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HIV infection and AIDS

In 1981 the first cases of the acquired immunodeficiency syndrome (AIDS) were

described in previously healthy homosexual males [1,2]. Two years afterwards a

retrovirus was isolated and identified as the causative agent of AIDS [3,4], and this

virus was eventually classified as human immunodeficiency virus 1 (HIV-1). HIV

infection can be acquired through unprotected sexual intercourse, injectable drug use

with contaminated needles, receipt of contaminated blood products, and mother-to-

child transmission. The virus infects cells of the immune system that bear the CD4+

receptor, specifically the CD4 lymphocyte [5]. The host cells are used by the virus for

its replication and are eventually destroyed. This and other complex immune

alterations cause profound cellular immunodeficiency.

The clinical implications of infection with HIV-1 can be characterized as an acute

(primary) infection, a prolonged asymptomatic phase, and a symptomatic disease,

ultimately leading to death from opportunistic infections or malignancies [6]. Acute

HIV infection is associated with high levels of plasma viraemia and a transient

depletion of CD4 cells, whereas patients may complain of nonspecific flu-like

symptoms. The asymptomatic phase is characterized by ongoing viral replication and

a gradual decrease in CD4 cell counts. AIDS is diagnosed upon the occurrence of

specific opportunistic infections or malignancies. The majority of untreated patients

develop AIDS within 10 years after infection with HIV-1, and most untreated patients

die within two years after diagnosis of AIDS. 

The course of infection with HIV (and the effects of antiretroviral therapy) can be

monitored through two surrogate markers, the viral load and the CD4 cell count [7].

The viral load represents the number of circulating HIV RNA particles in the plasma

and predicts the rate of decrease in CD4 cell count and progression to AIDS and

death. The CD4 cell count indicates the extent of HIV-induced immune damage

already suffered.

Infection with HIV-1 is one of the greatest challenges facing the world today. It is

estimated that more than 40 million people have been infected with HIV-1 worldwide,

of whom 20 million have already died. Another retrovirus, HIV-2, is a prevalent cause



11

of AIDS in West-Africa, but this virus appears to be less pathogenic than HIV-1 [8]. 

Fortunately, improved understanding of the pathogenesis of HIV infection has led to

rational drug development. The introduction of new antiretroviral drugs since 1995

allowed for chronic treatment of HIV-infected patients with combinations of

antiretroviral drugs, which are referred to as “highly active antiretroviral therapy”

(HAART). Treatment with HAART enabled a reduction of the viral load to undetectable

levels and an increase in CD4 cell count in many patients who have access to these

regimens. These effects have translated into a major decline in HIV-related morbidity

and mortality, at least in the developed world [9]. Researchers have even speculated

about eradicating HIV with HAART, but this is not feasible yet [10]. 

Despite much progress, it has become increasingly clear that the benefits of

antiretroviral therapy are not durable in many patients, due to a number of

interrelated factors. As a result, new strategies for the optimization of response to

antiretroviral drugs are being proposed and evaluated continuously.

Antiretroviral drugs

Each of subsequent steps in the HIV-1 life cycle, from infection of the host cell to the

release of new viruses, represents a potential drug target. Currently available drugs

(table 1) act by inhibiting the viral enzymes reverse transcriptase or protease. Reverse

transcriptase catalyses the process of reverse transcription of the single stranded viral

RNA into double stranded proviral DNA. Protease is involved in the cleavage of

polyproteins, an essential step in the maturation of newly formed virions. 

Introduction 

Table 1. Currently licensed nucleoside reverse transcriptase inhibitors (NRTIs), nucleotide reverse
transcriptase inhibitors (NtRTIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs), and protease
inhibitors (PIs)

NRTIs NtRTI NNRTIs PIs

abacavir (ABC) tenofovir delavirdine amprenavir
didanosine (ddI) efavirenz indinavir
lamivudine (3TC) nevirapine lopinavir 

(coformulated with ritonavir)

stavudine (d4T) nelfinavir
zalcitabine (ddC) ritonavir
zidovudine (ZDV, AZT) saquinavir
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The nucleoside reverse transcriptase inhibitors (NRTIs) are phosphorylated intracellularly

into their active triphosphate moieties [11]. These triphosphate anabolites are substrates

for and inhibitors of reverse transcriptase. Importantly, plasma concentrations of the

parent NRTIs do not appear to correlate with intracellular triphosphate concentrations,

or the efficacy of these drugs. 

Tenofovir is the first approved nucleotide reverse transcriptase inhibitor (NtRTI). This

drug acts in a similar way to nucleoside analogues by inhibiting reverse transcriptase,

but has an abbreviated intracellular activation pathway [11,12]. Tenofovir is currently

licensed for use in patients who have failed antiretroviral therapy. 

Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are a class of chemically

distinct compounds that block reverse transcriptase activity by binding adjacent to the

enzyme’s active site, inducing conformational changes in this site [13]. Unlike NRTIs,

NNRTIs do not need to be phosphorylated to become active. The compounds in this

class are metabolized by the cytochrome (CYP) P450 system and thus are prone to drug

interactions. In addition, efavirenz and nevirapine are inducers of CYP3A4 themselves,

which may cause interactions with other drugs that are metabolized by this iso-enzyme.

The elimination half-lives of efavirenz and nevirapine are long (40-55 and 25-30 h

respectively). Consequently once-daily administration of these drugs is approved

(efavirenz) or being evaluated (nevirapine). NNRTIs have no activity against HIV-2.

Protease inhibitors (PIs) do not need to be metabolized intracellularly to become active

[14,15]. Individual PIs differ with respect to the necessity to ingest them with or without

food. All PIs undergo oxidative metabolism by CYP3A4, and additional CYP isoforms

metabolize individual PIs. In view of their metabolic pattern, PIs are susceptible to drug

interactions involving P450 inhibitors or inducers. In addition, they illicit variable effects

on other drugs, acting as inducers or inhibitors of CYP P450 iso-enzymes. Especially

ritonavir is a strong inhibitor of CYP3A4. PIs are also substrates and, in some cases,

inhibitors of p-glycoprotein.The short half-life of the PIs demands twice or thrice daily

dosing regimens. Nelfinavir forms a metabolite that circulates at appreciable levels in

plasma [16].

Current guidelines for the use of antiretroviral drugs recommend the combination of at

least three antiretroviral drugs in a HAART regimen. More specifically, two NRTIs should

be combined with either one PI, a PI combined with a low-dose of ritonavir (to increase

plasma levels of the former PI), two PIs, an NNRTI, or a third NRTI.
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Reasons for inadequate response to HAART 

Inadequate response to HAART is denoted as “treatment failure” or “virological

failure”. Treatment failure refers to discontinuation or modification of therapy

(switching to other drugs) for any reason. In one large cohort study, 36% of patients

had discontinued their first HAART regimen after one year of follow-up [17].

Virological failure relates to patients who do not achieve adequate suppression of

plasma HIV RNA, i.e. an undetectable viral load. The percentage of treatment-naive

patients with an undetectable viral load varies from 10 to 50% after one year of

therapy [18-21].

The most prominent causes for the high rates of treatment failure and virological

failure in HIV-infection are inadequate adherence, pharmacokinetic variability caused

by drug interactions and other factors, emergence of viral resistance, and the

occurrence of adverse reactions to HAART. These factors are all related to eachother,

with the plasma concentration of antiretroviral drugs serving as an intermediary

liaison.

Inadequate adherence

In terms of taking drugs, nonadherence may mean not taking medication at all,

omission of doses, not taking doses at prescribed frequencies or intervals, or not

matching medication to food requirements. Treatment of HIV infection appears to be

very unforgiving for inadequate adherence. One study showed that more than 95%

adherence to PIs (i.e percent of doses taken) is required to achieve an undetectable

viral load in more than 80% of treated patients [22]. The close association between

adherence and virological response is likely to be mediated by plasma drug

concentrations, that is only high adherence rates lead to continuously adequate plasma

drug levels and satisfactory response. 

Although reasons for nonadherence are generally multifaced in nature, the complexity

of HAART regimens is assumed to have a weighty, negative impact on adherence rates

in the treatment of HIV infection [23]. Consequently, efforts are being made to develop

less complex HAART regimens, especially regimens that can be dosed once-daily,

while incorporating the necessary potency [24].

Introduction 
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Pharmacokinetic interactions and other determinants of
pharmacokinetic variability 

Drug interactions seriously complicate the treatment of HIV infection [25,26]. Apart

from three or more antiretrovirals, patients may be taking drugs for opportunistic

infections, concurrent diseases and treatment of adverse events. PIs and NNRTIs are

especially prone to be involved in pharmacokinetic drug-drug interactions. Drug-food

interactions further accentuate the interaction potential of PIs. All such interactions may

cause undesirably low or high plasma concentrations of PIs and NNRTIs in a subgroup

of patients, and this may cause inadequate suppression of viral replication and

emergence of viral resistance (low plasma concentrations) or concentration-related

toxicity (high plasma concentrations). Fortunately, this source of variability can be

corrected after evaluation of potential interactions in pharmacokinetic studies. Based

on such studies, dose recommendations for specific drug combinations can be given.

Although drug interactions remain a hazardous complication of antiretroviral therapy,

they can also be exploited as a means to optimize the pharmacokinetics and

pharmacodynamics of antiretroviral drugs. Nowadays, PIs are often combined with a

low (“baby”) dose of ritonavir, a strong inhibitor of CYP3A, to increase (“boost”) the PI

plasma levels [27]. This approach permits a reduction in the frequency of dosing and

a reduction in pill burden, thereby potentially facilitating adherence. In addition, co-

administration of low-dose ritonavir compensates for certain undesirable drug

interactions, and higher plasma levels may suppress (or overcome) resistant viral

strains.

Apart from pharmacokinetic interactions, there are other determinants of

pharmacokinetic variability that affect plasma concentrations of PIs and NNRTIs, e.g.

genetics, age and gender. Genetic determinants appear to be particularly relevant, as

they cause large interindividual variability in the activity of enzymes that metabolize

PIs and NNRTIs [28], as well as differences in the activity of proteins that transport

these drugs through cellular membranes [29]. Genetics and other determinants of

pharmacokinetic variability are held responsible for the strong interindividual

variability in plasma levels of PIs and NNRTIs that remains when patients are strictly

Chapter 1
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adherent to antiretroviral therapy without drug interactions [30-34]. In contrast to

variability due to pharmacokinetic interactions, these intrinsic types of pharmacokinetic

variability can not be corrected. However, abnormally low or high plasma levels in

individual patients could be detected by measurement of drug concentrations

(Therapeutic Drug Monitoring, TDM).  

Emergence of viral resistance

The occurrence of resistance is associated with specific mutations in viral genes.

Expression of these mutated genes will affect the interaction of drugs with their target

enzymes. It is assumed that (marginally) resistant viral strains pre-exist at low frequencies

in antiretroviral drug-naive, predominantly wild-type virus populations. In addition,

mutations can be generated de novo, but only if a virus is actively replicating. 

Emergence of resistance requires the presence of an antiviral drug in partially

suppressive concentrations [35,36]. Under these circumstances, active replication of wild-

type virus could occur and favor the chance of de novo formation of mutated viruses. In

addition, pre-existing or new resistant viruses will compete favorably with (and outgrow)

the wild-type virus in the presence of suboptimal drug levels; the drug provides “selection

pressure”. These events will not occur if a patient does not take drug at all (plasma

concentration = 0), since the wild-type virus is then permitted to flourish (no selection

pressure). If the plasma concentrations are above certain thresholds, the patient will tend

to remain mutant-free as well, since the viral replication of wild-type and pre-existing

mutant viruses is completely blocked, and de novo generation of mutations is prevented.

Emergence of resistance may limit the remaining treatment options for a patient,

considering that extensive cross-resistance exists between antiretroviral agents of the

same class. The concept of HAART is to combine multiple drugs as a means to limit the

emergence of resistance. Any virus resistant to one drug in a regimen is suppressed by

other drugs. The most likely scenario for selecting resistant viruses when using multiple

drugs is one in which the patient does not have three or more active drugs present all of

the time. This can be due to either inadequate adherence, the occurrence of

pharmacokinetic interactions or large variability in plasma levels.

Introduction 
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Chapter 1

Adverse events to HAART

Apart from insufficient efficacy, antiretroviral therapy is also complicated by a high

incidence of drug-related adverse events [37]. This may affect adherence, and

contribute to high rates of treatment discontinuations and switches in the treatment of

HIV-infection. 

The etiology of many adverse events remains an area of research. Several adverse

events appear to be drug class specific, and some are drug specific. In addition, the

incidence or severity of some adverse events appears to be associated with

antiretroviral plasma concentrations. Relationships have been found between plasma

concentrations and toxicity of indinavir [38], ritonavir [39], amprenavir [40], nelfinavir

[41] and efavirenz [33].

Optimization of dosing recommendations for antiretroviral
drugs

Clinical pharmacology is defined as the scientific study of drugs in man [42]. The

discipline of clinical pharmacology was added to the discipline of pharmacology (the

study of drugs) to provide a scientific basis of therapeutics [43], which is the application

of drugs to treat diseases.

Clinical pharmacology is traditionally divided into two disciplines, pharmacokinetics and

pharmacodynamics. Pharmacokinetics is the study of the relationship between the dose

administered and the (time course of the) plasma or blood concentration achieved, and

Figure 1. Conceptual model for the treatment of HIV infection. 
Abbreviations: PK: pharmacokinetic(s), PD: pharmacodynamic(s), conc.: concentration.
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Introduction 

pharmacodynamics is the study of the relationship between concentration and effect. The

interest of these two disciplines corresponds to two phases that can be discerned after

administration of a drug, the pharmacokinetic phase and the pharmacodynamic phase.

Figure 1 shows these two phases in a conceptual model for the treatment of HIV infection

(adapted from [44,45]), viewed from a clinical pharmacological perspective. The model

shows the plasma drug level as a connecting link between major reasons for inadequate

response to HAART. Nonadherence, pharmacokinetic interactions and pharmacokinetic

variability increase the risk of suboptimal (low or high) drug levels. In turn, these may

cause the emergence of resistance and concentration-related toxicity.

One of the major goals of clinical pharmacology is to identify (and provide a basis for)

the optimum dosage regimen for a given type of patient and disease state [46].

Optimization of antiretroviral drug dosing clearly represents a challenge for clinical

pharmacology. Dosing regimens of antiretroviral drugs should facilitate adherence,

account for pharmacokinetic interactions, prevent the emergence of resistance and

reduce the risk for adverse events. 

Optimization of dosing recommendations can often be achieved by relating response to

the dose administered. Thus, for drugs with a clear dose-response relationship, the actual

concentrations associated with response need not be known. However, from the previous

discussion it is evident that plasma concentrations of PIs and NNRTIs are worth knowing,

since they are associated with major reasons for treatment failure in HIV infection. In fact,

there is convincing evidence for PIs [47-68] and accumulating evidence for NNRTIs

[33,34,69] to conclude that these drugs belong to a relatively small group of drugs for

which the plasma concentration is a better correlate of response than dose. For PIs,

available evidence suggests that these drugs exert time-dependent viral inhibition

[70,71]; this means that minimum antiviral concentrations are required throughout the

whole dosing interval. In turn, this implies that the trough level (Cmin) is the most

important pharmacokinetic determinant for the efficacy of PIs. 

