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Singularity resolution from polymer quantum matter
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We study the polymeric nature of quantum matter fields using the example of a Friedmann-
Lemâıtre-Robertson-Walker universe sourced by a minimally coupled massless scalar field. The
model is treated in the symmetry reduced regime via deparametrization techniques, with the scale
factor playing the role of time. Subsequently the remaining dynamic degrees of freedom are polymer
quantized. The analysis of the resulting dynamic shows that the big bang singularity is resolved,
although with the form of the resolution differing significantly from that of the models with matter
clocks: dynamically, the singularity is made passable rather than avoided. Furthermore, the results
of the genuine quantum analysis expose crucial limitations to the so-called effective dynamics in
loop quantum cosmology when applied outside of the simplest isotropic settings.

I. INTRODUCTION

Einstein’s theory of general relativity (GR) successfully
describes gravitational phenomena, predicting with high
precision all large scale observations made to date. It is
however expected to fail in the ultraviolet regime due to
the quantum nature of the reality at the Planck energy
scales. To obtain accurate predictions for such situations
one has to resort to quantum gravity (QG).

Despite many attempts [1–6], no general, complete and
working (quantitatively) formulation of QG exists. In
particular, in the context of the canonical quantization
programs, so far it was possible to complete the quantiza-
tion program only in certain situations, where gravity is
coupled to specific matter fields (for irrotational dust see
[7, 8] and also the earlier, well defined implicit construc-
tions in [9, 10]). In order to generalize these frameworks
(or complete the alternative approaches) it is crucial to
first study in detail the simplified mini- and midisuper-
space settings.

In this paper we consider the simplest minisuperspace
model, which represents a Friedmann-Lemâıtre-Robert-
son-Walker (FLRW) universe – an isotropic, flat space-
time admitting a massless scalar field as source. This
model is widely used as a testing ground for QG methods
and is at the same time of particular interest in cosmol-
ogy.

In the context of QG, the model has been studied in
detail using tools of loop quantum cosmology (LQC – see
the references in the second paragraph and [11–17]). In
LQC, an application of the polymer quantization [18–22]
to the geometric degrees of freedom results in a dynam-
ical singularity resolution [17], whereby the big bang is
replaced by a big bounce. This result was later confirmed
(at the genuine quantum level) for different matter fields,
in particular the Maxwell field [23] and dust [24].

∗ a.kreienbuehl@hef.ru.nl
† tpawlow@fuw.edu.pl

However, the abovementioned big bounce result was
obtained via a somewhat “hybrid” approach: the ge-
ometry is quantized via loop techniques, while the mat-
ter (the scalar field) is treated by methods of standard
quantum mechanics (Schrödinger representation).1 Fur-
thermore, the system was analyzed by methods dedi-
cated to theories with a time reparametrization freedom.
Namely, the evolution was implicitly defined by means
of the formalism of partial observables [26]. The above
approach was also applied outside of the isotropic set-
tings, both for homogeneous models (like various Bianchi
models [27]) and inhomogeneous spacetimes (in particu-
lar Gowdy models [28]) as well as in the context of per-
turbation theory about the cosmological sectors [29–31].2

The results for the inhomogeneous settings are however
based on heuristic methods and the dynamic is not sys-
tematically investigated.

An alternative approach is presented in [32] (see also
[33]), where the investigated model is the one consid-
ered here but including a nonvanishing cosmological con-
stant. The analysis is carried out in the context of quan-
tum geometrodynamics, which is based on the standard
Schrödinger quantization of the metric Hamiltonian for-
mulation of Arnowitt, Deser, and Misner (ADM). More
specifically, the system is treated via the so-called de-
parametrization technique (for an example starting from
the full theory see [9]): one of the dynamical variables
– in this case the scale factor – is selected as clock at
the classical level, after which the system can be quan-
tized and regarded as freely evolving with respect to this
clock. The obtained results are (by the majority) consis-
tent with those of the studies of the same systems in the

1 Recently, the results of [17] were confirmed [25] through the anal-
ysis of the same model, where both the geometric and the matter
degrees of freedom are quantized via polymer techniques. This
work used one of several possible in this context loop quantiza-
tion schemes (see [19] and the discussion in Sec. III).

2 The list of references given here contains only selected examples
representing the current state of development for each model.
For a more complete list we refer the reader to [13, 15].
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framework of geometrodynamics in [34–36], where the
partial variable formalism has been applied [26].

A consistent treatment requires the quantization of the
geometry and the matter in the same way. In the context
of LQC the intermediate step towards this goal is the
analysis of a loop quantized scalar field coupled to gravity
quantized via standard techniques. This step is necessary
to identify the physical effects arising specifically due to
the polymer nature of matter.

In full loop quantum gravity (LQG) a consistent quan-
tization of the scalar field was proposed in [37], where one
of two possible (and inequivalent) implementations of the
polymer representation [19] was used. The same choice
was later made in [25] to derive the symmetry reduced
description and to determine the LQC dynamics of (this
form of) the polymer scalar field.

The alternative (in a certain sense dual to the above)
consistent quantization prescription was applied in [38],
where again the FLRW isotropic universe is investigated
by scalar quantum mechanics on a classical cosmologi-
cal background. Elements of a semiclassical analysis led
to the construction of an effective approximation of the
dynamics, of which the study showed that the big bang
singularity is replaced by a past-eternal de Sitter phase
(“eternal inflation”) with graceful exit.

The mathematical formalism characteristic to this pre-
scription was later successfully extended to the inhomo-
geneous setting in the context of quantum field theory
on Minkowski space and on a cosmological background
[39]. Both of these extensions were built via Bojowald’s
lattice refinement techniques [40].
Since the nature of the studies mentioned just now is

semi-heuristic, a comparison with the genuine quantum

dynamic is indispensable. This is exactly the goal of the

work presented here. To provide the precise quantum
theory we first perform a deparametrization analogous to
the one in [32], choosing the scale factor cubed as clock.
Then, we quantize the scalar field via loop techniques,
applying the prescription originally provided in [38].

In our work we focus on the precise construction of the
quantum model, that is in particular the correct defini-
tion of the Hilbert space, and the analysis of the physical
consequences: the dynamic, the existence of a semiclas-
sical sector, and the correct GR limit. Surprisingly, the
requirement of the latter will have a critical impact on
the form of the Hilbert space and, consequently, on the
domain of applicability of the heuristic construction of
the so-called effective dynamics from LQC.

