
HAL Id: hal-01897570
https://hal.inria.fr/hal-01897570v3

Submitted on 21 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Framework for Edge Infrastructures Monitoring
Mohamed Abderrahim, Meryem Ouzzif, Karine Guillouard, Jérôme François,

Xavier Lorca, Charles Prud’Homme, Adrien Lebre

To cite this version:
Mohamed Abderrahim, Meryem Ouzzif, Karine Guillouard, Jérôme François, Xavier Lorca, et al..
A Framework for Edge Infrastructures Monitoring. [Research Report] RR-9215, Orange Labs; Inria
Nancy - Grand Est; IMT-Atlantique. 2018, pp.1-14. �hal-01897570v3�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/184905054?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01897570v3
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
92

15
--

FR
+E

N
G

RESEARCH
REPORT
N° 9215
Octorber 2018

Project-Team Stack

A Framework for Edge
Infrastructures
Monitoring
Mohamed Abderrahim, Meryem Ouzzif, Karine Guillouard, Jérôme
Francois, Xavier Lorca, Charles Prud’homme, Adrien Lebre

RESEARCH CENTRE
RENNES – BRETAGNE ATLANTIQUE

Campus universitaire de Beaulieu
35042 Rennes Cedex

A Framework for Edge Infrastructures Monitoring

Mohamed Abderrahim, Meryem Ouzzif, Karine Guillouard,
Jérôme Francois, Xavier Lorca, Charles Prud’homme, Adrien

Lebre

Project-Team Stack

Research Report n° 9215 — Octorber 2018 — 14 pages

Abstract: By relying on small sized and massively distributed infrastructures, the Edge computing
paradigm aims at supporting the low latency and high bandwidth requirements of the next generation
services that will leverage IoT devices (e.g., video cameras, sensors). To favor the advent of this paradigm,
management services, similar to the ones that made the success of Cloud computing platforms, should be
proposed. However, they should be designed in order to cope with the limited capabilities of the resources
that are located at the edge. In that sense, they should mitigate as much as possible their footprint. Among
the different management services that need to be revisited, we investigate in this paper the monitoring one.
Monitoring functions tend to become compute-, storage- and network-intensive, in particular because they
will be used by a large part of applications that rely on real-time data. To reduce as much as possible the
footprint of the whole monitoring service, we propose to mutualize identical processing functions among
different tenants while ensuring their quality-of-service (QoS) expectations.We formalize our approach as
a constraint satisfaction problem and show through micro-benchmarks its relevance to mitigate compute
and network footprints.

Key-words: Edge computing, Monitoring, Placement, Mutualization, Footprint

Un Canevas Logiciel pour la Supervision des Infrastructures Edge
Résumé : En s’appuyant sur des infrastructures de petite taille et massivement distribuées, le Edge
Computing cherche à répondre aux besoins en faible latence et grande bande passante des applications
de nouvelle génération qui favorisent l’utilisation de l’Internet des objets (par exemple, les caméras
vidéo, les capteurs). Pour mettre en œuvre ce paradigme, des services de gestion, similaires à ceux
qui ont permis le succès des plates-formes du Cloud Computing, doivent être proposés. Cependant, ils
doivent être conçus de manière à faire face aux capacités limitées des ressources situées à la périphérie
du réseau. Autrement dit, ils doivent réduire autant que possible leur empreinte. Parmi les différents
services de gestion qui doivent être revisités, nous étudions dans cet article le service de supervision.
Les fonctions de supervision ont tendance à nécessiter de grandes capacités de calcul, de stockage et de
réseau parce qu’elles sont utilisées par une grande partie d’applications qui nécessite une supervision
en temps réel. Afin de réduire au maximum l’empreinte du service de supervision, nous proposons
de mutualiser des fonctions de traitement identiques entre différents tenants tout en garantissant leurs
attentes en qualité de service (QoS). Nous formalisons notre approche en tant qu’un problème de
satisfaction de contraintes et montrons à l’aide de micro-test sa pertinence pour atténuer l’empreinte
de calcul et réseau.

Mots-clés : Edge computing, Supervision, Placement, Mutualisation, Empreinte

3

A Framework for Edge Infrastructures
Monitoring

Mohamed Abderrahim1, Meryem Ouzzif1, Karine Guillouard1, Jérôme Francois2,
Xavier Lorca3, Charles Prud’homme4 and Adrien Lebre4

1Orange Labs, France
firstname.lastname@orange.com

2Inria, France
firstname.lastname@inria.fr
3IMT Mines Albi, France

firstname.lastname@mines-albi.fr
4IMT Atlantique, France

firstname.lastname@imt-atlantique.fr

By relying on small sized and massively
distributed infrastructures, the Edge computing
paradigm aims at supporting the low latency and
high bandwidth requirements of the next genera-
tion services that will leverage IoT devices (e.g.,
video cameras, sensors). To favor the advent of
this paradigm, management services, similar to
the ones that made the success of Cloud com-
puting platforms, should be proposed. However,
they should be designed in order to cope with
the limited capabilities of the resources that are
located at the edge. In that sense, they should mit-
igate as much as possible their footprint. Among
the different management services that need to
be revisited, we investigate in this paper the
monitoring one. Monitoring functions tend to be-
come compute-, storage- and network-intensive,
in particular because they will be used by a
large part of applications that rely on real-time
data. To reduce as much as possible the footprint
of the whole monitoring service, we propose to
mutualize identical processing functions among
different tenants while ensuring their quality-of-
service (QoS) expectations. We formalize our ap-
proach as a constraint satisfaction problem and
show through micro-benchmarks its relevance to
mitigate compute and network footprints.

I. INTRODUCTION

The proliferation of Internet of Things (IoT)
applications [1], as well as the advent of new
technologies such as Mobile Edge computing [2],
Software-Defined Networking [3] and Network
Function Virtualization [4] (NFV) have been ac-
celerating the need for Edge computing infrastruc-
tures [5]. Meanwhile, progress on how to operate
and use such infrastructures is marginal. Existing
operational solutions such as Akamai+Cloudlet [6]
or Amazon Lambda@Edge [7] allow to run
only domain-specific applications on infrastruc-
tures composed of centralized clouds and NFV-
enabled hardware at the edge.