The association between plasma concentrations of PIs and NNRTIs and the response to

these drugs provides a clear rationale to carefully evaluate the pharmacokinetic

characteristics of these agents, and to incorporate this information into the design of drug

dosing regimens. In this way pharmacokinetically-optimized, fixed dosing regimens can

be developed. Further optimization may be achieved by individualization of the dose,

based on plasma drug measurements in individual patients (TDM).
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Objective and outline of the thesis

The overall objective of the studies in this thesis is to contribute to the optimization of

dosage regimens for antiretroviral drugs (PIs and NNRTIs) by the assessment and

interpretation of pharmacokinetic characteristics of these agents, i.e. by the application

of pharmacokinetics. The central principle underlying these studies is that the intensity

and duration of the effect (either desired or undesired) of PIs and NNRTIs is related to

their plasma concentrations. Optimized dosage regimens are expected to improve the

response to antiretroviral drugs. 

Chapter 2 presents a review of published high-performance liquid chromatographic

(HPLC) methods for analysis of PIs in human biological matrices and a review of the

prospects and limitations of TDM for antiretroviral drugs. Bio-analytical methods are a

prerequisite for the use of pharmacokinetics to optimize drug dosing. TDM could be

considered as the ultimate application of pharmacokinetics in the management of HIV-

infected patients. 

Chapter 3 is devoted to optimization of bio-analytical methods for measurement of PIs

and NNRTIs in plasma. This chapter describes the development and results of an

international interlaboratory quality control program as a means to monitor and

improve antiretroviral drug measurements.

The studies in chapter 4 aimed to provide pharmacokinetically-based dosing

recommendations for some existing antiretroviral drugs (or drug combinations) when

used alone, in combination, or administered with certain co-medicated agents. The

studies in this chapter evaluated pharmacokinetic drug-drug and drug-food

interactions of PIs and NNRTIs that were potentially undesirable.

Chapter 5 focuses on the development of new PI-based dosing regimens that should

offer ease of adherence. The studies in this chapter also evaluated pharmacokinetic

interactions, but these were desirable and intentionally used to achieve once-daily

administration of PIs. 

In chapter 6, the findings of the previous chapters are discussed and some

methodological issues are considered that are relevant to several studies in the thesis.

Chapter 1
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Abstract

Methods for HPLC analysis of protease inhibitors (PIs) in human biological matrices

were reviewed. Assays have been developed for analysis of single PIs or for

simultaneous measurement of multiple PIs in plasma/serum, saliva, cerebrospinal fluid

and semen. Liquid-liquid extraction was most often applied for sample pretreatment,

but solid-phase extraction and protein precipitation were used as well. Reversed-phase

or ion-pair chromatography have been used to separate PIs. Detection of PIs should be

sensitive enough for quantitation of plasma concentrations below trough levels of

single PIs, or below proposed therapeutic thresholds for PIs. The large majority of

assays employs UV detection. As the potential for interferences is large, the selectivity

of every method should be evaluated properly. The available HPLC methods have been

applied in clinical pharmacokinetic studies and for Therapeutic Drug Monitoring of PIs.

Participation in an interlaboratory quality control program is recommended for every

laboratory engaged in the bioanalysis of PIs.
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1. Introduction

Contemporary treatment of HIV infection and AIDS is a complex and long-term

undertaking, unavoidably entailing polypharmacy. Three therapeutic classes have been

developed for inhibition of viral replication: protease inhibitors (PIs), nucleoside reverse

transcriptase inhibitors (NRTIs) and non-nucleoside reverse transcriptase inhibitors

(NNRTIs). In order to provide optimal efficacy and to prevent viral resistance, available

antiretroviral drugs should be administered in combination regimens, which are

generally referred to as highly active antiretroviral therapy (HAART). According to

current guidelines, HAART should consist of two NRTIs combined with either one or

two PIs, or with an NNRTI.

Especially the introduction of PIs (since 1995) has dramatically decreased mortality

and morbidity in HIV infection [1]. These drugs interfere with viral replication by

inhibiting the HIV protease enzyme [2,3]. This results in production of non-infectious

virions and prevents consecutive infection of other cells. To date six PIs have been

approved by the Food and Drug Administration (FDA): indinavir, nelfinavir, ritonavir,

saquinavir and, more recently, amprenavir and lopinavir.

Since the advent of PIs there has been increasing interest in the bioanalysis of these

drugs. Numerous high-performance liquid chromatographic (HPLC) assays have been

published for each individual PI [4-24] and for simultaneous determination of several

PIs [25-39]. This review describes the rationale for the large interest in bioanalytical

methods for PIs and gives a survey of current applications of these methods (section 2).

Essential elements of published methods will be described subsequently (section 3),

followed by a more detailed evaluation of methods for simultaneous measurement of

PIs (section 4). Finally, some conclusions and future perspectives will be described

(section 5).  

Published HPLC methods were retrieved using the Medline database (January 1994 to

July 2001, keywords “HPLC” or “high-performance liquid chromatography”,

combined with the names of the individual approved PIs) or Analytical Abstracts (using

names of the individual PIs as keywords). Methods cited from these articles were also

checked. Only papers written in English and with a full, detailed description (including

method validation results) of an HPLC method were included. Methods briefly

described in reports of pharmacokinetic studies or in abstracts were therefore not
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considered. Furthermore, the review confined to methods intended for analysis of PIs

(not their metabolites) in human plasma/serum, urine, saliva, cerebrospinal fluid (CSF)

and semen. However, a few articles that did not meet the criteria were cited often and

contained valuable information; accordingly these articles were included as well

[40,41]. 

2. Application of HPLC analysis of protease inhibitors in
pharmacokinetics and Therapeutic Drug Monitoring

Development of new drugs such as the PIs inevitably leads to interest in the bioanalysis

of the compounds involved, as drug development traditionally includes various stages

that require analytical input. Moreover, research into clinical pharmacology (especially

clinical pharmacokinetics) of PIs typically extends beyond the formal approval of these

drugs. This may be explained by the accelerated FDA approval conditions for these

drugs, which may have called for additional research, but is certainly due to the

suboptimal response to PI-based regimens as well. Despite the remarkable antiviral

potency of PIs, only about 50% of patients commencing treatment will achieve and

maintain adequate antiviral response in the long term. The unfavorable and variable

pharmacokinetics of PIs and their large potential for drug interactions are to a large

extent responsible for this heterogeneity in antiviral response. Therefore several types

of clinical pharmacokinetic studies have been set up in the last years. Accurate and

sensitive analytical methods are a prerequisite for all these studies: 

2.1 Description of plasma pharmacokinetics of PIs

Many studies have concerned the description of the pharmacokinetics of PIs and

combinations of PIs in various populations. These studies have complemented data

from the pharmaceutical industry and have shown the unfavorable pharmacokinetics

of PIs. This regards to their poor and variable bioavailability and short elimination

half-lives. Poor bioavailability necessitates food restrictions for intake of most PIs,

whereas short half-lives result in inconvenient twice or thrice daily dose regimens. Both

may negatively influence compliance to treatment regimens and cause inadequate

exposure to the drugs.
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2.2 Evaluation of drug interactions

Apart from variable bioavailability and fast elimination, drug interactions are of major

concern when PIs are being prescribed. The drugs are primarily metabolised by

CYP3A, one of the cytochrome P450 iso-enzymes, and therefore interact with other

drugs that inhibit or induce this enzyme. Furthermore, PIs also have capacity to inhibit

CYP3A themselves. Especially ritonavir is a potent inhibitor of CYP3A and interacts

with a long list of other drugs. The large interaction potential of PIs has been

established in numerous drug interaction studies [42].

2.3 Evaluation of PI-based regimens with a better pharmacokinetic
profile

New PI-based regimens are being evaluated in order to obtain combinations with

pharmacokinetics that are more favorable. More specifically, interactions between PIs

are being exploited to overcome the pharmacokinetic shortcomings of PIs as single

agents. Combination of low doses of ritonavir with other PIs often leads to higher drug

levels of the latter PIs (“pharmacokinetic enhancement”), better bioavailability and a

reduction in dose and dose frequency [43-45]. Other pharmacokinetic studies aim at

developing once daily PI dosing regimens, again by exploiting interactions with

ritonavir [46-48]. 

2.4 Drug-transporting proteins and sanctuary sites

PIs are to varying degrees substrates for drug transporting proteins P-glycoprotein and

MRP. Affinity for these proteins may prevent penetration of the PIs in some body

compartments, such as the central nervous system and semen. As a result, these body

compartments could harbour reservoirs of poorly tractable HIV, and are therefore

designated as sanctuary sites for HIV [49,50]. Pharmacokinetic studies are being

untertaken to study the penetration and retention of PIs in CSF [51] and semen [52]

and in other putative sanctuaries. These studies require assays that are validated for

these purposes. 
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2.5 Studies relating pharmacokinetic parameters to observed clinical
effect

Over the past four years data have emerged demonstrating an important link between

PI drug concentrations and efficacy or toxicity of these drugs [53]. As a result, the

issue of Therapeutic Drug Monitoring (TDM) for PIs has risen [54]. PIs appear to be

appropriate candidates for TDM indeed, as there is also large interindividual

variability in their plasma pharmacokinetics, a narrow range between therapeutic and

toxic drug concentrations, and no direct measure for the pharmacological effect of PIs

applied in combination therapy. However, therapeutic ranges or target values have not

been defined unequivocally. Clinical trials have been started to validate such target

values and to assess the value of TDM for PIs. So far, only preliminary results of these

studies have been presented [55,56]. Nevertheless, TDM for PIs has already been

applied and four indications for TDM have evolved from practice. It can be used (a) to

prevent treatment failure, (b) to explain or prevent drug toxicity, (c) to manage drug

interactions and (d) to document non-compliance to medication schedules. It appears

that nonadherent patients can be identified using drug level measurements of PIs in

plasma [57,58] or saliva [59,60].

3. HPLC analysis of protease inhibitors: essential elements

3.1 Physico-chemical and pharmacokinetic properties of protease
inhibitors

Physico-chemical properties and pharmacokinetic parameters of PIs are valuable clues

for the choice of conditions for HPLC separation, as well as for evaluating existing

methods. Although the PIs are pharmacologically related, they differ structurally (figure

1). PIs are compounds of medium polarity with weak basic properties due to ionizable

substituent groups. Table 1 summarizes solubility data, UV absorption maxima and

pKa values, as far as these data could be retrieved [34,35,61-65]. Complete UV

spectra of PIs have been depicted in the literature [34,35]. These spectra show that all

PIs have high absorbances in the lower wavelength range (200-220 nm). For

indinavir, lopinavir, ritonavir and nelfinavir, absorbances in this range are significantly

higher than their respective peak absorbances at higher wavelengths. For amprenavir
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and saquinavir, absorptivities at their maxima approximate those at lower wavelengths

[34,35]. The aqueous solubilities of indinavir and nelfinavir are strongly dependent on

pH. At pH values above 3.5 these drugs show a sharp decline in solubility [61,64].

Amprenavir, indinavir, nelfinavir, ritonavir and saquinavir appear to be very stable

drugs [27]. Whole blood or plasma samples containing these drugs can be kept at

room temperature for several days and at -20oC for several months. Repeated freeze-

thaw cycles do not affect the stability of the drugs. Stock solutions of these drugs in

methanol are stable at -20oC for several months. No such stability data have been

published for lopinavir so far, but our own experience with this drug indicates that its

stability is comparable to other PIs.

All PI plasma concentrations are expressed as the free base. Knowledge of the

concentration range of PIs is important for an estimation of the required upper and

lower limits of quantitation for their measurement (see table 2, [63,66-76]). It should

be noted that large variability exists in minimum (trough) and maximum concentrations

of PIs in plasma. Furthermore, these concentrations can increase when PIs are

combined with ritonavir. PIs exhibit strong (≥ 90%) binding to plasma proteins, except

for indinavir which is about 60% bound to proteins. All PIs are extensively metabolised

to numerous metabolites. The major metabolite of nelfinavir (M8) shows in vitro activity

and in vivo protein binding comparable to nelfinavir [70,77]. M8 concentrations are

roughly about 30% of nelfinavir concentrations [78]. 
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3.2 Protease inhibitor analysis in biological matrices 

Bio-analytical assays for PIs have almost exclusively been developed and validated for

plasma and serum samples. However, some HPLC methods have been published for

analysis of these drugs in other biological fluids that are of interest for clinical

pharmacokinetic studies, or TDM; urine, saliva, CSF and seminal fluid

[4,6,13,14,19,23,40]. From an analytical point of view these matrices are relatively

free of interferences compared to plasma. Authors reporting analytical methods in

these fluids do not seem to have experienced large problems in applying or adapting

HPLC analysis of protease inhibitors

Table 1. Physico-chemical properties of protease inhibitorsa

Protease inhibitor Solubility in water UV max (nm) pKa value Ref.

Amprenavir na 265 na [34,35]
Indinavir 100 mg/ml (sulfate) 260 3.7 [61,62]

60 mg/ml (pH 3.5), 
0.3 mg/ml (pH 4.8)

Lopinavir practically insoluble 259b na [63]
Nelfinavir 4.5 mg/ml (mesylate) 252 6.00, 11.06 [62,64]
Ritonavir practically insoluble 239 na [62]

Saquinavir 2.2 mg/ml (mesylate) 239 7.01 [62,65]

a See Nomenclature for abbreviations.
b Recorded in ACN - phosphate buffer (40:60 v/v).

Table 2. Concentration range and proposed therapeutic thresholds of protease inhibitorsa,b

Protease inhibitor Proposed plasma Steady state Cmin Steady state Cmax Refs.
threshold concentration concentration
(ng/ml) (ng/ml) (ng/ml)

Amprenavir na 280 5360 [66]
Indinavir 100-110 130 6840 [67-69]
Lopinavir/ritonavir na 5500 9600 [63]
Nelfinavir 0.25-0.45 or 0.77 1000c, 700d 3000c, 4000d [70-72]
Ritonavir 2100 4000 11000 [73,74]
Saquinavir (HGC) 50 38 198 [75,76]
Saquinavir (SGC) 50 70 2181 [75,76]

a See Nomenclature for abbreviations.
b All PIs dosed without ritonavir, except for lopinavir which is coformulated with ritonavir.
c Regimen: 750 mg three times daily.
d Regimen: 1250 mg two times daily.
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existing methods for measurement of PIs in plasma or serum, provided that these

methods are sensitive enough. 

3.2.1 Analysis in urine

Analysis in urine may be particularly relevant for indinavir, which is excreted in urine for up

to 20% (much more than other PIs), and causes urological complaints by crystallisation of

indinavir in the urinary tract. Since urine is generally free of protein and lipids we ourselves

just acidify urine samples containing indinavir to a pH below 3.5 with orthophosphoric

acid, in order to dissolve indinavir that may have precipitated. After centrifugation, urine is

then diluted and injected in the HPLC system. Recovery using this methodology is 101%.

