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Higher-order distributions for differential linear logic ‹

Marie Kerjean1 and Jean-Simon Pacaud Lemay2

1 Équipe Gallinette, INRIA, LS2N, Nantes, France. marie.kerjean@inria.fr
2 University of Oxford jean-simon.lemay@kellogg.ox.ac.uk

Abstract. Linear Logic was introduced as the computational counterpart of the
algebraic notion of linearity. Differential Linear Logic refines Linear Logic with
a proof-theoretical interpretation of the geometrical process of differentiation. In
this article, we construct a polarized model of Differential Linear Logic satisfying
computational constraints such as an interpretation for higher-order functions, as
well as constraints inherited from physics such as a continuous interpretation for
spaces. This extends what was done previously by Kerjean for first order Differ-
ential Linear Logic without promotion. Concretely, we follow the previous idea
of interpreting the exponential of Differential Linear Logic as a space of higher-
order distributions with compact-support, which is constructed as an inductive
limit of spaces of distributions on Euclidean spaces. We prove that this expo-
nential is endowed with a co-monadic like structure, with the notable exception
that it is functorial only on isomorphisms. Interestingly, as previously argued by
Ehrhard, this still allows the interpretation of differential linear logic without pro-
motion.

Keywords: Differential Linear Logic · Categorical semantics · Topological vec-
tor spaces.

1 Introduction

Denotational semantics interprets programs as functions which focuses not on how data
from these programs are computed, but rather focusing on the input/output of programs
and on data computed from other data [19]. Through the Curry-Howard-Lambek cor-
respondence, this approach refines into the categorical semantics of type systems. In
particular, a study of the denotational model of the λ-calculus for coherent spaces led
Girard to Linear Logic [9] and the understanding of the use of resources as the com-
putational counterpart of linearity in algebra. Differential Linear Logic (DiLL) [7] is a
refinement of Linear Logic which allows for a notion of linear approximation of non-
linear proofs. As a proof-net calculus, DiLL originated from studying vectorial models
of Linear Logic which in general are based on spaces of sequences, such as Köthe
spaces and finiteness spaces [5].

Recently the first author argued in [14] that as a sequent calculus DiLL has a
“smooth" semantical interpretation where the exponential ! (the central object of Linear
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Logic) is interpreted as a space of distributions with compact support [18]. This seman-
tical interpretation of DiLL (along with the Linear Logic typed phenomena of duality
and interaction) provides a strong argument that DiLL should be considered as a foun-
dation for a type theory of differential equations, whose semantics would be based on
structures developed for mathematical physics. However one of the many divergences
between the theoretical study of physical systems and the theoretical study of program-
ming languages lies in the treatment of input data. In the study of differential equations,
one generally only accepts a finite number of parameters: typically time and space [1].
While one of the fundamental aspects of the semantics of functional programming lan-
guages is the concept of higher-order types [4], which in particular allows programs
to take other other programs as inputs. Linking these two concepts together requires
that when mathematical physics studies functions with finite dimensional domains, the
denotational semantical counterpart will be studying functions whose codomains are
spaces of functions (which are in general far from being finite dimensional).

This article gives a higher-order notion of distributions with compact support, fol-
lowing the model without higher order constructed by the first author in [14]. Indeed,
only functions whose domains are finite dimensional were defined in [14], while no
interpretation was given for functions whose domains are spaces of smooth functions.
This latter notion relies on the basic intuition that even with a continuous and infinite
set of input data, a program will at each computation use only a finite amount of data.

Content and related work In this paper, we interpret the exponential as an inductive
limit of spaces of distributions with compact support (Definition 7). Non-linear proofs
are thus interpreted as elements of a projective limit of spaces of smooth functions. In
[3], Blute, Cockett, and Seely construct a general interpretation of an exponential as
a projective limit of more basic spaces. In [13], Kriegl and Michor construct the free
C8-ring over a set X (thus a space of smooth functions) as a projective limit of spaces
of smooth functions between Euclidean spaces. Our work thus differs on the fact that
we reverse the use of projective and inductive limits for defining the exponential and
that we use a finer indexation than the indexation used in [3, 13]. The reverse use of
limits compared to the literature is motivated by the fact that we are cautious about
polarities [16], while the finer indexing is for topological considerations. Indeed, we
need to carefully consider the functoriality of the exponential and the topology on the
objects.

Context Differential Linear Logic (DiLL) is a sequent calculus enriching Linear Logic
(LL) with the possibility of linearizing proofs. This linearization is semantically under-
stood as the differentiation at 0. Motivated by the need to explore the similarities be-
tween the differential structures inherited from logic and those inherited from physics,
one would like to interpret formulas of DiLL by general topological vector spaces and
non-linear proofs by smooth functions. The interpretation of the involutive linear nega-
tion of DiLL leads to the requirement of reflexive topological vector spaces, that is,
topological vector spaces E such that LpLpE,Rq,Rq » E, otherwise expressed as
E2 » E. In [14], the first author argued that in a classical smooth-linear setting, the
exponential ! should be interpreted as a space of distributions with compact support
[18], that is, !E :“ C8pE,Rq1. The first author also showed that this defines a strong
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monoidal functor ! from the category of Euclidean vector spaces to the category of re-
flexive locally convex and Hausdorff vector spaces. As reflexive spaces typically do not
form a ˚-autonomous category (or even a monoidal closed category), in [14] the first
author constructs a polarized model of DiLL structured as chirality [17]. This polar-
ized structure is also necessary here. In section 5, formulas of DiLL0 are interpreted in
two different categories, depending on whether they interpret a positive or a negative
formula.

Main content In this paper we construct an interpretation for the exponential ! (Defini-
tion 10) which is strong monoidal (Theorem 3). The exponential constructed in this
paper is a generalization of the compact-support exponential from [14]. Explicitly,
for a reflexive space E, the exponential !E is defined as the inductive limit of spaces
C8pRn,Rq1, indexed by linear continuous functions f : Rn ( E (Definition 7),

!E :“ lim
ÝÑ

f :Rn(E

C8pRn,Rq1.

