-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by ACMAC

MNANEMIZTHMIO KPHTHE - TMHMA E®@APMOIMENQN MAGHMATIKON "“')'1"
Archimedes Center for Modeling, Analysis & Computation

UNIVERSITY OF CRETE - DEPARTMENT OF APPLIED MATHEMATICS 4
Archimedes Center for Modeling, Analysis & Computation ¢

ACMAC'’s PrePrint Repository

Beyond Mean Field: On the role of pair excitations in the evolution of
condensates

Manoussos Grillakis and Matei Machedon

Original Citation:

Grillakis, Manoussos and Machedon, Matei

(2013)

Beyond Mean Field: On the role of pair excitations in the evolution of condensates.
(Submitted)

This version is available at: http://preprints.acmac.uoc.gr/245/
Available in ACMAC’s PrePrint Repository: October 2013

ACMAC’s PrePrint Repository aim is to enable open access to the scholarly output of ACMAC.

http://preprints.acmac.uoc.gr/


https://core.ac.uk/display/18488289?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://preprints.acmac.uoc.gr/245/
http://preprints.acmac.uoc.gr/

BEYOND MEAN FIELD: ON THE ROLE OF PAIR
EXCITATIONS IN THE EVOLUTION OF
CONDENSATES.

M. GRILLAKIS AND M. MACHEDON

1. INTRODUCTION

ABSTRACT. This paper is in part a summary of our earlier work
[17, 18, 19], and in part an announcement introducing a refinement
of the equations for the pair excitation function used in our previ-
ous work with D. Margetis. The new equations are Euler-Lagrange
equations, and the solutions conserve energy and the number of
particles.

2. INTRODUCTION

The problem, which has received a lot of attention in recent years, is
concerned with the evolution of the N-body linear Schrodinger equation

%%%\[(t’ -) = Hyvyn(t,-) with
77Z}N(0, X1, 7:L’N) == ¢0(I1)¢0(I2) e ¢0($N)
[ (t, ')HLQ(R3N) =1

The Hamiltonian is an operator of the form

N
HN = ZAx] — %ZUN(J% — iL‘j)
j=1 i<j
where vy (z) := N3Fv(NPx) with 0 < 8 < 1 models the strength of two
body interactions. Notice that if 5 > 0 then vy(z) — d(z) as N — oo.
For simplicity we assume that v € Cy and v > 0. The goal is to show,
in a sense to be made precise,

Un(t, @, an) = MOt 1) (t, 2) - Bt Ty) (1)

The authors thank Sergiu Klainerman for the interest shown for this work, and
John Millson for many discussions related to the symplectic group and its represen-
tations. The authors would like to thank the Department of Applied Mathematics
at the University of Crete and ACMAC for their hospitality during the preparation
of the present work.
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2 M. GRILLAKIS AND M. MACHEDON

where ¢ satisfies a suitable non-linear Schrodinger equation. In partic-
ular, this approximation is not true in L2(R3Y).

The motivation for this problem is that in the presence of a trap the
ground state on Hy looks like

\I’N(Ih Ty« ,IN) = ¢0($1)¢0($2) te ¢0(IN)

This is suggested by the result of Lieb and Seiringer who showed in
[26] that

N (z,2") = do(x)do(z')
where

7{\7(1‘7‘%/) :/@N(max%"' 7xN)\I]N<x/7$27"' 7xN)
dzrse---dxy

Here ||¢o|z2 = 1 and ¢ minimizes the Gross-Pitaevskii functional. See
[25] for extensive background.

The reason for the recent attention to this problem is two-fold. On
the one hand experimental advances during the last twenty years made
the creation and manipulation of condensates in the laboratory possi-
ble, on the other hand recent mathematical developments made possi-
ble the rigorous treatment of the equations when the number of parti-
cles, namely NV, is large.

