yk+1 − Fk+1xk+1 ||2Vk+1

+ (yk+1 − Fk+1xk+1)
TVk+1(yk+1 − Fk+1xk+1)

(43)

Lemma III.5 There exists a linear estimator of finite

error variance of Eqs.(37) and (38) if Fk+1 has full

column rank ([17]).

Proposition III.6 Given the estimate x̂k and its

corresponding error covariance matrix Pk, the WLS

estimator (denoted by QDF) of the state vector,

c© 0000 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society
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represented by x̂k+1, composed of the quaternion q̂k+1

and the unknown input ˆ̃ap,k+1, is given by:

x̂k+1 = Pk+1

(

HT
acc,k+1V

−1

acc,kHacc,k q̂k + R̃−1

k qωk+1

V −1

acc,kHacc,k q̂k

)

,

(44)

Pk+1 =

(

P1,1 P1,2

P2,1 P2,2

)−1

, (45)

where

P1,1 = HT
acc,k+1V

−1

acc,kHacc,k+1 + R̃−1

k

+HT
mg,k+1V

−1

m,kHmg,k+1

P1,2 = HT
acc,k+1V

−1

acc,k

P2,1 = V −1

acc,kHacc,k+1

P2,2 = V −1

acc,k. (46)

Proof. We consider Eq.(39) where Fk+1 has full rank

by construction (rank (Fk+1) = 8), then, from Lemma

III.5, it is well known that the WLS estimate of xk+1

and the error covariance matrix Pk+1 are given by:

x̂k+1 = (FT
k+1V

−1

k+1
Fk+1)

−1FT
k+1V

−1

k+1
yk+1,(47)

Pk+1 = (FT
k+1V

−1

k+1
Fk+1)

−1. (48)

When we replace Fk+1, V , and yk+1, we get:

P−1

k+1
=





HT
acc,k+1 I4 HT

mg,k+1

I4 04×4 04×4



×





V −1

acc,k 04×4 04×4

04×4 R̃−1

k 04×4

04×4 04×4 V −1

m,k









Hacc,k+1 I4
I4 04×4

Hmg,k+1 04×4





x̂k+1 = Pk+1 ×
(

HT
acc,k+1V

−1

acc,k R̃−1

k Hmg,k+1V
−1

m,k

V −1

acc,k 04×4 04×4

)





Akx̂k

qωk+1

04×1



 .

Finally, we do a simple matrix multiplication and

invert P−1

k+1
, to get x̂k+1 and Pk+1 as given in Eqs.(44)

and (45).

Remark III.7 To ensure a unit norm quaternion at

each step, a normalization step q̂k+1 =
q̂k+1

||q̂k+1||
is

introduced.

IV. Simulation results

In this section, we evaluate the filter performance

by means of numerical simulations and provide a

comparative evaluation with methods in the literature.

For this purpose, the sensors data is generated and

sampled with a period ∆t = 0.01s. We consider a 3D

Table 1. Angular velocity scenario

Angular rate 0 < k∆t ≤ 50s 50s < k∆t ≤ 100s
ωx,k 0.2cos(1.5k∆t) −0.9sin(1.2k∆t)
ωy,k 0.3sin(0.9k∆t) 0.4cos(−0.5k∆t)
ωz,k 0.05cos(1.2k∆t) 0.9sin(2.5k∆t)

rigid body motion scenario with the angular velocity

given in Table 1. A reference sequence of quaternions

qk is generated during 100s using the angular velocity in

Table 1 and the discrete-time kinematic equation (16).

The accelerometer and magnetometer measurements

are generated using Eqs.(4) and (5), respectively, and

the rotation matrix in Eq.(2) is computed using the

quaternion qk. After that, a random zero-mean white

noise is added to each sensor output to represent

the imperfections according to Eqs.(3)-(5). Standard

deviation of noises is chosen as follows: σa =
0.02 m/s2 for accelerometer, σm = 0.05 Gauss for

magnetometer and σg = 0.05 rad/s for gyroscope. The

proposed simulation is achieved under near realistic

accelerations similar to those observed during exper-

imental tests in Section V. The external acceleration

ap,k is added to the accelerometer measurements

according to Eq.(4). It was randomly generated as fol-

lows: ap,k = 0.8aref , 1.5aref , 0.1aref if k ∈ I1, I2, I3,

respectively. Here aref ∈ R
3 is a random vector, I1 =

[4.3 11s] ∪ [15 17.5s] ∪ [60 80s], I2 = [26 36s]
and I3 = [20 23s] ∪ [42 47s]. The covariance matrix

Rp in Eq.(32) is given by: Rp = σ2
pI3, where

σp is the standard deviation, empirically tuned as

σp = 0.05 m/s2.