We also consider the "why not" connective ? (Definition 9) where for a reflexive space
E, ?E is interpreted as the space of smooth scalar functions onE, C8pE,Rq. Explicitly,
being the dual of !E, ?E is the projective limit of spaces C8pRn,Rq, indexed by the
injective linear continuous functions f : Rn ( E1 (Proposition 4),

?E :“ lim
ÐÝ

f :Rn(E1

C8pRn,Rq.

An important drawback of this work is that the functoriality of ! is ensured only on
isomorphisms, that is, ! is an endofunctor on the category REFLiso of reflexive spaces
and isomorphisms between them. We use a technique developed by Ehrhard in [6] to
show that this still provides a model of finitary Differential linear logic (DiLL0), that
is, DiLL without the promotion rule. We also discuss how this construction also leads
to a polarized model of DiLL0 (Section 5).

Organization of the paper Section 2 gives an overview of the development in DiLL
which led to this paper and gives some background in functional analysis. In section 3
we discuss higher-order functions and distributions, and prove strong monoidality. Sec-
tion 4 provides the interpretation of the dereliction and codereliction and the bialgebraic
structure of the exponential. Finally in Section 5 we discuss the polarized interpretation
of formulas. We have chosen to put all the proofs but one in the appendix, where some
of the proofs use the combinatorics of the categorical definition of the exponential,
while others employ the theory of locally convex topological vector spaces [12].

Notation In this article, we borrow notation from Linear Logic. In particular, we use
( to distinguish between linear functions and non-linear ones, for example, f : E (
F would be linear continuous while g : E // F would only be smooth. We also
denote elements of !E and ?E, which are index by linear continuous injective indexes
f : Rn ãÑ E, in bold with their indexing in subscript: gf P !E or ff P ?E.
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2 Preliminaries

2.1 Differential Linear Logic and its Semantics

Linear Logic [9] refines Intuitionistic Logic with a linear negation, p´qK, and a notion
of linearity of proofs, (. More precisely, Linear Logic introduces the fundamental
isomorphism between A ñ B, proofs of B from A, and !A ( B, linear proofs of B
from !A the exponential of A. In particular, Linear Logic features a dereliction rule d,
which allows one to consider linear proofs as particular cases of non-linear proofs:

AK $ Γ
d

!pAKq $ Γ

Differential Linear Logic (DiLL) brings a notion differentiation to the picture by intro-
ducing a codereliction rule d̄. By cut-elimination, the codereliction rule allows one to
linearize a non-linear proof:

$ Γ,A
d̄

$ Γ, !A

In Linear Logic, the exponential group also features weakening and contraction
rules. While DiLL adds co-weakening and co-contraction rules, which in the context of
this paper correspond respectively as integration and convolution (see [15] for more de-
tails). DiLL without promotion, or finitary Differential Linear Logic, is denoted DiLL0

and is the original version of Differential Linear Logic by Ehrhard and Regnier [7]. Its
exponential rules for t?, !u can be found in Figure 1. The other rules of DiLL0 corre-
spond to the usual ones for the MALL group tb,`,‘,ˆu. Non-finitary DiLL can be
constructed by adding the promotion rule to DiLL0, which in particular requires functo-
riality of the exponential. Cut-elimination in DiLL and DiLL0 generates sums of proofs
[7], and therefore the categorical interpretation of proofs must be done in a category
enriched over commutative monoids.

$ Γ
w

$ Γ, ?E

$ Γ, ?E, ?E
c

$ Γ, ?E

$ Γ,E
d

$ Γ, ?E

$ Γ
w̄

$ Γ, !E

$ Γ, !E $ ∆, !E
c̄

$ Γ,∆, !E

$ Γ,E
d̄

$ Γ, !E

Fig. 1: Exponential rules of DiLL0

Following Fiore’s definition in [8], a categorical model of DiLL is an extension of
Seely’s axiomatization of categorical models of Linear Logic [20]. Explicitly a model
of DiLL consists of a ˚-autonomous category pL,b, 1, p_q˚q with a finite biproduct
structure ˆ with zero object 0, a strong monoidal comonad ! : pL,ˆ, 0q // pL,b, 1q,
and a natural transformation d̄ : idL ñ !, called the codereliction operator, which
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interprets differentiation at zero. A particular important coherence for the codereliction
is that composing the co-unit of the co-monad d : ! ñ idL with d̄ results in the identity
(the top left triangle of Definition 1). Intuitively, this means that differentiating a linear
map results in the same linear map.

Working without promotion The special particularity of our work is that we do not
interpret promotion and thus only obtain a denotational model of DiLL0 but not of
DiLL. The main reason for this is that in the formula

E 1pEq :“ lim
ÝÑ

f :Rn(E

E 1f pRnq,

injectivity of the indexes f : Rn ( E is needed to have a well-defined order to prop-
erly define an inductive limit (Definition 6). Therefore the exponential constructed in
this paper cannot be functorial with respect to every linear continuous morphism in
TOPVEC. In the construction of the exponential, one needs to compose injective in-
dexes f with maps ` of the category (resp. their dual `1), and these composition ` ˝ f
(resp. `1 ˝ g) are required to again be injective. As shown by Treves [21, Chapter 23.2],
`1 is injective if and only if ` has a dense image. Therefore we have no choice but to
ask for isomorphisms and thus we obtain an endofunctor on REFLiso, the category of
reflexive spaces and linear continuous isomorphisms between them.

Models of DiLL0 in which promotion is not necessarily interpreted were studied
by Ehrhard in his survey on Differential Linear Logic [6]. He introduces exponential
structures which provides a categorical setting which differs from the traditional ax-
iomatization of Seely’s models.