While this is a ”classical PDE problem” (as opposed to a Fock space
problem), the PDE approach to this problem has only been studied
systematically during the last 10-15 years, in the series of papers of
Erdés and Yau [8], and Erdos, Schlein and Yau [9] to [11]. See also [7].
These papers prove

0 (t,a’) = ¢t 2)o(t, o) (2)

in trace norm as N — oo, and similarly for the higher order marginal
density matrices v, where k is fixed. The problem becomes more
difficult and interesting as the parameter § in the definition of vy
approaches 1. The strategy of these papers is based on the older work
of Spohn [30]. Recent simplifications and generalizations, based on
harmonic analysis techniques and a ”boardgame argument” inspired
by the Feynman diagram approach of Erdos, Schlein and Yau, were
given in [21], [22], [6], [3], [4], [5]. See also [14], [27] for a different
approach.

The symmetric Fock space approach to the problem is much older.
It originated in physics, with the papers by Lee, Huang and Yang [23]
in the static case, and Wu [31] in the time-dependent case. See also
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[2]. It continued with the mathematically rigorous work of Hepp [20],
and Ginibre and Velo [15].

Motivated by the goal of obtaining a convergence rate to solutions of
NLS in (2), Rodnianski and Schlein resumed the rigorous Fock space
approach in [28]. This paper, as well as the older work of Wu, served
as an inspiration for our work. Our goal is to obtain a refinement to
(1) which provides an L*(R3*") and Fock space estimate. This leads to
the introduction of the pair excitation function k.

We also mention the recent preprint [1] where a similar approach
(but with an explicit choice of pair excitation function k) is used to
prove convergence of the density matrices in the critical case § = 1.

3. FOCK SPACE

In this section we briefly review symmetric Fock space, following the
notation of [19]. See [28], for more details. The elements of F are
vectors of the form

‘¢> = (?/JO ) ¢1(SB1) s ?/Jz(xl,xz) s e )

where 1)y € C and v, are symmetric L? functions. The norm of such a
vector is,

)15 = (lw) = ol + > [lenl]y. -
n=1

The creation and anihilation distribution valued operators denoted by
a’ and a, respectively which act on vectors of the form (0, - - ,1,,_1,0, - - -

and (07 7wn+1707'”) by
a;(Q/Jn,l) = % ;5(1‘ — Ij)wn,1($1, e ,J?jfl,l’]q,l, . ,l’n)
aw(wn—i—l) =vn+ 1¢n+1([$]7x1a S 7$n)

with [z] indicating that the variable x is frozen. The vacuum state is
defined as follows:
0) := (1,0,0...)

and a,|0) = 0. One can easily check that [a,, a;] = 0(z —y) and since
the creation and anihilation operators are distribution valued we can
form operators that act on [F by introducing a field, say ¢(z), and form

a(d) = / dr {f(x)a,} and a*(6) = / dz {p(z)at)

where by convention we associate a with ¢ and a* with ¢. These
operators are well defined, unbounded, on [F provided that ¢ is square
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integrable. The creation and anihilation operators provide a way to
introduce coherent states in [F in the following manner, first define the
skew-Hermitian operator

@)= [ do {d(a)a, ~ o(w)a} 3
and then introduce N-particle coherent states as

[4(6)) := e V4D |0y . (4)

This is the Weyl operator used by Rodnianski and Schlein in [28]. It
is easy to check that

e"/ﬁA("b) 0O)=1|...c Ti) ... with ¢, = (e N N"/n! 1/2 )
j=1

In particular, by Stirling’s formula, the main term that we are inter-
ested in has the coefficient

ey ~ (2rN) V4 (5)

Thus a coherent state introduces a tensor product in each sector .
For the construction analogous to (3) involving quadratics, start with
the Lie algebra of real or complex symplectic ”matrices” of the form

- (fien )

where d, k and [ are kernels in L?, and k and [ are symmetric in (z,y).
We denote this Lie algebra sp(C) or sp(R) depending on whether the
kernels d, k and [ are complex or real. The natural setting for us (which
will insure that the Fock space operator () defined below, is unitary,
see also the appendix of [18]) is the subalgebra sp.(R) = Wsp(R)W™!

where
1 (T 4
w=s (1 i)

The elements of sp.(R) look like

_ (id(z,y)  Kk(z,y)
b= (k(ﬂf,y) —idT(x,y)) ©)

with L? kernels d complex and self-adjoint, & complex and symmetric.

