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Abstract: We present a new method for the numerical implementation of generating boundary conditions
for a one dimensional Boussinesq system. This method is based on a reformulation of the equations and a
resolution of the dispersive boundary layer that is created at the boundary when the boundary conditions are
non homogeneous. This method is implemented for a simple first order finite volume scheme and validated
by several numerical simulations. Contrary to the other techniques that can be found in the literature, our
approach does not cause any increase in computational time with respect to periodic boundary conditions.
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Conditions aux limites génératrices pour un système de Boussinesq
Résumé : Nous présentons une nouvelle méthode pour l’implantation numérique de conditions aux
limites génératrices pour un système de Boussinesq en une dimension. Cette méthode est basée sur une
reformulation des équations et la résolution d’une couche limite dispersive qui est créée sur la frontière
du domaine quand les conditions aux limites ne sont pas homogènes. Cette méthode est implantée pour
un schéma simple de type Volumes Finis d’ordre un et validée par plusieurs simulations numériques.
Contrairement aux autres techniques de la littérature, notre approche n’occasionne aucune augmentation
de temps de calcul par rapport à des conditions aux limites périodiques.

Mots-clés : Système de Boussinesq, condition aux limites génératrice, couche limite dispersive, méth-
ode de Volumes Finis
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4 D. Lannes, L. Weynans

1 Introduction

1.1 General setting
Among the many reduced models used to describe the evolution of waves at the surface of a fluid in
shallow water, the nonlinear shallow water equations are certainly one of the most used for applications.
They can be written in conservative form as{

∂tζ +∂xq = 0,
∂tq+∂x

( 1
2 gh2 + 1

h q2
)
= 0,

(1)

where ζ is the surface elevation above the rest state and q the horizontal discharge (equivalently, the
vertical integral of the horizontal velocity), and where h = H0 + ζ is the total water depth (H0 being the
depth at rest) and g the acceleration of gravity.
For many applications, the surface elevation is known at the entrance of the domain (through buoy mea-
surements for instance),

∀t ≥ 0, ζ (t,x = 0) = f (t) (2)

as well as the initial values for q and ζ in the domain,

∀x≥ 0, (q,ζ )(t = 0,x) = (ζ 0,q0); (3)

this type of boundary condition is often referred to as generating boundary condition.
The problem consisting in solving (1) together with (2) and (3) is a mixed initial-boundary value (IBVP)
problem; due to its hyperbolic nature, it can be solved theoretically (see for instance [20, 22], and more
recently [14] for sharp well-posedness results). From the numerical viewpoint, solving this IBVP is also
possible, using the decomposition of the solution into Riemann invariants (see for instance [21]).

The nonlinear shallow water equations provide a robust model used in many applications; it is known
[2, 13, 16] to provide an approximation of the full free surface Euler equations with a precision O(µ),
where µ = H2

0/L2 is the shallowness parameter (L denotes here the typical horizontal scale of the waves).
It ommits however the dispersive effects that play an important role in coastal areas, in particular in the
shoaling zone; in order to take them into account, one has to keep the O(µ2) terms that are neglected
in the derivation of the nonlinear shallow water equations. The most simple models that reach such a
precision and therefore take into account the dispersive effects while retaining nonlinear terms are the
so-called Boussinesq models. There are actually many asymptotically equivalent Boussinesq models
[9, 10, 8]; their simplicity is due to the fact that they are derived under the assumption that the waves are
of small amplitude compared to the depth, which allows to neglect some of the nonlinear terms (without
this assumption, one has to work with the much more complicated Serre-Green-Naghdi equations, see
[16] for instance). We choose here to work with the so called Abbott-Boussinesq model [1, 12] since its
structure is obviously a dispersive perturbation of the nonlinear shallow water equations,{

∂tζ +∂xq = 0,

(1− H2
0

3 ∂ 2
x )∂tq+∂x

( 1
2 gh2 + 1

h q2
)
= 0, (h = H0 +ζ )

(4)

(removing the dispersive term −H2
0

3 ∂ 2
x ∂tq, this model reduces to (1)). As above, we are interested in the

initial-boundary value problem for this system, we therefore complement it with the boundary conditions
(2) and initial data (3). Contrary to (1), this system is no longer hyperbolic, and there is no general theory
to address the IBVP. Only some particular cases have been considered, such as in [25] with homogeneous
boundary conditions, [7, 3] for a particular class of Boussinesq systems (the Bona-Smith family) where a
regularizing dispersion is also present in the first equation, [19] for a higher order Boussinesq system or
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Generating boundary conditions for a Boussinesq system 5

[18] for the shoreline problem (vanishing depth).
Due to its importance for numerical simulations in coastal oceanography, there has been a significant
amount of work devoted to finding numerival answers to this issue in recent years. For the related prob-
lem of transparent boundary conditions in particular (i.e. which boundary conditions should be put at the
boundary of the computational domain so that waves can pass through this artificial boundary without
being affected by it), the linear problem has been considered for scalar equations (such as KdV or BBM)
in [4, 5] as well as for the linearization of (4) around the rest state. For the nonlinear case, a different
approach has been used recently, which consists in implementing a perfectly matched layer (PML) ap-
proach for a hyperbolic relaxation of the Green-Naghdi equations [15]. This approach can be used to deal
with generating boundary conditions such as (2) but the size of the layer in which the PML approach is
implemented is typically of two wavelength, which for applications to coastal oceanography can typically
represent an increase of 100% of the computational domain. Other methods such as the source function
method [24] also require a significant increase of computational time.

