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Abstract 

We investigate the conserved quantities for a closed, N-state quantum 
system. A simple derivation from the equation of motion for the density 
matrix shows that there is an infinite number of such conserved quantities. 
However, only the first N of these constants of the motion are independent. 
These constants uniquely determine the degree of mixing in the system, 
which is itself conserved. We discuss the relationship between these results, 
the properties of Hamiltonians under unitary transformation and van 
Vleck's principle of spectroscopic stability. 

1. Introduction 

The density matrix p for a closed N-state system obeys the 
Schrodinger equation 

dp i h 7  = H p  - p H  = [ H ,  p ] ,  
et  

where the Hamiltonian H and p are N x N matrices which 
may contain time-dependent elements. It has been shown 
that there exist N conserved quantities associated with the 
Hamiltonian evolution of such a density matrix. These 
conservation laws are independent of the nature of the 
Hamiltonian and can be used to obtain general properties of 
N-level systems [l-51. After giving a simple derivation of the 
N conserved quantities, we show that they uniquely define the 
degree of statistical mixing in the initial state which is, in turn, 
a constant of the motion. 

The conservation laws follow naturally from the unitary 
evolution of the density matrix. They arise from a general 
property of Hermitian matrices undergoing unitary trans- 
formations. We use this property to relate our results to van 
Vleck's principle of spectroscopic stability [6]. Further, the 
Hamiltonian under unitary transformation displays properties 
parallel to those of the density matrix under Hamiltonian 
evolution. 

If the Hamiltonian contains a fluctuating indeterminate 
part then the conservation laws will, in general, only apply for 
individual realisations of the Hamiltonian. We discuss 
the failure of the conservation laws when the Hamiltonian 
fluctuations are statistically averaged. 

2. Conserved quantities 

We consider the density matrix p for a closed N-state system 
obeying eq. ( I ) .  It is straightforward to show that any positive 
integral power of the density matrix, p"' (m = 1, 2, 3, . . .), 
satisfies a similar equation: 

s 
ih (p" ' )  = [ H ,  p"'] .  

ct 
To see that this is so, we write 

m- I 
= 1 p" ( H p  - p H )  p"- ' - " ,  (3) 

n = O  

using ( I ) .  The terms cancel in pairs leaving only Hp"' - p"'H. 
The conserved quantities are found by taking the trace of the 
matrix eq. (2). Since the trace of the commutator of two finite 
matrices is zero, we find an infinite number of constants of the 
motion C,,, [ I ,  21, where 

C,,, = Tr(p"') .  (4) 

Clearly there cannot be an infinite number of independent 
conserved quantities since the system is finite. In fact, only the 
first N constants are independent [4]. This can be readily 
shown by applying a unitary transformation to diagonalise 
the density matrix. We note that this is always possible 
because the density matrix i s  Hermitian but that the required 
transformation will be time-dependent. If we denote the 
diagonalised density matrix by j, with diagonal elements ji 
(i = 1 to N ) ,  then the conserved quantities (4) have the form 
p ,  + 6: + . . ' +  6.N = c, 

py' + 3;' + . . . + t?; = c,,, 

p:' + 3; + . . . + p ;  = c, 
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The first constant C, equals unity by conservation of 
probability, but the other constants contain valuable 
statistical information. Equation ( 5 )  is an infinite set of 
simultaneous equations for the diagonalised density matrix 
elements Pi .  The first N-l  equations may be used to 
eliminate J , ,  p2,  . . . , J N - , .  The Nth equation will then 
have the form of an Nth order polynomial for element 
J,. The coefficients of this polynomial will be functions 
of only the first N constants CI ,  C,, . . . , C, and its N 
roots will be the values of the diagonalised density matrix 
elements ai. Naturally, the order in which these solutions 
appear in J is not prescribed. This order will be deter- 
mined by the manner in which we label our eigenstates. 
Thus, the elements appearing in J will be the same at 
all times but their arrangement may vary. It follows that only 
the first N quantities are independent because the other 
constants Cn+,, CN+*,  . . . are expressible in terms of the f i i  
which are themselves constants determined by the first N 
conserved quantities. 

3. Conservation of mixing 

The density matrix allows us to treat systems in a mixed state 
for which we only know the probdbilities that given pure 
states are occupied and for which the density matrix cannot 
be obtained from a wavefunction and its dual. The diagonal 
element J, is precisely the probability that the system is in the 
pure eigenstate of the instantaneous density matrix. These 
instantaneous basis states are complete and hence the cf 
contain all the information about the degree of statistical 
mixing in the system. 