The numerical analysis of the dynamic shows that, yet
again, there is no quantum big bang. However, instead
of bouncing back, the quantum state (the wave packet)
transits deterministically through the point marking the
singularity in GR. The quantum evolution picture ap-
pearing here resembles thus the one advertised in the
“early LQC epoch” [11].3 Consequently, this work (see

3 We note that the early results were derived for a different system,

also the results in [25]) suggests that the big bounce is
an effect arising solely due to the polymeric (discrete)
quantum nature of the geometry.

The paper is structured as follows: in Sec. II we in-
troduce the details of the classical FLRW model that we
analyze. Then we proceed in Sec. III with the construc-
tion of the precise quantum theory. Finally, in Sec. IV
we analyze the physical results and conclude in Sec. V
with a general discussion.

In our studies we select the natural units c ≡ h̷ ≡ 1
and introduce the abbreviation L2 ≡ 12πGN for a length
scale. Later in the paper we further restrict our attention
to the case L = 1 corresponding to a form of Planck units.

II. CLASSICAL THEORY

In this paper we focus on the case of an isotropic and
flat FLRW universe with a minimally coupled massless
scalar field φ ≡ φ(T ) ∈ R as source. The metric tensor of
such a universe can be expressed as

g ≡ −(NdT )2 + a2δijdX idXj , (2.1)

whereN ≡ N(T ) ∈ R+ is the lapse function and a ≡ a(T ) ∈
R is the scale factor. Since the “symmetric criticality
principle” [3, 41] is valid in the present situation, the
canonical action

A = ∫
TF

TI

(Paȧ +Pφφ̇ −H[N]) dT, (2.2)

can be directly and conveniently derived from the re-
duced Einstein-Hilbert action. The canonical momenta
appearing in (2.2) are

Pa

VC
= ( 3

L
)2 ∣a∣ȧ

N
,

Pφ

VC
= ∣a∣3φ̇

N
, (2.3a)

{a,Pa} = 1, {φ,Pφ} = 1, (2.3b)

whereas the scalar Hamiltonian constraint takes the form

H[N] = N VC∣a∣3
2L2

⎡⎢⎢⎢⎢⎣−(
L2Pa

3VCa2
)2 + ( LPφ

VCa3
)2⎤⎥⎥⎥⎥⎦ . (2.4)

Note that to arrive at the form (2.2) of the action we had
to first introduce the 3+1 splittingM ≃ R×N , where for
the flat universe (considered here) N = R

3. Due to the
noncompactness of the spatial slices we had to introduce
in the process of deriving (2.2) the infrared regulator –
a cube or “cell” V ⊂ R

3 of finite size (see [34, 42] and
the discussion in [43]). Its physical volume is V = VC∣a∣3,

where VC ≡ ∫V d3
X is the comoving coordinate volume ofV .

where the geometry instead of the matter was polymeric.
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This step introduces an additional complication into
the treatment as one has to make sure that the result-
ing model has a well defined (unambiguous) regulator
removal limit. The classical FLRW theory is invariant
under the rescaling X⃗ ↦ ζX⃗, ζ ∈ R+, which increases V
by a factor of ζ3 (an active diffeomorphism). This in-
variance is a natural requirement for the description of
the model to remain well defined when the regulator is
removed [44]. We stress that this requirement is how-
ever by no means sufficient in the quantum theory (see
in particular [43]). Furthermore, in the quantum the-
ory the ζ-invariance is not given trivially [13, 34, 42] and
hence imposing it as a condition for consistency affects
the choice of the canonical variables for the quantization
[see (2.11), (2.12), and the paragraph prior to them].

The first -class [45–47] Hamiltonian constraint H[N] ≈
0 generates infinitesimal transformations of T . As can
be seen from (2.1), there also is the possibility of a
reparametrization of the scale factor a and the Euclidean
metric δ by an η ∈ R± such that a↦ a/η and δ ↦ η2δ, re-
spectively. This residual η-symmetry corresponds to the
freedom of fixing the coordinate scale (a passive diffeo-
morphism) and orientation (a “large gauge transforma-
tion” [13, 17, 34, 42, 48]). Just like it is required for the
ζ-transformation, the physics has to be invariant under
an η-transformation. Among the η-invariant quantities
are the action A, the volume V and ratios of the scale
factor such as the Hubble parameter h ≡ ȧ/(Na).

In the next step we fix the time reparametrization free-
dom by implementing the second -class [45–47] gauge

G ≡ T − VCa3
L2

, (2.5)

Given the equation of motion

ȧ = {a,H[N]} = −N L2Pa

9VC∣a∣ , (2.6)

the form of G implies in particular that Pa is negative.
This and the form of the constraint H[N] then lead to
the reduced canonical action

A = ∫
TF

TI

(Pφφ̇ −HR) dT, (2.7)

where again {φ,Pφ} = 1. The reduced Hamiltonian takes
the form

HR ≡ −PT = − L
2Pa

3VCa2
= ∣ L2Pa

3VCa2
∣ = ∣ Pφ

LT
∣ . (2.8)

Finally, the consistency condition

∂TG + {G,H[N]} = 0 (2.9)

uniquely determines the lapse function

N = L∣Pφ∣ . (2.10)

We emphasize that the time-gauge G becomes T −
sig(η)VCa3/L2 under an η-transformation. This means
that the orientation of a relative to T changes if η ∈ R−.
Replacing T by −T has no impact on the space of so-
lutions to the Wheeler-DeWitt equation resulting from
(2.7), and thus amounts to a “time-reversal” operation
[49]. However, the reduced classical and quantum for-
malism based on (2.5) and derived here is the result of
singling out one of ±T , and is therefore no longer time-
reversal invariant. If (2.5) defines a future-directed clock,
the past orientation would be given by the gauge con-
straint G = T + VCa3/L2. These considerations are rele-
vant in the construction of the initial state for the quan-
tum evolution (see Subsec. IV B).