Definition 1. [6, Section 2.5] Let L be pre-additive ˚-autonomous category (i.e. a com-
mutative monoid enriched ˚-autonomous category [6, Section 2.4]) and let Liso be the
wide subcategory of L with only isomorphisms as morphisms. An exponential structure
on a L is as tuple p!, w, c, w̄, c̄, d, d̄q consisting of an endofunctor ! : Liso // Liso, and
families of morphisms of L (not necessarily of Liso) indexed by the objects of L:

wA : !A // 1 cA : !A // !Ab !A w̄A : 1 // !A c̄A : !Ab !A // !A

dA : !A //A d̄A : A // !A

which are natural for morphisms of Liso, and such that for each objectA, p!A,wA, cA, w̄A, c̄Aq
is a commutative bialgebra in L, and that the following diagrams to commute:

E

!E

E

d̄

d

Id

E

!E

1

d̄

w

0

E

!E

!Eb!E

d̄

c

d̄b w̄ ` w̄ b d̄
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E

!E

1

d

w̄

0

!Eb!E

!E

E

c̄

d

db w ` w b d

The above commutative diagrams allow for a direct interpretation of the cut-elimination
process of DiLL0. Ehrhard shows in particular that the interpretation of the structural
and co-structural rules of DiLL0 only needs the functoriality of the exponential on the
isomorphisms [6, Section 2.5]. Indeed, in a classical model of DiLL (that is a model
in which the interpretation of the linear negation is involutive) functoriality on isomor-
phisms is needed to guaranty the duality between ? and !. Otherwise, the structural
exponential rules are interpreted by natural transformations c, c̄, w, w̄, d, and d̄. These
natural transformations can be constructed as in [8], following a co-monadic structure
p!A,wA, µAq on each object !A [7, Section 2.6]. To sum up:

Functorality of the exponential on isomorphisms is needed for duality but is not
needed to interpret finitary proofs as morphisms of a category.

That we have a model of DiLL0 and not of DiLL fits well with our motivation, as
we are looking for the computational counterpart of type theories modeled by analysis.
DiLL0 is indeed the sequent calculus which is refined into an understanding of Linear
Partial Differential Equations in [14] and the meaning of promotion with respect to
differential equations remains unclear. However, we are still able to construct a natural
promotion-like morphism for our exponential (Definition 13).

2.2 Reflexive spaces and distributions

In this paper, we study and use the theory of locally convex topological vector spaces
[12] to give concrete models of DiLL. Topological vector spaces are a generalization
of normed spaces or metric spaces, in which continuity is only characterized by a col-
lection of open sets (which may not necessarily come from a metric or a norm). In
this section, we highlight some key concepts which hopefully will give the reader a
better understanding of the difficulties of constructing models of DiLL using smooth
spaces. We refer respectively to [12] or [18] for details on topological vector spaces or
distribution theory.

By a locally convex topological vector space (lcs), we mean a locally convex and
Hausdorff topological vector space on R. Briefly, these are vector space endowed with
a topology generated by convex open subsets such that the scalar multiplication and the
addition are both continuous. For the rest of the section, we consider E and F two lcs.

Definition 2. Denote E „ F for a linear isomorphism between E and F as R-vector
spaces, and E » F for a linear homeomorphism between E and F as topological
vector spaces.

Definition 3. Denote LbpE,F q as the lcs of all linear continuous functions between E
and F , which is endowed with the topology of uniform convergence on bounded subsets
[12] of E. When F “ R, we denote E1 “ LbpE,Rq and is called the strong dual of E.
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Definition 4. Let δ : E // E2 be the transpose of the evaluation map in E1, which is
explicitly defined as follows:

δ :

"

E // E2

x ÞÑ δx : pf // fpxqq

A lcs E is said to be semi-reflexive if δ is a linear isomorphism, that is, E „ E2. A
semi-reflexive lcs E is reflexive when δ is a linear homeomorphism, that is, E » E2.

The following proposition is crucial to the constructions of this paper. In terms of
polarization, it shows how semi-reflexivity is a negative construction, while reflexivity
mixes positives and negative requirements.

Proposition 1. [12, Chapter 11.4]
– Semi-reflexivity is preserved by projective limits, that is, the projective limit of semi-

reflexive lcs is a semi-reflexive lcs.
– A lcs E is reflexive if and only if it is semi-reflexive and barrelled, meaning that

every convex, balanced, absorbing and closed subspace ofE is a 0-neighbourhood.
– Barrelled spaces are preserved by inductive limits, that is, the inductive limit of

barrelled spaces is a barrelled space.

Next we briefly recall a few facts about distributions.

Definition 5. For each n P N, a function f : Rn // R is said to be smooth if it
is infinitely differentiable. Let EpRnq “ C8pRn,Rq denote the space of all smooth
functions f : Rn //R, and which is endowed with the topology of uniform convergence
of all differentials on all compact subsets of Rn [12]. The strong dual of EpRnq, E 1pRnq,
is called the space of distributions with compact support.

We now recall the famous Schwartz kernel theorem, which states that the construction
of a kernel of f b g P E pRnq b E pRmq ÞÑ f ¨ g P E pRn`mq is in fact an isomorphism
on the completed tensor product E pRnqb̂E pRmq:

Theorem 1 ([18]). For any n,m P N, we have the following:

E 1pRmqb̂πE 1pRmq » E 1pRn`mq » LbpE 1pRmq, EpRnqq

Theorem 2 ([14]). There is a first-order polarized denotational model of DiLL0 in
which the exponential is interpreted as a space of distributions: !pRnq :“ E 1pRnq.

This interpretation did not generalize to higher-order as we were unable to define
!E for an infinite dimensional spaceE, even for those sharing the topological properties
of spaces of smooth functions3. For example, the definition of !!R is in no way obvious.
This is the problem we tackle in the following sections.

3 These spaces are in particular nuclear (F)-spaces, see [14].
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3 Higher-order distributions and Kernel

In this section we define spaces of higher-order functions and distributions, we prove
that they are reflexive (Proposition 2) and verify a kernel theorem (Theorem 3).

Definition 6. Let E be a lcs and f : Rn ãÑ E and g : Rm ãÑ E be two linear con-
tinuous injective functions . We say that f ď g when n ď m and f “ g|Rn , that is,
f “ g ˝ ιn,m where ιn,m : Rn // Rm is the canonical injection.