However, Woolf et al [6] and Svensson et al [14] describe a more extensive sample

pretreatment method for analysis of indinavir in urine, using the same liquid-liquid

extraction procedures and separation conditions for urine and plasma or serum. In the

assay by Woolf, recovery of indinavir from urine was less (68%) as compared to plasma

(81%), but it remained constant over the range of the standard curve.  

Interestingly, Woolf et al also developed another method for analysis of indinavir in

plasma, consisting of liquid-liquid extraction followed by HPLC and tandem mass

spectrometric (MS) detection with a turbo ion spray interface ([7], see also table 3).

They attempted to apply this plasma method for measurement of indinavir in urine as

well, omitting the liquid-liquid extraction step [40]. In theory, the highly specific nature

of LC-MS should allow for minimal sample clean up (just dilution) and short

chromatographic analysis times. However, after dilution and injection of urine samples,

a high degree of variability in MS/MS responses was observed. Both sample clean up

and better chromatographic separation (increasing k’) improved the instrument

response and reproducibility of ionization, thus potentially improving sensitivity and

precision of the method. These findings illustrate that analysis of urine with MS

detection may require sample pretreatment and adequate separation of analytes from

co-eluting species that are unseen by the detector.

3.2.2 Analysis in saliva 

Analysis of PIs in saliva has been studied as an alternative for plasma or serum in

TDM, as use of saliva offers several advantages (e.g. easy and non-invasive sample
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collection, and diminished risk of HIV transmission). Hoetelmans et al used a special

device (Salivette®, a cotton wool swab impregnated with citric acid) as a standardized

manner to collect stimulated saliva for the measurement of ritonavir and saquinavir

[19,23]. They applied the same sample pretreatment as for plasma samples. Only very

low concentrations of ritonavir and saquinavir were measured in saliva samples from

HIV-infected patients who took these PIs. This is probably due to extensive protein

binding of these PIs in plasma, which restricts the amount of drug that can diffuse into

saliva. Based on protein binding data, only indinavir can be expected in saliva (see

section 3.1). Hugen et al analysed indinavir in stimulated saliva using the same

separation conditions as for plasma samples [8,59]. Adsorption of indinavir to the

Salivette® was 40%. Salivary indinavir concentrations correlated well with plasma

levels, but a large intra-and inter-individual variation in saliva/plasma concentration

ratios was found. It was concluded that salivary indinavir concentrations can not be

used to predict plasma concentrations, but may be applied for monitoring of

compliance. Wintergerst et al also found good agreement between indinavir

concentrations in plasma and (unstimulated) saliva, particularly at the end of the dose

interval [60]. Saliva and plasma samples were analysed using the same LC-MS/MS

assay.

3.2.3 Analysis in CSF and semen

Analysis of PIs in CSF and semen requires higher sensitivity than measurement of PIs in

plasma. Limits of quantitation for plasma assays are often in the 10-50 ng/ml range,

but drug levels behind blood-brain and blood-testes barriers can be significantly lower.

Furthermore, only small volumes of CSF are mostly available. 

Sparidans et al extracted amprenavir from small samples (100 µL) of CSF or semen

using liquid-liquid extraction [4]. Recovery of amprenavir was more than 95%.

Fluorescence detection enabled measurement of amprenavir in the low nanogram

range (see table 3). In order to facilitate the use of calibration samples in plasma for

measurement of CSF and semen samples, plasma was added to these matrices prior to

further treatment.

Zhong et al report a method for measurement of indinavir in both plasma and CSF

samples (see table 3, [13]). Recovery of indinavir from CSF was more than 90% and

the lower limit for quantitation of indinavir in CSF was 2 ng/ml. Likewise, Svensson et

HPLC analysis of protease inhibitors
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Table 3. Summary of published HPLC methods: measurement of single PIsa

PIsb Matrix Sample Column Mobile phase Run Limit of Detectione Refs.
pretreatment timec quantitationd

APV plasma, LLE C18 (100x4.6 mm, Isocratic 18.5 1 (plasma, FL [4]
CSF, chloroform 3.5 µm) 50oC 25 mM sodium phosphate semen) Ex  270 nm

semen buffer pH 6.8 / ACN 0.5 (CSF) Em 340 nm
(60:40 v/v) 1.5 ml/min

APV serum, LLE at basic pH C18 (50x2.0 mm, 3 µm) Isocratic < 5 50 MS/MS [5]
plasma diethylether ACN / water (1:1, v/v)

+ 0.1% formic acid
0.15 ml/min

IDV plasma, LLE at pH 9.5 column switching Isocratic 20 5 UV 210 [6]
urine MTBE I: cyano (80x4 mm, 5 µm) I: ACN / water 

Backextr. in 10 II: C18 (150x4.6 mm, (34:66 v/v)
mM HCI 5 µm) II: ACN / water 
Re-extr. MTBE (38:62 v/v)
pH 9.5 Both in 10 mM

orthophosphoric acid,
pH 7.5, 1.2 ml/min

IDV plasma LLE at pH 9.5 C8 (50x2 mm, 3 µm) Isocratic 6 1 (at least) MS/MS [7]
MTBE ACN / water  (40:60 v/v)

+ 7 mM ammonium acetate,
pH 4.9 
0.2 ml/min

IDV plasma protein C18 (150x4.6 mm, 5 µm) Isocratic 12 50 UV 210 [8]
precipitation ACN / 50 mM phosphate
ACN buffer pH 6 + 4 g/l TMACl

(40:60 v/v)
1 ml/min

IDV plasma LLE at pH 9.0 C4 (150x3.9 mm, 5 µm) Isocratic 30 10 UV 210 [9]
diethylether 10 mM NH4H2PO4 + 1 mM 1-

heptanesulfonic acid sodium
pH 4.8 / ACN (65:35 v/v)
0.6 ml/min

IDV urine Dilution with C8 (50x2.0 mm, 3 µm) Isocratic 6 na MS/MS [40]
ACN ACN/ 7 mM ammonium
or acetate (40:60 v/v), pH 4.9
LLE at pH 9.5 or
MTBE Isocratic 12

ACN/ 7mM ammonium
acetate (30:70 v/v), pH 4.9
Both 0.2 ml/min

IDV plasma SPE (C18) C8 (250x4.6 mm, 5 µm) Isocratic 19 25 UV 210 [10]
ACN / 10 mM KH2PO4 pH 3.1
(40:60 v/v) 1.5 ml/min
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HPLC analysis of protease inhibitors

Table 3. Continued

PIsb Matrix Sample Column Mobile phase Run Limit of Detectione Refs.
pretreatment timec quantitationd

IDV plasma LLE pH 10.4 C18 (150x4.6 mm, 5 µm) Isocratic 15 25 UV 210 [11]
Dichloro- ACN / 25 mM phosphate
methane buffer + 0.2% triethylamine in
Hexane wash water, pH 7 (34.5:65.5 v/v)

2 ml/min

IDV plasma SPE (Oasis® C8 (150x4.6 mm, 5 µm) Isocratic 12 10 UV 210 [12]
HLB) Water / ACN / 5.9 M

orthophosphoric acid /
triethylamine (73:27:0.5:0.02
v/v), pH 3.2
0.8 ml/min

IDV plasma, SPE (strong Column switching isocratic 20 5 (plasma) UV 210 [13]
CSF cation- I: cyano (80x4 mm, I: ACN / water (34:66 v/v)

exchange, SCX 5 µm) II: ACN / water (38:62 v/v) 2 (CSF)
benzene II: C18 (150x4.6 mm, Both in 10 mM
sulfonic acid) 5 µm) orthophosphoric acid, pH 7.5

Columns at 28oC 1.2 ml/min
(see [6])

IDV cell Protein C18 (250x3 mm, 5 µm) Isocratic 19 4 ED [41]
culture precipitation 10 mM NaH2PO4 pH 6.3 / First el.: 

(ACN) ACN (65:35 v/v) + 400 mV
0.6 ml/min Second el.:

+ 750 mV

IDV Serum, LLE at basic pH C18 (75x4.6, 3.5 µm) Isocratic 3.5 na UV 260 [14]
urine, Diethylether 50 mmol/L acetic acid buffer (LOD: 6
CSF Back extr. in (pH 4.8) / ACN (52:48 v/v) ng/ml)

acid aqeous 1.5 ml/min
phase

IDV plasma 96-well SPE C18 (30x3.0 mm, 3 µm) Isocratic Very  1 MS/MS [15]
(mixed 35oC ACN / 10 mM ammonium short
phase acetate + TFA 0.5 ml/L (high
cation (42.5:57.5 v/v) throug
exchange) 0.6 ml/min put)

NFV plasma LLE at pH 10 C18 (250x4.6 mm, 5 µm) Isocratic 12 50 UV 220 [16]
Ethyl acetate- 25 mM monobasic sodium
ACN (90:10 phosphate buffer pH 3.4 /
v/v) ACN (58:42 v/v)

1.3 ml/min

NFV, M8 plasma LLE at pH 9.5 C18 (250x4.6 mm, 5 µm) Isocratic 15 25 (NFV, M8) UV 220 [17]
MTBE/hexane 0.1%  TFA / ACN / MeOH
(90:10) (49:46:5 v/v), pH 5
Hexane wash 1.5 ml/min
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Table 3. Continued

PIsb Matrix Sample Column Mobile phase Run Limit of Detectione Refs.
pretreatment timec quantitationd

RTV plasma LLE C18 ( 50x4 mm or 50x4.6 mm Isocratic 15 12 UV 205 [18]
Ethyl acetate- , 3 µm) ACN / MeOH / 0.01M TMAP
hexane (9:1 in 0.1% aqueous TFA
v/v) (40:5:55 v/v)
Hexane wash 1 ml/min

RTV plasma, Protein C18 (75x4.6 mm, 3.5 µm) Isocratic 20 50 UV 239 [19]
saliva, precipitation ACN / 25 mM sodium acetate
CSF (ACN) + 25 mM hexane-1-sulfonic

acid, pH 4 (44:56 v/v)
1 ml/min

RTV plasma LLE C18 (300x3.9 mm, 10 µm) Isocratic 12 na UV 210 [20]
Ethyl acetate- ACN / 0.05 M monobasic
hexane ammonium phosphate (pH 3)
(9:1 v/v) (52.5:47.5 v/v)
Hexane wash 2.0 ml/min

SQV plasma SPE (C2) ODS (20) guard column Isocratic 1.5 0.4 MS/MS [21]
(30x4.6 mm, 5 µm) Aqueous ACN (80:20 v/v)

with 0.0025M ammonium
acetate pH 6.5
1.5 ml/min

SQV plasma hexane wash, C8 (125x3 mm) Isocratic 10 10 (at least) UV 240 [22]
LLE with 45oC 5 mM sulfuric acid / ACN
diethylether (75.5:24.5 v/v)

containing 10 mM TBA pH 3.5
1 ml/min

SQV plasma, SPE (C2 ) C18 (75x4.6 mm, 3.5 µm) Isocratic 35 2.5 UV 239 [23]
saliva, ACN / 25 mM sodium acetate
CSF + 25 mM hexane-1-sulfonic

acid, pH 4 (40.5:59.5 v/v)
1 ml/min

SQV plasma protein phenyl (4 µm) Isocratic 15 1.0 UV 239? [24]
precipitation methanol / 0.01M ammonium
(monochloracetic acetate / glacial acetic acid
acid) SPE (C8) (90:9.75:0.25)

2 ml/min

SQV plasma LLE at basic pH C8 (250x4.6 mm, 5 µm) Isocratic 30 20 (at least) UV 239? [24]
diethyl ether aqueous ACN (37:63)
hexane wash 1 ml/min

a See Nomenclature for abbreviations.
b References listed by PI, then chronologically. 
c Run time in minutes.
d Limit of quantitation in ng/ml.
e Wavelength of detection in nm.
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al [14] developed a method that can be applied for both serum and CSF, as well as urine.

The methods reported by Hoetelmans et al for measurement of ritonavir and

saquinavir in plasma and saliva can also be applied to CSF samples [19,23].

Recoveries from CSF were 99-101% for ritonavir and 60-61% for saquinavir.  

3.3 Heat treatment to inactivate HIV

Samples from HIV-infected persons obviously pose a health hazard. Chemical treatments

can be used to inactivate HIV, but such treatments may influence the HPLC analysis, or

degrade the PIs to be measured. For example, Marzolini et al evaluated viral inactivation

by Triton X-100, but this detergent perturbed UV detection at 201 nm and influenced the

peak shape of the PIs [33].  

Heat treatment is another effective means for deactivation of HIV. Deactivation has been

performed at 56-60oC, using a variety of heat treatment durations (from 30 min to 4

hours). Somewhat conflicting data have been reported with regard to stability of PIs

under these circumstances. Whereas several authors have assessed that 30 min to one

hour at 56oC or 60oC did not affect concentrations of amprenavir [4,32,33,37],

indinavir [12,15,28,32,33,37], nelfinavir [28,32,33,37], ritonavir [19,28,32,33,37]

and saquinavir [28,32,33,37], others have found slight degradation (less than 15%) for

indinavir [9] and ritonavir [18], larger decreases for saquinavir after 2 h at 60oC (mean

decrease 18% [24]), and even an increase in indinavir concentrations after 4 h at 58oC

[10]. Therefore, heat treatment may have a slight affect on PI concentrations. This

implicates that calibration and quality control samples should be heat treated as well, or

that heat treatment should be avoided. 

If sample pretreatment consists of an extraction step using organic solvents, this may be

sufficient to deactivate biological hazards such as HIV [79].

Irradiation has been suggested as an approach for deactivation of HIV in biological

samples [79], but this methodology has not been applied in any of the described

analytical methods.

3.4 Sample pretreatment

Sample pretreatments that have been applied for analysis of PIs in liquid biological

matrices include protein precipitation, liquid-liquid extraction and solid-phase extraction.

HPLC analysis of protease inhibitors
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3.4.1 Protein precipitation

Protein precipitation reagents used in the analysis of PIs are acetonitrile and

monochloracetic acid. Protein precipitation with acetonitrile has been used as sole

sample pretreatment method in the analysis of indinavir in plasma [8] and cell cultures

[41] and in the analysis of ritonavir in plasma [19]. Monochloracetic acid has been

used as a prelude to solid-phase extraction of saquinavir from plasma [24].

3.4.2 Liquid-liquid extraction

Liquid-liquid extraction of PIs has been used in the majority (56%) of the assays, both

for extraction of single PIs as well as for simultaneous extraction of several PIs. Most

extractions were performed in one single step. Before extraction, samples have been

alkalinized, thereby allowing PIs to exist in an uncharged form, being more readily

extracted by organic solvents. Using this methodology, PIs have been extracted using

methyl tert.-butyl ether (MTBE) [6,7,27,29-31,36,40], MTBE/hexane [17], diethylether

[5,9,14,22,24,26], ethylacetate/hexane [18,20,28,38], ethylacetate/acetonitrile [16],

chloroform [4] or dichloromethane [11]. MTBE and diethylether have been used most

often. As a consequence of their low densities, these solvents can be easily collected

after extraction, as the upper layer in a tube. Freezing the lower aqueous layer in a

dry ice-aceton bath may facilitate collection of the organic solvent. The solvents are

then evaporated to dryness and the residue is reconstituted for injection in the

chromatographic system [5,7,9,29,31,40]. Alternatively, the reconstituted aqueous

phase can be washed with hexane if lipophilic co-elutants have to be removed or if

quantitation in the lower range is desired [17,22,24,26,27,30,36]. Hexane washing

has been applied in the same way after extraction with other solvents [11,18,20,38].