The canonical formalism we constructed here has the
deficiency of explicitly depending on the infra-red regula-
tor V since, according to (2.5), the clock variable T scales
like ζ3. This would make the removal of the infra-red reg-
ulator V from the resulting quantum theory a rather te-
dious task. As the initial step in addressing this problem
we replace T by the dimensionless variable t ≡ T /∣T ♡∣,
where T ♡ ∈ R± is some fixed but otherwise arbitrary ref-
erence value. Furthermore, since Pφ also scales like ζ3,
we analogously define pφ ≡ Pφ/∣P♡φ ∣ with P♡φ ∈ R± being a
fixed reference value for Pφ. Technically, the replacement
of T by t can be brought about by a simple change of the
integration variable in (2.8), whereas the replacement of
Pφ by pφ is realized by an “extended canonical” or “scale
transformation” [50]. Altogether, this procedure yields
the canonical action

A = ∣P♡φ ∣
L
∫
∣T♡∣tF

∣T♡∣tI
(Lpφφ′ −HS) dt, (2.11)

where φ′ ≡ dφ/(dt), {φ, pφ} = 1/L, and

HS ≡ ∣pφ
t
∣ , ∣pφ

t
∣dt = L∣P♡

φ
∣HR dT, (2.12)

is the Hamiltonian related to HR by a scaling. We stress
that t and pφ are dimensionless variables.

At this point it is necessary to mention that the above
modification does not yet remove the dependence of the
theory on the infrared regulator. Indeed, while the con-
stant T ♡ and P♡φ are fixed, no particular value of V can be
distinguished on physical grounds. In consequence, the
particular “physical” universe is represented by classes of
solutions rather than by single ones. This nonuniqueness
can be easily shown on the level of specifying the initial
data. There, the single universe regulated by different
cells V will correspond to the entire set (class of equiv-
alence) of the initial data at the chosen initial time t⋆.
This dependence will propagate through to the quantum
theory.

For initial t⋆, p⋆φ ∈ R± the solutions to Hamilton’s equa-

tions of motion derived from (2.11) and (2.12) are

pφ(t) = p⋆φ, φ(t) = φ⋆ + sig(tp⋆φ)
L

ln(∣ t
t⋆
∣) . (2.13)
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Therefore, the lapse function N = ∣T ♡∣/∣P♡φ pφ∣ is a con-

stant [positive since we fixed the time orientation by the
chosen gauge constraint (2.5)]. The canonical represen-
tation of the spacetime Ricci scalar takes then the form
R = −6h2, which in turn implies

− 3R(t)
2R♡

= [pφ(t)
t
]2 = (p⋆φ

t
)2 , R♡ ≡ ( P♡φ

LT ♡
)2 . (2.14)

The form of the reference value R♡ suggests the nat-
ural and simplifying choice ∣P♡φ ∣ = ∣T ♡∣, which corre-

sponds to fixing the initial curvature value to be R(t⋆) =
−(2/3)[p⋆φ/(Lt⋆)]2. This partially fixes the freedom of
rescaling t and pφ but still does not remove the implicit
ξ-dependence discussed earlier.

In order to simplify the expressions, from now on we
will use the Planck units normalized by L = 1. With this
choice the energy density ̺ and the pressure p are

̺(t) = p(t) = −3

4
R(t), (2.15)

and the spacetime singularity occurs at t = 0±. The pos-
itivity of N implies that the future-pointing evolution of
the scalar field is “into” a big crunch for t ∈ R− and “away
from” a big bang for t ∈ R+. From (2.13) it is evident that
for an element of the branch of the solution space admit-
ting a big crunch, the value of φ(t) − φ⋆ for p⋆φ ∈ R− is

related to the analogous value for p⋆φ ∈ R+ by an overall
sign-change. The same holds for for an element of the
big bang branch of the solution space. Furthermore, we
have the large time-inversion symmetry

(sig(p⋆φ)[φ(t) − φ⋆])− = −(sig(p⋆φ)[φ(t) − φ⋆])+, (2.16)

which relates big crunches (the left-hand side for t ∈ R−)
with big bangs (the right-hand side for t ∈ R+). In the
canonical formalism at hand these identities are manifes-
tations of the invariance of the covariant action under a
replacement of φ with −φ.

Finally, we note again that the variables t and pφ
are dimensionless but still not invariant under a ζ-
transformation. The observable scalar field in (2.13) and
the spacetime Ricci scalar in (2.14) – along with its re-
lated scalars in (2.15) – are inheriting this implicit non-
invariance. This fact will play a crucial role in singling
out the correct regularization scheme in the quantum the-
ory.

III. QUANTUM THEORY

Our goal here is to build the precise quantum mechan-
ical representation of the model introduced above. This
means in particular the construction of a suitable Hilbert
space H and the representation of HS as a self-adjoint op-
erator acting on the suitable domain in H. The quantum
evolution will then be determined by some Schrödinger

equation

i
∂

∂t
ψ = ∣̂pφ

t
∣ψ = ĤSψ (3.1)

for ψ ≡ ψ(t, φ).

A. The scalar field momentum operator

To start with, let us recall that the canonical formal-
ism introduced in the previous section describes a freely
evolving, isotropic and flat FLRW model. The evolution
is governed by the Hamiltonian HS in (2.12), which by
(2.5) depends on the scale factor clock t = VCa3/∣T ♡∣. The
scalar field φ is thus the only object subject to a quanti-
zation. Here, we have several possibilities to proceed.

The most obvious way to construct the quantum de-
scription is to apply the Schrödinger representation, as
in [32]. As shown there, this representation does not
lead to a singularity resolution, as the semiclassical wave
packets simply follow the classical trajectories into the
singularity.

An alternative approach, which is pursued here, is the
implementation of the polymer representation. The re-
quirement of the existence of an infra-red regulator re-
moval limit (see the previous section) forces this repre-
sentation to be time-dependent.4

To begin the detailed specification of the polymer
quantization procedure, let us briefly recall the stan-
dard Schrödinger representation. It is characterized by
the Stone-von Neumann uniqueness theorem [19, 20, 52],
which implies that among all the irreducible regular re-
alizations of the Weyl form

ÎλĴµ = eiλµĴµÎλ, λ, µ ∈ R+, (3.2)

of the canonical commutation relation

[φ̂, p̂φ] = i1̂ (3.3)

on the space L
2(R,dφ) of Lebesgue square-integrable

functions, the Schrödinger representation

Îλ ≡ eiλφ̂, Ĵµ ≡ e−iµp̂φ , (3.4)

is unique. The regularity property says that the map-
pings of λ to Îλ and µ to Ĵµ are continuous, which holds
if for ψ,ω ∈ L2(R,dφ) the mappings

λ↦ ⟨ψ∣Îλ ∣ω⟩, µ↦ ⟨ψ∣Ĵµ∣ω⟩, (3.5)

are continuous.