The ordering ď in the above definition provides an order on the set of dependent
pairs pn, fq where n P N and f : RN ãÑ E is linear injective. This will allow us to
construct an inductive limit (a categorical colimit) of lcs.

Definition 7. Let E any lcs.

1. For every linear continuous injective function f : Rn ( E, define the lcs E 1f pRnq
as follows:

E 1f pRnq :“ C8pRnq1

2. Define E 1pEq, the space of distributions on E, as follows:

E 1pEq :“ lim
ÝÑ

f :Rn(E

E 1f pRnq

that is, the inductive limit [12, Chapter 4.5] (or colimit) in the category TOPVEC
of the family of lcs tE 1f pRnq| f : Rn ( E linear continuous injectiveu directed
under the inclusion maps defined as

Sf,g : E 1gpRnq // E 1f pRmq, φ ÞÑ ph ÞÑ φph ˝ ιn,mqq

when f ď g.

Intuitively this definition of E 1pEq says that distributions with compact support on
E are the distributions with a finite dimensional compact support K Ă Rn.

Proposition 2. For any lcs E, E 1pEq is a reflexive lcs.

The following proposition justifies the notation of E 1pRnq from Definition 5.

Proposition 3. If E » Rn for some n P N, then E 1pEq » C8pRnq1.

As E 1pEq is reflexive, we give a special (yet obvious) notation for the strong dual
of E 1pEq.

Definition 8. For a reflexive lcs E, let E pEq denote the strong dual of E 1pEq.

Since the strong dual of a reflexive lcs is again reflexive [12], it follows by Proposi-
tion 3 that for any reflexive lcs E, E pEq is also reflexive.

The strong dual of a projective limit is linearly isomorphic to the inductive limit of
the duals, however as noted in [12, Chapter 8.8.12], the topologies may not coincide.
When E is endowed with its Mackey topology (which is the case in particular when E
is reflexive), then the topologies do coincide.
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Proposition 4. Let E be a reflexive lcs. For every linear continuous injective function
f : Rn ( E, define the lcs Ef pRnq :“ C8pRnq. Then we have the following linear
homeomorphism:

E pEq » lim
ÐÝ

f :Rn(E

Ef pRnq

where the lcs on the right is the projective limit [12, Chapter 2.6] in TOPVEC of the
family of lcs tEf pRnq| f : Rn ( E linear continuous injectiveu with projections de-
fined as:

Tg,f “ S1f,g : EgpRmq // Ef pRnq, g ÞÑ g ˝ ιn,m
when f ď g.

The elements of f P E pEq are families f :“ pff qf :Rn(E such that if f ď g, we have
that ff “ fg ˝ ιn,m. The intuition here is that distributions of a reflexive lcs E are in fact
distributions with compact support on a finite dimensional space, or equivalently that
smooth functionsE //R are functions which are smooth when restricted to Rn (viewed
as a finite dimensional subspace of E). This makes it possible to define multinomials
on E in the following way:

P px P Rkq “
ÿ

IĂr|1,n|s

aαx
α1

1 . . . x
αI

n
n

where we either embedded or projected Rk into Rn in the canonical way.
It also seems possible to provide a setting restricted specifically to higher order

spaces of distributions and not to every reflexive space. Indeed, we would like to de-
scribe smooth scalar functions on E pRnq as

h P E pRnq ÞÑ hp0q2

taking into account that we have as inputs non-linear functions. This seem to indicate
another direction of research, where we would construct smooth functions indexed by
Dirac functions δ : Rn ( E1 “ E 1pRnq as defined in Definition 4.

The Kernel Theorem We now provide the Kernel theorem for spaces E pEq. Indeed,
the spaces of functions are the one which can be described as projective limits, and pro-
jective limits are the ones which commute with the completed projective tensor product
b̂π . The proof of Theorem 3 can be found in the appendix, though we would like to
highlight that the proof depends heavily on the fact that the considered spaces of func-
tions are nuclear spaces [12].

Theorem 3. For every lcs E and F , we have a linear homeomorphism:

E pEqb̂πE pF q » E pE ‘ F q.

We now give the definitions of functors ? and !, both of which agree with the pre-
vious characterization described by the first author in [14] on Euclidean spaces Rn.
However, as discussed in the introduction, while these functors can be defined properly
on all objects, they will only be defined on isomorphisms. So let REFLiso denote the
category of reflexive lcs and linear homeomorphism between them.
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Definition 9. Define the endofunctor ? : REFLiso // REFLiso as follows:

? :

$

’

&

’

%

REFLiso // REFLiso

E ÞÑ E pE1q

` : E // F ÞÑ ?` : E pE1q // E pF 1q

(1)

where for f P E pE1q, the g : Rm ( F 1 component of ?`pfq P E pF 1q is defined as:

?`pfqg “ f`1˝g

where `1 : F 1 ( E1 denotes the transpose of `.

Note that ?` : E pE1q // E pF 1q is defined by the universal property of the pro-
jective limit, that is, ?` is uniquely defined by post-composing by the projections πg :
E pF 1q // E pRnq for each linear continuous injective function g :( F 1. We also note
that f`1˝g is well-defined since `1 is injective and therefore so is `1 ˝ g. The universality
of the projective limit also insures that ?` is an isomorphism and that ? is functorial.

Definition 10. Define the functor ! : REFLiso // REFLiso on objects as !E :“ p?E1q1

and on isomorphisms as !` “ p?`1q1. Explicitly, ! is defined as follows:

! :

$

’

&

’

%

REFLiso // REFLiso

E ÞÑ E 1pEq

` : E // F ÞÑ !` P E pF 1q

(2)

where for the f : Rn ( E component of f P E 1pEq, !`pff q P E 1pF q is defined as:

!`pff q “ f`˝f :Rn(F

As before, !` is defined by the co-universal property of the inductive limit, that is, !`
is defined by pre-composition with the injections ιf : E 1f pRnq ãÑ E 1pEq for every linear
continuous injective function f : R ( E. Functoriality of ! is ensured by functoriality
of ? and reflexivity of the objects.