As an alternative to hexane washing, the extraction step into MTBE or another solvent

may be followed by back extraction of PIs into acid [14], if necessary with subsequent

pH adjustment to high values and reextraction into MTBE. Woolf et al demonstrated

the latter reextraction strategy for indinavir [6]. However, this procedure resulted in

low recoveries of nelfinavir and M8 compared to washing with hexane [17].

Chapter 2.1
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3.4.3 Solid-phase extraction 

Solid-phase extraction of PIs was first applied by Knebel et al, who extracted

saquinavir on C2 solid-phase cartridges, obtaining more than 95% recovery [21].

Hoetelmans et al modified this procedure slightly and applied it for extraction of

saquinavir [23] and for simultaneous extraction of five PIs [32]. 

C8 columns have been used for extraction of saquinavir [24], whereas C18 cartridges

have been applied for extraction of indinavir [10] and for simultaneous isolation of

multiple PIs [25,33,35]. Using C18 columns, Marzolini et al [33] and Simon et al [39]

extracted PIs together with NNRTIs, and Aymard et al used C18 cartridges to isolate

PIs, NNRTIs as well as NRTIs from one single plasma sample [35]. 

Oasis® HLB cartridges (Waters) have been applied to extract indinavir alone [12] or

five PIs simultaneously [34,37]. Poirier et al choose this polymeric sorbent because its

hydrophilic properties prevent the wettability problem encountered with C18 packings,

and because reproducible results can be obtained even when the cartridges run dry

[12,34]. 

The potential for separation of PIs based on cation-exchange is suggested by the

presence of nitrogen in multiple functional groups in the PI molecules. Zhong tested

cartridges with weak cation-exchange functional groups (carboxylic acid) for

extraction of indinavir, but strong cation-exchange functional groups (benzenesulfonic

acid) showed the best separation and recovery [13].

Rose et al developed an assay for high throughput analysis of indinavir in plasma,

using semi-automated 96-well solid-phase extraction in the mixed phase cation

exchange format (MPC), in conjuction with LC-MS/MS [15]. This allowed for analysis

of 288 samples (three 96-well plates) in one overnight run. 

3.5 Separation conditions

Reversed-phase or ion-pair chromatography appear to be the most appropriate HPLC

methods for analysis of ionizable drugs such as PIs in an aqueous biological matrix.

Separation conditions described in most publications are fairly straightforward,

derived from initial conditions that have been proposed for systematic HPLC method

development [80]. 

HPLC analysis of protease inhibitors
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Therefore frequently chosen stationary phases were C8 or C18, whereas other

columns (C4 [9,29], cyano [6,13], phenyl [24,30]) have been applied occassionally.

Woolf et al [6] and Zhong et al [13] used a column switching system for measurement

of indinavir in plasma and urine [6] or plasma and CSF [13]. The column switching

configuration was designed to separate indinavir from endogenous interferences. By

combining the different selectivities provided by the first (cyano) and second (C18)

column, the analytes could be detected under interference-free conditions at 210 nm. 

Some authors have thermostatted column temperature above ambient temperature,

apparently in order to influence selectivity, to reduce the variation in retention times, or

to improve peak efficiency [4,13,15,22,29,34,35,39].

Mobile phase frequently consisted of acetonitrile and a buffer, most often a phosphate

buffer. Because of the ionic character of PIs, buffering the aqueous phase of the solvent

is imperative. When the mobile phase pH is close to the pKa values of one of the PIs,

small pH changes can have a major impact on band spacing. Variation in mobile

phase pH is thus a powerful way to influence selectivity when separating PIs. However,

the exact pH conditions that favor maximum resolution of PIs may not favor method

ruggedness. Several authors stress the exact setting of mobile phase pH for adequate

and reproducible separation [17,23,27,30,33]. 

Besides changes in pH, several other mobile phase characteristics have been varied in

order to optimize band spacing and peak shape. Apart from changes in solvent type

selectivity, several authors have used additives (diethylamine, triethylamine,

trifluoracetic acid) in the mobile phase, presumably to improve the peak shape of the

basic PIs (less tailing) or to act as weak ion-pairing reagents [11,12,15,17,18,31,34].

Furthermore, 10 methods describe the addition of strong ion-pair reagents to the

mobile phase as an additional way to vary band spacing [8,9,18,19,22,23,32,33,

35,38]. As mobile phases were generally slightly acidic, alkylsulfonates have been

applied to provide retention of the basic PIs in their protonated form [9,19,23,32,

33,35]. Tetraalkylammonium salts have been used in slighly acidic mobile phases to

avoid tailing [8], probably by blocking silanols, or to obtain a clean baseline by

retention of negatively charged interferences [22].  

All HPLC methods for single PI assay involve isocratic separation conditions. If isocratic

conditions are applied for simultaneous chromatography of several PIs, this may result
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in a wide retention range of the drugs. This may be reflected in inadequate resolution

of the most polar PIs from early eluting interferences on the one hand, and peak

broadening of the late-eluting (less polar) PIs on the other. Such problems may be

present in some of the methods for simultaneous measurement of PIs [31,32]. Gradient

elution has been applied in 7 out of 15 methods for simultaneous measurement of PIs

[26,27,33,34,37-39]. 

Figures 2 to 5 show typical separations that have been obtained in methods for

simultaneous analysis of PIs. 

3.6 Sensitivity

Most of the HPLC methods for PIs

have been developed for application

in pharmacokinetic studies and TDM.

Pharmacokinetic studies require

lower limits of quantitation below

expected trough levels of PIs, in

order to be able to accurately

calculate important pharmacokinetic

data (e.g. half-life) from the terminal

phases in drug elimination. TDM

demands a similar or better

sensitivity; limits of quantitation

should be below population trough

levels for single PIs, or preferably

below threshold values that have

been proposed for PIs (table 2). Data

in table 2 refer to trough levels after

administration of PIs as single

agents. Co-administration of two PIs

results in higher plasma levels and is

becoming increasingly popular.

Analytical methods that have been

Figure 2. Typical chromatogram of a spiked plasma sample
containing 1050 ng/ml of indinavir, nelfinavir, ritonavir,
and saquinavir, and internal standard (IS) (from Hugen 
et al. [27])
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validated to measure such higher drug levels only (thus being less sensitive) have

restricted applicability, as many patients still take single PIs.

Clearly, trough levels for saquinavir are relatively low compared to other PIs (table 2),

whereas ritonavir trough and threshold levels are in the µg/ml range. Therefore,

ritonavir will not pose sensitivity problems. Moreover, quantitation of this drug is not

Chapter 2.1

Figure 3. Typical chromatogram of a spiked plasma sample containing four PIs, delavirdine, efavirenz and
internal standard (from Proust et al. [31])
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indicated when it is applied in low doses as pharmacokinetic enhancer for other PIs

(which is most often the case nowadays). 

There is a large variation amongst assays in lower limits of quantitation for

measurement of PIs (see tables 3 and 4). A number of assays is certainly not sensitive

enough to measure concentrations below population trough levels or below proposed

threshold limits (table 2). 

3.7 Selectivity

The selectivity of the methods for PI assay is another major item in method validation.

Apart from endogenous substances, the potential for drug interferences is enormous,

due to the large number of co-administered drugs used by HIV-infected patients, as

well as the formation of a large number of PI metabolites. Interferences are especially

troublesome to the development of methods for simultaneous analysis of PIs. To assure

selectivity, many authors have analyzed several samples of blank plasma. Furthermore,

co-administered drugs have been tested for interference. The number of drugs tested

varied from antiretroviral drugs only to a tremendous amount of comedications.

Metabolites have generally not been available so far and their influence has been

Figure 4. Typical chromatogram of a spiked plasma sample containing 3000 ng/ml of PIs, efavirenz and
internal standard (IS) (from Marzolini et al. [33])
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evaluated in a small number of studies only, by analysis of samples from treated

subjects. Some authors apply peak purity techniques built into diode array UV systems

to show that the spectra of peaks are consistent [12,17,34,38]. It should be noted that

methods developed before 1998 (mainly for measurement of single PIs) have not been

evaluated for interference by new antiretroviral compounds. 

3.8 Detection 

Detector type and operation can affect the response of PIs and interferences, thus

influencing both sensitivity and selectivity. Concerning sensitivity, molar absorptivities of

PIs appear to be sufficiently high to meet the sensitivity requirements for measurement

of PIs in plasma. Therefore the large majority of methods use UV-detection. In order to

obtain maximum sensitivity, many authors have chosen the lower wavelength range for

detection of single or multiple PIs. As a consequence of increased sensitivity, this may

also permit the use of small plasma volumes. However, low wavelengths are rather

non-specific and many endogenous interferences or drugs will absorb in this region.

Accordingly, detection at lower wavelengths demands careful investigation of

selectivity. As an alternative, PIs can be measured at higher wavelengths in order to

minimize interference rather than maximize response. For example, Poirier et al

measured four PIs at 210 nm and amprenavir at 265 nm [34]. The latter PI eluted
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Figure 5.Typical chromatogram of a spiked plasma sample containing 400-500 ng/ml of amprenavir
(ANV), indinavir (INV), nelfinavir (NFV), ritonavir (RTV), saquinavir (SQV), and internal standard (VRP)
(from Sarasa-Nacenta et al. [37])
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together with an endogenous peak, which was detected at 210 nm, but not 265 nm,

the wavelength of maximum absorbance for amprenavir. 

Alternative detectors may be selected when samples are to be analyzed with low PI

concentrations, such as in CSF and semen (section 3.2), or when high sensitivity and

specificity are required for other reasons. 

Sparidans et al used fluorescence detection to enable them to measure low

concentrations of amprenavir (lower limit of quantitation: 0.5 ng/ml) in small sample

volumes of semen and CSF [4]. No derivatization was required. Other PIs have not

been measured using fluorescence detection. Indinavir was reported not to exhibit

fluorescence [6], whereas saquinavir demonstrated only minor fluorescence

(wavelengths of excitation and emission are 325 and 375 nm respectively [23]). 

Fizzano et al used electrochemical detection for sensitive and specific measurement of

low indinavir concentrations (lower limit of quantitation 4 ng/ml) in cell cultures [41].

A hydrodynamic voltammogram of indinavir showed a voltage dependent increase

starting from + 500 mV before reaching a final plateau after + 750 mV. The first

electrode potential was set at + 400 mV, to remove compounds with lower oxidation

potentials than indinavir. For detection, the second electrode was set at + 750 mV.

Under these conditions detection of indinavir was twice more sensitive than that

obtained with an UV detector set at 210 nm. 

MS detection has been applied for measurement of amprenavir [5], and it allowed for

measurement of indinavir at 1 ng/ml in plasma [7,15]. Likewise, measurement of

saquinavir in plasma can be performed with a lower limit of quantitation of 0.4

ng/ml, using HPLC with MS detection [21]. 

Quantitation of PIs has mostly been performed with use of internal standard

calibration. Some methods did not use an internal standard, for reasons of inavailabity

of a suitable internal standard, or because satisfactory validation results were obtained

without the use of one [14,19,23,32,35,36,39]. 

3.9 Intralaboratory and interlaboratory quality control 

Important decisions are taken based on data obtained with bioanalytical methods for

PIs. Therefore application of these methods requires quality control (QC) procedures,



48

usually including intralaboratory method validation, intralaboratory QC procedures

(e.g. use of internal QC samples), and participation in an interlaboratory QC

program.

Concerning interlaboratory QC, only two methods were tested against reference

methods [24,29]. Furthermore, interlaboratory QC programs for measurement of

antiretroviral drugs have not been available until recently. However, an international

interlaboratory QC program for both PIs and NNRTIs was initiated lately [81], and

two national programs have been started in France [82,83]. Results of the three

programs have been similar, demonstrating that intralaboratory QC procedures need

to be improved in a substantial number of laboratories participating in these

programs. For example, 17 laboratories in the USA, Canada, Europe and Australia

participated in the second round of the international program and measured varying

concentrations of four PIs and two NNRTIs [81]. Twenty percent limits around the

weighed-in concentrations of the drugs were considered to be appropriate thresholds

for a satisfactory measurement. Measurements of indinavir, nelfinavir, ritonavir and

saquinavir yielded satisfactory results in 69%, 78%, 78% and 94% of the analyses,

respectively. Only two laboratories performed all measurements (including those of

NNRTIs) within 20% limits [81].

The findings of the three QC programs demonstrate both the need for and utility of

ongoing QC programs in this area of bioanalysis. Inaccurate analysis of patient

samples within the scope of TDM may result in inappropriate dose adjustments, or the

advice not to adjust doses where it might be desirable. Both may lead to unnecessary

toxicity or to inadequate drug levels, causing resistance development. Inaccurate

measurements in pharmacokinetic studies may, for example, lead to incorrect

evaluation of drug interactions, which may affect the treatment response of many

patients. However, by participating in a QC program, laboratories are being alerted

to possible undetected problems in their QC procedures. This enables them to optimize

their methods. 

4. HPLC methods for simultaneous measurement of
protease inhibitors

Development and use of one HPLC method for measurement of several PIs saves time

and costs compared to several methods for single PIs. Fifteen methods for simultaneous
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analysis of PIs have been published so far. All these methods have been developed

(and will most likely be employed widely) for pharmacokinetic studies and TDM.

Therefore criteria for deciding on which method to choose should be derived from

these applications. 

Firstly, the method of choice should be applicable for as many PIs as possible, since a

large variety of HAART schemes is being prescribed in every patient population. The

possibility to simultaneously measure other antiretroviral drugs (especially NNRTIs,

such as efavirenz and nevirapine) is an advantage. 

Secondly, a method for simultaneous measurement of PIs should be sensitive enough to

measure both trough levels of single PIs and proposed threshold limits (section 3.6,

table 2). 

Thirdly, high specificity should be ensured because of the large number of co-

administered drugs in HIV infection (section 3.7). 

Concerning the choice of sample pretreatment and separation conditions, it seems that

available HPLC equipment and expertise, as well as personal preferences, may well

direct the choice of these method characteristics. 

With regard to the choice between liquid-liquid and solid-phase extraction, the costs

of disposable cartridges may be an additional criterium [36,38]. 

With respect to separation conditions, it appears advantageous to choose conditions

that are as simple as possible, thus avoiding the use of ion-pair reagents as well as

amine modifiers. Generally, ion-pair chromatographic methods are more complicated

to use and are subject to additional experimental problems [80]. Furthermore, the use

of strongly retained additives in the mobile phase (ion-pair reagents, amine additives)

can complicate the use of gradient elution [84]. Gradient elution may also appear

more complicated than isocratic separation, but it is often required or preferred for

samples with many analytes and a wide retention range. Some may have a strong

bias against the use of gradient elution for several reasons [84]. Certainly, gradient

methods do not always transfer well to other laboratories. This may be particularly true

for non-linear gradients.

Run time is another important criterion when there is pressure on the laboratory to

perform large numbers of assays. This may even be relevant when samples are being

processed automatically. Run times for simultaneous analysis of PIs varied from 11

[25] to 52 minutes [39]. 