4 This situation is analogous to the one in the loop quantization
of the geometric degrees of freedom, where consistency require-
ments label the improved dynamics construction as the correct
one [51].
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To generalize the above formalism, let us now con-
sider the space of exponentiated operator labels, further
parametrized in the following way

λ ≡ λt ≡ ννt, µ ≡ µt ≡ ρρt, ν, νt, ρ, ρt ∈ R+. (3.6)

The subscript t can be seen as parametrizing the param-
eters λ and µ of the groups of unitary operators Îλ and
Ĵµ, respectively. That is, the Weyl algebra given in (3.2)
depends now on time and so do the unitary operators de-

fined in (3.4). However, we observe that because of the

continuity the operators φ̂ and p̂φ are

φ̂ ≡ i lim
λt→0

1̂ − Îλt

λt
= i lim

ν→0

1̂ − Îλt

λt
= φ1̂, (3.7a)

p̂φ ≡ −i lim
µt→0

1̂ − Ĵµt

µt
= −i lim

ρ→0

1̂ − Ĵµt

µt
= −i ∂

∂φ
, (3.7b)

thus they are independent of t. To conclude, in the
Schrödinger quantization the operators defined in (3.7)
are not changing if the group parameters are themselves
parametrized by t.

The situation changes drastically if the regularity con-
dition in the Stone-von Neumann uniqueness theorem is
dropped. In this case a possible faithful realization of
(3.2) is given by the so-called “polymer representation”.
For the sake of generality we will further allow it to be
time-dependent (in a yet unspecified way). The non-
separable Hilbert space H for this representation con-
sists of functions ψ ∈ l2(R,#φ) satisfying the square-
summation requirement

∥ψ∥2 ≡ ∑
φ∈Dµt

(ψ)

∣ψ(φ)∣2 < ∞. (3.8)

The inner product on H providing this norm is

⟨ψ∣ω⟩ ≡ ∑
φ∈Dµt

(ψ,ω)

ψ(φ)ω(φ), (3.9)

where ω is another element of l2(R,#φ). We denote by
#φ the measure that maps a subset of R to its cardinality
(the so-called “counting measure”) and by

Dµt
(ψ) ≡ ⋃

φ0∈S(ψ)/≋

Lµt
(φ0), Dµt

(ψ,ω) ≡ ⋃
φ0∈(S(ψ)∩ S(ω))/≋

Lµt
(φ0), (3.10)

domains defined in terms of the necessarily countable
support S of ψ or ω. For φ,χ ∈ R we have the equiv-
alence φ ≋ χ if and only if there is an integer i ∈ Z such
that φ = χ + iµt [recall (3.6)]. The domains Dµt

are then
disjoint unions of uniform lattices

Lµt
(φ0) ≡ {φ0} +Zµt, φ0 ∈ [0, µt). (3.11)

Orthonormal basis states of H are “half-deltas”

δφ ∶ χ↦ δφ(χ) ≡ δφχ ≡ {1, φ = χ,
0, otherwise,

(3.12)

extending the definition of the Kronecker delta symbol
to the real line.

The time-dependent polymer representation is now
given by

Îλt
δφ ≡ eiλtφδφ, Ĵµt

δφ ≡ δφ+µt
, (3.13)

which characterizes again a multiplication and a trans-

lation operator, respectively. The “λ-mapping” given in
(3.5) is once more continuous for λt so that by Stone’s
theorem [19, 52] the scalar field multiplication opera-
tor remains to be given by (3.7). The difference to
the Schrödinger representation in (3.4) is that the “µ-
mapping” in (3.5) is no longer continuous in µt. There
is therefore no self-adjoint momentum operator gener-
ating infinitesimal translations. On l2(R,#φ) there is
only an operator generating finite translations. We are
therefore forced to regularize it, for which we employ the
technique introduced by Thiemann in the context of full
LQG [5, 53]. In essence this technique is approximating
the undefined p̂φ by well-defined translation operators.
Following [20, 39, 54] we choose

p̂φµt
≡ − i

2µt
(Ĵ†
µt
− Ĵµt

), (3.14a)

p̂2
φµt
≡ 2

µ2
t

⎛⎝1̂ − Ĵ
†
µt
+ Ĵµt

2

⎞⎠ . (3.14b)

The action of the former on a state ψ ∈ H is

p̂φµt
ψ(φ) = − i

2µt
[ψ(φ + µt) − ψ(φ − µt)] (3.15)

so that, if we could send µt to 0 [or according to
(3.6) send ρ to 0, thereby taking the limit at the kine-

matic level], we would get back the differential opera-
tor −i∂/(∂φ). We observe that the representation of the
momentum operator p̂φµt

is highly non-unique, in the
same way the representation of finite difference opera-
tors in numerical analysis is. We stress that, unlike in
the Schrödinger representation, because of (3.6) the mo-
mentum operator is now time-dependent.

At this point it is necessary to emphasize that the pre-
sented polymer quantization is not the only possible one.
Essentially, by replacing the roles of φ and pφ we arrive
at another polymer representation, inequivalent (and in
a sense “dual”) to ours (see the discussion in [19]). Such
a dual representation was used in the quantization of
the scalar field in full LQG [37]. Its symmetry reduced
version was applied to the LQC model of an FLRW uni-
verse [25] filled with a massless scalar field. The subse-
quent analysis of the spectral decomposition of the evolu-
tion operator (playing the role of the Hamiltonian) shows
that the dynamic of such a system is exactly the same as

the one of the system with the scalar field quantized via
standard methods of quantum mechanics [34]. Both ap-
proaches, ours and the one of [25], are equally viable from
a mathematical point of view. Therefore, choosing one
of them requires a physical input.
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B. The Hamiltonian

The next step is the construction (including the deter-

mination of the action) of the quantum Hamiltonian ĤS

generating the unitary evolution. To do so, we switch
to the scalar field momentum space, which is again the
Pontryagin dual of the real line but this time the latter
is equipped with the discrete topology. In short, it is
the Bohr-compactified real line RB. The Hilbert space
defined in the previous subsection is then equivalent to
the space H♮, which consists of Bohr square-measurable
functions

ψ♮(pφ) ≡ ∑
φ∈Dµt

(ψ)