In order to satisfy the expectations of operators
and users of Edge infrastructures, we claim that
resource management services with similar capa-
bilities that made the success of Cloud computing
should be designed as follows. First, they should
let an operator aggregate, supervise and expose
the massively distributed resources of an Edge
infrastructure. Secondly, they should let third party
users implement new kinds of services on top
of them. Reusing available management systems
such as OpenStack or OpenMANO cannot be done
in a straightforward manner as most of them have
been designed for centralized data-centers [8]. In
other words, they do not take into account net-

4 Abderrahim et al.

work specifics (e.g., latency, bandwidth, intermit-
tent connectivity) to handle the distribution of the
Edge resources. Moreover, they do not consider
mitigating the management footprint to cope with
the limited capabilities of Edge resources.

Among the management services that should be
revised, the monitoring service is an important
one. It is mandatory for all the infrastructure
tenants to detect faults, ensure security, observe
the QoS and provision resources. Besides, it has
to cope with the multitude of tenants resources that
may be owned by the infrastructure operator (e.g.,
servers, routers, network links), by edge resources
providers (e.g., home gateways, smartphones, lap-
tops), by services providers (e.g., media contents,
Web sites) and by services users (e.g., virtual
machines, virtual network functions, temperature
sensors). The large number of resources being
observed leads to a large number of measurements
to be processed and transmitted through the Edge
infrastructure. For instance, the sensors observ-
ing Twitter’s infrastructure generate 2.8 Billion
measurements per minute[9] and a single sensor
which monitors electricity consumption generates
50 Billion measurements per year [10].

In order to mitigate as much as possible the
monitoring footprint on the Edge infrastructure,
we aim at designing a monitoring as a service
solution [11] to be offered to the infrastructure
tenants according to the utility computing model.
In addition to performing the processing required
by the different tenants, it limits the processing
redundancy. For instance, the observations of an
Internet-connected camera installed in a city may
be of interest to both a police and a transportation
office. Presently, such resources are monitored
separately. As a result, a redundant processing is
performed. We aim at limiting such redundancies
by designing a monitoring service that mutualizes
processing among different tenants while keeping
their functional and QoS requirements fully satis-
fied.

We proceed using elementary functions deduced
from our previous work [12] to express the mon-
itoring processing requests in a unified way. The
best composition of functions is then achieved by
mutualizing as many functions as possible among
the different tenants while taking into account their
QoS constraints in addition to the infrastructure

capabilities.
The contributions are: (i) the proposal of the

monitoring functions mutualization among differ-
ent tenants as an approach to reduce the moni-
toring footprint, (ii) the design of a monitoring
service that relies on our approach (iii) the formal-
ization of our approach as a constraint satisfaction
problem that considers the Edge infrastructure
capabilities and the tenants requirements, and (iv)
the validation of our approach through different
scenarios.

The rest of the paper is organized as follows.
Section II discusses the related work. Section III
exposes the design specifics. Section IV details
how we model the problem. Section V evaluates
our approach. Finally, Section VI concludes the
paper and gives some perspectives for this work.

II. RELATED WORK

Sharing sensors information among different
tenants has been identified in the IoT literature as
an opportunity to increase the business value [13].
In order to promote it, different studies have been
conducted. For instance, a three-layered architec-
ture has been proposed to abstract the IoT devices
heterogeneity [14], a metadata model has been
proposed to unify the IoT data description [15] and
semantic methods have been proposed to identify
similarity between data sent by heterogeneous
sensors [16]. These studies deal only with sharing
the sensors raw measurements. However, they do
not address sharing the measurements processing.

Processing unbounded streams of data while
considering the Edge infrastructure capabilities
has been recently studied in the stream processing
literature. The latter is a very active research in
data mining. In [17], relying on Edge infrastruc-
tures to process data streams near to the users
is investigated. In [18], the authors formalize the
problem of placing stream processors in an Edge
infrastructure to meet users requirements while
considering the infrastructure capabilities. How-
ever, these works do not consider the possibility
of mutualising processing among different tenants.

The mutualisation concept has been proposed
in the network service function chaining prob-
lem [19]. It consists in efficiently passing users
network flows through a sequence of network

Inria

A Framework for Edge Infrastructures Monitoring 5

functions (e.g., firewall, intrusion detection sys-
tems, load balancer. . .) to reduce the overall net-
work service footprint. In this context, studies as
[20] and [21] propose models where the same
network function is dedicated to process different
users flows. Thus, the allocated hosting resources
are used more efficiently since their idle time is
reduced. However, these works do not specifically
consider the case of users having identical flows.
Consequently, such flows are processed redun-
dantly.

To the best of our knowledge, we are the first
to propose mutualising identical processing and
flows among different tenants to reduce the Edge
infrastructure footprint.

III. MONITORING SERVICE DESIGN

Our approach of mutualizing identical process-
ing and flows among different tenants is motivated
by the multi-tenant aspect of the Edge infras-
tructure. In fact, the tenants sharing the same
resources are likely to have overlapping moni-
toring requirements (e.g., a IaaS user and the
infrastructure operator may be both interested in
monitoring virtual servers, a police and a transport
office may be both interested in monitoring video-
cameras). By mutualising processing and flows
among them, we aim to reduce the compute and
the network footprint of the monitoring service.
The architecture, which we propose, is depicted
in Figure 1.

The monitoring service gets as input two kinds
of requirements. The first one is the functional
requirements. They consist of preliminary process-
ing to perform on the observed measurements.
As detailed in our previous study [12], a prelimi-
nary processing may be measurement aggregation,
measurement filtering, alarm triggering. . . The di-
versity of these requirements challenges the de-
termination of the mutualization. To address this
issue, it is mandatory to unify their expression. For
this aim, we intend to design a user requirements
language based on a general purpose stream pro-
cessing language (such as [22]) since a measure-
ment flow is a data stream. Using such a language,
the users mention the resources to observe, the
chains of algebraic functions to perform (e.g.,
aggregate, filter, join) and the destination functions
(e.g., user dashboard, user database). The second

Fig. 1: Monitoring service architecture

kind of requirements gotten as input specify the
expected QoS. We focus on the satisfaction of the
latency requirement to cope with the distribution
of the Edge infrastructure. Thus, the users should
mention the maximum end-to-end latency they
tolerate.