4.1. Evaluation of the QDF performance and

comparative analysis

In order to evaluate the filter performance, we

plot the trace of the rotation matrix of estimation error

trace(I3 − C(q̂)TC(q) in Fig. 1. This figure shows a

comparaison of the QDF with methods commonly used

in practice: the Quaternion Kalman Filter (QKF) [7],

the Gradient Descent Algorithm (GDA) [4] and the

Complementary Filter (CF) [9]. All filters are initialized

with the same attitude value q̂(0) = [1 0 0 0]T .

The observation vector qωk in Eq.(30) is initialized with

qω0 = [−0.2911 0.6002 − 0.7353 − 0.1195]T and

the initial estimation error covariance matrix is set to

P0 = 0.1 I8. For QKF, the initial attitude covariance

matrix is set to P (0) = 0.1 I4. To be able to perform

a fair comparison, the parameters of these estimators

are tuned according to a practically common criteria.
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Fig. 1. Attitude estimation errors

Table 2. RMSE of Euler angles for the estimators CF, GDA,
QDF, QKF

Roll(◦) Pitch(◦) Yaw(◦)

CF 23,5174 6,6012 35,9623

GDA 20,7900 8,0620 30,6315

QKF 21,8379 5,9015 30,3436

QDF 0,9827 1,4433 2,0687

The gain β in the GDA [4] was fixed to 2 while the

gain Kp in the CF [9] was fixed to 10. Recall that for

both QKF and QDF, the gains are tuned automatically.

As we can see, the proposed filter provides the best

estimation even when external acceleration appears

for a long period and with a high magnitude, while

the other filters lose accuracy in dynamic phases (for

example between 23s and 37s). In addition, we evaluate

the performance of the approaches cited above using

the Root Mean Square Error (RMSE) of Euler angles

as: RMSE =

√

1

T

T
∑

t=0

x2
angle(t) , where T stands for

the time interval and xangle, angle ∈ {pitch, roll, yaw}
is the computed error between the estimated angle

and the reference one. From Table 2, it is clear that

QDF outperforms the other estimators in the high

acceleration scenario and provides the best results in

terms of RMS attitude estimation errors. Indeed, in

the low-acceleration scenario, our approach performs

at least as good as the other methods since the

accelerometer output is the projection of G. However,

when the external acceleration appears, the estimators

GDA, CF and QKF lose accuracy since the assumption

on external acceleration is no longer fulfilled. In

conclusion, we want to stress that these approaches

are not really designed to deal with the external

acceleration problem and assume that the accelerometer

measurements represent only the projection of G.

However, these methods are, nowadays, commonly

used in practice.

V. Experimental results

To assess the efficiency of QDF, several exper-

iments were performed in the case of pedestrian

navigation for different scenarios. We used the foot-

mounted MTi-IMU developed by Xsens Technologies

[21] to collect measurements. The unit sampled sensor

data for an orthogonally oriented triaxial accelerometer,

a triaxial gyroscope, and a triaxial magnetometer at

100 Hz. A set of experiments was carried out at the

MOCA platform based in GIPSA-Lab at University of

Grenoble Alpes to collect data for different users with

different weights. The foot attitude is calculated by a

Vicon motion capture system, containing 12 cameras

T40s, through Tracker software. Vicon reconstructs

the position and orientation of objects with passive

markers that reflect light sent by the spotlight. The triad

composed of markers is aligned with the one of MTis

sensors to synchronize later the QDF and the Vicon

system. Fig. 2 shows the overall experimental setup. All

subjects were asked to walk on a path marked on the

room, including rectangle shaped walking with a width

of 2 m and a length of 3 m during 3 min as in Fig. 2.

Fig. 2. Experimental setup with MTi and Vicon system

The collected data from the MTi are processed

offline using the QDF implemented under Matlab to

estimate the attitude (in terms of quaternion) and are

compared with the quaternion calculated directly by

the Vicon system which is considered as the reference.

The experiments are conducted with initial conditions

sufficiently far of the reference angular position and

with high accelerations. Similar results are obtained

with all subjects for the same experiments. Then, we

represent the estimation results in Fig.3 where the

external acceleration (top of the figure) and Euler

angles estimation errors are shown. As we can see in

this figure, although many high jumps in the external

c© 0000 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society
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acceleration are observed, the attitude estimation errors

doesnt increase significantly and the peaks are not so

significant (except a few related to the error on the

quaternion calculated by the Vicon). In fact, after each

jump in the true external acceleration, we can observe

that the transient time on the attitude convergence

is so quick and negligible. After deep analysis, we

remarked also that the sudden jump (reccurent) of errors

(especially on roll and pitch) between 0◦ and 5◦ is

related to the saturation in the gyroscope measurements

(out of range of the sensor).
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Fig. 3. External acceleration (top of the figure) and Euler angles
estimation errors during experiment

By exploiting the complementary properties of all

sensors (accelerometer, magnetometer and gyroscope)

as explained in [9], the gyroscope and magnetometer

measurements are used to compensate for errors caused

by the external acceleration (in the process model).