ψ(φ)e−iφpφ ∈ L2(RB, (dpφ)B) (3.16)

satisfying

∥ψ♮∥2 ≡ ∫ ∣ψ♮(pφ)∣2 (dpφ)B
≡ lim
C→∞

1

2C ∫
C

−C
∣ψ♮(pφ)∣2 dpφ < ∞. (3.17)

The inner product (between ψ♮ and another ω♮ ∈ H♮)
generating this norm is

⟨ψ♮∣ω♮⟩ ≡ ∫ ψ♮(pφ)ω♮(pφ) (dpφ)B. (3.18)

The basis orthonormal with respect to it is formed by the
plane waves

eφ ∶ pφ ↦ eφ(pφ) ≡ e−iφpφ = δ♮φ(pφ). (3.19)

We observe that for a uniform lattice Dµt
(ψ) = Lµt

(φ0)
[see (3.11)] the Bohr measure (dpφ)B becomes the
Lebesgue measure dpφ with an integration over the fixed
interval (−π/µt, π/µt]. The momentum space polymer
theory defined here would then be that of Fourier with
discreteness in position rather than momentum space.

In the general polymer theory at hand, the action of
the multiplication and translation operator on the basis
states eφ is unchanged in comparison to (3.13) so that
the scalar field operator is given by i∂/(∂pφ). On the
other hand, the operator p̂φ is now the regularized p̂φµt

(see the previous subsection), which is approximated by
translation operators. Indeed, since eφ+µt

= eµt
eφ we

have

Ĵµt
= e−iµtpφ 1̂, p̂φµt

= sin(µtpφ)
µt

1̂, (3.20)

because of which the action of the Hamiltonian operator
can be explicitly given by

ĤSψ
♮ = ∣sin(µtpφ)

µtt
∣ψ♮, (3.21)

where ψ♮ ≡ ψ♮(t, pφ). Given this, the fact that ∥ψ∥ = ∥ψ♮∥
allows us to immediately prove the conservation of the

norm under an action of ĤS. To show this we write
explicitly the time derivative of the norm

i
∂

∂t
∥ψ∥2 = i ∂

∂t
∥ψ♮∥2 = ∫ i

∂

∂t
∣ψ♮∣2 (dpφ)B

= ∑
φ,χ∈Dµt

(ψ)

ψ(t, φ)ψ(t, χ)∫ ĤSe
−ipφ(φ−χ) (dpφ)B. (3.22)

To evaluate the right-hand side we first observe that the
integral can be expressed as the contour integral

lim
C→∞

1

2C

C

∫
−C

= lim
n→∞

µt

4nπ

n

∑
i=1

⎛⎝
−(2i−1)π/µt

∫
−2iπ/µt

+
−2(i−1)π/µt

∫
−(2i−1)π/µt

+
(2i−1)π/µt

∫
2(i−1)π/µt

+
2iπ/µt

∫
(2i−1)π/µt

⎞⎠. (3.23)

The specific form of this integral allows us the to drop
the absolute value ĤS in (3.21)) replacing it instead with
a sign appropriate for each integration domain. Next,
we apply some simple trigonometric identities, the µt-
translation invariance of Dµt

(ψ), and (see [55])

n

∑
i=1

cos((2i + 1)π
µt

(φ − χ)) = sin(2nπ

µt
(φ − χ))

2 sin( π
µt
(φ − χ)) . (3.24)

Finally, if we divide this by n and take the limit n →∞
[see (3.23)], we get i∂∥ψ∥/∂t = 0.

Up to now, the shift function µt in the approximated
p̂φ operator is an arbitrary function of time. At the math-
ematical level the situation is analogous to the one in the
loop quantization of the geometry (see [56]), where the
fiducial holonomy length could be an arbitrary function
on the phase space). There, however, the physical consis-
tency requirements restricted the possible choices to just
one class of functions [51]. We expect that the same situ-
ation occurs in our model. To show that this expectation
is indeed realized let us recall the following facts.

The particular moment of the universe’s evolution can
be represented by various points on the phase space cor-
responding to different choices of the regulator cell. Fur-
thermore, once we ask about the locally measurable prop-
erties of the universe (observables) at this moment, there
has to exist their nontrivial limit as we remove the regu-
lator.

One such local observable is the energy density (2.15)
determined by (2.14). The quantum operator corre-

sponding to it is related to the Hamiltonian ĤS in the
following way

ˆ̺ = 1

2
Ĥ2

S . (3.25)

From (3.21) it follows that at the fixed time t the spec-
trum of this operator equals

Sp( ˆ̺) = [0, 1

2µ2
t t

2
] . (3.26)



7

The most natural way to satisfy the consistency require-
ments discussed in the previous paragraph is to require
that the spectrum of ˆ̺ be time independent. This implies
µt ∝ 1/t so that we can fix the function ρt in (3.6) as

ρt ≡ 1∣t∣ . (3.27)

This in turn gives µt = ρ/∣t∣, which for the “volume clock”
v ≡ t/ρ results in the momentum space Schrödinger equa-
tion

i
∂

∂v
ψ♮ = ∣sin(pφ

v
)∣ψ♮ (3.28)

for ψ♮ ≡ ψ♮(v, pφ).
Note, that the above method of fixing µt is almost a

full analog of the conditions used for the geometry de-
grees of freedom in [51]. There, however, the reasoning
exploited the existence of “nicely” behaving semiclassical
sectors through the use of the so called effective dynam-

ics. Here, as we have not yet investigated the dynami-
cal sector implementing that reasoning directly would be
risky. Instead, we managed to fix the ambiguity through
the considerations on the genuine quantum level.

In the next section we solve the Schrödinger equation
(3.28) in order to analyze the dynamics of the system and
to discuss the physical properties of the solutions.

IV. THE DYNAMIC

The Hilbert space and the explicit action of the Hamil-
tonian operator constructed just now allow us to easily
determine the system’s dynamic. At this level the re-
quirement of the theory to be physically meaningful be-
comes crucial. The principal requirement is that the the-
ory must have the proper low energy limit. Here, this
means that in the distant past and future the quantum
evolution ought to agree with the predictions of GR. In
our case an inability of the model-description to realize
this property would imply that the formulation should
be further and adequately corrected. In fact, as we will
see below, this is precisely what is required here.

To begin, let us investigate the dynamic of the theory
exactly as specified in the previous section.