Remark 3.1. The corresponding group elements E € Sp.(R) (in par-
ticular E = el L € sp.(R)) satisfy the following three properties:
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° E_ commutes with the real structure o defined by o(¢,v) =
(1, @), in other words FE is of the form

(G 7o)

e E belongs to the infinite dimensional analogue of U(n,n) , in
other words

F( 2)e=(5 5

e F is in the symplectic group, meaning

r( 0 I (0 I

E (—1 0)E=\-1 0
In fact, any two of the above imply the third. The conceptual rea-
son for this is that the symplectic inner product <(¢1, 1), (g2, ¢2)> =

[ ¢1109— [ 162 and the ”U(n,n)” inner product <(¢1,w1), (¢2,w2)> =
[ 1¢a— [ 19, are related by <(¢1,@/}1), (¢2,1/}2)> = <(¢1,¢1),U(¢2,¢2))-

See Folland’s book [13] for more along these lines in the finite dimen-
sional case.These matrices are called Bogoliubov rotations in [1].

Our approach is based on the map from L € sp(C) to quadratic
polynomials is (a,a*) in the following manner,

2(0) =5 [war{ia @ () o0 ) () @

1
=3 /da:dy {d(x, y)aga, +d(y, v)aya, + k(z,y)aya, — I(z, y)a'xay} )

This is the infinite dimensional Segal-Shale-Weil infinitesimal repre-
sentation. The group representation was studied in [29]. The crucial
property of this map is the Lie algebra isomorphism

[Z(L1), Z(L2)] = Z([L1, L)) (8)

Notice that if L € sp.(R), then L has the form (6) and Z(L) is skew-
Hermitian, thus eZ(") is a unitary operator on Fock space. For the
applications that follow we will only use the self-adjoint elements of

spe(R)
_ 0 k(tz,y)
K‘Qmaw 0 ) ©)
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and the corresponding

B(k) = T(K) = % / drdy {F(t, 2, y)asa, — k(b z.p)ata’} . (10)

K (k( 0 E(t,éc,y)> (11)

t,z,y)
We easily compute

where

1
Sh(k)::k—i—ikokok—l—..., (12a)

1-—
ch(k) := 5(x—y)+§kok‘+... : (12b)

This particular construction and the corresponding unitary operator

e? were introduced in [17].

The Fock Hamiltonian is

H:=H,—N'V where, (13a)

Hy = /dxdy {A0(x —y)aia,} and (13b)
1 Xk

V= B /dxdy {UN($ — y)axayaxax} , (13c)

It is a diagonal operator on Fock space, and it acts as a regular PDE
Hamiltonian in n variable

n

1
H, ppr = ZA% TON Z NBBU(NB(%' - xk))

j=1 TiFT)
on the nth component of F.
4. OUTLINE OF OLDER RESULTS

Our goal is to study the evolution of coherent initial conditions of
the form

|¢emact> - 6l‘trH6_\/N‘A(¢O)|0> (14)
The papers [17, 18, 19] propose an approximation of the form
}¢appr> = e—\WA(¢(t)e—B(k(t))’0> (15)

and derive Schrédinger type equations equations for ¢(t, x), k(t, z,y) so
that |¢emct(t)> A eiNX(t)‘@Z)appT(t)>, with x(t) a real phase factor, and
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find precise estimates in Fock space, see Theorem (4.1) below. Our
strategy is to consider

‘ ¢T6d> — B® e\/NA(t) itH Q—WA(O)‘(D
and then find a "reduced Hamiltonian” H,.q so that

1
Zat‘wred> == Hred|wred> . (16)
The reduced Hamiltonian is

1
Hyeqd := 7 (8,568)6_8
1
+ B (—_ (&e‘/ﬁ““) eTVNA e‘/ﬁA’He_‘/ﬁA) e B
i

It can be written abstractly as a composition (in space only) of opera-
tors

10 eBoVNA 19 ~VNA_-B
Hreqd = 8t+ ( Zat+%>oe e

Explicitly it is
Hyea = NPy + N'2ePPre®
+He +I(R) — N V2PPye™® - N 1eBpe B (17)

where the various terms are defined below. P, indicate polynomials of
degree n in a,a* to be given explicitly:

Po = /d:v {Q%(Cbﬁbt - ¢3¢t) - |V¢|2}
—%/dmdy{vzv(x— y)le(@)*loy)*} - (18)
P = / de {h(t, x)a’ + h(t, 2)a, ) (19)
=a*(h(t,-) + a(h(t,-))
where h := —(1/1)0, + A¢ — (UN * |¢|2)¢‘

1
He = § /dxdy {_gN(tv €, y)azax - gN<t7 Y, x)a;ay} (20&)
where (20b)
gn(t,2,y) = —Dd(z — y) + (vn * [¢]*)(t, 2)d(z — y)

+on(z —y)o(t, 2)o(t, y) (20c)
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and

1
R:Z(_ e X +[G, e +efMe ™ =

_( W (ch(h) —S(sh(k))>o<6h(k) —sh(k>> (21)
( ()) W(ch(k))

where S describes a Schrodinger type evolution, while W is a Wigner
type operator by

1 1
S(s) == ;8t+gTos+sog and W(p) := ;ptﬂgT,p]

while M ::< 0 m) where
-m 0

m(z,y) = —uon(z —y)d(x)(y) ,vn(z) = N*Pv(Nz)

(9 O
and G := (O —gT>

Finally,
— AV = [ dedy {ox(z - ) (o005, + i)}
(22a)
Py=V=(1/2) /dq:dy {on(z —y)ajaaza,} . (22b)

The main result of [19], building on the previous papers of the authors
and D. Margetis [17, 18], can be summarized as follows.



Theorem 4.1. Let ¢ and k satisfy

1
“00 — A6+ (o % [9P)6 =0 (230)
and either one of the following equivalent equations: (23b)
1) (s (sh(k)) — ch(k) o m) o ch(k) = (w (ch(k;)) +sh(k) o m) o sh(k)
(23c)
or else the equivalent non-liner equation (23d)
2)S(th(k)) = m + th(k) o m o th(k) (23e)
where th(k) := ch(k)  osh(k) (23f)
or else the equivalent system of liner equations (23g)
3a) S (sh(2k)) = my o ch(2k) 4 ch(2k) o my (23h)
30) W <ch(2k)> — my osh(2k) — sh(2k) oy . (231)

with prescribed initial conditions ¢(0,-) = ¢o, k(0,-,-) = 0. If ¢, k
satisfy the above equations, then there exists a real phase function x
such that

iNx(t C(1+t)log*(1 + ¢
s 0) = <O )], < ST 2

provided 0 < B < %

The purpose of the present paper is to introduce and study a coupled
refinement of the system (23a), (23h), (23i) which, we believe, is the
correct system describing the case § = 1. These equations occur as
Euler-Lagrange equations, and are written down explicitly in Theorem

(8.1).

5. MAIN NEW RESULTS

Since H,.q is a fourth order polynomial in a and a*,
Hred‘0> = (X07X17X27X37X4707H')' (25)
Definition 5.1. Define the Lagrangian
L= —/Xo(t)dt (26)

The new, coupled equations for ¢ and k that we introduce in this
paper are X; =0 and X5 = 0.
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We first prove that £ is indeed the Lagrangian for these equations.
We start by showing ”abstractly” that

5X0 = V=X xI)S x i
2= [ (e ne® ) - Kt 2shibe ) de - (21)
0Xo 1 ——

— = ——=ch(k) o Xy och(k 28
= sk Xao chlh) 29
where ( = th(k) = ch(k;)_l osh(k). We then compute explicitly the
zeroth order term Xo(¢) in H,eq|0) (which provides the Lagrangian
density for our coupled equations):

— Xo(t) = N/dxl {—% (¢1%) + ‘V¢1‘2}
+ g /dxldﬂfﬂ){vz’ﬁbl@ + %(Sho Ch)1,2‘2

1
—|— 5 /da:ldxgdx3va_2|gblsh2,3 —|— ¢28h173|2

+% (/dl‘ldl’g {—% (Shl’gatshl,g) + ‘V1,28h172‘2}

1 — -
+W/dtdl‘ldl’gl}{\[_Q{KShOSh>1,2|2—|—(ShOSh)171(ShOSh)272}> .

where sh; 5 is an abbreviation for sh(k)(t, x1, x2), etc, and the products
are pointwise products, while compositions are denoted by o. Then
we proceed to compute explicitly the coupled equations X; = 0 and
Xy = 0, derive conserved quantities, and formulate a conjecture. The
resulting equations are similar to those of Theorem (4.1), except that
m = —un(x; — x2)P(t, x1)(t, x2) is replaced by

O = —uy(x1 — 29) (qb(t, x1)p(t, x9) + %sh@k’)(t,zl, x2)> ,

and similar O(%) coupling corrections apply to the Hartree operator
as well as S and W.