With regard to detection conditions, it should be noted that all published methods for
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simultaneous measurement of PIs use UV detection. The (in)availability of a switchable

UV-detector or photo-diode array detector may influence the choice of a method. 

The published methods for simultaneous measurement of PIs are summarized in table 4

and will be briefly commented upon below.  

Frappier [25] and Langmann [26] measured only few PIs. The lower limit of

quantitation for ritonavir in the method by Frappier is high. The method applied by

Langmann et al may be considered lengthy (49 min). 

The method by Hugen [27] has recently been extended (and slightly modified) for

measurement of amprenavir, lopinavir and nelfinavir metabolite M8 as well (data in

press). This method demands very pure HPLC quality water and extra pure MTBE.

Peroxides in MTBE can cause decomposition of nelfinavir. Furthermore, pH of the

mobile phase should be set exactly at the desired level.

Moyer [28] applied an unusual gradient, not for mobile-phase strength, but for flow

rate. Flow rate increased during the run, apparently aiming at a shorter run time. The

limit of quantitation for indinavir (100 ng/ml) is high. Several significant interferences

were noted among a very large amount of drugs evaluated for interference. 

Remmel et al [29] report adequate limits of quantitation, but inspection of the

chromatogram of a low concentration QC sample shows only small peaks for

indinavir, nelfinavir and ritonavir at concentration levels far above their limits of

quantitation.

Bouley et al [30] separated PIs in only 15 minutes. However, from the chromatograms

it appears that there is just baseline resolution between bands of the internal standard

and ritonavir, whereas saquinavir and nelfinavir elute close together as well. The limit

of quantitation for indinavir is high (100 ng/ml), despite a relatively large volume of

plasma (1 ml)  to be used in this method. Possible interferences by other than

antiretroviral drugs were not reported. 

Proust et al describe a method which includes efavirenz, but unfortunately not indinavir

[31]. The limit of quantitation of saquinavir is high for measurement of this drug when

administered without ritonavir.

In the isocratic method by Van Heeswijk et al [32], indinavir and amprenavir elute

early, on the solvent front and close to endogenous interference peaks. The last band

of nelfinavir shows peak broadening and is non-symmetric, which may result in

sensitivity problems at lower concentrations.  



PIs Matrix Sample Column Mobile phase Run Limit of Detectiond Refs.
pretreatment timeb quantitationc

RTV, SQV serum SPE (C18) C8 (150x4.6 mm, 5 µm) isocratic 11 RTV:800 UV 240 [25]
ACN /  5 mM potassium SQV:50
phosphate monobasic buffer
pH 8 (55:45 v/v),
1 ml/min

IDV, RTV, plasma LLE at pH 9.4 C18 (150x2 mm, 5 µm ) gradient 49 IDV: 75 UV [26]
SQV diethyl ether a. 67 mM KH2PO4 pH 4.6 RTV: 45 258 (IDV)

hexane wash b. ACN SQV: 10 240 (RTV,
0.2 ml/min SQV)

IDV, NFV, plasma LLE at basic pH C18 (150x4.6 mm, 5 µm) gradient 30 all PIs: 40 UV 215 [27]
RTV, SQV MTBE a. ACN

Hexane wash b. 50 mM KH2PO4 (pH 5.63)
1.5 ml/min

IDV, NFV,  serum LLE at basic pH C8 (150 mm) isocratic 25 IDV,NFV, UV 254 [28]
RTV, SQV Ethyl acetate- ACN /  MeOH / 15mM RTV: 100
(+ DLV) hexane (1: 1) phosphate (pH 7.5) SQV: 10

(45:5:50 v/v)
gradient flow rate
0.8-1.5 ml/min

IDV, NFV, plasma LLE at basic pH C4 (250 x 3 mm, 5 µm) Isocratic 16 IDV: 49 UV [29]
RTV, SQV MTBE 400C ACN / 50 mM sodium formate NFV: 43 218 (IDV,

buffer (52:48, v/v) pH 4.10, RTV: 50 NFV, RTV)
0.5 ml/min SQV: 22 235 (SQV)

IDV, NFV, plasma LLE at pH 10.8 phenyl (250x4.6 mm, 5 µm) isocratic 15 IDV, NFV: UV 260 [30]
RTV, SQV MTBE 0.04 M ammonium acetate / 100

Reconstitution ACN (48:52 v/v), pH 7.5 RTV: 250
in TMAP-sol 1.0 ml/min SQV: 25
Hexane wash

APV, NFV, plasma LLE at pH 10 C18 (5 µm) Isocratic 35 APV: 50 UV 260 [31]
RTV, SQV  MTBE Sodium phosphate 25 mM / NFV: 150
(+ DLV, ACN (55.2:44.8 v/v) + RTV,SQV:
EFV) diethylamine 0.9% + 100

THF 1%, pH 3.0
0.5 ml/min

APV, IDV, plasma SPE (C2) C18 (75x4.6 mm, 3.5 µm) isocratic 20 APV, IDV,  UV [32]
NFV, RTV, ACN / 25 mM sodium acetate SQV: 25 210 (APV,
SQV +25 mM hexane-1-sulfonic NFV,RTV: 50 IDV, NFV)

acid, pH 6.0 (40.5:59.5 v/v) 239 (RTV, 
1.5 ml/min SQV)
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Table 4. Summary of published HPLC methods: simultaneous measurement of Plsa



PIs Matrix Sample Column Mobile phase Run Limit of Detectioned Refs.
pretreatment timeb quantitationc

APV, IDV, plasma SPE (C18 ) C18 (125x4 mm, 5 µm) Gradient 47 APV,SQV: UV 201 [33]
NFV,RTV, a. ACN 100
SQV b. H3PO4+ sodium heptane IDV,RTV,
(+EFV) sulphonate in water, NFV: 250

PH 5.15
C. 0.3% acetic acid in ACN
1 ml/min

APV,IDV, plasma SPE (Oasis® C18 (150x2.1 mm, 4 µm) Gradient 45 APV,IDV: 5 UV [34]
NFV,RTV, HLB) 24oC a. 0.5% 5.8 mol NFV,RTV, 265 (APV)
SQV orthophosphoric acid + SQV: 10 210 (IDV,

0.02% triethylamine, NFV, RTV,
pH 5.0 SQV)

b. ACN
c. MeOH
0.4 ml/min

APV,IDV, plasma SPE (C18) C18 (250x4.6 mm, 5 µm) Isocratic 32 APV: 25 UV [35]
NFV,RTV, 370C 0.04 M Na2HPO4 + 4% v/v IDV,NFV, 261 (APV,
SQV OSA / ACN (50:50 v/v) RTV: 50 IDV)
(+EFV) 1.3 ml/min SQV: 5 241 (RTV,

SQV)
254 (NFV)

APV,IDV, plasma LLE at basic pH C18 (150x4.6 mm, 5 µm) Isocratic 40 all PIs: 50 UV 215 [36]
NFV,RTV, MTBE ACN /  50 mM KH2PO4
SQV Hexane wash + 50 mM NaHPO4 (pH 5.6)

(43:57 v/v)
1.5 ml/min

APV,IDV, plasma SPE (Oasis®) C18 (150x3.9 mm, 5 µm) gradient 25 APV: 50 UV [37]
NFV,RTV, a. 15 mM potassium IDV: 40 210 (APV,
SQV phosphate pH 5.75 NFV: 85 IDV)

B. ACN RTV: 100 240 (RTV, 
1 ml/min SQV: 44 SQV)

220 (NFV)

APV,IDV plasma LLE C18 (250x4.6 mm, 5 µm) gradient 35 APV: 50 UV [38]
NFV,RTV, Ethyl acetate a. ACN + 0,025M TMAP in IDV,NFV, 239 (RTV)
SQV hexane 0.2%TFA SQV: 200 254 (APV, 
(+ NVP) (9:1 v/v) b. MeOH + 0,025M TMAP in RTV: 400 NFV,SQV)

Hexane wash 0.2%TFA 259 (IDV)
0.9 ml/min

IDV,NFV, serum SPE (C18) C18 (150x4.6 mm, 5 µm) gradient 52 IDV: 210 (e) UV [39]
RTV,SQV, 600C a. ACN NFV: 400 265 (IDV)
(+ DLV, b. 0.004 M sulphuric acid RTV: 510 240 (NFV,
EFV,NVP) 0.85 ml/min SQV: 100 SQV,RTV)
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a See Nomenclature for abbreviations.
b Run time in minutes.
c Limit of quantitation in ng/ml.
d Wavelength of detection in nm.
e Limits of detection instead of limits of quantitation
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The assay by Marzolini [33] uses a rather complex, non-linear gradient and requires

careful control of one of the solvents’ pH for reproducible separation. These features

may complicate the transfer of this method to other laboratories. Reported limits of

quantitation for indinavir and saquinavir are high. However, as the authors mention,

accuracy and precision at the lower limits of quantitation are well below 20%

allowances. Therefore, it may be possible to decrease these limits. 

Poirier et al [34] use a photodiode array detector for measurement of amprenavir at

265 nm and other PIs at 210 nm. An automatic switchable UV detector may not be

applicable as an alternative, since the small difference in retention time between

amprenavir and indinavir may not allow for programmed wavelength changes. 

Aymard et al developed a method for measurement of 12 antiretroviral drugs, PIs,

NNRTIs and NRTIs [35]. One solid-phase extraction procedure was coupled with two

separate reversed-phase HPLC systems, one for 5 PIs and efavirenz, and one mainly

for NRTIs.  

Yamada et al used a sample preparation procedure identical to that described by

Hugen [27], but they chose isocratic (instead of gradient) separation conditions [36].

The method was not tested for interference by other antiretroviral drugs or other

medications.

In the method by Sarasa-Nacenta et al, good separation of 5 PIs depends on accurate

setting of pH and ionic strength of the mobile phase [37]. 

Dailly et al measured nevirapine together with 5 PIs [38]. Separation is achieved by

gradient elution, combined with a hydrophobic ion-pair reagent in the mobile phase.

Limits of quantitation for indinavir, ritonavir and saquinavir are high.

Simon et al were able to measure 4 PIs and 3 NNRTIs in one run [39]. Run time may

be considered long (52 min). Possible interference by other drugs was not reported.

The limits of detection are high.

5. Conclusions

Since the introduction of PIs for treatment of HIV infection, numerous HPLC methods

have been developed for analysis of these drugs in plasma and serum, saliva, CSF

and semen. Fifteen methods described so far have concerned the simultaneous analysis

of several PIs in one run. Heat treatment for deactivation of HIV may lead to slight

degradation of PIs in plasma samples. Liquid-liquid extraction was most often applied
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for sample pretreatment, but solid-phase extraction and protein precipitation were

used as well. Reversed-phase or ion-pair chromatography have been used to separate

PIs. Isocratic conditions have been applied for measurement of single PIs, and gradient

elution has been used in 7 of the 15 methods for simultaneous measurement of PIs.

Detection of PIs should be sensitive enough for quantitation of concentrations below

trough concentrations of single PIs, or below presumed therapeutic thresholds for PIs.

The large majority of assays employs UV detection. As the potential for interferences is

large, the selectivity of every method should be evaluated properly. 

The available HPLC methods have been applied in clinical pharmacokinetic studies

with PIs and have provided the basis for important developments in the clinical

pharmacology of antiretroviral drugs. New interests, such as in free (non-protein

bound) plasma concentrations and intracellular PI drug levels, also require application

and development of reliable assays. Furthermore, studies relating pharmacokinetics to

clinical effects have raised large interest in TDM for PIs. The promising perspective of

TDM to optimize the clinical use of PIs may really spread the use of HPLC methods, as

TDM requires that measurement of PIs is not confined to a small number of research

laboratories, but can be applied in hospital laboratories as well. Fortunately, most

HPLC assays for PIs are quite straightforward and can be performed with equipment

that is available or affordable in most hospitals. Assays for simultaneous measurement

of PIs appear to be most convenient for the purpose of TDM. It is recommended that

any laboratory engaged in the analysis of PIs, whether as a routine service or as part

of a research project, joins an interlaboratory QC program in addition to establishing

its own QC procedures. 
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6. Nomenclature  

ACN

APV 

Cmax

Cmin

CSF 

DLV 

ED 

EFV

El. 

Em 

Ex 

FL 

HAART

HGC 

IDV 

LLE 

LOD

MeOH

MTBE

na 

NFV

NNRTI

NRTI

NVP

OSA

PI

acetonitrile

amprenavir

maximum (peak) concentration

trough concentration

cerebrospinal fluid

delavirdine

electrochemical detection

efavirenz

electrode

wavelength of emission

wavelength of excitation

fluorescence

higly active antiretroviral therapy

hard-gelatin capsule

indinavir

liquid-liquid extraction

limit of detection

methanol

methyl tert.-butyl ether

not available (or not reported) 

nelfinavir

non-nucleoside reverse transcriptase

inhibitor

nucleoside reverse transcriptase inhibitor

nevirapine

octane sulphonic acid

protease inhibitor 
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Abstract

Therapeutic Drug Monitoring (TDM) has been proposed as a means to optimise

response to highly active antiretroviral therapy (HAART) in HIV infection. Protease

inhibitors (PIs) and the non-nucleoside reverse transcriptase inhibitors (NNRTIs)

efavirenz and nevirapine satisfy many criteria for TDM. Nucleoside reverse

transcriptase inhibitors (NRTIs) are not suitable candidates for TDM, since no clear

plasma concentration-effect relationships have been established for these drugs.

Several important limitations to the application of TDM for antiretroviral drugs should

be recognised, including uncertainty about the best pharmacokinetic predictor of

response and insufficient validation of target concentrations for individual PIs and

NNRTIs. Data from two clinical trials support the use of TDM in treatment-naive HIV-

infected patients who start with an indinavir- or nelfinavir based regimen. TDM either

prevented virological failures (presumably by preventing the development of resistance)

or treatment discontinuations due to concentration-related toxicity. Application of

routine TDM in other patient groups (treatment-experienced patients) or for drugs other

than indinavir or nelfinavir (NNRTIs, other PIs, combination of PIs) is speculative at this

moment. However, TDM can be used in selected patient groups (children, pregnant

women, patients with renal or hepatic dysfunction) to confirm adequate drug levels,

and for management of drug-drug interactions. TDM in treatment-experienced patients

may be optimally used in conjunction with resistance testing. The integration of

pharmacological and virological measures in the inhibitory quotient (IQ) needs to be

standardised and elaborated further. TDM should be accompanied by careful

assessment of adherence and can itself help identify non-adherence, although a drug

concentration only reflects the last few drug doses taken by a patient. Additional

clinical trials are needed before routine TDM can be adopted as standard of care in

the treatment of HIV infection.
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1. Introduction

The use of highly active antiretroviral therapy (HAART) is associated with marked

improvement in the clinical outcome of patients with HIV infection [1]. However, this

success is tempered by rates of virological failure which reach 50% in therapy-naive

patients who have been using HAART for one year [2,3]. This can be ascribed to a

number of interactive factors related to the patient (host), the virus, or the antiretroviral

drugs used [4]. As long as these factors result in inhibitory concentrations of multiple

drugs at the sites of HIV replication, the highly error-prone replication process can be

constrained almost completely. Development of new drug-resistant mutants will then be

rare [5,6]. High drug concentrations are also believed to suppress the outgrowth of

drug-resistant viruses which pre-exist in drug-naive wild-type virus populations. In

contrast, suboptimal drug concentrations will confer selective pressure, which ultimately

results in the emergence of mutant viral isolates with reduced susceptibility to one or

more drugs [5-7]. This will compromise the response to the treatment regimen and

may also jeopardize the efficacy of remaining therapeutic options for an individual,

given the potential for cross-resistance between antiretroviral agents of the same class.