A. Single Lattice Hilbert space

Once we select pφ as the configuration variable, the
Schrödinger equation given in (3.28) becomes a simple
ordinary differential equation, which is easy to solve on

the domains t > 0 and t < 0. Its solution reads

ψ♮(v, pφ) ≡ Êvv⋆ψ♮(v⋆, pφ)
≡ e−i[F (v,pφ)−F (v⋆,pφ)]ψ♮(v⋆, pφ), (4.1a)

F (v, pφ) ≡ vS(v, pφ) [sin(pφ
v
) −Ci(∣pφ

v
∣) pφ

v
] , (4.1b)

S(v, pφ) ≡ sig(sin(pφ
v
)) , (4.1c)

where we set v⋆ = t⋆/ρ. For ∣arg(z)∣ < π the cosine inte-
gral function is

Ci(z) ≡ γ + ln(z) + ∫ z

0

cos(y) − 1

y
dy (4.2)

with γ the Euler-Mascheroni number [57]. The definition
implies Ci(z) ∼ γ + ln(z) for z → 0, suggesting semiclas-
sical behavior of sufficiently sharply peaked initial states
in the limit ∣v∣ →∞.

At the point v = 0 the operator ĤS is not well defined
so that the Cauchy-Peano theorem, which normally en-
sures the existence and uniqueness of the solution, cannot
be applied there. Thus, in principle one cannot extend
the solution to (3.28) through that point. However, the
solutions (4.1) admit well defined limits v → 0± for v > 0
and v < 0, and thus one can define an extension to that
point by taking these limits. Since

lim
v→0

F (v, pφ) = 0, (4.3)

there exists a unique unitary operator evolving states to

the instant v = 0. Furthermore, it has the very simple
form

Ê0v⋆ ≡ eiF (v⋆,pφ)1̂. (4.4)

As a consequence there exists a preferred extension of
the evolution through v = 0, defined by the requirement
of continuity of ψ♮ at v = 0. The global solution is again
given by (4.1).

It appears that the existence of such a preferred ex-
tension is sufficient for singularity resolution. However,
as we will see below, this is not the case. To explain
what is missing, we consider any normalized initial state
ψ♮(v⋆, pφ) such that the expectation value of the scalar
field operator is finite

⟨ψ♮, v⋆∣φ̂∣ψ♮, v⋆⟩ = φ⋆, ∣φ⋆∣ < ∞. (4.5)

Then the expectation value of φ at any volume v is given
by the following formula

φ(v) = ⟨ψ♮, v∣φ̂∣ψ♮, v⟩
= ⟨ψ♮, v⋆ ∣φ̂ − [S(v, pφ)Ci(∣pφ

v
∣)

−S(v⋆, pφ)Ci(∣pφ
v⋆
∣)] 1̂∣ψ♮, v⋆⟩ . (4.6)

Since the cosine integral function belongs to L
2(R,dpφ),

the above expectation value is in fact equal to φ⋆. That
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is to say the evolution is frozen. This result is then in
direct disagreement with the predictions of GR. In con-
sequence, our states exhibit an unphysical behavior in
the low energy (large v) limit.

Our model then still lacks an appropriate physical

Hilbert space. To explore the possibilities of construct-
ing it, let us first go back to analyzing the solutions to
(3.28) but this time by considering the wave functions on
the configuration space as opposed to the momentum one
used in (4.1). Then, the evolution of a state ψv ≡ ψ(v, ⋅)
can be viewed as an assignment v ↦ ψv ∈ Hv, where v ∈ R.
The Hilbert space Hv is spanned by eigenstates of ĤS for
a fixed value of v. However, per analogy with the loop
quantization of the geometry [34] we can distinguish sec-

tors that are invariant with respect to the action of ĤS at
v. These sectors consist of functions that are supported
on the lattices L(ϕ0)µv, where µv ≡ 1/∣v∣ and

L(ϕ0) ≡ Lµv
(φ0)/µv ≡ {ϕ0} + Z, ϕ0 ∈ [0,1). (4.7)

We can then attempt to consider at the initial v = v⋆ the
subspaces Hvϕ0

≡ Hv ∣µvL(ϕ0) as the superselection sec-
tors and evolve them independently. Such a decomposi-
tion can be performed at each v independently. Let us
now probe whether there exists any relation between the
spaces Hvϕ0

for different values of v. The answer is given
immediately by the form of the solution (4.1): since the
cosine integral function is non-periodic, the unitary evo-
lution to any v ≠ v⋆ immediately couples an infinite num-
ber of these lattices. In consequence, the sectors Hvϕ0

of Hv are not true superselection sectors in the sense of
[13, 17, 34, 42, 48]. Therefore, we are forced to work with
the original non-separable Hilbert space Hv without ac-
cess to previously available tools that allow to distinguish
separable subspaces. Furthermore, the form of (4.6) sug-
gests that in order to provide a nontrivial evolution, the
physical Hilbert space needs to be equipped with a con-
tinuous rather than a discrete inner product.

B. Integral Hilbert space

A similar situation appeared in LQC already in a differ-
ent context during the studies of the FLRW universe with
a massless scalar field and a positive cosmological con-
stant [36]. There, following the choice of a lapse adopted
to using the scalar field as time variable, the evolution op-
erator admitted a family of self-adjoint extensions, each
with a discrete spectrum. However, a different choice
of the lapse – corresponding to parametrizing the evolu-
tion by the cosmic time variable – led to a unique self-
adjoint generator of the evolution with continuous spec-
trum [58]. The physical Hilbert space corresponding to
the latter case appeared, furthermore, to be an integral of
all the Hilbert spaces corresponding to the particular self-
adjoint extensions of the former case, with the Lebesgue
measure determined by the group averaging procedure.

Motivated by this observation, we introduce the ana-
log of the integral Hilbert space in our case. First, we

note that on the domain [0,1) of ϕ0 one can introduce
a natural (quite general and time dependent) Lebesgue
measure M(v,ϕ0)dϕ0. Next, we introduce a decompo-
sition of the non-separable Hilbert space H onto spaces
Hvϕ0

at the initial time v⋆. This defines the decomposi-
tion of the initial data at v = v⋆
H ∋ ψ(v⋆, φ) ↦ ψϕ0

(v⋆, φ) ≡ ψ(v⋆, φ)∣Lµ
v⋆
(φ0) ∈ Hv⋆ϕ0

.

(4.8)
This initial data is then extended to the solutions to
(3.28) via (4.1). We thus have a decomposition of the
physical Hilbert space onto explicitly separable (at least
at v = v⋆) subspaces.