4 Structural morphisms on the exponential

We consider the exponential from the DiLL model of convenient vector spaces in [2]
as a guideline for defining the structural morphisms on !E. In that setting, structural
operations can be defined on Dirac operations. For example, the codereliction dconv
maps δx to x. Here the mapping δx must be understood as the linear continuous function
which maps x P E to

`

pff qf P E pE1q ÞÑ fpf´1pxq
˘

P E 1pEq, which we show is well
defined below.
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4.1 Dereliction and co-dereliction

Definition 11. For a reflexive lcs E, define the following linear continuous morphism:

dE :

#

!pEq // E2 » E

φ ÞÑ p` P E1 ÞÑ φpp` ˝ fqf :Rn(E P E pEqq
(3)

We stress that dE is a map in REFL and not a map in REFLiso (though sufficient
for Definition 1). The map dE is well defined as ` ˝ f is a linear continuous injective
function Rn ( R, and thus is smooth and belongs in particular to E pRnq. Also, as we
are working with reflexive spaces, dE could have been described equivalently as a map
of the following type:

E // ?pEq

x ÞÑ pevx ˝ f P LpRn,Rqqf :Rn(E1

(4)

Lemma 1. The morphisms dE are natural with respect to linear homeomorphisms, that
is, maps of REFLiso. Explicitly, if ` : E // F P REFLiso then dF ˝ !` “ ` ˝ dE .

We now study the interpretation of the codereliction d̄. Let D0 : C8pRnq // pRnq1
denote the operator which maps a function to its differential at 0.

D0 :

$

’

&

’

%

C8pRnq // pRnq1

f ÞÑ

˜

v P Rn ÞÑ lim
t // 0

fptxq ´ fp0q

t
“

n
ÿ

i“1

Bf

Bxi
p0qvi

¸

The operator D0 is linear in f P C8pRnq. It is continuous: the reciprocal image
by D0 of the polar B0,1 is the set of all functions f P C8pRnq whose partial deriva-
tives of order one have maximal value 1 on the compact t0u. This contains the set
tf |@i, | Bf

Bxi
p0q| ă 1u, which is open in the topology described in Definition 5.

Definition 12. For a reflexive lcs E, define the following linear continuous morphism:

d̄E :

$

’

&

’

%

E // !E » pE pEqq1

x ÞÑ pff P C8f pRn,Rqqf :Rn(E1 ÞÑ D0ff pf
´1pxqq

where f is injective such that x P Impfq .

(5)

We should explain why the choice of f´1pxq does not matter. Here f´1pxq is the
linear argument of the differentiation. Indeed suppose that f ď g, that is, f “ g ˝ ιn,m.
Thus by definition of the projective limit we have ff “ fg ˝ ιn,m and:

D0ff pf
´1pxqq “ D0pfg ˝ ιn,mqppg ˝ ιn,mq

´1pxqq

“ D0fgpD0ιn,mpι
´1
n,mpg

´1pxqqqq

“ D0fgpιn,mpι
´1
n,mpg

´1pxqqq (as ιn,m is linear)

“ D0fgpg
´1pxqqq
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As any pair of of linear functions f : Rn ( E and g : Rm // E is bounded by
f ˆ g : Rn`m // E, we obtain the required uniqueness.

Similar to the dereliction, the codereliction could alternatively have been described
as a map of the following type:

E pE1q // E2 » E

pff qf :Rn(E1 ÞÑ p` P E1 ÞÑ D0ff pf´1p`qq
(6)

We again stress that d̄E is not a map in REFLiso.

Lemma 2. The morphisms d̄E are natural with respect to linear homeomorphisms, that
is, maps of REFLiso. Explicitly, if ` : E // F P REFLiso then d̄F ˝ ` “ !` ˝ d̄E .

Finally, we observe that dE and d̄E satisfy the all-important coherence condition
between derelictions and coderelictions.

Proposition 5. For a reflexive lcs E, dE ˝ d̄E “ IdE .

4.2 (Co-)contraction and (co-)weakening

In this section, we define the interpretation of the other exponential rules: weakening w,
co-weakening w̄, contraction c, and co-contraction c̄, which will be generalized from
[14]. We start with weakening and co-weakening, which are fairly straightforward.

w :

"

!E // R
φ ÞÑ

ř

f φf p1q
w̄ :

"

R // !E
1 ÞÑ δ0 : ppff qf P EpEq ÞÑ fp0qq for any f

According to [8], the rules c and c̄ are interpreted respectively via the kernel theorem
and pre-composition with the diagonalE //EˆE and co-diagonalEˆE //E maps
of the biproduct. This is however not defined in a context where ! is functorial only on
isomorphisms. Thus we give a direct, component-wise interpretation of contraction and
co-contraction.

c :

"

!E // !pE ˆ Eq » !E b !E
φ ÞÑ pggqg:RnãÑEˆE ÞÑ φppgpxPRn ÞÑpfpxq,fpxqqqqf :RnãÑEq

c̄ :

"

!E b !E // !E
φb ψ ÞÑ pff qf :RnãÑE ÞÑ φ ppx P Rn ÞÑ ψ ppy P Rm ÞÑ ff pxq ` ff 1pyqqf 1qqf q

where f : Rn
ãÑ E and f 1 : Rm

ãÑ E.

Theorem 4. The morphisms pw, w̄, c, c̄, d, d̄q satisfy the coherences of exponential struc-
ture on !E, as detailed in Definition 1.

We note that this does not give an exponential structure per say since REFL is not a
monoidal category, as we will explain in Section 5. That said, in Section 5 we are still
able to construct a polarized model of DiLL0.
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4.3 Co-multiplication

The categorical interpretation of the exponential rules of linear logic requires a co-
monad ! : L //L. However in the case of this paper, the exponential ! is functorial only
on isomorphisms. As such, one cannot interpret the promotion rule of Linear Logic,
as this requires functoriality of ! on the interpretation of any proof (and typically on
linear continuous maps which are not isomorphisms). That said, functoriality is the
only missing ingredient, and one can still define natural transformations of the same
type as the co-multiplication and co-unit of the co-monad. This section details this
point, leaving the exploration of a functorial ! for future work.