Moreover, the increased potential for resistant virus to be transmitted to other persons

has important public health implications [8]. 

Within this context, it has been speculated that Therapeutic Drug Monitoring (TDM)

may have a role in optimising antiretroviral therapy. In contrast to administering the

same dose to all patients (“one dose fits all”), TDM seeks to individualise drug dose,

guided by measurement of plasma drug concentrations. The aim is to bring (and keep)

a patient’s plasma concentration within a target concentration (therapeutic) range [9-

12]. 

The objective of this article is to present an overview of the current status of TDM for

antiretroviral drugs by; (i) reviewing its rationale and the arguments for and against

the use of TDM in HIV infection; and (ii) discussing clinical trial results and recent

developments that integrate drug level measurements and viral resistance testing. 
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2. Rationale for Therapeutic Drug Monitoring in HIV
infection

The concept of TDM to individualise drug dosage to attain certain target plasma

concentrations is currently applied to a small number of drugs, e.g. gentamicin, digoxin and

theophylline. This concept seems suitable for antiretroviral drugs as well, since the exposure

obtained from an identical antiretroviral drug dose varies greatly between patients. By

identifying and adjusting drug exposures that are suboptimal, TDM could possibly aid in

preventing the development of viral resistance, which occurs as outlined in the first

paragraph of this article. In addition, TDM might be instrumental in overcoming moderately

decreased viral susceptibilities, by increasing exposure to an antiretroviral drug. Apart from

preventing or overcoming decreased viral susceptibility, TDM may also be useful in avoiding

inadequate response that is not mediated by resistance development [13]. More specifically,

TDM may prevent suboptimal drug levels which limit the response to HAART even in the

absence of resistance development [14-17]. It may be helpful for management of drug

interactions and in identifying non-adherence, both of which are major problems in the

treatment of HIV infection [18,19]. An additional major cause of treatment discontinuation is

the occurrence of adverse events [20,21], which may be associated with excessively high

drug concentrations. By identifying and reducing unduly high drug concentrations, TDM may

prevent avoidable toxicity and non-adherence related to toxicity. 

3. Criteria for TDM to be useful: the case for TDM 

Whereas there is a clear rationale for TDM of antiretroviral drugs, these drugs need to

fulfill certain criteria for TDM to be useful. The most important criteria for TDM [9-12]

Chapter 2.2

Table 1. Currently licensed protease inhibitors (PIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs)
and nucleoside reverse transcriptase inhibitors (NRTIs)

PIs NNRTIs NRTIs

amprenavir delavirdine abacavir (ABC)
indinavir efavirenz didanosine (ddI)
lopinavir nevirapine lamivudine (3TC)
(coformulated with ritonavir)

nelfinavir stavudine (d4T)
ritonavir zalcitabine (ddC)
saquinavir zidovudine (ZDV, AZT)
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are discussed in the following sections for the three major classes of antiretroviral

drugs, the protease inhibitors (PIs), nucleoside reverse transcriptase inhibitors (NRTIs)

and non-nucleoside reverse transcriptase inhibitors (NNRTIs) (table 1).

3.1 A more direct intermediate measure of patient response is not
available  

TDM is a specific form of a general strategy in which an intermediate endpoint is

employed rather than a clinical endpoint. Antiretroviral treatment is already being

evaluated using intermediate endpoints such as viral load and CD4+ cell count

measurements, but these parameters are not sufficient for optimal prevention of

resistance development. By the time increased HIV replication is observed using viral

load measurements, drug resistance may already have developed. In contrast,

measuring and adjusting plasma drug concentrations early in treatment may provide

some assurance that resistance development will not occur or will be delayed. 

3.2 There is large interindividual variability in pharmacokinetic
parameters

If the interpatient variability in pharmacokinetics were small, concentrations of drugs in

plasma could be predicted adequately from drug dose, and dose would be as good as

drug concentrations in predicting response. However, it is well documented that all

antiretroviral drugs exhibit wide inter-patient variation in plasma trough concentrations

(Cmin), peak concentrations (Cmax) and area under the time versus concentration

curve (AUC) [22-28]. Interpatient concentrations obtained by the same dose often vary

up to 10-fold. This also applies to PIs when they are co-administered with low-dose

ritonavir, which increases PI drug concentrations through inhibition of the cytochrome

P450 (CYP) isoenzyme CYP3A (so called “boosting” [29]). The wide interpatient

pharmacokinetic variability can be explained by large variability in the activity of CYP

isoenzymes which catalyse the metabolism of many antiretroviral drugs [30], genetic

variability in drug-transporting proteins [31,32], and the large potential for drug-drug

and drug-food interactions among antiretroviral drugs [18,33]. 
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3.3 A good relationship exists between plasma drug concentrations
and therapeutic or toxic effect

If the relationship between antiretroviral plasma concentration and drug response was

unpredictable as well, TDM would be useless. Indeed this appears to be the case for NRTIs

(table 1), which are prodrugs that require intracellular activation to active triphoshate

derivatives. No clear relationships have been established between plasma concentrations

of the parent NRTIs and antiviral response. Measuring triphosphate derivatives in

peripheral blood mononuclear cells may be more useful for predicting response [34,35],

but such measurements are technically difficult and not widely available. Consequently

NRTIs do not appear to be suitable candidates for TDM at this time.

In contrast to NRTIs, PIs do not require metabolic conversion to achieve antiviral activity.

An abundance of studies supports an association between PI plasma concentrations and

antiviral response, especially in treatment-naive patients [14,17,36-56]. In addition, it

has been reported that the rate at which PI resistance mutations appear is inversely

related to plasma PI concentrations [37]. Relationships have also been found between

pharmacokinetics and toxicity of indinavir [57-62], ritonavir [63], amprenavir [50], and

nelfinavir [64]. 

Similarly, relationships have been demonstrated between plasma concentrations and

antiviral efficacy of the NNRTIs efavirenz [26,65,66] and nevirapine [27]. Theoretically,

TDM might be especially useful for these drugs, as only one single mutation can

engender resistance to these agents. High efavirenz concentrations have been linked to

central nervous system adverse effects in some studies [26,67], but not in all [68]. High

nevirapine Cmin values have been associated with hepatotoxicity [69].

3.4 There is a narrow range of concentrations that are effective and
well tolerated

On the basis of the studies discussed in the previous sections, it is possible to outline

plasma “target” concentrations for several PIs and NNRTIs (table 2). Therapeutic

thresholds are sometimes close to median population pharmacokinetic parameters.

Unfortunately, patients can not simply be treated with very large doses (as is

commonly done with penicillins) since toxicity can be expected for several

antiretrovirals, demonstrating their narrow therapeutic ranges. 
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3.5 Drug assays are available

Numerous accurate, precise and specific high-performance liquid chromatographic

(HPLC) assays with ultraviolet or mass spectrometric detection have been described for

measurement of PIs and NNRTIs in the plasma [70]. Laboratories can now participate

in an international interlaboratory proficiency testing (quality control) program for

measurement of PI and NNRTI concentrations [71,72].

4. Theoretical and practical limitations of TDM: the case
against TDM

Several limitations of TDM for antiretroviral drugs should be considered [25,73,74].

Some of these limitations apply to TDM in general, others specifically relate to TDM for

PIs and NNRTIs.

Therapeutic Drug Monitoring for antiretroviral drugs 

Table 2.  Therapeutic target concentrations for wild-type viral isolates and maximum (toxic) concentrations of
protease inhibitors (PIs) and non-nucleoside reverse transcriptase inhibitors (NNRTIs) a

Drug Therapeutic target Maximum concentration References
concentration (mg/L) (mg/L)

PIs
amprenavir 0.228 - [50]
indinavir 0.10 8-10 b [42,47]
lopinavir - -
(coformulated with ritonavir)
nelfinavir 0.80 - [53,80]
ritonavir 2.1 - [36]
saquinavir 0.05 - [45]

NNRTIs 
delavirdine - -
efavirenz 1 4 [26]
nevirapine 3.4 - [27]

a Therapeutic target concentrations for PIs refer to plasma trough concentrations (Cmin).
The therapeutic range for efavirenz refers to samples obtained between 8 and 20 hours post-dose
administration; the therapeutic threshold for nevirapine relates to samples taken at random times post-dose
administration.
b Indinavir-associated nephrotoxicity has been related to peak plasma concentrations (Cmax), but no clear
threshold value for nephrotoxicity has been found. Such a value may vary dependent on the dosage
regimen (indinavir with or without co-administration of low-dose ritonavir).
“ - “ indicates no data available at this time
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4.1 TDM results are confounded by non-adherence

Adequate in-office measurements of antiretrovirals may not always reflect out-of-office

concentrations, considering that patients may adhere more to their dosage schedules

before appointments with their physician. Conversely, an inadequate drug level may

not reflect an insufficient dose for a particular patient, but non-adherence. These issues

are an argument for use of TDM in conjunction with proper adherence assessments

(preferably by a combination of methods [75,76]), and for measuring drug

concentrations after observed intake of drugs. If this is not possible, low drug

concentrations identified by TDM still alert physicians to some unrecognised problem,

enabling them to take action.

4.2 Intra-individual variability in the pharmacokinetics of
antiretroviral drugs

Whereas a large inter-individual variability in pharmacokinetics is one of the

prerequisites for TDM, large intra-individual variability limits the value of a single drug

measurement. Fortunately, it appears that intra-individual day-to-day variations in PI

and NNRTI drug concentrations are modest (coefficients of variation in drug levels are

about 30 to 45%) [24,26,77], but this issue has not been fully evaluated. Additional

blood samples may in any case be required to obtain reliable estimates of individual

pharmacokinetic parameters, especially if an advice for dose adjustment is considered.

Large intra-individual fluctuations in plasma concentrations are not expected for

efavirenz and nevirapine, as these NNRTIs have long elimination half-lives [26,28].

4.3 TDM does not measure unbound drug concentrations

Measurements of most drugs in TDM comprise the total drug concentration and not the

unbound fraction, which is free to exert an effect or to be distributed to tissues. This

also applies to measurement of PIs and NNRTIs, most of which are highly bound to

plasma proteins, specifically the acute-phase alpha-1-acid glycoprotein (AAG)

[25,28]. Since AAG levels fluctuate with intercurrent ilnesses, blood for PI and NNRTI

concentrations should be drawn in stable clinical conditions or otherwise be

interpreted cautiously. Concern has been raised by the considerable inter-patient
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variability in protein binding demonstrated for indinavir, as well as the variable

indinavir protein binding over the dosage interval [78]. Still, it should be noted that

relationships between plasma PI and NNRTI concentrations and response have all

been established by measuring total drug concentrations.

4.4 Presence of active metabolites renders interpretation of drug
concentrations difficult 

Nelfinavir is the only current antiretroviral drug which forms an active metabolite

(termed M8) which circulates at appreciable concentrations in plasma [79]. M8 is as

active as nelfinavir in vitro [79]. There is no agreement among studies as to the need

to measure M8 in addition to nelfinavir [54,80,81]. However, M8 levels should be

measured (and added to nelfinavir values, assuming additive virological efficacy)

when ritonavir is co-administered to increase nelfinavir levels, since ritonavir strongly

enhances the M8-to-nelfinavir ratio [82-84].

4.5 Target concentrations

Several important but unresolved issues relate to the target concentrations to be used

for TDM of antiretroviral drugs [25,73,74]. 

Firstly, it has not been demonstrated beyond doubt which of three interrelated

pharmacokinetic parameters (Cmin, Cmax, or AUC) is the best predictor of the

antiviral activity of PIs and NNRTIs. For PIs, most evidence points to Cmin as the most

critical parameter, especially when considering studies with indinavir [85-87]. This

means that minimum antiviral concentrations would be required during the entire

dosage interval to prevent viral breakthough (i.e. time-dependent viral inhibition). In a

recent study, the Cmax of indinavir was uniquely associated with increases in CD4+

cell count in treatment-naive patients who used indinavir, lamivudine and zidovudine,

and who had an undetectable viral load. This suggests that distinct pharmacokinetic-

pharmacodynamic relations exist for effects of PIs on CD4+ cell count (immune

reconstitution) and HIV viral load [56].

As a second issue, it can not be excluded that target concentrations for PIs and

NNRTIs vary to some extent dependent on the background antiretroviral drugs, due to

additivity or synergy between components of an antiretroviral drug combination.
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Thirdly, proposed target concentrations (table 2) have not yet been validated

sufficiently in clinical trials (see section 5). 

Finally, many treatment-experienced patients have HIV isolates with reduced

susceptibility. This implies that higher, individualised target concentrations should be

considered for these patients (see section 6). 

4.6 Sampling times 

It is rather complex to assess Cmin accurately, as this requires patients and providers

to be available at a particular time during a dosage interval. Similarly, it is not easy to

assess Cmax, which has been related to nephrotoxicity of indinavir [57-61]. These

sampling problems can be circumvented by using simple (figure 1) or more

sophisticated (Bayesian) population pharmacokinetic approaches. Pharmacokinetic

data on the various antiretroviral treatment regimens (and accompanying

concentration-time curves) were summarised recently [88].

For PIs, it should be considered that Cmin values in the morning may be higher than

Cmin values in the evening as a result of diurnal variation in the pharmacokinetics of
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Figure 1. Calculation of the concentration ratio (CR) as a simple method for interpretation of
drug concentrations from randomly drawn samples. The figure displays the reference population curve of
indinavir (IDV) 800 mg three times daily. A patient sample drawn 4 h post-ingestion contained 2.7 mg/L
IDV; the population value at 4 h is 1.3 mg/L. Therefore the CR can be calculated as 2.7/1.3 = 2.1.
Dependent on the CR, the therapeutic drug monitoring service could propose interventions to the physician
in attendance (e.g. a dose adjustment, discussing correct dietary intake requirements, discussing adherence). 
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these drugs [89]. For the NNRTIs nevirapine and efavirenz, randomly taken samples

are sufficient, since the decay in plasma concentrations within the dosage interval is

relatively small [26,28,90]. 

4.7 Logistics, bio-analysis, and interpretation of measurements 

TDM is a process involving a series of steps, including a pre-analytic, analytic and

post-analytic component [91,92]. The complexity of certain steps and the length and

logistics of the whole process may complicate the practical implementation of TDM for

antiretrovirals [73,93]. As to the analytic component, available HPLC methods

certainly require skilled personel, are not standardised and not widely available at the

moment, resulting in a long turn-around time for test results. Moreover, results from an

interlaboratory proficiency testing program showed that at least 40% of participating

laboratories needed to improve their performance with respect to HPLC measurement

of PIs and NNRTIs [71,72]. However, the post-analytic component of drug

concentration interpretation, which really transforms a therapeutic drug measuring

service into a therapeutic drug monitoring service [74], may be cause for more

concern in the long term. It is challenging to maintain adequate knowledge of the

pharmacokinetics and pharmacodynamics of the bewildering choice of antiretroviral

drug combinations. Expert advice seems to be required for optimal drug level

interpretation and appropriate dose adjustments.