Remark 5.2. The static terms of X () (not involving time derivatives)
also appear in the recent preprint [1], but do not serve as a Lagrangian
there.
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6. THE LAGRANGIAN AND THE EQUATIONS, ABSTRACT
FORMULATION

Proposition 6.1. Let k and ¢ be fized.

o eZOXO(qS + ¢eh, k) (29)

—oR / Xyt 2) (b(R) (0.2, )t ) — SBOR) (2,2, y)(t. ) ) drdy

In particular, if this vanishes for all h, then X;(t,z) = 0.

Proof. H,.q can be written as

_ 10 B_VNA 19 —VNA_-B
Hmd—g&—Fee —;a‘i‘?’[ oe e
in the sense of compositions (in space only) of operators. During this
proof, denote H; = —%% +H.

Let h be an L? function and let
A =VN(a (¢ + ¢h) —a*(¢ + eh)). Thus we have

Xo(op + €h, k) = <666A6Ht6_“4€e_8‘0>, |0>>

We compute

and

d d
.A() . *.Ae — _
¢ (d(—: o’ ) ( de

eAe e*Ao
e=0
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thus
d

I <eBeAEHteA€eB’O>, ‘O>>

_ <68{ Na(h) = v/Na* (k), e Hie ] e #|0), |0>>

e=0

= ([¢® (VNat) - V@) . B re e o). o)

0>>

_ < [a(z) —a*(l), eBeAOHte_AOG_B} 10),

= 2%<Hr6d}0>, a*(l)|0>> =1
where we denoted
ef ( Na(h) — Na*(h)) e B = a(l) — a*(1)

Explicitly,
e® (a(h) —a*(h)) e P
= a(ch(k) o h) + a*(sh(k) o h)
— a(sh(k) o h) — a*(ch(k) o h)
I =ch(k)oh—sh(k)oh
Thus,

[ =2R / X\(t,2) (ch(k)(t, 2, y)ly) — sh(k)(t, z, y)h(y)) ddy

—2R / (T(k:)oxl — sh(k) ox) (y)h(y)dy
O

In order to state the corresponding result for X5, we have to intro-
duce a new set of coordinates for our basic matrices

= (a6 o)

where
I O R ()
h= (’f(t,x7y) 0 (30)
The most obvious coordinate system is, of course, provided by k. We
recall the following proposition, proved in [18].
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Proposition 6.2. The exponential map is one-to-one and onto from
matrices of the form (30) (k € L?, symmetric) to positive definite
matrices E satisfying the three properties of Remark (3.1) for which
I — E||L2 is finite.

For our purposes, a better coordinate system is provided by ( =
th(k) = ch(k) ' osh(k).

Proposition 6.3. There is a bijection between k € L?, symmetric, and
¢ € L?, symmetric, ||C|lop < 1 (op stands for the operator norm) such

that
=ty

(G

¢
((UrEeat, et
Co(I=CoQ™  (1=¢o

where the square root is taken in the operator sense.

Proof. Given k, define ( = F(k‘)i1 osh(k). The decomposition (31)
is an algebraic identity, and it is clear that ¢ is symmetric and L.
Since I — ch(k)™2 = ( o ¢, we see that [|([|,, < 1. In fact, [|Cv[%2, =
|lv]|2.—|ch(k)~tv||3,. Conversely, given ¢ a symmetric Hilbert-Schmidt
kernel with ||(||,, < 1 define E; by (31). It is easy to check that
E¢ is positive definite, satisfies the symmetries of remark (3.1) and
|l — E¢||lms < oo. (HS stands for the Hilbert-Schmidt norm), thus we
can apply Proposition (6.2) and find the corresponding K. U

We also record the following consequence:

Proposition 6.4. Let {, = ¢ + eh (h € L?, symmetric, ||C|lop < 1),
and K. corresponding to ¢ according to the previous proposition. Then

d K. —K a [_)
delem” ¢ 7 (b —iaT)

with

b = ch(k) o h o ch(k)
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Proof. We compute
d
de
_ <ch(k)’ o ch(k) = sh(k) o sh(k) —ch(k) o sh(k) +sh(k) o ch(k;))

KEG_K
e=0

An easy calculation shows that b = —Ch(/{)/ o sh(k) + sh(k) o ch(k) =
ch(k) o ¢’ o ch(k). O

We are ready to prove

0Xo Lch(k) o X, o ch(k)

5 V2
Proposition 6.5. Let k. correspond to (+¢€h as in the previous propo-
sition. Then

% E:0)(0(¢, k) = \/§§R/Ch(k) o Xy o ch(k)(t, z,w)ﬁ(t,z,w)dzdw

In particular, if the above vanishes for all h, then X5 = 0.

0>>

Proof. Let B, = B(k).

0),

Xo(¢, ke) = <eB€ e He e 5

and
d
] Kotk = =20( H.u0), 1) (32)
where
_d Be,~B _ d Ke —K
V= dele—o” € _I(de o’ ©

Using the isomorphism (7) and proposition (6.4) we see that

E(3h(k;) o hoch(k)(t,x1,22),0,--+)

where 0 is a real number coming from the trace of the self-adjoint
a. Since X is real, i does not contribute the (32), and the result
follows. U

¥[0) = (i6,0, —
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7. EXPLICIT FORM OF THE LAGRANGIAN

The goal of this sections is the following proposition.

Proposition 7.1. The zeroth order term in Hred|0> (which provides
the Lagrangian density for our coupled equations) is Xo(t) where

X N/dg;l (6861) + [V}
+ 5 /dxlda:gvl2|¢1¢2 + N(sho Ch)1,2|2

1
+ 5 / deldIL‘le'g?J{V_ﬂgf)lSth + ¢2$h173|2
1 . 2
+§ </dl’1dl’2 {—% (shmatshm) + |V1723h1,2} }

1 — -
+W dtdl‘ldxg’l}{V_Q{KSh o Sh)172|2 + (Sh o Sh)l,l (Sh @) Sh)gjg}) .

where shy o is an abbreviation for sh(k)(t,z1,x2), ete, and the products
are pointwise products, while compositions are denoted by o.

The proof follows from several lemmas, which can be proved by ex-
plicit calculations. We proceed to compute X in (25). The only terms
in (17) which contribute to X, are NPy which is already explicit, the
zeroth order terms in Z(R)‘O>, as well as the zeroth order terms in

N~LeBP.e=50).

Lemma 7.2. The term NPy is given by

NPy = N/das{ (66 — <z3¢t)—|w|2}

- §/d$1d$2{0¥2|¢1¢2|2} :

We used abbreviations v)’ , = vy(z1 — x3), ¢1 = ¢(x1), ete., and
for the following two lemmas we will denote w2 = sh(k)(t, z1, x2) and
0172 = Ch(k’) (t, R ZL‘Q).
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Lemma 7.3. The zeroth order term in Z(R)|0) is
1 1 _ 2
- 5 (/d$1d$2 {Z (Ul,Qatul,Q - atU1,2U1,2) + ‘V1,2U1,2‘ }

+ / de’ldl‘le’g {U£2’¢1U2,3|2 —+ ’¢2U1’3|2}

+ 2§R/dx1d:v2dw3 {Uf[_2¢2U1,3¢1U2,3}

+ 2§R/dI1d$2 {U{V_Q(U ° 0)1,292_51<52} )

Lemma 7.4. The zeroth order term in —%eBVe*B‘@ 18
1

— 5 /dﬂ?ldxz?]{\[_2{(u @) 0)172('& @) 6)172

+ [(wom)y o + (uo @) (ao U)m} :

8. EXPLICIT FORM OF THE EQUATIONS

In this section we derive the following theorem, thus introducing our
new equations. First, some notation. Consider the kernels

wc(t7 ‘7:7 y) = ¢(t7 .’13)¢(t, y)
wy(t, z,y) = sh(k) o sh(k)(t, z,y)
and their traces
pe = || (t, )
pp(t’ x) = sh(k) o m@? T, )