The monitoring service gets also as input a
description of the infrastructure topology and ca-
pabilities. This input is mandatory to ensure the
satisfaction of users QoS requirements. To cope
with the heterogeneity of the infrastructure, we
envision to rely on a language that unifies the re-
sources description. To the best of our knowledge,
there is no existing language that considers the
Edge infrastructure specifics. For this reason, we
envision to extend an existing language that has
been designed to describe Cloud infrastructures
such as [23].

The "placement manager" is the element that
handles both inputs (i.e., the users requirements
and the infrastructure description). It performs
three tasks. First, it analyses the users require-
ments to check that each user has the access
permissions to the resources that he requests to
observe. Secondly, to parallelize the placement
calculation, it partitions the inputs. It determines
the portion of the infrastructure that may host each
user processing requirements based on the latency

RR n° 9215

6 Abderrahim et al.

constraints. Finally, it instantiates a "placement
calculator" to calculate the placement of the users
requirements that may be hosted on the same
portion of the infrastructure.

The "placement calculator" is the element in
charge of determining the mutualized placement.
It performs two tasks. First, it optimizes users
functional requirements expression to leverage the
mutualization. It performs the "separation" opti-
mization [24] to split the required processing into
finest-grained ones. For instance, a function that
filters two events may be split into two consecutive
functions such as each one of them filters one of
the events. In addition, it performs the "reorder-
ing" optimization [24] to prioritize the execution
of the processing that is required by most of
the users. Thus, such processing is performed on
the same incoming flow and can be mutualized.
Secondly, it calculates the mutualized placement
and transmits it to the "placement scheduler". The
latter is in charge of the deployment and the
configuration of the "processors". We focus here
on the placement calculation. We formalize it as a
constraint satisfaction problem whose mathemati-
cal model is presented in the following section.

IV. THE MUTUALIZED PLACEMENT PROBLEM

The mutualization of monitoring processing and
flows among different users should keep the func-
tional requirements of each one of them satisfied.
We model these requirements as a directed graph
whose vertices are elementary algebraic functions
(e.g., aggregate, filter, join, split) and whose arcs
are the flows between them. To ensure their sat-
isfaction, we model the mutualization as an edge
contraction [25] that merges this graph vertices
while keeping the same vertices chain for each
user. This problem has been proven to be NP-
complete [26]

Moreover, the mutualization should keep the
users QoS (i.e., end-to-end performance) require-
ments satisfied. This comes down to a place-
ment problem, where the infrastructure capabil-
ities are considered. We model it as an inexact
graph matching [27] that consists in determining
a mapping between two graphs having a different
number of vertices. In our case, the first graph
represents the merged users requirements graph
and the second one represents the infrastructure.

The graph matching problem has been also proved
to be NP-complete [25].

Since the determination of the mutualized
placement is constraint-oriented and NP-complete,
we opt here for formalizing it as a constraint
satisfaction problem [28]. Table I summarizes our
model. In the following, it is detailed.

A. Notions and Notations

In order to model the mutualized placement
problem, we define four notions:

• Function: A function may be either a probe
function, a processing function (e.g., filter,
aggregate, join) or a user function (e.g., user
dashboard, user database).

• Flow: A flow is the set of data sent from a
function to another (along a chain of links
that connects them).

• Server: A server is a compute resource of
the Edge infrastructure. It may host functions
requiring less cumulative capabilities than
those it offers.

• Link: A link is a network resource that con-
nects the servers of the Edge infrastructure.
It may host flows that require less cumulative
capabilities than those it offers and that tol-
erate more latency than the one it introduces.

We represent a directed and labeled graph G as
a tuple G = (V,A, l1, l2, ..., ln) such as V is the
set of its vertices, A is the set of its arcs (A ⊆
V × V) and l1,l2,...,ln are its labeling functions.
A labeling function li may be a vertex labeling
function li : V → Li or an arc labeling function
li : A→ Li such as Li is the set of vertex or arc
labels, respectively.

Finally, we define the following operators:

• paths(graph): For a given graph, this oper-
ator returns all the arcs which form paths.

• source(arcs) and dest(arcs): For a given
set of arcs which form a path, these operators
return respectively the source vertex and the
destination vertex of the path.

• head(arc) and tail(arc): For a given arc,
these operators return respectively the head
vertex and the tail vertex.

Inria

A Framework for Edge Infrastructures Monitoring 7

Inputs
P The set of probe functions
M The set of processing functions
U The set of user functions
F The set of all the functions: F = P∪M∪U
R The set of flows exchanged by the functions
lff For a given pair of F × F , this function

returns true if both elements of the pair
are identical (i.e., have the same type and
parameters). Otherwise, it returns false.

lfC For a given element of F , this function
returns the required server capability by that
element.

lfS For a given element of F , this function
returns the server of S that should host it or
null if there is no constraint on the hosting
server.

lfL For a given element of F , this function
returns the tolerated latency between that
element and the probes.

loC For a given flow of F × F , this function
returns the required link capability by that
flow.

GU The users requirements modeling graph.
GU = (F, R, lfC , lff , lfS , lfL, loC)

S The set of servers
L The set of network links
lsC For a given server of S, this function returns

the capability of that server.
llC For a given link of S × S, this function

returns the capability of that link.
llL For a given link of S × S, this function

returns the latency introduced by that link.
GI The infrastructure modeling graph: GI =

(S, L, lsC , llC , llL).
Variables and their domains

VM The set of the functions of the monitoring
service. Its domain is DVM

⊆ F .
AM The set of the flows of the monitoring

service. Its domain is DAM
⊆ F × F .

xsfi The server which is hosting fi ∈ F .
The set which gathers all these variables is
XSF = {xsfi |i ∈ J1; |F |K}. Their domain
is DXSF

= S.
xloi The set of links which are hosting oi ∈ F×

F . The set which gathers all these variables
is XLO = {xloi |i ∈ J1; |F × F |K}. Their
domain is DXLO

= paths(GI).
xori The flow of the monitoring service which

is equivalent to the flow ri ∈ R. The set
which gathers all these variables is XOR =
{xori | i ∈ J1; |R|K}. Their domain is
DXOR

⊆ F × F .
Constraints

Functional Equations: 1, 2 and 3.
QoS Equations: 4, 5, 6, 7, 8 and 9.
Channeling Equations: 10 and 11.

Objective function
Xfp The overall monitoring service footprint

(Equation 12)

TABLE I: Model summary

B. Problem Inputs

The inputs of the problem are the users re-
quirements and the infrastructure description. We
model each one of them by a directed graph.