5. Weighing pros and cons of TDM for antiretroviral drugs:
results from clinical trials

An essential prerequisite for TDM is the availability of prospective, randomised,

controlled clinical trials that validate proposed target values and the utility of TDM [9].

Several such studies have been initiated, focusing on HIV-infected treatment-naive

patients (prevention of resistance development and treatment discontinuation) or

treatment-experienced patients (overcoming treatment failure and resistance).

A small, randomized, open-label study among treatment-naive patients demonstrated

the feasibility, efficacy and safety of a dose adjustment strategy to achieve target

concentrations of indinavir, lamivudine and zidovudine simultaneously [94,95]. After
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1-year follow-up, 14 of 16 patients in the “concentration-controlled” arm achieved the

desired concentration for indinavir, compared with 3 of 17 patients in the control arm,

which received fixed-dose therapy (p<0.001). The proportion of patients with an

undetectable viral load was higher in the concentration-controlled arm (15 of 16 vs 9

of 17 participants, figure 2); drug-related clinical events or laboratory abnormalities

were similar in both arms.

Preliminary results have been reported for a larger trial which was set up as part of

the Dutch ATHENA (Anti-HIV Therapy Evaluation, The Netherlands) study [96,97]. In

this study, 147 treatment-naive patients initiating therapy with either a nelfinavir- or

indinavir-based regimen were randomised to a TDM arm and a control arm. A

significantly lower proportion of patients in the TDM arm failed after 1 year of therapy

compared with patients in the control arm (17.4% versus 39.7%). In patients receiving

nelfinavir, this benefit was attributed to fewer treatment discontinuations due to

virological failure. TDM recipients in the indinavir arm were less likely to stop

treatment because of adverse events. Therefore, TDM of indinavir can be used to

prevent concentration-related toxicity and/or to improve the management of adverse

effects.

Another large study, the Pharmadapt trial, randomised treatment-experienced patients

who failed previous therapy to

an arm receiving genotypic

resistance testing and an arm

receiving genotypic resistance

testing plus TDM for PIs [98].

After 12 weeks and 32 weeks,

no favourable effect of TDM

was demonstrated [98,99].

However, multiple factors limit

the interpretation of this study,

including target concentrations

that were probably too low for

treatment-experienced patients.

Likewise a similar study did not

demonstrate a short-term

benefit of TDM for PIs and
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Figure 2. Percentage of patients in the “concentration-controlled”
arm and conventional dose arm with less than 50 copies/ml of
plasma HIV RNA (undetectable viral load) throughout the 52
weeks of the study by Fletcher et al [95]. The bars indicate 95%
confidence intervals. Reprinted with permission from Lippincott
Williams & Wilkins.
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NNRTIs in patients failing antiretroviral therapy [100]. 

In summary, only limited and preliminary data from randomised clinical trials have

been reported so far. More data are needed to warrant the use of TDM in the routine

management of HIV infected individuals.

Apart from these randomised trials, that were specifically designed to assess the value

of TDM, other studies have suggested the value of TDM in selected patient groups with

altered pharmacokinetics. TDM may be particularly useful in HIV-infected children, as

the pharmacokinetics of many antiretroviral drugs in children are different from that of

adults and also change over time, as a result of maturation of organ systems involved

in drug absorption and disposition. In an overview of clinical trials that evaluated

HAART regimens in children, 4 of 23 studies used dosages that were adjusted after

pharmacokinetic evaluation. These studies showed superior virological response rates

compared with the other studies that applied fixed dosages [101]. 

Other patient groups with altered pharmacokinetics are pregnant women and patients

with liver function disturbances. Limited data suggest that TDM may be indicated in

these patients as well [69,102-105].

Pharmacokinetic parameters can also be altered by the many drug interactions that

have been described for antiretroviral drugs [18]. By taking baseline antiretroviral

drug levels before introduction of an additional drug, the effect of a possible

pharmacokinetic interaction can be evaluated.

Finally, studies have evaluated ways to assess adherence based on antiretroviral drug

concentrations [106,107] and have described TDM as an objective means to assess

non-adherence to PIs [49,76,108,109]. However, it should be realised that a drug

concentration merely reflects the last few doses taken by a patient. 

6. Further individualization of antiretroviral therapy: the
inhibitory quotient 

In using a single target concentration (Cmin) for an antiretroviral drug, it is assumed

that all patients have viral isolates with the same susceptibility. However, the majority

of treatment-experienced patients will harbour resistant viral isolates, i.e. viruses with

reduced susceptibility to drugs. Drug susceptibility can be expressed quantitatively by
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using a phenotypic resistance assay, which assesses the concentration of a drug

required to inhibit 50% (IC50), 90% (IC90) or 95% (IC95) of viral replication in vitro. It is

unknown what concentration of a particular drug is necessary to fully suppress the

replication of a viral strain with reduced susceptibility, but it is likely to be higher than

the IC50 for that drug. This realisation has led to the revitalization of the Inhibitory

Quotient (IQ) [110], which in the field of antiretroviral therapy has been defined

loosely as the ratio of a drug’s Cmin value to an inhibitory concentration (usually IC50)

which is corrected for protein binding (figure 3). Using the IQ concept, it may become

possible to predict Cmin values required to overcome reduced viral susceptibility

[111]. Such information could aid in the selection of optimal therapy, in terms of the

drugs chosen and the doses applied [112]. In the case of PIs, individualised Cmin and

IQ values that are both achievable and tolerable can be targeted by co-administration

of low-dose ritonavir (boosting [29]). First evidence suggests that IQ is a good

predictor of virological response to PIs in treatment-experienced patients [86,112-

115], better than Cmin or IC values alone [86,113]. Moreover, it appears possible to
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Figure 3. The concept of the Inhibitory Quotient (IQ), the ratio of Cmin to a protein binding corrected IC50.
A higher IQ presumably results in more complete suppression of viral replication. Cmin = minimum plasma
concentration; IC50 = concentration required to inhibit 50% of viral replication. 



75

overcome early virological failure with boosted PIs and this may be explained by the

IQ concept [112,113]. However, initial studies using the IQ concept also highlighted

large variation in the definition and assessment of IQ values; these need to be

standardised if the IQ is to be used in the clinical setting [116-119]. Much of this

variability in IQ values can be attributed to a lack of standardization in performing

phenotypic resistance testing. Recent studies focussed on TDM combined with

genotypic resistance testing (i.e. evaluating mutations in the virus’ genetic material)

and found that plasma PI concentrations and the number of mutations (as well as

certain specific mutations) predict the response to PIs in treatment-experienced patients

[120-123]. The “genotypic IQ” (GIQ) was defined as the ratio of Cmin to the number

of mutations [120]. Such a composite measure for results of TDM and genotypic

resistance testing may prove to be most suitable for optimising response in treatment-

experienced patients [120].

Whereas the IQ concept integrates characteristics from the drugs and the virus, future

TDM may best be used in association with characteristics of the host as well, i.e

reliable adherence assessments and pharmacogenetic information. As to

pharmacogenetics, it appears that plasma concentrations of antiretroviral drugs may

vary according to variations in genes coding for P-glycoprotein and CYP iso-enzymes

[32]. Although these data should not be over-interpreted at this moment,

pharmacogenetic information may eventually be applied for initial dose stratification

or identification of patients where certain drugs are simply not effective enough [124].

7. Conclusions

There is a clear rationale for TDM of antiretroviral drugs to prevent and overcome

resistance and optimise treatment response in HIV infection. The PIs and NNRTIs

(efavirenz and nevirapine) satisfy many criteria for TDM, but NRTIs are not suitable

candidates for TDM. Several limitations of TDM for antiretroviral drugs should be

recognised and restrict its application at this moment. Data from two clinical trials

have provided “proof-of-concept” for TDM of PIs, supporting its use in treatment-naive

HIV-infected patients who start with an indinavir- or nelfinavir-based treatment

regimen. Other applications of routine TDM beyond this patient group (i.e. treatment-

experienced patients) or beyond these antiretroviral drugs (other PIs, ritonavir-boosted
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PIs, NNRTIs) are speculative at this time. However, TDM can be used in selected patient

groups with altered pharmacokinetics to confirm adequate drug concentrations, and

for management of drug interactions. TDM in treatment-experienced patients aims to

overcome low-level resistance and may be optimally used in conjunction with

resistance testing. The calculation of the IQ value needs to be standardised and

prospective clinical trials are warranted to document its value. TDM should be

accompanied by careful assessment of patient adherence. TDM itself can help identify

non-adherence but has its limitations in this respect. More clinical trials are needed

before TDM can be adopted as standard of care in the treatment of HIV infection. All

current endeavors for TDM should preferably be performed in clinical studies to extend

available data. There remains a strong need for development of new drugs and

strategies which achieve predictably high plasma drug concentrations with less toxicity. 
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Abstract

An international interlaboratory quality control program for measurement of

antiretroviral drugs was initiated. The first round was confined to protease inhibitors

and showed large variability in the performance of participating laboratories. The

results demonstrate the need for and utility of an ongoing quality control program in

this area of bioanalysis.
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There has been increasing interest in bioanalysis of protease inhibitors (PIs) and non-

nucleoside reverse transcriptase inhibitors (NNRTIs) since the advent of these drugs for

treatment of human immunodeficiency virus (HIV) infection. Numerous analytical

methods have been published, describing the quantitation of PIs and NNRTIs in human

plasma and other body fluids [1]. These methods have been used to study the

pharmacokinetics and interactions of these drugs [1,2]. Furthermore, it has been

suggested that analysis and interpretation of plasma levels can be applied to

individualise drug dosage of antiretrovirals, especially PIs [3,4]. Randomized clinical

trials have been started to determine the value of Therapeutic Drug Monitoring (TDM)

for these drugs [5,6]. Anticipating the final results of these trials, many laboratories

already offer a TDM service for antiretroviral drugs.

The wide application of analytical methods for antiretroviral drugs requires quality

control (QC) procedures to ensure that these methods have sufficient accuracy,

precision and specificity. Such procedures usually include intralaboratory (internal)

method validation, intralaboratory QC procedures, and participation in an

interlaboratory (external) QC program. So far there has been no interlaboratory QC

program for antiretroviral drugs. Therefore such a program was initiated in order to

enable laboratories to assess and improve their performance with respect to

measurement of these drugs [7,8]. 

The first round of the program was confined to measurement of PIs. First, QC samples

were prepared by spiking drug-free plasma from HIV negative volunteers with

indinavir, nelfinavir, ritonavir, and saquinavir. All protease inhibitors were obtained

from pharmaceutical industries and had a very high (> 99%) and specified purity.

Drug-free human plasma was obtained from the regional blood bank.  

PIs were weighed out on an independently calibrated balance. They were dissolved in

methanol and diluted with blank plasma to obtain three different QC samples. Each of

the three samples contained all four PIs in variable concentrations. For every PI, there

was a sample with a low concentration, a sample with an intermediate concentration

and a sample with a high concentration (table 1). 

The QC samples were dispensed in polypropylene vials that were kept at -20oC.

Stability under these and other conditions had been assessed before [9]. 

All weighed-in concentrations were considered true values. Three vials of every QC

sample were analysed with our own validated high-performance liquid
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chromatographic (HPLC) method [5] as a confirmative check (< 5% deviation from true

concentrations) before the samples were released for the QC program.

Nine laboratories from six West European countries and one North American country

participated in the first round of the program. They were asked to analyze the

samples, and to return their results (with concentrations expressed as free base) within

six weeks after dispatch.

Descriptive statistics were calculated after standardization of all laboratory results to

percentages with reference to the true value. By subtraction of 100% from these

percentages, the percentage bias from the true concentration (inaccuracy) was

calculated. Twenty percent limits around the true values were considered to be

appropriate threshold values for satisfactory measurements. 

Multifactorial analysis of variance (ANOVA) was used to evaluate the simultaneous

effect of two factors, the PI to be measured and the concentration level, on the absolute

inaccuracy. Results for different concentration levels of the same PI were considered to

be related to each other, and the concentration level was therefore included as a

within-subjects (repeated-measures) factor. The PI to be analysed was a between-

subjects factor. 

All participants were informed about their performance within two months after

reporting of their results. All results were interpreted briefly in words. 

Five of the nine participating laboratories were able to measure all four PIs. Three

laboratories were not able to determine nelfinavir. One laboratory measured indinavir

only. All laboratories measuring more than one PI used an assay for simultaneous

determination of PIs. 

Six laboratories used HPLC with UV detection to quantify the PIs and three laboratories

used liquid chromatography with mass (or tandem mass) spectrometry detection (LC-

MS or LC-MS/MS). Because of the small number of participants in this first round of
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Table 1. Concentration levels in QC samples (expressed as free base and in milligrams per liter)

Drug Low concn Intermediate concn High concn

Indinavir 0.15 1.98 8.49
Nelfinavir 0.20 2.86 8.00
Ritonavir 0.20 2.87 11.04
Saquinavir 0.087 2.06 4.80
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the program, no valid comparison could be performed between HPLC-UV and LC-

MS/MS methods.

Two laboratories reported being unable to measure some low concentrations of PIs

with sufficient accuracy, since these concentrations were below the lower limits of

quantitation of their methods. Results for these measurements were not included in the

analyses.

Table 2 and figure 1 summarize the results for the participating laboratories. Four

laboratories used analytical methods that appeared to have a large systematic error in

one direction, as all measured concentrations of at least one PI were either above or

below the assigned 20% threshold for acceptable measurements.

Mean absolute inaccuracies for measurement of the four PIs (in percentage deviation

from true values) were not significantly different: F(3,22)=1.40, p = 0.27. This may be

due to the small number of laboratories and measurements in this first round of the

program, and/or the large variability in results. However, conversion of the results to a

dichotomous scale (acceptable accuracy or not) suggested a much worse performance

Interlaboratory quality control for measurement of antiretroviral drugs 

Table 2. Measurements of QC samples, subdivided by drug and concentration level a

Drug No. of Concn Measured concn Absolute No. and % 
measure- Level relative to inaccuracy (%)b of measurements with
ments true value (%) acceptable accuracyc

Median (min-max) Median (min-max)

Indinavir 7 Low 107 (96-142) 7 (0.7-42) 5/7
9 Intermediate 106 (85-133) 12 (4-33) 7/9 80%
9 High 106 (91-124) 9 (0.2-24) 8/9

Nelfinavir 6 Low 94 (50-150) 28 (7-50) 2/6
6 Intermediate 86 (70-126) 18 (12-30) 4/6 67%
6 High 92 (83-118) 12 (6-18) 6/6

Ritonavir 6 Low 84 (48-184) 30 (1-84) 1/6
8 Intermediate 88 (32-134) 18 (2-68) 4/8 36%
8 High 85 (39-144) 22 (5-61) 3/8

Saquinavir 7 Low 100 (60-138) 15 (0-40) 5/7
8 Intermediate 86 (69-137) 15 (2-37) 6/8 74%
8 High 89 (75-142) 13 (4-42) 6/8

a. Abbreviations: min, minimum value; max, maximum value.
b. Inaccuracy is percentage bias from the true concentration, i.e., inaccuracy = (100 * measured
concentration / true concentration) - 100%.
c. Acceptable measurements are within 20% limits from the true concentration.
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for ritonavir (table 2, last column). This could be attributed to a relatively large number

of ritonavir measurements with an inaccuracy of just more than 20%. 