Our goal in this note is to propose a new approach to the nonlinear Boussinesq system (4) with
generating boundary condition (2) and initial data (3), and which does not require any extension of the
computational domain. It is based in a reformulation of the problem (4) and (2)-(3) into a nonhomoge-
neous system of conservation laws for ζ and q with a nonlocal flux, and with a source term accounting
for the dispersive boundary layer,∂tζ +∂xq = 0,

∂tq+∂xR1
(1

2
g(h2−H2

0 )+
1
h

q2)= Q(q, f , f̈ ,ζ ,q)exp
(
−
√

3
x

H0

)
,

(5)

where q = q|x=0 and

Q(q, f , f̈ ,ζ ,q) =

√
3

H0

q2

H0 + f
+

H0√
3

f̈ +
g
√

3
H0

(H0 +
1
2

f ) f

−
√

3
H0

R1
(1

2
g(h2−H2

0 )+
1
h

q2), (6)

with the initial data

(ζ ,q)(t = 0,x) = (ζ 0,q0)(x), q(t = 0) = q0(x = 0), (7)

and the boundary condition
ζ (t,x = 0) = f (t); (8)

here, we denoted by R1 the inverse of the operator (1− 1
3H2

0
∂ 2

x ) on R+ with homogeneous Neumann

boundary condition, and R1 f = (R1 f )|x=0 (see Definition 1 below). The source term in the equation for
q is a dispersive boundary layer that appears because the time derivative of the trace q of q at x = 0 does
not necessarily vanish.

We propose here a simple numerical scheme based on this new formulation of the problem (which
we prove to be well posed), very easy to implement and that does not require to work on an extended
computational domain. The ability of this method to handle generating boundary conditions with a very
good precision is illustrated by several computations where nonlinear and dispersive terms both play an
important role.

1.2 Organization of the paper
We describe in this paper how to handle a generating boundary condition on the left border of the com-
putational domain. For the sake of clarity, we consider the problem on the half line (0,∞) so that we do
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6 D. Lannes, L. Weynans

not have to deal with boundary conditions at the right boundary; for our numerical simulations, we either
consider a domain that is large enough so that the influence of the right boundary condition is negligible,
or take a wall boundary condition q = 0 on the right boundary (of course, a generating boundary con-
dition on the right-boundary can be handled by a straightforward adaptation of what is done at the left
boundary).

In Section 2 we briefly recall the theory and numerical simulation of generating boundary conditions
for the nonlinear shallow water equations in order to make clear that different mechanisms are at stake in
the hyperbolic (shallow water) and dispersive (Boussinesq) cases. Note in particular that for the hyper-
bolic case considered in this section, the missing data at the boundary (i.e. the trace of the discharge q at
x = 0) is deduced from the value at the boundary of the outgoing Riemann invariant which can itself be
determined in terms of interior values by solving the characteristic equation.

In Section 3 we consider generating boundary conditions for the Boussinesq system (4). In order
to make more apparent the structure of the dispersive boundary layer we shall construct, we first non-
dimensionalize the equations in §3.1. The main step of the analysis is performed in §3.2 where the
dispersive boundary layer is constructed and the reformulation (5) of the problem is derived. This refor-
mulation is used in §3.3 to prove the local well-posedness of the initial-boundary value problem for the
Boussinesq system (4) with generating boundary condition (2) which, to our knowledge, was not known
so far. A discretization of the reformulation (5) is then proposed in §3.4; for the sake of clarity, it is based
on the standard Lax-Friedrichs scheme. It is not possible to recover the missing boundary data using Rie-
mann invariants as in the hyperbolic case, but the nonlocality of the operator R1 allows us to express this
missing information in terms of interior values. We insist on the fact that our numerical treatment of the
generating boundary condition does not increase the computational time compared to simple boundary
conditions (periodic, physical well, etc.), contrary to the previously used approaches mentioned in the
introduction.

Finally, we provide in Section 4 several numerical computations showing the accuracy of our nu-
merical scheme. Our validation method is first presented in §4.1; it consists in computing a reference
solution in a large domain [−L,L] with a very refined mesh, and to use the values of the water elevation at
x = 0 provided by this solution as a generating boundary condition for computations on the small domain
[0,L]. The accuracy of this new solution is measured by comparing it with the reference solution. A first
example is provided in §4.2 in a situation where both incoming and outgoing waves are present. In §4.3
we show that the Boussinesq system (5) admits solitary waves, and that we are able to generate them with
good accuracy using the corresponding generating boundary condition. We then provide in §4.4 another
example, relevant for applications to coastal oceanography [6, 23, 17], which consists in the generation
of a sinusoidal wave train.

1.3 Notations

For the numerical computations, the computational domain [0,L] is discretized using a uniform grid:

x0 = 0,x1 = δx, . . . ,xi = iδx, . . . ,xnx−1 = (nx−1)δx,xnx = L,

with δx =
L
nx

. The time step is denoted δt . The variables ζ n
i and qn

i denote the values of the numerical

solution for ζ and q at the time nδt and at the location xi. Generally speaking, the subscript i and the
superscript n indicate respectively a discretization at the location xi and at the time nδt .

Inria



Generating boundary conditions for a Boussinesq system 7

2 The nonlinear shallow water equations
We recall that the nonlinear shallow water (or Saint-Venant) equations are a system of equations coupling
the surface elevation ζ above the rest state to the horizontal discharge q,{

∂tζ +∂xq = 0,
∂tq+∂x

( 1
2 gh2 + 1

h q2
)
= 0,

(h = H0 +ζ ). (9)

This system of equations is complemented by the initial and boundary conditions

(ζ ,q)(t = 0,x) = (ζ 0,q0)(x), ζ (t,x = 0) = f (t). (10)

For the sake of completeness and as a basis for comparisons with the dispersive (Boussinesq) case,
we briefly recall here how this problem can be handled numerically.

2.1 The Riemann invariants
The nonlinear shallow water equations (9) can be written under an equivalent quasilinear form by intro-
ducing the vertically averaged horizontal velocity u,

u =
q
h

with h = H0 +ζ .