First, we model the users requirements by the
directed graph GU = (F, R, lfC , lff , lfS , lfL,
loC). Figure 2 depicts an example of this graph.
The set of vertices F of GU represents the probes,
processing and user functions: F = P ∪M ∪ U .
The set of its arcs R represents the required flows
between the different functions. The roles of its
labeling functions are detailed in Table I.

Fig. 2: An example of GU

Secondly, we model the infrastructure by the
directed graph GI = (S,L, lsC , llC , llL). Figure 3
depicts an example of this graph. The set of
vertices S of GI represents the servers of the
infrastructure. The set of its arcs L represents the
network links connecting the servers. Bidirectional
links are modeled with two opposed arcs. An
arc connects each vertex to itself. It represents a
logical link that is intended to host flows between
the functions deployed on the same server. The
roles of GI labeling functions are detailed in
Table I.

Fig. 3: An example of GI

C. Variables Definition

The mutualized placement problem issues four
outputs, namely the functions instances, the flows

RR n° 9215

8 Abderrahim et al.

between them, the servers hosting the functions
instances and the links hosting the flows. Each
element is modeled by a variable. First, we de-
fine the variables VM and AM . They represent
respectively the functions of the monitoring ser-
vice and the flows between them. Thus, GM =
(VM , AM) is the graph that models the mutualized
monitoring service to be determined. Secondly,
we define XSF = {xsfi |i ∈ J1, |F |K} the set of
variables xsfi that represent the hosting server of
a function fi, ∀i ∈ J1, |F |K. Finally, we define
XLO = {xloi |i ∈ J1, |F×F |K} the set of variables
xloi that represent the set of hosting links of a flow
oi, ∀i ∈ J1, |F × F |K.

As depicted in Figure 4, XSF and XLO sim-
plify the expression of the GM and GI matching
constraints. In order to simplify the expression
of the GU and GM matching constraints, we
introduce XOR = {xori |i ∈ J1, |R|K} the set of
variables xori that represent the flows of GM that
are functionally equivalent to the flows ri of GU ,
∀i ∈ J1, |R|K.

Fig. 4: Roles of the variables in graphs matching

Thus, each solution of our problem is an instan-
tiation of VM , AM , XSF , XLO and XOR that
minimizes the overall footprint while satisfying
simultaneously both the functional and the QoS
requirements.

D. Domains Definition

GM is built from GU because the monitoring
service is instantiated according to users require-
ments. Figure 5 shows an example of a GM that
is built from the GU depicted by Figure 2. The
differences between them are highlighted in red:
a dashed red line is used to mark the vertices
and the arcs of GU that are deleted in GM and a
continuous red line is used to mark the arcs that
are added on GM . These differences are due to
the mutualization of equivalent functions among
different users. In fact, functions m9 and m10 are

mutualized among u1 and u2. In addition, m11 and
m12 are mutualized among u3 and u4. Finally, m7

and m8 are mutualized among u3 and u4.

Fig. 5: A derivative GM of GU

As illustrated in Figure 5, a mutualization of a
function fi with a function fj can be described us-
ing graph terminology as an edge contraction [25]
that consists of two operations. First, each outgo-
ing arc from fj is replaced by an outgoing arc
from fi such as the head vertex of the added arc
is the same as the head vertex of the arc it is
replacing. Similarly, each incoming arc to fj is
replaced by an incoming arc to fi such as the
tail vertex of the added arc is the same as the tail
vertex of the arc it is replacing. Secondly, for each
vertex fj , the incoming arcs and the outgoing arcs
are suppressed.

Hence, the mutualization does not add vertices
to GM that are not in GU . So, VM ⊆ F . Let DVM

denote the domain of VM , DVM
⊆ F . However,

the mutualization may add arcs to GM that are not
in GU . Thus, AM 6⊆ R. Since AM ⊆ VM × VM

and VM ⊆ F then AM ⊆ F×F . Let DAM
denote

the domain of AM , DAM
⊆ F × F .

Let DXSF
denote the domain of XSF , DXSF

is the set of servers that may host the monitoring
functions and DXSF

= S. Let DXLO
denote the

domain of XLO, DXLO
is the set of links that may

host the flows between the monitoring functions.
To host a flow, the links should form a path. Thus,
DXLO

= paths(GI). Finally, let DXOR
denote

the domain of XOR, DXOR
is the set of flows

of GM which are equivalent to the flows of GU .
This set is represented by the variable AM . Thus,
DXOR

= DAM
⊆ F × F .

E. Problem Constraints

The first three constraints verify the satisfaction
of the user functional requirements. They establish

Inria

A Framework for Edge Infrastructures Monitoring 9

the matching between GU and GM . First, each
users requirements flow r that is incoming to a
user (head(r) ∈ U) should have an equivalent
monitoring service flow xor that is incoming to
that user.

∀r ∈ R, head(r) /∈ U ∨ head(xor) = head(r)
(1)

Secondly, for each users requirements flow r, an
equivalent monitoring service flow xor should be
incoming from an identical function to that of r.

∀r ∈ R, lff (tail(r), tail(xor)) = true (2)

Finally, for each users requirements flow r, an
equivalent monitoring service flow xor should
result from the entire required chain of processing
functions. Thus, recursively, the incoming flows
xor′ to xor should be equivalent to the flows r′

that are incoming to r.

∀r ∈ R,

∀r′ ∈ R, head(r′) 6= tail(r)∨head(xor′) = tail(xor)
(3)

The QoS constraints to satisfy by the monitor-
ing service establish the matching between GM

and GI . They can be divided into two kinds of
constraints. The first kind verifies that the physical
architecture of the monitoring service is suitable
with the topology of the infrastructure. It is com-
posed of three constraints. First, each flow o of
the monitoring service should have hosting links
xlo.

∀o ∈ AM , xlo 6= ∅ (4)

Secondly, each function of the monitoring service
f ∈ VM that has a predefined hosting server
should be hosted on that server (users and probe
functions are those which are the most concerned
with this constraint because they may have to be
hosted near the users or the observed resources,
respectively).

∀f ∈ VM , lfS(f) = null ∨ xsf = lfS(f) (5)

Finally, for each set of links xlo that hosts a
flow o, the source (the destination, resp.) server

of the path they form should host the source (the
destination, resp.) function of o.