Here ¢ stands for condensate, and p for pair. In this notation, the old
operator kernel gy defined in (20c) is

gn(t 2, y) = —Ad(x — y) + (vn * pe) (L, 2)d0(z — y)
+ ’UN<37 - y)wc(ta xz, y)
Define the new operator kernel
hN(ta z, y) = —AI(S((E - y)
+ (UN * pc)(t7 ZL’)(S(.T - y) + UN(J: - y)wc(t7 X, y) (33)

+ = (o * ) (620 — ) + oo =yt w9) (34
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Also denote a,. = (33), ~a, = (34) and @ = o, + +,. Define
- 1 ~ 1
S(s) = o5t h'os+soh and W(p):= Pt [RT, p]
Finally, define O(¢, z1, 22) = —vn(t, 21, 22) (At 21) (¢, 22) + 5x5h(2k) (¢, 21, 22)).

Theorem 8.1. The equation X1 = 0 is equivalent to

20,000, 20) ~ A6~ / O(t, 11, 22)d(t, x2) s
/ T, 21, ) p(t, m9)dxy = 0

The equation Xo = 0 is equivalent to either of :
1) the equation

S(th(k)) = © + th(k) 0 © o th(k)
2) the pair of equations (in fact, 2a) implies 2b))
2a) S (sh(2k)) = © o ch(2k) + ch(2k) 0 © (35)
20) W (m) — O osh(2k) —sh(2k) 0O =0
Remark 8.2. One can go back and fourth between ¢ and ch(2k), sh(2k)

using
sh(k)osh(k) =(1—Co() ' —1= % (ch(2k) — 1)
¢ =sh(2k)(1 + ch(2k))™!
Proof. A direct calculation for X; shows that
X, =N (T(k) o Hary(¢) + sh(k) o ﬁc}k(qs))
where

Hary(¢)(t, 1)

- %a@ — Ao — /@(t,xl,@)a(t,xg)dxz
+ % /UN(Il — x3)(sh o sh) (21, 22)p(w2)dxs

+ %gb(azl) /vN(xl — 22)(sh o sh)(z2, z2)d,

In conjunction with Proposition (6.1) this shows that
oL
= NHar
5 #(9)
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which can also be easily verified directly from Proposition (7.1).
A direct calculation also shows that, if X, denotes the second com-
ponent of Hred’0>, then

—V2Xs(t, Y1, 2) = (36)
( (S(sh(k)) —ch(k) o m) o ch(k) — (W(ch—(k)) +sh(k) o m) o sh(k)>
+(1/N)/da:1dx2 {

<$(y1, xo)sh(za, ys) (@ o sh) (x1,z1)on (21 — 22)+

ch(yi, z2)sh(z1, y2) (sh o sh) (21, w2)on (21 — 22)+

h o sh)(
C_h(yh% (72,92 ( ho Sh) (w1, m2)on (21 — 22)+

ch(y, z1)sh(z1, y2) (sh o sh) (za, z2)vn (21 — x2)> +

symm

Y2 (
sh(yy, x1)sh(za, yo (sh o Ch) (1, z9)on (21 — 29)+
ch(yy, x1) ch(wy,y2) (Ch o sh) (21, z2)von (21 — wg)} )

where symm stands for "symmetrized”. The time dependance in the
—_—
last six lines has been omitted. Recalling ¢ = ch(k) osh(k) =sh(k)o

ch(k)_l, compose on the left with Ch(k)_1 and on the right with ch(k)™!
to get

ch(k) ' o Xy och(k)™! :S(Q—@—go@ogjL%N (37)

where N is given by

N(t, 1, y2) _C(taylaQZ)(/d$((s_hoSh-i-ShOS_h)(t,x,x)vN(a:—y1)> 4

symm

(/dxg(t, 2, y2) (sh o sh + shosh) (¢, 2, y1)vn(z — yl))

symm

where symm stands for symmetrizing in vy, 2. In other words,
N=(Co Qy, + 0 ¢
Thus, in ¢ coordinates, the equation Xy = 0 becomes

S(()—©—=(0B0(=0 (38)
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Now we can get an equation for W (p) and S(¢). We will use the general
formulas

W(f ™) =—f1oW(f)of!