The resulting system of equations on (ζ ,u) is given by{
∂tζ +∂x(hu) = 0,
∂tu+g∂xζ +u∂xu = 0

(11)

or, in more condensed form,

∂tU +A(U)∂xU = 0 with U = (ζ ,u)T and A(U) =

(
u h
g u

)
. (12)

The matrix A(U) is diagonalizable with eigenvalues λ+ and −λ− and associated left-eigenvectors e±(U)
given by

λ±(U) =±u+
√

gh and e±(U) =
(√g

h
,±1

)T
.

Taking the scalar product of (12) and e±(U), we obtain

(√g
h

∂th±∂tu
)
± (±u+

√
gh)
(√g

h
∂xh±∂xu

)
= 0.

This leads us to introduce the Riemann invariants R± as

R±(U) := 2
(√

gh−
√

gH0)±u, (13)

which satisfy the transport equations

∂tR++λ+(U)∂xR+ = 0, ∂tR−−λ−(U)∂xR− = 0. (14)

These Riemann invariants play a central role in the numerical resolution of the IBVP (9)-(10) presented
below.

RR n° 9248



8 D. Lannes, L. Weynans

2.2 The discrete equations
Writing U = (ζ ,q)T , we first write (9) in the condensed form,

∂tU +∂x
(
F(U)

)
= 0 with F =

(
q,

1
2

g(h2−H2
0 )+

1
h

q2)T
, (15)

for which a finite volume type discretization gives

Un+1
i −Un

i
δt

+
1
δx
(Fn

i+1/2−Fn
i−1/2) = 0, i≥ 1, (16)

the choice of Fn
i+1/2 depending on the numerical scheme. Our focus here being on explaining how to

handle the boundary condition (10), we consider here the most simple case of the Lax-Friedrichs scheme
where the discrete flux is given by

Fn
i−1/2 =

1
2
(Fn

i +Fn
i−1)−

δx

2δt
(Un

i −Un
i−1), i≥ 1, (17)

with Fn
i = F(Un

i ). For i = 1, this equation involves Un
0 that we need to express in terms of Un = (Un

i )1≤i
and the initial-boundary condition (10), which, in discrete form, reads

(ζ 0
i ,q

0
i ) = (ζ 0,q0)(xi) (i≥ 1), ζ

n
0 = f n := f (tn); (18)

this is done in the following section.

2.3 Data on the water depth on the left boundary
For i = 1, the flux F1/2 requires the knowledge of Un

0 = (ζ n
0 ,q

n
0). From the initial-boundary condition

(18), one takes
ζ

n
0 = f n,

but we need to determine qn
0, which can be deduced from the knowledge of Rn

±,0 := R±(tn,0). From (13)
one gets indeed

q =
h
2
(R+−R−) and R++R− = 4

(√
gh−

√
gH0)

and therefore
q = h

(
2(
√

gh−
√

gH0)−R−
)
.

Evaluating this relation at x = 0 provides an expression for the trace q = q|x=0 in terms of the boundary
data f = ζ|x=0 and of the trace of the outgoing Riemann invariant R−,

q = (H0 + f )
(
2
(√

g(H0 + f )−
√

gH0
)
−R−|x=0

)
. (19)

and at the discrete level, we get at t = tn

qn
0 = (H0 + f n)

(
2(
√

g(H0 + f n)−
√

gH0)−Rn
−,0
)
. (20)

Therefore, we just need to determine Rn
−,0 in order to determine qn

0. We use the characteristic equation
(14) satisfied by R−; after discretization, this gives

Rn
−,0−Rn−1

−,0
δt

−λ−
Rn−1
−,1 −Rn−1

−,0
δx

= 0;

Inria



Generating boundary conditions for a Boussinesq system 9

as in [21], λ− is computed as a linear interpolation between λ−,0 and λ−,1,

λ− = αλ−,0 +(1−α)λ−,1

and 0≤ α ≤ 1 computed such that λ− δt = α δx. Therefore

Rn
−,0 = (1−λ−

δt

δx
)Rn−1
−,0 +λ−

δt

δx
Rn−1
−,1 , (21)

which gives Rn
−,0 in terms of its values at the previous time step and in terms of interior points.

3 The Boussinesq equations
We consider here the following Boussinesq-Abbott system [1, 12], which includes the dispersive effects
neglected by the nonlinear shallow water equations (1){

∂tζ +∂xq = 0,

(1− H2
0

3 ∂ 2
x )∂tq+∂x

( 1
2 h2 + 1

h q2
)
= 0, (h = H0 +ζ ),

(22)

complemented with the initial and boundary conditions

(ζ ,q)(t = 0,x) = (ζ 0,q0)(x), ζ (t,x = 0) = f (t). (23)

The key step in our analysis is the reformulation of this IBVP into a system of two conservation laws with
nonlocal flux and a source term accounting for the presence of a dispersive boundary layer, and whose
coefficient is found through the resolution of a nonlinear ODE.
In order to make clearer the structure of the dispersive boundary layer, we work with a dimensionless
version of (1). The non dimensionalization is performed in §3.1. The reformulation of the equations is
then derived in §3.2 and a numerical scheme based on this newly exhibited structure is proposed in §3.4.

3.1 Dimensionless equations
Denoting by a the typical amplitude of the waves, by L its typical horizontal scale, we introduce the
following dimensionless quantities, denoted with a prime,

x′ =
x
L
, t ′ =

t
L/
√

gH0
, ζ

′ =
ζ

a
, u′ =

u
a

H0

√
gH0

, h′ = 1+ εζ
′.