∀xsf ∈ XSF ,

(∀o1 ∈ F×F, head(o1) 6= f∨xsf = dest(xlo1))∧
(∀o2 ∈ F×F, tail(o2) 6= f∨xsf = source(xlo2))

(6)

The second kind of QoS constraints are the perfor-
mance ones. In our case, there are three of them.
First, the capability of each hosting server should
be satisfied. Thus, each server of the infrastructure
s should have more capability than the sum of
capabilities that are required by the monitoring
service functions f that it hosts xsf = s.

∀s ∈ S,
∑

f∈VM
xsf=s

lfC(f) ≤ lsC(s) (7)

Secondly, the capability of each hosting link
should be satisfied. Thus, each link l of the in-
frastructure should have more capability than the
sum of capabilities that are required by the mon-
itoring service flows o that it hosts l ∈ xlo. The
capability that is required by o is the maximum
of capabilities that are required by its equivalent
flows r of the users requirements (o ∈ xor).

∀l ∈ L,
∑
∀o∈AM
l∈xlo

(max
∀r∈R
o∈xor

loC(r)) ≤ llC(l) (8)

Finally, the latency that is required by the users
should be satisfied, along all the paths. Thus, the
links hosting flows that form a path to a user
should have a latency that is lower than the one
this user tolerates.

∀p ∈ paths(GU),

∀r ∈ p, dest(p) /∈ U∨
∑

l∈xlxor

llL(l) ≤ lfL(dest(p))

(9)

In addition to the functional and the QoS con-
straints, we define two channeling constraints.
They verify existing dependencies between the
variables that do not appear in the previously
exposed constraints. First, the set of vertices VM

is the set of the heads and tails of the set of arcs
AM .

VM =
⋃

o∈AM

{head(o), tail(o)} (10)

RR n° 9215

10 Abderrahim et al.

Secondly, since it represents a flow of the monitor-
ing service, each xor should be in AM (i.e., XOR

⊆ AM). Meanwhile, each flow of the monitoring
service should be equivalent to a users require-
ments flow (i.e., AM ⊆ XOR).

XOR = AM (11)

F. Problem Objective Function

Mutualizing the processing among different
users reduces the compute footprint. However, it
may increase the network footprint. In fact, the
mutualized processing may be located far from
part of users in order to satisfy the latency con-
straint of others. For this reason, as an objective
function, we consider minimizing the monitoring
service overall compute and network footprint
rather than maximizing the mutualization. We
evaluate the sum of both footprints by the variable
Xfp to minimize. We consider that both footprints
have the same cost, but depending on the context,
different coefficients may be used in this sum.

Xfp =
∑
s∈S

f∈VM
xsf=s

lsC(f) +
∑
l∈L

o∈AM
l∈xlo

(max
∀r∈R
o∈xor

loC(r)) (12)

V. EVALUATION

In order to evaluate the relevance of our ap-
proach, we compare the mutualized placement (M)
with the non-mutualized placement (NM) regard-
ing their footprint on the infrastructure and their
required calculation time.

To calculate the NM, we modified the model by
removing the matching between GU and GM and
considering that GM = GU . Thus, the variables
VM , AM and xori | i ∈ J1; |R|K are replaced
by F , R and ri| i ∈ J1; |R|K, respectively. In
addition, Constraints 1, 2, 3, 10 and 11 related to
these variables, are removed. We keep the same
objective function. Thus, the resources usage is
still minimized but without functions and flows
mutualization.

In the calculation of both placements, a strat-
egy is defined to explore the search space. It
is a combination of the "last conflict" [29] and
the "smallest domain first" strategies. It prior-
itizes the selection of the variables that were
involved in the last conflict. If there are no con-
flicts, the strategy selects the variables having

the smallest domains and assigns to them the
lowest values in their domains. We implemented
both placement models using the Choco [30]
4.0.6 constraint solver. The source code is avail-
able online : https://github.com/edgeMonitoring/
PlacementCalculator. We performed all the exper-
iments on a machine with a Xeon E5-2640V4
processor and 64 GB of RAM using the Ubuntu
16.04 operating system and a Java 1.8.0 virtual
machine.

A. Test scenarios

We consider two test categories to analyze sep-
arately the impact of users requirements changes
(Test UR1 and Test UR2) and the impact of
infrastructure changes (Test I1 and Test I2).

Regarding users requirements, Tests UR1 and
UR2 consider a basic users requirements GU ,
where all users need to perform the same number
of processing functions on a common probe. In
Test UR1, we vary the number of the required pro-
cessing functions per user (|M|/|U|) while keeping
the number of users fixed to 4 (|U|=4) as depicted
in Figure 6 (a). Conversely, in Test UR2, we
vary the number of users (|U|) while keeping the
number of the required processing functions per
user fixed to 3 (|M|/|U|=3) as depicted in Figure 6
(b). We assume that each function requires 1 MB
of RAM and that each communication between
the functions requires 1 Mbps of bandwidth (these
values have been arbitrary chosen). We generate
the functions types and parameters randomly with
three assumptions. First, the predefined hosting
server of a probe function is an edge device
(when such a device exists in the infrastructure).
Secondly, between the predefined hosting servers
of each user and its probes, there is at least one
path whose latency is inferior or equal to the
maximum tolerated by that user. Finally, 60% of
the processing functions that have the same rank
in the different processing chains are identical
(the outgoing flows of these functions satisfy
Constraint 2). As a matter of fact, this assumption
does not determine the expected mutualization rate
because it does not guarantee the satisfaction of
the rest of the functional constraints (i.e., Con-
straints 1 and 3). For both tests, the infrastructure
is composed of 4 trees of servers and it has the

Inria

https://github.com/edgeMonitoring/PlacementCalculator
https://github.com/edgeMonitoring/PlacementCalculator

A Framework for Edge Infrastructures Monitoring 11

Fig. 6: Tests inputs

same configuration with Test I1 infrastructures that
is detailed in the following paragraph.