More precisely, the peaks that normally appears on

attitude estimation using accelerometer measurements

are more or less smoothed, with a very short transient

time, by attitude observations coming from gyroscope

and magnetometer measurements. Moreover, the same

comparative study considered in simulation tests

(section IV) has been carried out with experimental

data. Then, the QDF is compared to the QKF, the

GDA and the CF estimators. We plotted in Fig. 4

the Cumulative Distribution Function of the estimation

errors for the three Euler angles using QDF, QKF,

GDA and CF. We can note that, the QDF gives better

performances than other filters. Indeed, the probability

to obtain an estimation error less than 5◦ is more than

90% for the roll, pitch and yaw angles with our approach

while it is about 60% (for the roll), 79%(for the pitch)

and 40% (for the yaw) with the GDA, for example.
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Fig. 4. Empirical Cumulative Distribution Function for Euler angles
estimation errors

VI. Conclusion

In this paper, we have introduced a descriptor

model in order to carry out an attitude estimation

using MARG sensors under external acceleration. The

design of a Quaternion Descriptor Filter (QDF) for

rigid body attitude estimation using inertial/magnetic

sensors is provided with the following major goal:

a new formulation of dynamical model for attitude

estimation in order to produce an accurate attitude

even under high external acceleration. The estimation

performance is validated through numerical simulations

and first experimental tests. The main feature of the

proposed approach is that the process model depends

on accelerometer measurements and the observation

model depends on gyroscope and magnetometer

measurements. This feature is particularly interesting in

order to use in intermittent way the gyroscope, whose

energy consumption is significant.

Appendix

Computation of the covariance matrix V

As stated in Section III, Vk+1 =
diag(Vacc,k+1, R̃k+1, Vm,k+1) is the covariance matrix

of the error vector βk+1. In what follows we focus on

the computation of Vacc,k+1,R̃k+1 and Vm,k+1.

• Computation of Vacc,k+1:

Vacc,k+1 is the covariance matrix of the noise vector

Akǫk − vk+1. It can be defined such as:

Vacc,k+1 = E[(Akǫk − vk+1 − E[Akǫk − vk+1])

(Akǫk − vk+1 − E[Akǫk − vk+1])
T ]

(49)

c© 0000 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society
Prepared using asjcauth.cls



9

where E[•] denotes the expectation operator.

Since E[vk+1] = 0 then:

Vacc,k+1 = E[Akǫkǫ
T
kA

T
k ] + E[vk+1v

T
k+1]

+2E[Akǫkv
T
k+1]− E[Akǫk]E[Akǫk]

T .

Substituting vk+1 by its expression as in Eq.(36), we

obtain:

Vacc,k+1 = 1

4
E[Ξ(qk+1)δa,k+1δ

T
a,k+1Ξ

T (qk+1)]

+E[Akǫkǫ
T
kA

T
k ] +

1

4
E[Ξ(qk)δa,kδ

T
a,kΞ

T (qk)]

+ 1

4
E[Λ(qk+1)ǫp,k+1ǫ

T
p,k+1Λ

T (qk+1)]

+E[Akǫk(δ
T
a,k+1Ξ

T (qk+1)− δTa,kΞ
T (qk))]

−E[Akǫk]E[Akǫk]
T + E[Akǫkǫ

T
p,k+1Λ

T (qk+1)].
(50)

Taking into account the unbiasedness of the estimator

(E[ǫk] = 0) and that Ak is approximated by a

deterministic matrix (Assumption III.3), we get:

Vacc,k+1 = 1

4
E[Ξ(qk+1)δa,k+1δ

T
a,k+1Ξ

T (qk+1)]

+ 1

4
E[Ξ(qk)δa,kδ

T
a,kΞ

T (qk)] +AkPkA
T
k

+ 1

4
E[Λ(qk+1)ǫp,k+1ǫ

T
p,k+1Λ

T (qk+1)]

+AkE[ǫk(δ
T
a,k+1Ξ

T (qk+1)− δTa,kΞ
T (qk))]

+AkE[ǫkǫ
T
p,k+1Λ

T (qk+1)].
(51)

Since ǫk, ǫp,k+1 and δa,k are independent, then:

E[Akǫk(δ
T
a,k+1Ξ

T (qk+1)− δTa,kΞ
T (qk))] = 0 and

E[Akǫkǫ
T
p,kΛ

T (qk+1)] = 0.