Replacing in (22) (and omitting the primes for the sake of clarity), we obtain the dimensionless version
of the Boussinesq equations (1){

∂tζ +∂xq = 0,
(1− µ

3 ∂ 2
x )∂tq+∂x

( 1
2ε

h2 + ε
1
h q2
)
= 0,

(24)

where ε and µ are respectively called nonlinearity and shallowness parameters and defined as

ε =
a
h
, µ =

H2
0

L2 ;

the Boussinesq equations are derived in the shallow water, weakly nonlinear regime characterized by the
assumptions

µ � 1 and ε = O(µ). (25)

Under these smallness assumptions, the Boussinesq model (24) provides an approximation consistent
with the full free surface Euler equations up to O(µ2) and the convergence error is of order O(µ2t) for
times of order O(1/ε) [2, 16].

RR n° 9248



10 D. Lannes, L. Weynans

3.2 Reformulation of the equations

Solving the equations (24) on the full line requires the inversion of the operator (1− µ

3 ∂ 2
x ), which does

not raise any difficulty. The situation is different here since we need to invert this operator on the half-line
(0,∞), and we therefore need a boundary condition on ∂tq which is not directly at our disposal. Our
strategy is, as in [11] for the description of the interaction of a floating objects with waves governed by
a Boussinesq model, to use the inverse of the operator (1− µ

3 ∂ 2
x ) with homogeneous Dirichlet boundary

condition, and to construct the dispersive boundary layer due to the fact that the boundary value q of q is
not equal to zero in general; we shall denote

q(t) = q(t,x = 0)

and we also need to define the Dirichlet and Neumann inverses of the operator (1− µ

3 ∂ 2
x ).

Definition 1. We denote by R0 and R1 the inverse of the operator (1− µ

3 ∂ 2
x ) with homogeneous Dirichlet

and Neumann boundary conditions respectively,

R0 : L2(R+) → H2(R+)
g 7→ u,

where

{
(1− µ

3 ∂ 2
x )u = g

u(0) = 0

and

R1 : L2(R+) → H2(R+)
g 7→ v,

where

{
(1− µ

3 ∂ 2
x )v = g

∂xv(0) = 0
.

We also introduce the boundary operator R1 as

R1 :
L2(R+) → R
g 7→ (R1g)|x=0 .

Recalling that the ODE

Y − µ

3
Y ′′ = g, Y (0) = Y0

admits a unique solution in H2(R+) given by

Y (x) = R0g+Y0 exp
(
− x

δ

)
with δ =

√
µ

3
,

the second equation in (24) can be written equivalently under the form

∂tq =−R0∂x
( 1

2ε
h2 + ε

1
h

q2)+ q̇exp
(
− x

δ

)
. (26)

The last step is therefore to express q̇ in terms of the data f = ζ|x=0 of the problem. This is done in the
following proposition. If (ζ ,q) are a smooth enough solution of (24), then the boundary value q of q are
related to the boundary value f = ζ|x=0 and to the interior value of ζ and q by solving the ODE

q̇− ε

δ

q2

1+ ε f
= δ f̈ +

1
δ
(1+

ε

2
f ) f − 1

δ
R1
( 1

2ε
(h2−1)+ ε

1
h

q2),
where R1 is the boundary operator introduced in Definition 1.

Inria



Generating boundary conditions for a Boussinesq system 11

Proof. Differenciating (26) with respect to x, one obtains

∂t∂xq =−∂xR0∂x
( 1

2ε
(h2−1)+ ε

1
h

q2)− 1
δ

q̇exp
(
− x

δ

)
. (27)

For all g ∈ L2(R+), the following identity holds,

R0∂xg = ∂xR1g.

Proof of the lemma. Just remark that if v = R1g, then one easily gets from the definition of R1 that{
(1− µ

3 ∂ 2
x )(∂xv) = ∂xg,

(∂xv)(0) = 0,

so that, by definition of R0, one has ∂xv = R0∂xg (note that by classical variational arguments, R0 is well
defined as a mapping ∂xL2(R+)→ H1(R+)).

Using the first equation of (24) to substitute ∂t∂xq = −∂ 2
t ζ and the lemma, one then deduces from

(27) that

−∂
2
t ζ =−∂

2
x R1
( 1

2ε
(h2−1)+ ε

1
h

q2)− 1
δ

q̇exp
(
− x

δ

)
.

Remarking further that −∂ 2
x = 1

δ 2 (1−
µ

3 ∂ 2
x )− 1

δ 2 and recalling that (1− µ

3 ∂ 2
x )R1 = Id, we obtain that

∂
2
t ζ =

1
δ 2 (R1− Id)

( 1
2ε

(h2−1)+ ε
1
h

q2)+ 1
δ

q̇exp
(
− x

δ

)
.

Taking the trace of this expression at x = 0 then yields

f̈ +
1

δ 2 (1+
ε

2
f ) f =

1
δ 2

[
R1
( 1

2ε
(h2−1)+ ε

1
h

q2)]
|x=0

+
1
δ

q̇− ε

δ 2

q2

1+ ε f
,

from which the result follows.