W(fog) =S(f)og— foS(g)
S(fog)=S(f)og— foW ()

Thus

W ((1=¢o0)™) = (1=¢o0) 0 (8(Q)0C~¢oS()) e (1=Co )

:<1—<oz>—1o<(@+<o@oc>z

+Co(®+§o@o<)><1—§05)‘l

Similarly we get a formula for S(sh(2k)), using

S(Co(1=Co¢)™)
—(1-¢o0) "o (80 —¢

O

U
—
I
S~—

o
I

N—

O
—~

[

|

S(¢o(1=(o()™)
=(1-¢o{) o (@+<o@o<

+<o(®+<o@o<)oc> o(1=C(o()"

= <(1—goZ)—1_%) 00 +0o0 ((1—200—1_%)
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9. CONSERVED QUANTITIES

We start by motivating the introduction of some conserved quanti-
ties. Recall the Lagrangian

£(,sh(k)) = N / dtde, {5 (6:301) + | Vo |}
N 2
+ E dtdxldx201,2|¢1¢2 + N(Sh e} Ch)172|

1
+ 5 /dtdl‘ldljdl‘gv{v_ﬂqblshlg + ¢28h173|2
1 -
+§ (/dtdxldltg {—% (Sth@tSth) + ‘V1728h172’2}

1 — S —
+W dtdzldxgva_2{|(sh e} Sh)172|2 + (Sh 0] Sh)Ll(Sh o) Sh)gg}) .

where sh; 5 is an abbreviation for sh(k)(¢, z1, x2), etc, and the products
are pointwise products, while compositions are denoted by o. Introduce
the energy £

£(6,sh(k))(t) = N/dxl {Ivei*}
+ g/dmdﬁﬂ{vﬂ%% + %(Sh o ch)ipf’

1
+ 5 / dIldIL‘leL'g?){V_ﬂqf)lShQ,g + ¢28h173|2

+% </dl’1dl‘2 {‘Vmshl,gf}

1 — -
+W deleEQU{V_Q{KSh 9] Sh)172|2 + (Sh e} Sh)Ll(Sh o Sh)zg}) .

Our equations for ¢ and sh(k) are equivalent to

1 8¢ 0E
i Ot _E (39)
10sh(k) o€

i Ot bsh(k)

(40)
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The relation

d it 7
0= |,_oE (70, e*sh(k))

0~ 6& ENTAY
=2% </£(—ng)dx1 +/6m(—zsh(k))dx1d$2>

together with (39), (40), leads to the conservation

%( / 6(t,00) P + / |Sh(k)(t,$1,$2)|2dx1dx2) 0

thus we define the density
1
pltsan) = 6t a0+ ;[ bkt 1, 2)

Also, the explicit form or %€ and —%(— shows that

3¢ sshk)
Y- 0& —
o i + [ s (i)

Similarly, let ¢c(t,z) = ¢(t,z + €e;), sh(k)(t,z,y) = sh(k)(t,x +
ee;,y + €e;) (e; = unit vector, 1 < j < 3). The relation

d
0 :E e:Og<¢E7 Sh(k)€>
o€ — 0 —

together with (39), (40) leads to the conservation

% (N / S (60;0) day + / S (sh(k:)M) dxldx2> — 0

thus we define the momentum density
x (AD. A 1 Cx FYSNEA)
pilte) = =S (69,0) - - [ © <sh(k)8jsh(k)> dzs

Finally, using (39), (40) we see that

0
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so we define the energy density

G(t, 1'1) = N|V¢1

N 1
+ 3/d$20{\12|¢1¢2 + N(sho ch) o|?

|2

1
+ 3 /d$2d$3viv2|¢18h2,3 + <Z52Shl,3|2

_|_% /dxg{’VmShL?‘z}

1 _ _ _
+W dxgv{\lz{\(sh o sh)l,2|2 + (shosh);i(sho sh)m}

10. A CONJECTURE

We conjecture that, if ¢, k satisfy the equations of Theorem (8.1)

and |¢eazact> )

Yappr ), are defined by (14), (15), then, in the critical case

Y

|||¢exact> - |¢appr>||.7: — 0

as N — oo, at an explicit rate.
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