The N diagonalised density matrix elements 6, and the first 
N conserved quantities are equivalent descriptions of the 
degree of statistical mixing. The constants C, , C?, . . . , C, 
are related to the first N moments of the distribution of the 
6’2 for 

where (6;‘) is the mean value of the quantities ( i  = 1 to 
N ) .  In particular, the first conserved quantity gives, rather 
trivially, the mean of the iji: 

1 
= N C ,  

1 
N 

- _ -  (7) 

The second constant C2 is related to the variance of the pi: 

The remaining constants C 3 ,  C,, . . . , C, provide increasingly 
fine (and, ultimately, complete) statistical information. After 
the first N ,  the higher moments of the distribution of the J, are 
expressible in terms of C,,  C 2 ,  . . . , C,. 

The statistics of the mixing are uniquely determined by the 
first N conserved quantities. Therefore the statistics or the 
degree of mixing of the system is conserved during the 
evolution. This result presents a generalisation of the well- 
known statement that, in a Hamiltonian system, there is no 
mechanism by which a pure state can evolve into a mixed 
state (nor a mixed state into a pure state). 
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4. Connection with the principle of spectroscopic stability 

The time-evolved density matrix p(r)  is related to the initial 
density matrix p(0) by a unitary transformation: 

p ( r )  = U(~)P(O)U+(O.  (9) 
The conservation laws follow directly from (9): 

Tr (pf’’(r)) = Tr (U(r)p”’(O)U+(r)) 

= Tr (U’(r)U(r)p”’(O)) 

= Tr (p”’(O)),  (10) 
where we have used the unitarity of U ( [ )  and the cyclic 
property of the trace operation. The conservation laws 
( I O )  depend only on the unitary form of the density matrix 
evolution. Therefore, similar laws will apply whenever an 
Hermitian matrix M is transformed by the action of a unitary 
operator S: 

Tr ([SMS’]’’‘) = Tr (SM”’St) = Tr (M”’).  ( 1  1) 

Equation ( 1  1) contains van Vleck’s principle of spectroscopic 
stability [6] which we now describe. 

In its original form, the principle of spectroscopic stability 
was expressed as the invariance of a sum of matrix elements 
under changes of the system of quantisation. This sum of 
matrix elements occurs in the theory of susceptibilities. We 
present here a brief summary of van Vleck’s analysis. 

Consider an Hermitian operator fo with non-vanishing 
matrix elementsfo(n’, 1’; n, 1 )  between states with quantum 
numbers n and I and quantum numbers n’ and 1‘. The 
numbers n (and n’) describe sets of degenerate states charac- 
terised by the numbers I (and 1’). The matrix elements off’ 
will determine transition rates for transitions induced by f o .  
If a perturbatior. is applied to the system, or if we change 
from one system of quantisation to another, then the required 
transition rate will be determined by suitably modified matrix 
elementsf(n’, 1’; n,  I). The perturbed operatorfwill be related 
to the original operator f o  by means of a unitary trans- 
formation, 

,f = S’f”, (12) 
which transforms f from the original basis of degenerate 
quantum numbers ( I  and 1’) to a more suitable one. The 
principle of spectroscopic stability states that the sum over 
the degenerate quantum numbers of the transition rates from 
states I n, I )  to I n’, 1 ‘ )  will be independent of the change in 
the basis of the degenerate states. Expressed mathematically, 
the principle states that 

In matrix notation, this equality becomes 

Tr/(,/;’,,l, .A?/,) = Tr/(AL L:.3 (14) 

where ,Ap,,‘, is an operator promoting transitions from levels 
with quantum number n’ to levels with quantum number n. 
The sum over degenerate quantum numbers I‘ in equation 
( 1  3 )  becomes the matrix product in eq. (14), and the sum over 
I becomes a trace. Expression (14) follows immediately from 
a trivial extension of eq. ( 1  I ) .  

A simple example of the power of van Vleck’s principle is 
the invariance of magnetic susceptibilities under the Paschen- 
back effect [6]. The application of a magnetic field to an atom 
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or molecule can lead to a re-organisation of Zeeman patterns 
but will not change the susceptibility: the position of any 
given Zeeman component of a spectrum involves only one 
value of the magnetic quantum number, whereas the cal- 
culation of a magnetic susceptibility requires a summation 
over all possible magnetic quantum numbers. This is anal- 
ogous to the situation encountered with the statistical 
properties of the density matrix: the order in which the 
probabilities appear in the diagonalised density matrix is not 
prescribed but will depend on the manner in which the eigen- 
states are labelled. However, the statistical properties depend 
on the sums over all eigenstates and hence are unchanged by 
any relabelling. 

Van Vleck’s principle can be generalised to include all 
possible moments of,J: This forms the basis of the method of 
moments [7, 81 which has been used in discussions of the 
effect of applied fields on optical absorption lineshapes for 
transitions between bands of degenerate or nearly degenerate 
levels. 