Using once again the lemma to replace R0∂x by R1∂x in (26), it follows from the above that the
dimensionless Boussinesq equations (24) with initial and boundary conditions (23) can be equivalently
written under the form {

∂tζ +∂xq = 0,

∂tq+∂xR1f(ζ ,q) = Q(q, f , f̈ ,ζ ,q)exp
(
− x

δ

)
,

(28)

where q= q|x=0 and f(ζ ,q) is the flux in the momentum equation for the nonlinear shallow water equations
(1) in dimensionless variables,

f(ζ ,q) :=
1

2ε
(h2−1)+ ε

1
h

q2,

and

Q(q, f , f̈ ,ζ ,q) =
ε

δ

q2

1+ ε f
+δ f̈ +

1
δ
(1+

ε

2
f ) f − 1

δ
R1f(ζ ,q), (29)

with the initial data
(ζ ,q)(t = 0,x) = (ζ 0,q0)(x) (30)
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12 D. Lannes, L. Weynans

and the boundary condition
ζ (t,x = 0) = f (t). (31)

Recalling that by definition of R1, the trace of ∂xR1f vanishes at x = 0, one can take the trace at x = 0 in
the second equation in (28) to obtain the following evolution equation on q = q|x=0 ,

q̇ = Q(q, f , f̈ ,ζ ,q). (32)

This relation has to be compared to (19) in the hyperbolic case, where q is given in terms of f = ζ|x=0
and the trace of the outgoing Riemann invariant R−. The mechanisms that allow to express q in terms of
f and interior values of ζ and q are therefore completely different in the hyperbolic and in the dispersive
cases: in the former, the decomposition into Riemann invariants is used to propagate information from
the interior domain, while in the latter, this is done by using the non local nature of the operator R1.

3.3 Well-posedness of the initial boundary value problem
As said in the introduction, very few results exist regarding the local well-posedness result for Boussinesq
systems, except in some special cases such as [3, 25]. To our knowledge, no result exist so far for the
Abbott-Boussinesq system considered here. Our reformulation (28)-(30) of this IBVP allows an easy
proof of local well-posedness since it forms a simple ODE on (ζ ,q) (here again, this is in strong contrast
with the hyperbolic case where, of course, the equations cannot be put recast as an ODE).

Theorem 1. Let f ∈C2(R+), n ≥ 1 and (ζ 0,q0) ∈ Hn(R+)×Hn+1(R+) be such that inf(1+ ζ 0) > 0.
Then there exist T > 0 and a unique solution (ζ ,q) ∈C1([0,T ];Hn(R+)×Hn+1(R+)) to (28)-(30).
If moreover ζ 0

|x=0
= f (0) and−∂xq0

|x=0
= ḟ (0), then the boundary condition (31) is also satisfied for all

times.

The existence time furnished by the theorem depends on ε and µ . The relevant time scale for the
existence of the solution is O(1/ε) in the case of the full line [2, 16]. Proving that such a time scale
is also achieved in our case would require much more effort and an in depth analysis of the dispersive
boundary layer together with additional compatibility conditions. Such a study is performed in [11] in
the related problem of waves interaction with a floating object in the Boussinesq regime.

Proof. To prove the first part of the theorem, it is enough to prove that (28)-(30) is actually an ODE on
Hn(R+)×Hn+1(R+) meeting the requirements of the Cauchy-Lipschitz theorem.
With U = (ζ ,q)T we can write the equations under the form

∂tU = F (t,U) with F (t,U) =

(
−∂xq

−∂xR1f(ζ ,q)+Q(q, f , f̈ ,ζ ,q)exp(− x
δ
)

)
.

By standard product estimates, (ζ ,q) ∈ Hn ×Hn+1 7→ f(ζ ,q) ∈ Hn is regular in a neighborhood of
(ζ 0,q0); moreover, ∂xR1 maps Hn into Hn+1 by definition of R1. It follows easily that F (t,U) is con-
tinuous and locally Lipschitz with respect to the second variable, so that we can apply Cauchy-Lipschitz
theorem.
We now need to check that ζ (t,0) = f (t) for all time. In order to do so, one computes from the first
equation in (28) that ∂ 2

t ζ =−∂t∂xq. Using the second equation to compute ∂t∂xq and taking the trace at
x = 0 one gets (proceeding as in the proof of Proposition 3.2) that

d2

dt2 (ζ|x=0) = f̈ .

Since by assumption ζ|x=0(0) = f (0) and d
dt (ζ|x=0)(0) = −∂xq0(0) = ḟ (0), we deduce that ζ|x=0 = f for

all time.
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Generating boundary conditions for a Boussinesq system 13

3.4 Discretization of the equations
The goal of this section is to derive a numerical scheme to solve the initial boundary value problem
(28)-(31).

3.4.1 A discrete version of the operators R1 and R1

We still denote by R1 the discrete inverse of the operator (1− µ

3 ∂ 2
x ) with homogeneous Neumann condi-

tion at the boundary. We use here a standard centered second order finite difference approximation for
the discretization of ∂ 2

x . More precisely, if F = ( fi)i≥1, we denote by R1F the vector R1F = V where
V = (vi)i≥1 is given by the resolution of the equations

vi−
µ

3
vi+1−2vi + vi−1

δ 2
x

= fi, i≥ 2

while, for i = 1 the Neumann boundary condition is taken into account as follows,

v1−
µ

3
v2− v1

δ 2
x

= f1.

Similarly, we still denote by R1 the discrete version of the boundary operator R1, naturally defined by the
second order approximation

R1F = v1.

3.4.2 A finite volume scheme with nonlocal flux

We first rewrite (28) in the condensed form

∂tU +∂x
(
Fµ(U)

)
= S (33)

with U = (ζ ,q)T and
Fµ(U) =

(
q, fµ(U)

)T
, (34)

and where
fµ(U) = R1f(U) and f(U) :=

1
2ε

(h2−1)+ ε
1
h

q2,

(f(U) is the flux in the momentum equation for the nonlinear shallow water equations (1) in dimensionless
variables). The flux in (33) is therefore a nonlocal operator with respect to U . The source term S in (33)
is given by

S =

(
0

Q(q, f , f̈ ,ζ ,q)exp(− x
δ
)

)
, (35)

where we recall that Q(q, f , f̈ ,ζ ,q) is defined in (29).
Using a finite volume type discretization for the (33) and a standard Euler scheme for the ODE on q, we
obtain the following general discretization of the Boussinesq system (28),