Definition 13. For a reflexive lcs E, define the following linear continuous morphism:

µE :

$

’

’

’

’

&

’

’

’

’

%

!E // !!E

φ ÞÑ

˜

pggqg P E p!Eq » lim
ÝÑ
g

C8g pRmq

¸

ÞÑ ggpg
´1pφqq

when φ P Impgq and g is injective

(7)

This is well defined, as we can show as for the codereliction (5) that the term
ggpg

´1pφqq is unique when g : Rm // !E linear and gg P C8g pRmq varies. More-
over there is at least one linear function g : Rm // !E which has φ in its image.

Lemma 3. The morphisms µE are natural with respect to linear homeomorphisms,
that is, maps of REFLiso. Explicitly, if ` : E // F P REFLiso then µF ˝ !!` “ !` ˝ µE .

Proposition 6. For any reflexive lcs E, d!E ˝ µE “ Id!E

The identity of Proposition 6 is one of the identities of a comonad. The other
comonad identities require applying ! to µ and d, which we cannot do in our context as
! is only defined on isomorphisms.

5 A model of DiLL0

In section 4 we defined the structural morphisms on the exponential and proved the
equations allowing to interpret proofs of DiLL0 by morphisms in REFL, independent of
cut-elimination. We now detail which categories allow to interpret formulas of MALL.
This will be done in a polarized setting generalizing the one of [14].

Polarization So far we have constructed an exponential ! : REFLiso //REFLiso which
is strong monoidal. However, the category of reflexive spaces is too big to give us a
model of DiLL0. Interpreting the multiplicative connective requires a monoidal setting,
and reflexive spaces are not stable by topological tensor products. If we study more
closely the definition of spaces of higher-order smooth functions, we see that their re-
flexivity follows from a more restrictive class of spaces. These spaces are however not
stable by duality, thus resulting in a polarized model of DiLL0.
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In this section we briefly show how the techniques develop above constructs a po-
larized model of DiLL0. The syntax of polarized (Differential) Linear Logic [16] is
recalled below. A distinction is made between positive formulas (preserved by b and
‘) and negative formulas (preserved by ` and &). The same deduction rule apply.

Negative Formulas: N,M :“ K|1||?P |N `M |N ˆM |PK

Positive Formulas: P,Q :“ J|0|!N |P bQ|P ‘Q|NK

Models of polarized linear logic are axiomatized categorically as an adjunction be-
tween a category of positives and a category of negative, where two interpretations
for negation play the role of adjoint functors. These categories obey the axiomatic of
chiralities [17].

Additives Interpreting the additive connectives of linear logic is straightforward. The
product ˆ and coproduct ‘ of lcs are linearly homeomorphic on finite indexes and
therefore give biproducts, which leads to the usual commutative monoid enrichment as
described in [8].

Multiplicatives When sticking to finite dimensional spaces or normed spaces, duality is
pretty straightforward in the sense that the dual of a normed space is still normed. This,
however, is no longer the case when one generalizes to metric spaces. Indeed, the dual
of a metric space may not be endowed with a metric. A Fréchet space, or (F)-space, is
a complete and metrizable lcs. The duals of these spaces are not metrizable in general,
but they are (DF)-spaces (see [10] for the definition) :

Proposition 7 ([11] IV.3.1).
– If E is metrizable, then its strong dual E1 is a (DF)-space.
– If E is a (DF)-space, then E1 is an (F)-space.

Typical examples of nuclear (F)-spaces are the spaces of smooth functions E pRnq,
while typical examples of nuclear (DF)-spaces are the spaces of distributions with com-
pact support E 1pRnq. In particular, all these spaces are reflexive. In [14], the first author
interpreted positive formulas as Nuclear (DF)-spaces, while negative formulas were
interpreted as (F)-spaces. Following the construction of section 3, we will consider re-
spectively inductive limits and projective limits.

Definition 14. A lcs is said to be a LNF-space if it is a regular projective limit of nu-
clear Fréchet spaces. The category of LNF-spaces and linear continuous injective maps
is denoted LNF. A lcs E is said to be a LNDF-space if it is an inductive limit of nuclear
complete (DF)-spaces.

Proposition 8. 1. A LNF-space E is reflexive.
2. The dual of a LNF-space is a LNDF-space.

The above proposition can be proven using the same techniques as computing the
dual of E pEq.

The difficulty of constructing a model of MLL in topological vector spaces is choos-
ing the topology which will make the tensor product associative and commutative on
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the already chosen category of lcs. Contrary to what happens in a purely algebraic set-
ting, the definition of a topological tensor product is not straightforward and several
topologies can be defined, with each corresponding to a different notion of continuity
for bilinear maps [10]. On nuclear spaces, such as E pRnq and E 1pRnq, most of these
tensor product coincide with one another. In [14], both multiplicative connectors (b and
`) were interpreted as the completed projective (equivalently injective) tensor product
b̂π (see [12, 15.1 and 21.2]) This property is lost when working with limits. However,
there is still a good interpretation of ` for LNF spaces (which are thus the interpretation
of negatives formulas). Indeed, the completed injective tensor product b̂ε of a projec-
tive limit of lcs is the projective limit of the completed injective tensor products [12,
16.3.2]. Taking the duals of theorem 3 applied to E1 and F 1 gives the following:

Proposition 9. For any reflexive spaces E and F we have a linear homeomorphism:

?Eb̂ε?F » ?pE ‘ F q.

and shows that ` is interpreted by b̂ε. The multiplicative conjunction b is inter-
preted as the dual of b̂ε, which may not be necessarily linearly homeomorphic to b̂π .