The properties of Hermitian matrices under unitary trans- 
formation closely resemble those of the density matrix under 
Hamiltonian evolution. In particular, if the Hamiltonian 
is re-expressed in a different basis the eigenenergies of the 
Hamiltonian will be unaffected. This is the parallel statement 
to the invariance of the 6, under unitary transformation. 
Further, just as the first Nmoments of the density matrix (the 
traces of powers of p )  determine all the statistical information 
about the system, so knowledge of the first N moments of the 
Hamiltonian will determine the eigenenergies. 

5. Fluctuating Hamiltonians 

The density matrix evolution is constrained by the N con- 
stants of the motion if the interaction is Hamiltonian, that is 
if p obeys the Schrodinger equation. However, we must 
exercise caution if the interaction is fluctuating. In this case, 
any realisation of such an interaction will be Hamiltonian; 
however, averaging over many such realisations will not 
conserve the degree of statistical mixing. If the evolution of 
the ensemble is itself uncertain then the evolution of the 
density matrix will not be Hamiltonian: 

where the bar denotes averaging over the fluctuations of the 
Hamiltonian. This new density matrix p is still an accurate 
description of the statistical properties of the evolving system: 
the expectation value of an observable A is 

( A )  = Tr(pA)  = Tr(pA),  (16) 
provided A is not itself fluctuating. The quantity Tr ( p )  is still 
conserved but the quantities Tr  ( p ” ) ,  for m > 1, may vary 
because of the non-Hamiltonian evolution of p .  For example 

using (15). The right-hand side of (17) is not, in general, 
expressible as a commutator. Therefore the trace of equation 
( 1  7) need not vanish and consequently Tr ( p ’ )  will not be a 
constant. A similar conclusion will hold for the higher order 
traces. 

As we have seen the quantities C, , . . ., C , ,  are independent 
of the nature of the Hamiltonian and will be conserved 
even by a fluctuating interaction, for all realisations of the 
Hamiltonian, so that 

c,, = Tr ( p ” ’ )  = Tr (p”‘ ) .  

However these are of limited use in this case because they are 
not simply related to the density matrix of interest p .  

We have noted that no Hamiltonian evolution could 
produce a mixed state from a pure state. However, averaging 
over a fluctuating Hamiltonian will induce uncertainty in the 
evolved density matrix. A simple example of this is the 
excitation of a single atom by a thermal light source. Our 
inability to provide more than a probabilistic description of 
the light results in a statistical uncertainty in the final state of 
the atom. The required averaging of the Hamiltonian destroys 
the Schrodinger evolution of the density matrix. A similar 
phenomenon occurs in the interaction between quantum 
systems when we discard information about one or more 
systems by tracing the complete density matrix over the 
unwanted degrees of freedom. The dynamics of the resulting 
reduced density matrix is non-Hamiltonian and may be 
described by a master equation [9]. 

Another example may be provided by the interaction of 
atoms with a phase-fluctuating laser [lo]. There are then two 
situations in which we would need to carry out averaging. 
Firstly, if a single atom interacted with the laser field over a 
time which was long compared with the characteristic 
fluctuation time, then the result of a measurement on the 
atom would be averaged over the fluctuations. The density 
matrix for the atom would not then obey Hamiltonian 
evolution and the conservation laws would not hold. Secondly, 
if an experiment involved the interaction of many atoms (one 
at a time) with the field, each for a short time but with a 
total time again long compared with the fluctuation time, 
then a measurement obtained by averaging over the atoms 
would also be the result of non-Hamiltonian evolution. Of 
course, if the atom interacted with the field for a time 
short compared with the fluctuation time, then the conserved 
quantities would be preserved since the atoms, seeing an 
essentially fixed laser phase, would not be subject to a fluc- 
tuating Hamiltonian. 

6. Summary 

An N-state density matrix obeying a Hamiltonian equation 
of motion has N independent constants of the motion, 
irrespective of the Hamiltonian. These conserved quantities 
correspond to the moments of the probability distribution for 
the system to be in a pure state. The statistics of the distri- 
bution are uniquely determined by these constants and the 
degree of statistical mixing of the system is therefore con- 
served during Hamiltonian evolution. The conservation laws 
follow directly from the unitary evolution of the density 
matrix. Indeed, similar laws hold for the unitary trans- 
formation of any Hermitian matrix. We have used this 
relationship to discuss the connection between our results 
and van Vleck’s principle of spectroscopic stability. If we 
average a fluctuating interaction then the density matrix 
evolution will not be Hamiltonian and hence will not preserve 
the degree of mixing. 
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