Regarding the impact of the infrastructure, Test
I1 and Test I2 are based on two different infras-
tructure topologies. In Test I1, the topology is a
ring of trees. Each tree is composed of 7 servers: a
central point of presence (ci), two regional points
of presence (ri) and four edge devices (ei) such
as each ci is connected to two ri and each ri
is connected to two ei (We model each point of
presence by a high-performance server because
the latency inside a data center is lower than 1
ms [31]). In this test, we vary the number of trees
(|S|/7) as depicted in Figure 6 (c). In Test I2, we
consider a partially connected topology. We take
as example a part of the topology of RENATER,
the French NREN [32]. It is composed of eight
central points of presence c1..c8, which are located
in Rennes, Paris, Strasbourg, Bordeaux, Lyon,
Toulouse, Marseille and Nice, respectively as well
as a regional point of presence r located in Orsay.
Figure 6 (d) depicts this infrastructure. For Test
I1, we assume that the latencies of the links
interconnecting the different ci, connecting a ci
with an ri and connecting an ri with an ei are 22
ms, 12 ms and 8 ms, respectively. For Test I2, we
consider the links latencies that are afforded by
RENATER [33]. For both kinds of infrastructures,
we assume that the available hosting capabilities
of the ci, ri and ei are 10 GB, 1 GB and 100
MB, respectively. In addition, we consider that
the bandwidths of the links interconnecting the
ci, connecting a ci with an ri and connecting
an ri with an ei are 10 Gbps, 1 Gbps and 100
Mbps, respectively. These values of the hosting
capabilities have been chosen to guarantee the
existence of a NM. Otherwise, it may be possible

to find M solutions and no NM ones. For the sake
of simplicity, we do not consider this case. In both
Tests I1 and I2, we assume that there is no routing
restrictions (This is the most challenging configu-
ration since it maximizes the number of network
paths). Finally, the users requirements input is
composed of 4 users (|U|=4) each requiring to
perform 3 processing functions (|M|/|U|=3) on the
same probe. The compute and network capabilities
it requires are as those of Tests UR1 and UR2
users requirements.

B. Test results

In this section, we compare the M and the NM
approaches based on the calculation time that they
require as well as their compute and their network
footprint. We consider the first and last solutions
found within 10 minutes. Results are depicted in
Table II and Table III. Each value in these tables
is the mean of the results of 30 experiments that
differ in the randomly generated parameters. The
footprint gain realized by the M is represented as
a percentage of the NM footprint. In 3% of the
experiments of Test I1 where the number of trees
(|S|/7) is equal to 2, the search space could be
entirely explored during the calculation of the NM.
Meanwhile, 10 minutes were not enough to find an
M solution in 13% of the experiments of Test UR1
where |M|/|U|=6 and in 27% of the experiments of
Test UR1 where |M|/|U|=8.

1) Footprint analyses: The NM results show
that the compute footprint is the same in the first
and the last solutions. It is equal to the sum of
the compute capabilities that are required by the
functions (i.e., |F | × 1MB) because there is no
functions mutualization. For the M results, the

RR n° 9215

12 Abderrahim et al.

Test Inputs Time(s) Compute fp.(MB) Network fp.(Mbps)
|M|/|U| |U| |F| |S|/7 NM M NM M NM M

UR1

2 4 13 4 0.034 1.878 13 10 (-23%) 24 19 (-21%)
4 4 21 4 0.085 27.935 21 17 (-19%) 32 26 (-19%)
6 4 29 4 0.153 56.985 29 25 (-14%) 40 34 (-15%)
8 4 37 4 0.187 63.16 37 32 (-14%) 48 42 (-13%)

UR2

3 3 13 4 0.046 1.542 13 12 (-8%) 21 19 (-10%)
3 5 21 4 0.078 3.988 21 18 (-14%) 35 30 (-14%)
3 7 29 4 0.106 16.527 29 21 (-28%) 50 38 (-24%)
3 9 37 4 0.148 32.98 37 28 (-24%) 64 50 (-22%)

I1

3 4 17 2 0.007 0.276 17 13 (-24%) 26 19 (-27%)
3 4 17 4 0.078 6.578 17 13 (-24%) 28 22 (-21%)
3 4 17 6 0.191 29.475 17 13 (-24%) 31 25 (-19%)
3 4 17 8 0.405 99.301 17 13 (-24%) 33 26 (-21%)

I2 3 4 17 9/7 0.008 0.358 17 13 (-24%) 19 15 (-21%)

TABLE II: NM versus M: First solution

Test Inputs Time(s) Compute fp.(MB) Network fp.(Mbps)
|M|/|U| |U| |F| |S|/7 NM M NM M NM M

UR1

2 4 13 4 223.298 59.095 13 10 (-23%) 20 16 (-20%)
4 4 21 4 186.944 157.614 21 17 (-19%) 29 24 (-17%)
6 4 29 4 119.902 166.238 29 25 (-14%) 38 32 (-16%)
8 4 37 4 88.282 102.676 37 32 (-14%) 46 41 (-11%)

UR2

3 3 13 4 232.378 252.853 13 12 (-8%) 17 15 (-12%)
3 5 21 4 218.736 173.373 21 18 (-14%) 31 27 (-13%)
3 7 29 4 176.994 192.797 29 21 (-28%) 46 35 (-24%)
3 9 37 4 116.676 93.053 37 28 (-24%) 60 49 (-18%)

I1

3 4 17 2 277.179 63.126 17 13 (-24%) 19 15 (-21%)
3 4 17 4 231.245 153.024 17 13 (-24%) 24 19 (-21%)
3 4 17 6 120.906 221.019 17 13 (-24%) 28 22 (-21%)
3 4 17 8 82.793 227.968 17 13 (-24%) 30 24 (-20%)

I2 3 4 17 9/7 95.717 20.37 17 13 (-24%) 17 13 (-24%)

TABLE III: NM versus M: Last solution

compute footprint is also the same in the first and
the last solutions but it is lower than the sum of
the compute capabilities that are required by the
functions. Thus, a GM is found. However, it is the
only one because the calculation of its possible
placements requires more than 10 minutes as in
the most cases for NM.

Since for both placements, the first and the last
solutions have the same number of functions, these
solutions have also the same number of flows.
However, for both placements, the last solution
has a lower network footprint than the first one.
This is due to the fact that the solver manages to
place the flows on a lower number of links. Test
I1 shows how the number of links connecting the
servers affects the network footprint since for the
same users requirements input, the network foot-
print increases when the scale of the infrastructure
increases.

As expected, the first and the last solutions of
the M have less compute and network footprint
than the first and the last solutions of the NM,
respectively. The realized gain for the compute

footprint ranges from -8% to -28% and it ranges
from -10% to -27% for the network one. In most
cases, the first solution of the M has even less
compute and network footprints than the last so-
lution of the NM. This is due to the fact that the M
solutions are not attainable by the NM calculation.