Now, we compose the new Hilbert space via an integral

HPv⋆ ≡ ∫
1

0
Hv⋆ϕ0

M(v⋆, ϕ0) dϕ0, (4.9)

equipping it with the inner product

⟨ψv ∣ωv⟩ ≡ ∫ 1

0
⟨ψvϕ0

Êvv⋆ ∣Êv⋆vωvϕ0
⟩M(v⋆, ϕ0) dϕ0,

(4.10)
where ψvϕ0

= ψϕ0
(v,φ) ∈ Hvϕ0

. This is our candidate for
the physical inner product: between each pair of solutions
it is evaluated on the initial data slice at v = v⋆. On
that initial slice it can be written in a very simple form,
namely,

⟨ψv⋆ ∣ωv⋆⟩ ≡ ∫
R

ψ(v⋆, φ)ω(v⋆, φ)M(v⋆, ϕ0(φ))/µv⋆ dφ.

(4.11)
It is by definition time-independent but a priori it may
not have a simple local form analogous to (4.11) at v ≠ v⋆,
which can potentially complicate the evaluations of the
expectation values of the observables.

We note, however, that the construction performed for
v = v⋆ can be repeated at each value of v, giving rise to
potentially inequivalent constructions of the candidate
Hilbert space. One can then consider a function

P (ψv ∣ωv) ≡ ∫
R

ψ(v,φ)ω(v,φ)M(v,ϕ0(φ))/µv dφ.

(4.12)
On each slice of constant v this function equals the inner
product of the candidate Hilbert space constructed with
respect to this slice. One can then ask under which con-
dition these Hilbert spaces will be equivalent and their
inner products equal. A condition necessary and suffi-
cient for it is that ∂P (ψv ∣ωv)/∂v = 0. The form of the
unitary evolution operator (4.1a) implies however that
this condition will be satisfied if and only if

M(v,ϕ0) ≡ µvm(ϕ0). (4.13)

Following this choice, our candidate Hilbert space be-
comes (up to a rescaling ψv ↦ ψv/√m on Hv) the space
L
2(R,dφ) with the standard L

2-inner product. Also, the
momentum space is now L

2(R,dpφ) with the correspond-
ing Lebesgue measure.
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Using (4.4), we can now consider an initial state

ψ♮(v⋆, pφ) ≡ Êv⋆0ψ♮(0, pφ) (4.14)

with a real, L2-normalized Gaussian

ψ♮(0, pφ) ≡√ w√
π
e−w

2(pφ−p
⋆
φ)

2/2. (4.15)

This class of states is “special” in the sense that the
quantum evolution they undergo is semiclassical both for
v ∼ v⋆ and v ∼ −v⋆ (see below). Furthermore, the states

Êv0ψ
♮(0, pφ) with unit L2-normalized ψ♮(0, pφ) also span

the solution space of the Wheeler-DeWitt equation de-
fined by the Hamiltonian constraint in (2.4) and with
VCa

3 = T identified as clock. They are thus particularly
convenient in comparing the evolution in the Schrödinger
and polymer quantizations. The set of the complex con-
jugate of these states represents the analogous states for
the clock −VCa

3 = T (see [49] and recall that we set
L = 1).

We can now try to evaluate once more the expectation
value of the scalar field. For that we chose an example of
a “semiclassical” Gaussian state peaked at v⋆ = 250 with
w = 1. This choice results in a relatively small initial
value of both the scalar field and its momentum fluc-
tuations (see below). We further set p⋆φ = 5 to prevent
any significant portion of the Gaussian initial state from
overlapping with the momentum space origin, as this is
where the cosine integral function has an integrable sin-
gularity. The quantum evolution of such initial state was
then calculated numerically. Fig. 1 shows the quantum
trajectory corresponding to this evolution. From there,
it is evident that the evolution is semiclassical for ∣v∣ ≫ 1.
In fact, the classical solution that is well approximating
the quantum trajectory is characterized by

φ⋆ = ∓ ⟨S(v⋆, pφ) [Ci(∣pφ
v⋆
∣) + ln(∣v⋆∣)] 1̂⟩

ψ♮
, (4.16)

where the overall sign “∓” corresponds to v ∈ R± and,
where v⋆ is taken to be the largest plotted value of v (250
in the present case). Given the definition of the function
S, we observe that ∣v⋆∣ ≫ ∣p⋆φ∣/π is a necessary require-
ment for semiclassicality. As we can see, the physical
state is indeed passing in a continuous manner through

the point v = 0, corresponding in the classical theory to
the big bang singularity [which is particularly clear from
Fig. 1(a) and also from (4.3)]. This happens regardless
of the sign of the initial momentum so that the quan-
tum evolution is effectively respecting (2.16), which in
the classical theory specifies the relation between the so-
lutions for negative and positive t.

−200 0 200

−4

−2

0

2

4

v = t/ρ

⟨φ̂⟩ ψ
♮
±(△

φ̂
) ψ♮

p⋆φ = 5

p⋆φ = −5

(a) Quantum evolution for two values of p⋆
φ
.

−10 −5 0 5 10

−5

0

5

v = t/ρ

φ ⟨φ̂⟩ψ♮ ± (△φ̂)ψ♮

(b) Classical and quantum evolution for p
⋆

φ
= 5.

FIG. 1. An illustration of the quantum evolution of the scalar
field is presented in Fig. 1(a). In Fig. 1(b) we display the
p
⋆

φ = 5 quantum evolution along with the corresponding clas-
sical evolution over a subset of the v-interval used in Fig. 1(a).
The circles, triangles and squares correspond to actual mea-
surements made using the software Matlab and Octave.
The time-interval between two consecutive measurements be-
comes smaller as ∣v∣ approaches 0. In this plot, the smallest
value of ∣v∣ is 0.25 but values as small as 10−4 have been consid-
ered with the same outcome. Namely, there is semiclassicality
for ∣v∣ ≫ 1 and the big bang singularity at v = 0 is resolved.