6 Conclusion

In this paper, we extended the polarized model of DiLL without higher order con-
structed in [14] to a higher-order polarized model of DiLL0. The motivating idea was
that computation on spaces of functions used only a finite number of arguments. This
lead to constructing an exponential on a reflexive lcs as an inductive limit of exponen-
tials of finite dimensional vector spaces. While this exponential is only functorial for
linear homeomorphisms we were still able to provide structural morphisms interpreting
(co)weakening, (co)contraction, and (co)dereliction, and hints of a co-monad.

The next step would be to extend the definition of the exponential in this paper to
an interpretation of the promotion rule and thus of LL – this could be done through epi-
mono decomposition of arrows in REFL. Another task is to properly work out which
tensor product of reflexive space will provide a model of DiLL. Such a model should
use chiralities [17], and underline the similarities between shifts and (co-)dereliction.

More generally, this works highlights again that the interpretation of the exponential
in lcs relies on a computing principle. Indeed, it always requires finding a higher-order
extension of distributions. While what we have constructed here relies on a finitary
principle, the construction of a free exponential in [3] relies on the principle that higher-
order operations are computed on Dirac distributions δx. That is, the exponential is con-
structed following a discretization scheme. The appearance of such numerical methods
in a semantic study of DiLL provides another link between theoretical computer science
and mathematical physics. This opens the door to studying relating numerical schemes
of numerical analysis and the theoretical study of programming language.
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Appendix

Proof (Propostion 2). As E 1pEq is the inductive limit of reflexive spaces, and thus
barrelled spaces, it follows that E 1pEq is also barrelled (see [12, Chapter 11.1]). Thus
we just need to prove that E 1pEq is semi-reflexive, that is that every bounded closed
subset of E 1pEq is weakly compact.

Using a well known method, we show that this inductive limit is regular, that is, any
bounded set B is contained in one of the E 1f pRnq. Suppose that it is not. Then we have
some bounded setB such that for every n there is fn such that we have bn P BzE 1f pRnq.
The lcs F “ lim

ÝÑn
E 1fnpR

nq is a strict (i.e. indexed by N) inductive limit of spaces such
that E 1fnpR

n`1q is closed in E 1fnpR
n`1q, and as such it is regular ([12, 4.6.2]). But the

topology on F is the one induced its inclusion in E pEq, and thus the image BF of B in
F is bounded. So as F is a regular limit, BF should be included in one of the E 1fnpR

nq,
and we have a contradiction.

Thus any bounded set B of E 1pEq is bounded in one E 1f pRnq. As these spaces are
reflexive, B is E 1f pRnq-weakly compact. But the dual of an inductive limit is contained
in the product of the duals ([12, Chapter 8.8]) and soB is also weakly compact in E pEq.
Thus E 1pEq is semi-reflexive, and since E 1pEq is also barrelled, E 1pEq is reflexive. [\

Proof (Proposition 3). If E » Rm, the identity id : Rm ( Rm results by definition of
the inductive limit in a linear continuous injective map E 1i dpRmq » E 1pRmq //E 1pEq.
Now consider φ P E 1pEq. Suppose that we have an index f : Rn // E on which
φ is non-null. Then as f is an injection one has n ď m and thus a linear injection
E 1pRnq ãÑ E 1pRmq. This injection is continuous. Indeed any compact in Rn is compact
in Rm, and thus the topology induced by E 1pRmq on E 1pRnq is exactly the strong
topology on E 1pRnq. In particular we have a linear map f : Rm // Rm, therefore we
have the desired equality. [\

Proof (Proposition 4). According to [12, Chapter 8.8.7], as F “ lim
ÐÝf :Rn(E

C8f pRnq
is reduced, then its dual is linearly isomorphic to

F 1 “ lim
ÝÑ

f :Rn(E

C8f pRnq

by reflexivity of the spaces C8f pRnq. We prove that this is a linear homeomorphism.
As a reflexive space, Ef pRnqf is endowed with its Mackey topology. As the Mackey-
topology is preserved by inductive limits, we have that the topology on the lcs:

F 1 » E 1pEq » lim
ÐÝ

f :Rn(E

C8f pRnq1

is also the Mackey-topology µpF, F 2q. But as we know that E pEq is reflexive, this
topology is exactly the strong dual topology. [\

Proof (Theorem 3). By [12, Chapter 15.4.2] we have that the completed projective ten-
sor product of two projective limits indexed respectively by I and J is the projective
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limit, indexed by IˆJ with the pointwise order, of the completed tensor product. Thus:

E 1pEqb̂πE
1pF q » p lim

ÐÝ
f :Rn(E

E 1f pRnqqb̂πp lim
ÐÝ

g:Rm(F

E 1gpRmqq

» lim
ÐÝ
pf,gq

E 1f pRnqpb̂πE 1gpRmqq

» lim
ÐÝ
pf,gq

E 1pRn ‘ Rmq (Kernel theorem)

However, the direct sum Rn ˆRm is isomorphic to Rn`m. Thus any linear continuous
injective function h : Rk ãÑ E b F is by definition of the biproduct topology a sum
f ` g : Rn ‘ Rm ãÑ E b F 4. Indeed, as h is linear we have that h´1pE, 0q is a
sub-linear space of Rk, that is, a Euclidean space Rn for n ď k. Thus the indexation by
pairs pf, gq : Rn`m ãÑ E ˆ F coincides with the indexation by continuous injections
h : Rk ãÑ E ˆ F 1, with corresponding pre-order, and thus:

E 1pEqb̂πE
1pF q » lim

ÐÝ
f :Rk // EˆF

E 1pRkq

» E 1pE ˆ F q

[\

Proof (Lemma 1). The morphism dE is clearly linear, and it is continuous as it is contin-
uous on every E 1f pRnq. We need to show that it is natural. Consider a linear continuous
map ` : E // F . We must then show that dF ˝ !` “ ` ˝ dE . Consider φ P !E. Then
!`pφq : g P E pF q ÞÑ φpg`˝f qf :Rn(E , and so

dF ˝ !`pφq “ lF P F
1 ÞÑ φplF ˝ ` ˝ fqf :Rn(E .