Un+1
i −Un

i
δt

+
1
δx
(Fn

µ,i+1/2−Fn
µ,i−1/2) = Sn

i , i≥ 1, n≥ 1, (36)

where Un = (ζ n,qn) = (ζ n
i ,q

n
i )i≥1 and the source term Sn

i is being given by

Sn
i =

(
0

Q(qn
0, f n, f̈ n,ζ n,qn)exp(− xi

δ
)

)
(37)
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14 D. Lannes, L. Weynans

(note that the definition for the discretized version of Q can straightforwardly be deduced from (29)
along the lines of §3.4.1; see also Remark 3.4.2 below). The source time involves the quantity qn

0 which
cannot be computed by induction through (36) since in (36), one assumes that j ≥ 1. However, a direct
discretization of (32) yields

qn+1
0 −qn

0
δt

= Q(qn
0, f n, f̈ n,ζ n,qn) n≥ 1. (38)

It remains of course to explain how to compute the discrete fluxes Fµ,i+1/2. As above for the nonlinear
shallow water equations, we consider here the simplest case of the Lax-Friedrichs scheme where the
discrete flux is given by

Fn
µ,i−1/2 =

1
2
(Fn

µ,i +Fn
µ,i−1)−

δt

2δx
(Un

i −Un
i−1), (39)

where we write, when i≥ 1,

Fn
µ,i =

(
qn

i , f
n
µ,i
)

with fnµ := R1
(
f(Un

i )
)

i≥1, (40)

the discrete operator R1 being constructed as in §3.4.1.
When i = 0, this definition is naturally adapted as follows,

Fn
µ,0 =

(
qn, fnµ,0

)
with fnµ,0 := R1

(
f(Un

i )
)

i≥1, (41)

the discrete boundary operator R1 being constructed as in §3.4.1 while qn is provided by the second
equation in (36).

The quantity Q(qn
0, f n, f̈ n,ζ n,qn) that appears in the right-hand-side of the momentum equation in

(36) and in the discrete ODE (38) for qn
0 can be written using the notation (41) as

Q(qn
0, f n, f̈ n,ζ n,qn) =

ε

δ

(qn
0)

2

1+ ε f n +δ f̈ n +
1
δ
(1+

ε

2
f n) f n− 1

δ
fnµ,0.

All these quantities are already known so that handling generating boundary condition can be done with
no extra computational cost compared to, say, periodic boundary conditions.

4 Numerical validations

4.1 The validation method
Since the implementation of reflecting or periodic boundary conditions does not raise any problem for the
Boussinesq equations (24) we compute first a solution UL of the equations under consideration in a larger
domain [−L,L] until a final time Tf , with reflective or periodic boundary conditions at both extremities,
and with a non trivial initial condition. We then define a reference solution as the restriction of UL on
[0,L], and a boundary data f as

U ref = (ζ ref,qref) :=UL
|[0,L] and f (t) :=UL(t,x = 0).

We then use the scheme presented in §3.4 to compute the solution U of the Boussinesq system (24) with
initial data U0(x) =U ref(t = 0,x) and boundary data f , and compare it with the reference solution U ref.
We define in particular the relative errors eζ

δx
(t) and eq

δx
(t) as

eζ

δx
(t) =

‖ζ (t, ·)−ζ ref(t, ·)‖L∞(0,L)

‖ζ L(t = 0, ·)‖L∞(−L,L)
,eq

δx
(t) =

‖q(t, ·)−qref(t, ·)‖L∞(0,L)

‖qL(t = 0, ·)‖L∞(−L,L)
, (42)
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Generating boundary conditions for a Boussinesq system 15

and we compute the overall errors eζ

δx
and eq

δx
on [0,Tf ] as

eζ

δx
= ‖eζ

δx
(.)‖L∞(0,Tf ), eq

δx
= ‖eq

δx
(.)‖L∞(0,Tf ).

The convergence order p is computed using the numerical errors for two different space steps δ 1
x and δ 2

x
with the formula

p = ln(
eδ 1

x

eδ 2
x

)/ ln(
δ 1

x

δ 2
x
).

We choose δ 1
x equal to the coarsest space step and δ 2

x successively equal to the other space steps.

4.2 Propagation of gaussian initial conditions

We recall that the Boussinesq equations (24) are derived under the smallness assumption (25) on ε and
µ . We consider here the approximation error in different cases,

(I) ε = µ = 0.3, (II) ε = µ = 0.1, (III) ε = µ = 0.01,

the nonlinear and dispersive effect become more important when ε and µ respectively become larger.
The initial condition for UL in the larger domain is

ζ
L(t = 0,x) = e−6(x+0.1L)2

+ e−6(x−0.3L)2
; (43)

qL(t = 0,x) = e−6(x+0.1L)2 − e−6(x−0.3L)2
; (44)

The reference solution is computed with the Lax-Friedrichs scheme on the domain [−L,L], with a
very refined mesh: nx = 3600, and a time step δt = 0.9δx in agreement with the CFL condition computed
from the approximated velocities of the Riemann invariants. We take L = 5. We compute the numerical
solution on coarser meshes in the domain [0,L], with the Lax-Friedrichs scheme. The meshes are defined
so that the points of the coarse meshes always coincide with the points of the finer mesh. The boundary
conditions at x = 0 are taken into account by imposing the reference solution and its second-order time
derivative approximated with the classical centered second-order scheme.