To examine more closely the issue of the singularity res-
olution we also analyzed the expectation values of the op-
erator corresponding to the spacetime Ricci scalar. The
quantum trajectory is presented in Fig. 2. The measure-
ments are independent of the overall sign of p⋆φ, thus only
the case p⋆φ > 0 has been plotted. We see that the space-
time curvature remains finite for all v. This confirms the
analytical result of (3.26) and, thus, implies the global
boundedness of the spectrum of the Ricci scalar operator
once µv is fixed via (3.27). One can thus conclude that
the big bang singularity is resolved.
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−200 0 200

−2

−1

0

v = t/ρ

⟨R̂⟩
ψ
♮

p⋆φ = 5

FIG. 2. Expectation values of the spacetime Ricci operator
for various values of v are plotted in this figure. As in Fig. 1,
measurements are taken the more often the closer ∣v∣ gets to
0 and the smallest value is ∣v∣ = 0.25. It follows that the big
bang curvature singularity is resolved and the branches v ∈ R±

are connected.

−200 0 200

0.710

0.715

0.720

v = t/ρ

(△φ̂
) ψ♮

p⋆φ = 5

FIG. 3. In this figure an illustration of the fluctuations of the
scalar field operator is presented. For ∣v∣→ 0 the fluctuations
increase but remain nonetheless finite.

Finally, in Figs. 3 and 4 the fluctuations of the scalar
field and polymer momentum operator are depicted.
They both quickly approach a constant value (for the

presented example approximately equal to 2−1/2 for both
quantum fluctuations) as ∣v∣ increases, which is the value
expected for a Gaussian with w = 1. This confirms the
semiclassical nature of the state for ∣v∣ ∼ v⋆. What is
interesting in the near-singularity region is the fact that
the fluctuations of the scalar field operator are in fact
decreasing for ∣v∣ → 0. This may happen because the
state gets “squeezed” towards the origin in order to “fit
through” the point v = 0. This however requires a more
detailed analysis of the nature of the state there, which
may be the subject of a subsequent investigation.

−200 0 200

0

1

2

3

v = t/ρ

(△p̂
φ
µ
v
) ψ♮

p⋆φ = 5

FIG. 4. This figure provides an illustration of the fluctuations
of the polymeric momentum operator. Just like for the scalar
field fluctuations in Fig. 3, the behavior for ∣v∣ ≫ 1 indicates
semiclassicality.

V. DISCUSSION

In this paper we investigated the quantum dynamics
of the isotropic and flat FLRW universe of infinite ex-
tent and sourced by a minimally coupled massless scalar
field. Our focus was on the modifications to the dynam-
ics following from the polymeric nature of the matter and
in particular the issue of the singularity resolution. To
single out these effects we implemented one of two pos-
sible loop quantization schemes of the scalar field. This
scheme is the analog of the one used so far in LQC to
quantize the geometry degrees of freedom. Unlike in the
most previous works in LQC, instead of implementing the
Dirac program to solve the Hamiltonian constraint, we
performed a complete deparametrization of the system
by choosing a scale factor dependent time variable. As a
result, the physical evolution is described by a free Hamil-
tonian. The quantization of such a deparametrized sys-
tem is implicitly equivalent to selecting the Schrödinger
quantization for the geometry when applying the Dirac
program. Therefore, the effects of the geometry discrete-
ness are not featured in our model.

In the process of constructing the correct description
of the quantum system we encountered several obstacles:

First, the noncompactness of the universe’s spatial
slices forced us to introduce an infrared regulator. The
necessary consistency condition that the theory has to
admit a well defined and nontrivial regulator removal
limit restricted then the Hamiltonian to particular form,
which happened to be explicitly time-dependent.

Second, the Hilbert space to which the physical states
belong occurred to be non-separable. This is a standard
(and treatable) problem in LQC. Here however, the ex-
plicit time dependence of the Hamiltonian prevented us
from implementing the known technique of subdividing
the (too big) Hilbert space onto separable superselection
sectors. An idea to naively proceed with determining
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the dynamics on that space led to a model significantly
disagreeing with GR predictions at the low curvature
limit. Indeed the quantum evolution of the scalar field
was frozen.

To cure this defect we performed a specific construction
of the separable Hilbert space out of the nonseparable
one, taking as the guideline the relation between Hilbert
spaces corresponding to the models with different choices
of the lapse function in LQC in the presence of a posi-
tive cosmological constant. As a result, we were able to
construct a certain integral Hilbert space equipped with
continuous rather than discrete (as usually in LQC) inner
product.

Such a construction of the Hilbert space was then used
to investigate the dynamics. To do so we selected a class
of Gaussian initial states and evolved them numerically.
The resulting quantum trajectories showed a good con-
vergence to the classical trajectories predicted by GR at
low energies. At high curvatures (small ∣v∣) however we
observed a significant departure from GR. Indeed, the
most critical feature of the model is the existence of a
unique unitary evolution operator evolving to/from the
time slice v = 0 corresponding to the classical singularity.
This and the regularity of the wave function describing
the physical state allowed us to select a naturally pre-
ferred extension of the evolution, thus ensuring a deter-

ministic evolution through the classical singularity. Fur-
thermore, the quantum counterparts of the Ricci scalar,
energy density, or pressure are explicitly bounded oper-
ators. In consequence, the listed quantities remain finite
throughout the entire evolution, including in particular
v = 0.

At this moment it is important to note that, unlike

in previous contributions to the literature on this model,

here the quantum features responsible for singularity res-

olution originate from the matter rather than the geomet-

ric sector. Therefore, the form of the singularity resolu-

tion is different than in the literature: Instead of being
avoided, the surface v = 0 is made passable and all the
standard locally measurable quantities remain finite.

Finally, let us comment on an important lesson learned
from this model: the predicted dynamics depends criti-
cally on the construction of the physical Hilbert space
of the model, even though the regularized form of the
Hamiltonian remains the same. This implies in particu-
lar that the regularized form of the classical Hamiltonian
or Hamiltonian constraint is not sufficient to robustly
determine or even well approximate the quantum evolu-
tion. This issue is particularly critical in all the studies
of models in LQC performed via the so called effective

dynamics techniques without prior specification of the
elements of the genuine quantum system.

In a further project we intend to take a closer look
at the behavior of the state near the singularity. Why
do the quantum fluctuations of the scalar field decrease
towards the origin of the time-axis? Of interest is also
the inclusion of a non-zero cosmological constant. Fi-
nally, and this is most intriguing, we would like to address
the question of how the quantization procedure presented
here can be combined with that of the geometric sector
discussed in the LQC works [13, 17, 34, 42, 48].
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bieński, Class. Quant. Grav. 23, 2761 (2006),
arXiv:gr-qc/0508091 [gr-qc]; W. Kamiński,
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