2) Calculation time analyses: The inputs scale
affects significantly the calculation time. Table II
shows that the time required to find the first
solutions increases exponentially when the input
scale increases linearly. This is due to the NP-
completeness of the M and NM problems.

For the different tests, Table II shows that the
first solution of the M case required more time
than the one of the NM case. In addition, as
detailed previously, 10 minutes were not enough
to find a solution in some experiments for the
M calculation. Meanwhile, they were enough in
other experiments to explore the search space
entirely for the NM calculation. This is due to
the fact that the M problem complexity is higher
than the NM one. The former consists of two
NP-complete problems (i.e., edge contraction and

Inria

A Framework for Edge Infrastructures Monitoring 13

graph matching) whereas the latter consists of only
one (i.e., graph matching). Since any NM is a
viable solution for the M calculation, it is possible
to begin the M calculation by looking for an NM.
This comes down to adding this constraint: ∀r ∈
R, head(xor) = head(r) ∧ tail(xor) = tail(r)
and to relaxing it once a solution is found. Thus,
it is possible to reduce the M calculation time.

For the same number of functions, Table II
shows that it is harder for both placements to find a
first solution in the tests having the higher number
of processing functions. In fact, these functions
introduce more unknowns to the problem than the
other functions (i.e., users and probes) since it is
unknown whether they have to be mutualized or
not. In addition, their hosting servers are unknown.

Compared to an infrastructure of Test I1 that is
composed of two trees (|S|=14, |L|=40), the infras-
tructure of Test I2 has a lower number of servers
and links (|S|=9, |L|=35). However, Table II shows
that for both placements, it is harder to find the
first solution in the latter test than in the former.
This is due to the difference of the infrastructures
topologies, which results in different numbers of
network paths. In fact, for the infrastructure of Test
I1 that is composed of 2 trees, there is only one
path between any pair of servers. However, for
the infrastructure of Test I2, there are at least two
paths between any pair of servers except c2 and
r, which are connected with one path only.

VI. CONCLUSION AND FUTURE WORK

In this paper, we investigated the footprint
challenge of Edge infrastructures monitoring. To
address this issue, we proposed a monitoring ser-
vice that leverages the mutualization of identical
processing and flows among different tenants. Our
approach is motivated by the multi-tenant aspect
of the Edge infrastructure since the tenants sharing
the same resources may have the same monitor-
ing interests. We designed the monitoring service
architecture. In addition, we formalized the mutu-
alization determination as a constraint satisfaction
problem whose objective is to reduce the overall
monitoring service footprint while meeting the
QoS requirements of each tenant.

The micro-benchmarks we performed showed
the pertinence of our approach in reducing the

monitoring footprint. However, because of the NP-
completeness of the problem, the mutualization
increases the placement calculation time. To cope
with this limit, it is possible to target a non-
mutualised placement as a first solution then con-
tinue the search for a mutualised one. In addition,
in order to significantly reduce the calculation
time, we envision to further decentralize the mu-
tualization calculation. To assign the inputs to the
different calculators, we intend to consider the
inputs nature in addition to their scale as our
evaluation showed that the rate of the processing
functions in the users requirements and the topol-
ogy of the infrastructure affect the duration of the
calculation. Finally, to cope with the dynamicity of
the infrastructure, we envision to rely on dynamic
resolution methods [34]. In addition, we envision
to extend the objective function of the model in
order to minimize the migration cost [35] of the
functions and flows placed beforehand.

REFERENCES

[1] L. Atzori, A. Iera, and G. Morabito, “The internet of
things: A survey,” Computer networks, vol. 54, no. 15,
pp. 2787–2805, 2010.

[2] A. Ahmed and E. Ahmed, “A survey on mobile edge
computing,” in 2016 10th International Conference on
Intelligent Systems and Control (ISCO), Jan 2016, pp.
1–8.

[3] D. Kreutz, F. Ramos, P. Esteves Verissimo, C. Es-
teve Rothenberg, S. Azodolmolky, and S. Uhlig,
“Software-defined networking: A comprehensive survey,”
Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, Jan.
2015.

[4] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten,
F. De Turck, and R. Boutaba, “Network function virtu-
alization: State-of-the-art and research challenges,” IEEE
Communications Surveys & Tutorials, vol. 18, no. 1, pp.
236–262, 2015.

[5] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge
computing: Vision and challenges,” IEEE Internet of
Things Journal, vol. 3, no. 5, pp. 637–646, 2016.

[6] “Akamai Cloudlets,” http://cloudlets.akamai.com, (Ac-
cessed: 2018-03-08).

[7] “Amazon Lambda@Edge,” https://aws.amazon.com/
lambda/edge/, (Accessed: 2018-03-08).

[8] A. Lebre, J. Pastor, A. Simonet, and F. Desprez, “Re-
vising openstack to operate fog/edge computing infras-
tructures,” in Cloud Engineering (IC2E), 2017 IEEE
International Conference on. IEEE, 2017, pp. 138–148.

[9] A. Asta, “Observability at twitter: tech-
nical overview, part i, 2016,” https:
//blog.twitter.com/engineering/en_us/a/2016/
observability-at-twitter-technical-overview-part-i.html,
accessed: 2018-04-01.

[10] M. P. Andersen and D. E. Culler, “Btrdb: Optimizing stor-
age system design for timeseries processing.” in FAST,
2016, pp. 39–52.

RR n° 9215

http://cloudlets.akamai.com
https://aws.amazon.com/lambda/edge/
https://aws.amazon.com/lambda/edge/
https://blog.twitter.com/engineering/en_us/a/2016/observability-at-twitter-technical-overview-part-i.html
https://blog.twitter.com/engineering/en_us/a/2016/observability-at-twitter-technical-overview-part-i.html
https://blog.twitter.com/engineering/en_us/a/2016/observability-at-twitter-technical-overview-part-i.html

14 Abderrahim et al.

[11] L. Romano, D. De Mari, Z. Jerzak, and C. Fetzer, “A
novel approach to qos monitoring in the cloud,” in Data
Compression, Communications and Processing (CCP),
2011 First International Conference on. IEEE, 2011,
pp. 45–51.