As the initial condition is zero near the boundaries of the large domain, no special effort is necessary
for the computation with the coarse mesh at the right boundary x = L if the final time of the simulation
is not too large. We shall compare the solution over a time interval t ∈ [0,2]. The qualitative behavior of
the solution is the following: each of the two gaussians decomposes into two waves roughly travelling at
speed 1 and −1 respectively. The gaussian located on the left being closer to the boundary x = 0 of the
small domain, this configuration is rich enough to contain the three main relevant cases,

1. The forcing f corresponds to an essentially incoming wave. This is the situation that occurs for
t ∼ 0.1 (see Figure 1 left)

2. The forcing f corresponds to the superposition of an outgoing and an incoming wave. This is the
situation that occurs for t ∼ 1 (see Figure 1 middle)

3. The forcing f corresponds to an essentially outgoing wave. This is the situation that occurs for
t ∼ 1.5 (see Figure 1 right)

Numerical results for the initial condition (43)-(44) are presented in Table 1. A first-order convergence
in space is observed for both variables.
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16 D. Lannes, L. Weynans

δx eζ

δx
order eq

δx
order

5/90 2.26 ×10−1 - 2.15 ×10−1 -
5/120 1.87 ×10−1 0.67 1.66 ×10−1 0.89
5/150 1.57 ×10−1 0.71 1.35 ×10−1 0.91
5/180 1.36 ×10−1 0.74 1.13 ×10−1 0.92
5/200 1.24 ×10−1 0.75 1.02 ×10−1 0.93
5/300 8.45 ×10−2 0.82 6.67 ×10−2 0.97
5/360 6.97 ×10−2 0.85 5.45 ×10−2 0.99

Table 1: Convergence results for Boussinesq equations, µ = ε = 0.3

δx eζ

δx
order eq

δx
order

5/90 1.51 ×10−1 - 2.40 ×10−1 -
5/120 1.20 ×10−1 0.78 1.88 ×10−1 0.85
5/150 9.96 ×10−2 0.82 1.55 ×10−1 0.85
5/180 8.44 ×10−2 0.84 1.31 ×10−1 0.87
5/200 7.66 ×10−2 0.85 1.19 ×10−1 0.88
5/300 5.17 ×10−2 0.89 7.97 ×10−2 0.91
5/360 4.28 ×10−2 0.91 6.56 ×10−2 0.93

Table 2: Convergence results for Boussinesq equations, µ = ε = 0.1

δx eζ

δx
order eq

δx
order

5/90 9.30 ×10−2 - 2.57 ×10−1 -
5/120 7.27 ×10−2 0.86 1.98 ×10−1 0.90
5/150 5.85 ×10−2 0.91 1.60 ×10−1 0.92
5/180 4.92 ×10−2 0.92 1.34 ×10−1 0.94
5/200 4.43 ×10−2 0.93 1.20 ×10−1 0.95
5/300 2.93 ×10−2 0.96 7.86 ×10−2 0.98
5/360 2.41 ×10−2 0.97 6.43 ×10−2 1.00

Table 3: Convergence results for Boussinesq equations, µ = ε = 0.01
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Generating boundary conditions for a Boussinesq system 17

Figure 1: Numerical results on large domain with δx = L/400, with L = 5, µ = ε = 0.3, at times T =
0.1,1.,1.5.

4.3 Soliton propagation
We test here our scheme on the propagation of a solitary wave, which involves both nonlinear and disper-
sive effects. The soliton for the non-linear Boussinesq system (24) is not explicit, but we compute it by
solving numerically a second-order differential equation that we obtain as follows. We look for a solution
of the non-linear Boussinesq equations such that ζ (x, t) = ζ̃ (x−ct) and q(x, t) = q̃(x−ct). We inject this
form in the first equation of (24) and find, omitting the tilde symbol for the sake of brevity

q′ = cζ
′.

Then we inject this relationship in the second equation of (24), and we can write

−c2 ζ

1+ εζ
−ζ +

c2 µ

6
ζ
′′+

ε2 ζ 2 +2ε ζ

2ε
= 0. (45)

Multiplying this equation by ζ and imposing that ζ tends to zero when x tends to ±∞, we obtain

−c2

ε

(
ζ − ln(1+ εζ )

ε

)
+

c2µ

6
(ζ ′)2 +

ε

2
ζ 3

3
+

ζ 2

2
= 0.

Denoting ζmax the maximum value of ζ we can compute c as a function of ζmax and ε .

c2 = ε

εζ 3
max
6 + ζ 2

max
2

ζmax− ln(1+εζmax)
ε

.

Once c is computed, we solve the differential equation (45) with a high order numerical method in order
to obtain our reference solution. We choose ζmax = 1 and µ = ε = 0.3 or 0.1. We have checked that if we
solve the Boussinesq system with this reference solution as an initial condition, with the Lax-Friedrichs
scheme and periodic boundary conditions, then after one period the numerical result is the same as the
initial condition up to first order accuracy.

To test the imposition of the generating boundary condition we compute the numerical solution of the
soliton on the small domain [0,L] with L = 10. We use the Lax-Friedrichs scheme and a constant time
step δt = 0.8δx for µ = ε = 0.3, and δt = 0.9δx for µ = ε = 0.1, taking into account the values of the
approximated eigenvalues.

The maximum of the soliton is initially located on the left of the computational domain, at x =−L/2,
so that the initial condition in the small domain is almost zero, and then the soliton propagates inside it.

RR n° 9248



18 D. Lannes, L. Weynans

The boundary conditions on the left boundary of the small domain are taken into account by imposing the
reference solution and its second-order time derivative approximated with the classical centered second-
order scheme. As the initial condition is zero near the right boundary x = L, no special effort is necessary
for the computation at this boundary if the final time of the simulation is not too large. The values of ζ

in the small domain at the final time for the reference solution and the numerical solution are plotted on
Figure 2. The numerical results presented in Tables 4 and 5 show a first-order convergence.

Figure 2: Comparison between reference solution and numerical result for ζ on the small domain at final
time, δx = L/200 with L = 10, left: µ = ε = 0.3, right: µ = ε = 0.1.