Now, we compute E[Ξ(qk+1)δa,k+1δ
T
a,k+1Ξ

T (qk+1)]:

E[Ξ(qk+1)δa,k+1δ
T
a,k+1Ξ

T (qk+1)] =

E[Ξ(qk + qα)δa,k+1δ
T
a,k+1Ξ

T (qk + qα)] =

E[(Ξ(qk) + Ξ(qα))δa,k+1δ
T
a,k+1(Ξ

T (qk) + ΞT (qα))] =

E[Ξ(qk)δa,k+1δ
T
a,k+1Ξ

T (qk)]+

E[Ξ(qα)δa,k+1δ
T
a,k+1Ξ

T (qα)].

Here, qα is the difference between two consecutive

quaternions qk+1 and qk, then, qα = ∆t
2
Ω(ωk+1)qk.

From Assumption II.2, we have E[δa,k+1δ
T
a,k+1] = Ra,

then:

E[Ξ(qk+1)δa,k+1δ
T
a,k+1Ξ

T (qk+1)] =

Ξ(qk)RaΞ
T (qk) + Ξ(qα)RaΞ

T (qα).
(52)

In the same way, we get the expression of
1

4
E[Λ(qk+1)ǫp,k+1ǫ

T
p,k+1Λ

T (qk+1)]:

1

4
E[Λ(qk+1)ǫp,kǫ

T
p,kΛ

T (qk+1)] =

1

4
Λ(qk)RpΛ

T (qk) +
1

4
Λ(qα)RpΛ

T (qα).
(53)

Finally, we substitute Ak by its expression

[Hacc,k 04×4] and qα by ∆t
2
Ω(ωk+1)qk, in Eqs.(51-

53), then we get Vacc,k as:

Vacc,k = Hacc,kP
q
kH

T
acc,k

+ 1

2
Ξ(qk)RaΞ

T (qk) +
1

4
Λ(qk)RpΛ

T (qk)

+∆t2

16
Ξ(Ω(ωk+1)qk)RaΞ

T (Ω(ωk+1)qk)

+∆t2

16
Λ(Ω(ωk+1)qk)RpΛ

T (Ω(ωk+1)qk).

(54)

• Computation of R̃k+1:

R̃k+1 is the covariance matrix of the error w̃k+1 defined

in Eq.(30). Then,

R̃k+1 = E[(w̃k+1 − E[w̃k+1])(w̃k+1 − E[w̃k+1])
T ].

Since E[ǫqk] = 0 (unbiased estimator), then E[w̃k+1] =
0 and:

R̃k+1 = E[w̃k+1w̃
T
k+1].

Replacing w̃k+1 by its expression [I4 +
∆t
2
Ω(ωk+1)]ǫ

q
k + ∆t

2
Ξ(q̂k)δg,k+1 and taking into

account the independance of δg,k+1 and ǫqk, we get:

R̃k+1 = [I4 +
∆t
2
Ω(ωk+1)]E[ǫqk(ǫ

q
k)

T ][I4 +
∆t
2
Ω(ωk+1)]

+(∆t
2
)2Ξ(qk)E[δg,k+1δ

T
g,k+1]Ξ

T (qk)

+(∆t
2
)2E[Ξ(ǫqk)δg,k+1δ

T
g,k+1Ξ

T (ǫqk)].

Denote by B = E[Ξ(ǫqk)δg,k+1δ
T
g,k+1Ξ

T (ǫqk)],

[d1 d2 d3]
T = δg,k+1 and [e0 e1 e2 e3]

T = ǫqk,

we compute the matrix B and we obtain:

B = σ2
g×





e21 + e22 + e23 −e0e1 −e0e2 −e0e3

−e0e1 e20 + e22 + e23 −e1e2 −e0e3

−e0e2 −e1e2 e20 + e21 + e23 −e0e3

−e0e3 −e1e3 −e2e3 e20 + e21 + e22





= σ2
g(Tr(E[ǫqk(ǫ

q
k)

T ])I4 − E[ǫqk(ǫ
q
k)

T ])

= σ2
g(Tr(P

q
k+1

)I4 − P q
k+1

).

with P q
k+1

is the covariance matrix of the quaternion

estimation error ǫqk. Finally, we obtain the expression

of R̃k+1 defined in Eq.(41). Also, the matrix Vm,k+1 in

Eq.(42) can be obtained by following similar steps.
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