[12] M. Abderrahim, M. Ouzzif, K. Guillouard, J. Francois,
and A. Lebre, “A holistic monitoring service for fog/edge
infrastructures: A foresight study,” in 2017 IEEE 5th
International Conference on Future Internet of Things
and Cloud (FiCloud), Aug 2017, pp. 337–344.

[13] S. Jernigan, D. Kiron, and S. Ransbotham, “Data sharing
and analytics are driving success with iot,” MIT Sloan
Management Review, vol. 58, no. 1, 2016.

[14] Y. Benazzouz, C. Munilla, O. Gunalp, M. Gallissot, and
L. Gurgen, “Sharing user iot devices in the cloud,” in
Internet of Things (WF-IoT), 2014 IEEE World Forum
on. IEEE, 2014, pp. 373–374.

[15] B. Xu, L. Da Xu, H. Cai, C. Xie, J. Hu, and F. Bu,
“Ubiquitous data accessing method in iot-based infor-
mation system for emergency medical services,” IEEE
Transactions on Industrial Informatics, vol. 10, no. 2,
pp. 1578–1586, 2014.

[16] M. Antunes, D. Gomes, and R. L. Aguiar, “Towards
iot data classification through semantic features,” Future
Generation Computer Systems, 2017.

[17] M. D. de Assuncao, A. da Silva Veith, and R. Buyya,
“Distributed data stream processing and edge computing:
A survey on resource elasticity and future directions,”
Journal of Network and Computer Applications, vol. 103,
pp. 1–17, 2018.

[18] V. Cardellini, V. Grassi, F. Lo Presti, and M. Nardelli,
“Optimal operator replication and placement for dis-
tributed stream processing systems,” ACM SIGMETRICS
Performance Evaluation Review, vol. 44, no. 4, pp. 11–
22, 2017.

[19] J. Halpern and C. Pignataro, “Service function chaining
(sfc) architecture,” Tech. Rep., 2015.

[20] M. C. Luizelli, L. R. Bays, L. S. Buriol, M. P. Bar-
cellos, and L. P. Gaspary, “Piecing together the nfv
provisioning puzzle: Efficient placement and chaining of
virtual network functions,” in Integrated Network Man-
agement (IM), 2015 IFIP/IEEE International Symposium
on. IEEE, 2015, pp. 98–106.

[21] N. Tastevin, M. Obadia, and M. Bouet, “A graph ap-
proach to placement of service functions chains,” in
Integrated Network and Service Management (IM), 2017
IFIP/IEEE Symposium on. IEEE, 2017, pp. 134–141.

[22] M. Hirzel, H. Andrade, B. Gedik, V. Kumar, G. Losa,
M. Nasgaard, R. Soule, and K. Wu, “Spl stream pro-
cessing language specification,” NewYork: IBM Research
Division TJ. Watson Research Center, IBM Research
Report: RC24897 (W0911 044), 2009.

[23] M. Ghijsen, J. Van Der Ham, P. Grosso, C. Dumitru,
H. Zhu, Z. Zhao, and C. De Laat, “A semantic-web
approach for modeling computing infrastructures,” Com-
puters & Electrical Engineering, vol. 39, no. 8, pp. 2553–
2565, 2013.

[24] M. Hirzel, R. Soulé, S. Schneider, B. Gedik, and
R. Grimm, “A catalog of stream processing optimiza-
tions,” ACM Computing Surveys (CSUR), vol. 46, no. 4,
p. 46, 2014.

[25] T. Asano and T. Hirata, “Edge-deletion and edge-
contraction problems,” in Proceedings of the fourteenth
annual ACM symposium on Theory of computing. ACM,
1982, pp. 245–254.

[26] A. M. Abdulkader, “Parallel algorithms for labelled graph
matching,” Ph.D. dissertation, Colorado School of Mines,
1998.

[27] E. Bengoetxea, “Inexact graph matching using estima-
tion of distribution algorithms,” Ph.D. dissertation, Ecole
Nationale Supérieure des Télécommunications, Paris,
France, Dec 2002.

[28] V. Kumar, “Algorithms for constraint-satisfaction prob-
lems: A survey,” AI magazine, vol. 13, no. 1, p. 32, 1992.

[29] C. Lecoutre, L. Saïs, S. Tabary, and V. Vidal, “Reasoning
from last conflict (s) in constraint programming,” Artifi-
cial Intelligence, vol. 173, no. 18, pp. 1592–1614, 2009.

[30] N. Jussien, G. Rochart, and X. Lorca, “Choco: an
open source java constraint programming library,” in
CPAIOR’08 Workshop on Open-Source Software for In-
teger and Contraint Programming (OSSICP’08), 2008,
pp. 1–10.

[31] S. M. Rumble, D. Ongaro, R. Stutsman, M. Rosenblum,
and J. K. Ousterhout, “It’s time for low latency.” in
HotOS, vol. 13, 2011, pp. 11–11.

[32] V. Schafer, “Part of a whole: Renater, a twenty-year-
old network within the internet,” Information & Culture,
vol. 50, no. 2, pp. 217–235, 2015.

[33] “IPv4 MULTICAST Service,” https://pasillo.renater.
fr/test/get_qosmetrics_resultsMULTICASTv4.php, (Ac-
cessed: 2018-03-08).

[34] R. J. Wallace, D. Grimes, and E. C. Freuder, “Solving
dynamic constraint satisfaction problems by identifying
stable features.” in IJCAI, vol. 9, 2009, pp. 621–627.

[35] A. Strunk, “Costs of virtual machine live migration:
A survey,” in Services (SERVICES), 2012 IEEE Eighth
World Congress on. IEEE, 2012, pp. 323–329.

Inria

https://pasillo.renater.fr/test/get_qosmetrics_resultsMULTICASTv4.php
https://pasillo.renater.fr/test/get_qosmetrics_resultsMULTICASTv4.php

RESEARCH CENTRE
RENNES – BRETAGNE ATLANTIQUE

Campus universitaire de Beaulieu
35042 Rennes Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

	Introduction
	Related Work
	Monitoring Service Design
	The Mutualized Placement Problem
	Notions and Notations
	Problem Inputs
	Variables Definition
	Domains Definition
	Problem Constraints
	Problem Objective Function

	Evaluation
	Test scenarios
	Test results
	Footprint analyses
	Calculation time analyses

	Conclusion and Future Work
	References