δx eζ

δx
order eq

δx
order

10/100 4.86 ×10−2 - 5.40 ×10−2 -
10/200 2.74 ×10−2 0.82 3.04 ×10−2 0.83
10/400 1.51 ×10−2 0.84 1.67 ×10−2 0.85
10/800 8.02 ×10−3 0.87 8.88 ×10−3 0.87

10/1200 5.47 ×10−3 0.88 6.09 ×10−3 0.88

Table 4: Convergence study for the soliton case, L∞ error after propagation over a distance L, µ = ε = 0.3

δx eζ

δx
order eq

δx
order

10/100 4.20 ×10−2 - 4.36 ×10−2 -
10/200 2.53 ×10−2 0.73 2.61 ×10−2 0.74
10/400 1.44 ×10−2 0.77 1.49 ×10−2 0.78
10/800 7.81 ×10−3 0.81 8.10 ×10−3 0.81

10/1200 5.38 ×10−3 0.83 5.58 ×10−3 0.83

Table 5: Convergence study for the soliton case, L∞ error after propagation over a distance L, µ = ε = 0.1

4.4 Sinusoidal boundary condition
We first compute a numerical solution UL with a very refined mesh (nx =3600) on a larger domain [−L,L],
with L = 10, with the Lax-Friedrichs scheme and a time step δt = 0.9δx The initial condition for UL in
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Generating boundary conditions for a Boussinesq system 19

the larger domain is

ζ
L(t = 0,x) = 0; (46)

qL(t = 0,x) = 0, (47)

and we impose until the final time Tf = 15 the generating boundary condition

ζ (t,x =−L) = sin(2πt/5).

We define the reference solution on the slightly smaller domain [−0.8L,L]

U ref = (ζ ref,qref) :=UL
|[−0.8L,L]

and f (t) :=UL(t,x =−0.8L).

Then we compute a solution with coarse meshes on this smaller domain [−0.8L,L] The boundary
conditions at x = −0.8L are taken into account by imposing the reference solution and its second-order
time derivative approximated with the classical centered second-order scheme. No special effort is nec-
essary for the computation with the coarse mesh at the right boundary x = L until the final time Tf = 15.
The values of q in the small domain at the final time for the reference solution and the numerical solution
are plotted on Figure 3. Because there is numerical dissipation, the numerical solution has a smaller
amplitude than the reference solution after some time of propagation inside the small domain, but both
solutions coincide well near the left boundary. The error between the reference solution and the solution
on the coarse mesh is computed near the left boundary on the interval [−0.8L,−0.6L] in order to mea-
sure the error due to the generating boundary condition rather than the dissipation error inherent to the
Lax-Friedrichs scheme (which stronger in this numerical test than in the previous ones due to the fact the
the reference solution involves higher frequencies).
The numerical results presented in Tables 6, 7 and 8 show a first-order convergence.

Figure 3: Comparison between reference solution and numerical result for ζ on the small domain at final
time, δx = 2L/150,2L/400,2L/3600 with L = 10, left: µ = ε = 0.3, right: µ = ε = 0.1. (The numerical
solution with δx = 2L/3600 coincide with the reference solution)
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δx eζ

δx
order eq

δx
order

20/100 1.84 ×10−1 - 1.78 ×10−1 -
20/120 1.54 ×10−1 0.97 1.45 ×10−1 1.14
20/150 1.37 ×10−1 0.73 1.21 ×10−1 0.94
20/180 1.22 ×10−1 0.69 1.10 ×10−1 0.83
20/200 1.14 ×10−1 0.69 1.03 ×10−1 0.80
20/300 8.50 ×10−2 0.70 7.70 ×10−2 0.76
20/360 7.31 ×10−2 0.72 6.65 ×10−2 0.77
20/400 6.67 ×10−2 0.73 6.09 ×10−2 0.77
20/600 4.56 ×10−2 0.78 4.19 ×10−2 0.81

Table 6: Convergence study for the sinusoidal boundary condition, L∞ error at final time Tf = 15, µ =
ε = 0.3.

δx eζ

δx
order eq

δx
order

20/100 2.06 ×10−1 - 1.84 ×10−1 -
20/120 1.76 ×10−1 0.87 1.56 ×10−1 0.93
20/150 1.45 ×10−1 0.87 1.27 ×10−1 0.92
20/180 1.24 ×10−1 0.86 1.08 ×10−1 0.92
20/200 1.131 ×10−1 0.86 9.79 ×10−2 0.91
20/300 8.16 ×10−2 0.84 7.08 ×10−2 0.87
20/360 7.20 ×10−2 0.82 6.24 ×10−2 0.84
20/400 6.65 ×10−2 0.81 5.77 ×10−2 0.84
20/600 4.68 ×10−2 0.83 4.06 ×10−2 0.84

Table 7: Convergence study for the sinusoidal boundary condition, L∞ error at final time Tf = 15, µ =
ε = 0.1.

δx eζ

δx
order eq

δx
order

20/100 2.03 ×10−1 - 2.00 ×10−1 -
20/120 1.62 ×10−1 1.22 1.60 ×10−1 1.23
20/150 1.25 ×10−1 1.19 1.23 ×10−1 1.20
20/180 1.00 ×10−1 1.20 9.87 ×10−2 1.20
20/200 8.92 ×10−2 1.18 8.78 ×10−2 1.19
20/300 5.64 ×10−2 1.16 5.54 ×10−2 1.17
20/360 4.61 ×10−2 1.16 4.52 ×10−2 1.16
20/400 4.11 ×10−2 1.15 4.04 ×10−2 1.15
20/600 2.94 ×10−2 1.08 2.64 ×10−2 1.13

Table 8: Convergence study for the sinusoidal boundary condition, L∞ error at final time Tf = 15, µ =
ε = 0.01.
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