Conversely, ` ˝ dEpφq “ `plE P E
1 ÞÑ φppl ˝ fqf q, and thus:

` ˝ dEpφq “ `plE P E
1 ÞÑ φpplE ˝ fqf q.

Seeing ` ˝ dEpφq P F as an element of the dual of F 1, we have that:

` ˝ dEpφq “FP F
1 ÞÑ φplF ˝ ` ˝ fqf .

[\

Proof (Lemma 2). The linearity is deduced by the linearity of the indexes f : Rn ( E.
The continuity follows from the one of D0. To prove naturality, we must prove that for
any linear continuous function ` : E //F we have: !`˝dE “ dF ˝`. Consider a family
pggqg P E pF q » lim

ÝÑg
C8g pRmq and x P E. On one hand dF ˝ `pxq maps pggqg to

D0ggpg
´1p`pxqqq when `pxq is in the image of g. On the other hand, !` ˝ dEpxq maps

pggqg to dEpxqppg`˝f qf :Rn(Eq “ D0g`˝f pf
´1pxqq when x is in the image of f . Thus

when we consider g “ ` ˝ f , which has x in his image, we have that

p!` ˝ dEpxqqppggqgq “ pdF ˝ `pxqqppggqgq.

[\

4 Notice here the link between direct sum, biproduct and sums of smooth functions f : RK //E
and g : Rk // F , as exposed in [8].
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Proof (Lemma 3). Consider a linear continuous function ` : E // F between two lcs.
We need to show that we have an equality between the functions µF ˝ !` and !!` ˝ µE .
On one hand, we have for φ P !E and pggqg P E p!F q,

pµF ˝ !`qpφqppggq “ ggpg
´1prphhqh P E pF q ÞÑ φph`˝f qhsq

On the other hand,

p!!` ˝ µEqpφq “ !!`ppphh:Rm // !E ÞÑ hhph
´1ppφf qf qqq

“ pggqg ÞÑ
“

ppphh:Rm // !E ÞÑ hhph
´1ppφf qf qq

‰

pg!`˝hqh

“ pggqg ÞÑ g!`˝hpphq
´1pφf qf qqq

By denoting g “ !` ˝ h, we have h “ p!`q´1 ˝ g on the image of !`, and thus

p!!` ˝ µEqpφqpggqg “ g!`˝hpphq
´1pφf qf qqq

“ ggpg
´1 ˝ !`ppφf qf qq

where the last line results exactly in ggpg
´1prphhqh P E pF q ÞÑ φph`˝f qhsq by defini-

tion of !`. [\

Proof (Proposition 6). We want to check that d!E ˝ µE “ Id!E . Consider φ P !E.
On one hand, we have d!E ˝ µEpφq : h P E 1pEq1 ÞÑ pµEpφqqph ˝ gqg:Rn(!E , thus
d!E ˝ µEpφqphq “ ph ˝ gpg´1pφqq when φ P Impgq, thus d!E ˝ µEpφqphq “ hpφq.
Through the isomorphism !E » p!E1q1, we obtain that:

d!E ˝ µE “ Id!E .

[\

Proof (Theorem 4).

– We already proved that d ˝ d̄ “ Id. It is immediate that δ0p1q “ 1 and thus we ˝
w̄E “ Id1 for any E.

– For any lcs E and any x P E, one has w ˝ d̄pxq “
`

pff qf ÞÑ D0pff pf´1pxqq
˘

p1q,
that isw˝ d̄pxq is the differential of a constant function at some point, thus equals 0,
and w ˝ d̄ “ 0 . Likewise, dx ˝ w̄xp1q “ p` P E1 ÞÑ ` ˝ fp0qq for any f : Rm ãÑ E.
As both f and ` are linear, we have ` ˝ fp0q “ 0 and thus dE ˝ w̄E “ 0.

– Let us prove that db w ` w b d “ d ˝ c̄. Consider φ, ψ P !E. Then by definition :

d ˝ c̄pφb ψq “ φ
`

px ÞÑ ψ
`

py ÞÑ p` ˝ fqpxq ` p` ˝ f 1qpyqqf 1

˘

qf
˘

But p` ˝ fqpxqq acts as a constant in the domain of ψ, thus

ψ
`

py ÞÑ p` ˝ fqpxq ` p` ˝ f 1qpyqqf 1

˘

“ ψp1qp` ˝ fpxqq ` ψpp` ˝ f 1qf q.
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With the same considerations for φ and f 1 we get :

d ˝ c̄pφb ψq “ φpp` ˝ fqf qψp1q ` φp1qψpp` ˝ f 1qf q “ db w ` w b dpφb ψq.

– Let us prove that d̄b w̄ ` w̄ b d̄ “ c ˝ d̄. Consider x P E. Then through Schwartz
kernel theorem we have :

cpd̄pxqqpfb g P E pEq b E pEqq “ d̄pxq ppfh ¨ ghqh:RkãÑEq

“ D0pfh ¨ ghqph
´1pxqq

“ D0pfhqph´1pxqqghp0q ` fhp0qD0pghqph
´1pxqq

“ d̄b w̄ ` w̄ b d̄pxqpfb gq

thus the desired result.

Proof (Proposition 8).

1. As nuclear (F)-space are reflexive, and as reflexive spaces are stables by projective
limit (proposition 1), a LNDF space is reflexive.

2. This follows from the fact that completed tensor product preserves projective limits
[12, 15.4.1], and by the fact that nuclear and (DF)-spaces are stable by projective
tensor product ([12, 21.2.3] and [12, 12.4.8] ).

3. Again, by [12, 8.8.12], the dualE1 of a LNF-spaceE “ lim
ÝÑi

Ei identifies as a linear
space to a projective limit of complete nuclear (DF)-spaces. As the limit lim

ÝÑi
Ei is

regular, we have that any bounded set in E is bounded in some of the Ei. Thus the
strong topology on E1 coincide with the projective topology.

[\
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