A significant effect due to the concentration level to be analyzed was assessed: F(2,44)

= 5.04, p = 0.01. Mean inaccuracy over all PIs was 25.3% for low concentrations and

decreased to 17.1% for high concentrations. The PI-by-concentration level interaction

was not statistically significant.

The initial results of this program show large variability in the performance of

laboratories with regard to measurement of PIs in plasma. The magnitude of observed

inaccuracies may have important implications for the interpretation of pharmacokinetic

studies and may lead to inappropriate dose adjustments in TDM or the advice not to

adjust doses where it might actually be desirable. For example, if it was assumed that

the small number of participants represented all laboratories for PI analysis and that

20% deviations from true concentrations could negatively affect patient management,

then a physician would have 35% probability to receive such an incorrect result after

submission of a random sample to a random laboratory. If 50% inaccuracy would be

Chapter 3.1

Figure 1. Performance of individual laboratories. Diagram shows the results for all measurements (all four
PIs and three concentration levels combined), arranged by laboratory. Results for individual measurements
are depicted by points (note that some points are superimposed). Accuracy (y-axis) is expressed as
percentage relative to the true concentration (100%). The dotted lines represent the thresholds for
measurements with acceptable accuracy (80 to120%). Proportions of measurements with acceptable
accuracy are placed on the x-axis, above the number of each laboratory.
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considered relevant within the context of TDM, the probability of receiving such a

result would still be 6%. 

Fortunately, by participating in the program, laboratories were alerted to possible

inaccuracies and to previously undetected problems, such as systematic errors and

high limits of quantitation that restrict the applicability of analytical methods. Such

information may enable and encourage them to optimize their methods and

intralaboratory QC procedures; this would confirm the role of interlaboratory QC

testing as a means to achieve improvement in laboratory performance [7,8].  

Accordingly, the first round of this program highlights both the need for and utility of

an ongoing quality control program. The program will be extended to measurement of

more PIs (amprenavir, lopinavir) and to analysis of NNRTIs (efavirenz, nevirapine),

and will be open for more laboratories to participate.

We are indebted to Merck Sharp & Dohme, Agouron, Hoffmann - La Roche, and

Abbott for the supply of indinavir, nelfinavir, saquinavir and ritonavir, respectively.
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Abstract

An international interlaboratory quality control program for measurement of

antiretroviral drugs in plasma has been ongoing since 1999. Results of the third round

of this program are presented.

Quality control samples were prepared by spiking drug-free plasma with varying

concentrations of the currently available protease inhibitors and the nonnucleoside

reverse transcriptase inhibitors efavirenz and nevirapine. Thirty-three laboratories

participated in the program and were requested to analyze the quality control

samples.

Results were available from 30 laboratories. Of all measurements, 82% were

performed within 80-120% accuracy limits. Only 3 laboratories performed all their

measurements within these limits, and 12 participants reported at least 90% of their

analyses within the acceptance range. Mean accuracy for low drug concentrations

was worse than for medium and high concentrations. The percentage of satisfactory

measurements for the 6 laboratories that participated for the third time in the program

increased from 54% in the first round to 85% in the third round.

The program revealed a large variability in the laboratories’ ability to measure

antiretroviral drugs accurately. This variability may have important implications for

Therapeutic Drug Monitoring of these drugs and for pharmacokinetic studies.

Interlaboratory testing is useful to alert laboratories to previously undetected analytical

problems.

Chapter 3.2
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Introduction

There has been increasing interest in the bioanalysis of protease inhibitors (PIs) and

nonnucleoside reverse transcriptase inhibitors (NNRTIs) in recent years. Many high

performance liquid chromatographic (HPLC) assays have been published for

quantitation of these drugs in plasma [1]. These analytical methods are used to study

the pharmacokinetics and interactions of these drugs, and drug level measurements of

PIs and NNRTIs are applied to individualize drug dosing (Therapeutic Drug

Monitoring, TDM) [2].

In view of the wide application of bioanalytical methods for antiretroviral drugs and

the clinical relevance of these applications, our department has initiated the

International Interlaboratory Quality Control Program for Therapeutic Drug Monitoring

in HIV infection. The aim of this program is to alert laboratories to deviating results

with respect to the analysis of PIs and NNRTIs, and thereby enable them to improve

their performance.

The first round of the program was performed in 1999 and was limited to nine

laboratories and to the measurement of four PIs (indinavir, nelfinavir, ritonavir and

saquinavir) [3]. The present report describes the results of the mature program, as

reflected in the third round that took place in 2001. This third round of the program

included 33 participating laboratories. In addition, the program was extended to the

measurement of the PIs amprenavir and lopinavir, and to the NNRTIs efavirenz and

nevirapine.

Materials and methods

Materials

Indinavir was obtained from Merck & Co., Inc (Rahway, NJ), ritonavir and lopinavir

from Abbott Laboratories (North Chicago, IL), saquinavir mesylate from Hoffmann - La

Roche (Basel, Switzerland), nelfinavir mesylate from Agouron Pharmaceuticals, Inc.

(San Diego, California), amprenavir from Glaxo Wellcome (Stevenage, Hertfordshire,

UK), nevirapine from Boehringer (Mannheim, Germany), and efavirenz was provided

by Du Pont Pharmaceuticals (Wilmington, DE). All drugs had a high purity (>97%). PIs

were kept at room temperature and NNRTIs were stored at 40C. Methanol and

Evaluation of antiretroviral drug measurements
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dimethyl sulfoxide were purchased from Merck (Darmstadt, Germany). Drug-free

plasma was obtained from the regional blood bank and was stored at –200 C.

Preparation and dispatch of the quality control plasma samples

PIs were dissolved in methanol, nevirapine and efavirenz in dimethyl sulfoxide. These

solvents were used because the antiretroviral drugs were soluble and stable in these

fluids.

Three quality control (QC) samples were prepared by spiking plasma with three

different concentrations of the PIs amprenavir, indinavir, lopinavir, nelfinavir, ritonavir,

and saquinavir. Three other QC samples contained the NNRTIs efavirenz and

nevirapine. All concentrations (table1) related to the active part of the chemical

compound, not to the salt or esterificated form.

QC samples were dispensed in polypropylene tubes and were stored at – 200C.

Stability under these and other conditions was assessed and reported previously [4,5

and Droste et al, unpublished data]. QC samples were analyzed in duplicate with our

own validated HPLC methods [4-6] as a confirmative check before samples were

released for the QC program. Measurements were not allowed to deviate more than

5% from the true values.

The samples were packed on dry ice and dispatched to 33 laboratories in the United

States, Europe, Canada, and Australia. Transit time of samples was 4 days at most.

The laboratories were requested to analyze the QC samples within 6 weeks and return

their results with details about their assays.

Data analysis

Descriptive statistics were calculated after standardization of all laboratory results to

percentages with reference to the true value. By subtracting 100% from these

percentages, the percentage bias from the true concentration (inaccuracy) was

calculated. Twenty percent limits around the true values were considered to be

appropriate threshold values for satisfactory measurements.

Analysis of variance (ANOVA) was used to evaluate the simultaneous effect of two

factors, the drug to be measured and the concentration level (low, medium, and high),

on the absolute inaccuracy. Measurements of different drugs within the same

Chapter 3.2
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laboratory were regarded as related to each other, and measurements of the different

concentration levels of the same drug were also considered to be associated.

Therefore, both drug to be measured and concentration level were repeated-measures

(within subjects) factors in the analysis of variance. All statistical evaluations were

performed using SPSS for Windows (v. 10.0; SPSS Inc., Chicago, IL). A p-value of 

< 0.05 was considered statistically significant in all analyses.

Reporting of results and sources of error

All participants were informed about their own performance and about the

performance of all participants, as median inaccuracy and the range of inaccuracies

were presented anonymously for all separate measurements. Results of all participants

were also presented graphically. 

Together with the results, an error evaluation form was sent to laboratories that

reported unsatisfactory results in one of their measurements. They were asked to

complete one form for every measurement with a deviating result. The form

categorized errors as follows (derived from similar inquiries [7,8]): methodological

problems (M), technical problems (T), clerical problems (T), survey problems (S), and

other (O).

Results

Laboratories and analytical methods

Results were received from 30 out of 33 laboratories. Two laboratories did not report

a reason for not returning results; one laboratory no longer measured antiretroviral

drugs. Of the 30 responding laboratories, 28 were hospital laboratories and 2 were

commercial laboratories. Of the 30 participants, 30% were from the USA, 60% from

Europe, and the remaining 10% from Canada and Australia. All participants that

provided details about their assays reported using HPLC.

Three laboratories were not able to measure the low concentrations of amprenavir,

indinavir, or ritonavir, as their lower limits of quantitation were too high. Another

participant reported an inability to measure the high concentration of saquinavir,

because this concentration was not within the range of the method.

Evaluation of antiretroviral drug measurements
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Accuracy of measurements

A maximum number of 24 measurements (3 for each drug) were performed by the

laboratories. Table 1 presents the results arranged by drug and concentration level.

The performance of individual laboratories is displayed in figure 1.

Only three laboratories reported all their results within the acceptance range (80-120

% accuracy). One laboratory (nr 30, see figure 1) did not report any satisfactory

result. Twelve of 30 participants reported at least 90% of their results within the

acceptance range. Twelve laboratories used analytical methods that appeared to have

a large systematic error in one direction, as all measured concentrations of at least

one drug were either above or below the 80-120% accuracy limits.

Chapter 3.2

Table 1. Results, subdivided by drug and concentration level.

Drug N Concentration level % inaccuracy, N and % within 
(mg/l) median 80 -120% acceptance

(min-max) range

Amprenavir 21 Low 0.24 13 (0-100) 17/21
Intermediate 2.2 8 (1-65) 18/21 83%
High 7.2 8 (2-49) 17/21

Indinavir 27 Low 0.13 15 (1-2218) 16/27
Intermediate 2.3 12 (1-334) 20/27 70%
High 11.7 11 (0-98) 21/27

Lopinavir 23 Low 1.2 7 (1-70) 17/23
Intermediate 4.7 5 (1-46) 19/23 80%
High 11.7 6 (0-44) 19/23

Nelfinavir 28 Low 0.32 9 (2-92) 24/28
Intermediate 2.1 8 (0-207) 23/28 85%
High 6.4 8 (1-61) 24/28

Ritonavir 26 Low 0.24 7 (0-41) 16/26
Intermediate 2.4 9 (1-28) 23/26 81%
High 9.7 16 (1-148) 24/26

Saquinavir 27 Low 0.11 9 (0-446) 19/27
Intermediate 1.4 6 (0-35) 25/27 85%
High 5.1 5 (0-28) 25/27

Efavirenz 23 Low 0.46 12 (1-80) 18/23
Intermediate 3.7 9 (0-71) 19/23 81%
High 6.6 8 (0-78) 19/23

Nevirapine 18 Low 0.50 8 (2-71) 16/18
Intermediate 3.2 9 (1-19) 18/18 94%
High 6.9 9 (0-24) 17/18

Abbreviations: N, number of measurements; min, minimum value; max, maximum value.
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Effect of drug to be measured and concentration level on accuracy

Descriptive analysis did not suggest large differences in mean absolute inaccuracies

for measurements of the 8 antiretroviral drugs (table 1). This was confirmed by an

ANOVA, which was performed for those laboratories that were able to measure all 8

drugs (n=13). There was no significant main effect of the drug to be measured on the

absolute inaccuracy [F(2.783, 33.392)=0.955, p=0.42]. However, the concentration

level to be analyzed had a significant effect on the absolute inaccuracy 

[F (1.035,12.421)=7.447, p=0.02]. The mean absolute inaccuracy over all drugs for

all 13 laboratories was 20.0% for low concentrations, 11.4% for medium

concentrations and 11.1% for high concentrations. Pairwise comparisons were

performed at a Bonferroni-adjusted significance level for each separate test, keeping

the overall type I-error rate at 0.05. These comparisons showed a significant

difference between the absolute inaccuracies for measurements of the low drug levels

versus the medium drug levels (p=0.041), and a trend towards a significant difference

(p=0.06) between low-level versus high-level measurements. However, no significant

differences between measurements of the medium and high drug levels were observed

Evaluation of antiretroviral drug measurements
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Figure 1. Performance of individual laboratories. Diagram shows the results for all measurements arranged
by laboratory. Results for individual measurements are depicted by points (some points are superimposed);
the dotted lines represent the thresholds (80-120%). 
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(p=1.0). The interaction between drug to be analyzed and drug level was not

significant [F (1.941, 23.294)=1.419, p=0.26].

Sources of error

Twenty-seven participating laboratories reported at least one measurement with an

inaccuracy of more than 20%. Nineteen laboratories returned their error forms.

Reported errors are presented in table 2. Every inaccurate measurement for which an

explanation was reported was included in the table. There was a wide variability in

explanations for deviating results. Frequent sources of error were the use of an

analytical method that was not (or not properly) validated and the use of ageing stock

solutions.

Five of six laboratories that participated for the third time in this quality control

program improved their performance in time. The overall percentage of acceptable

measurements for these six laboratories increased from 54% in the first round to 83%

in the second round and 85% in the third round.

Discussion

The results of this program show large variability in the ability of laboratories to measure

antiretroviral drugs accurately. Measurement of these drugs needs to be improved in a

number of laboratories that participated in the program.

The quality control program was designed to represent the reality encountered in the

laboratories as close as possible. Therefore it was decided not to use lyophilized plasma

that should be reconstituted. Furthermore, no reference substances or reference plasma

samples were distributed. The major difference between the QC samples and routine

samples related to the presence of other drugs or metabolites, which were absent in the QC

samples. As a result of the similarities between QC samples and real samples, it can be

inferred that the results of this quality control program provide a measure of the rigor (or

effectiveness) of the regular intralaboratory (internal) quality assurance in the participating

laboratories. On the other hand, it cannot be excluded that laboratories made extra efforts

to achieve accurate results in this program [9]. This means that the results of the quality

control program could also represent the best performance of the participants.

Chapter 3.2
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In this program, results obtained by a certain laboratory were considered acceptable if

they fell within preset 80-120% limits for the accuracy. The 20% threshold was based on

guidelines for method validation for bioanalysis of drugs [10], as 20% deviations are often

used as a fixed criterion for inaccuracy at the lowest level of quantitation. The 20% limits

Evaluation of antiretroviral drug measurements

Table 2. Explanations for accuracies outside 80-120% fixed limits

Number % of total

METHODOLOGIC PROBLEMS
M1 Instrument problem -
M2 Method change before QC-program -
M3 Method not validated for all PIs 18
M Subtotal 18 23.4

TECHNICAL PROBLEMS
T1 Dilution error 5
T2 Incorrect pipetting (other than dilution) 4
T3 Misidentification of the peak 1
T4 Calculations performed incorrectly 3
T5 Run accepted in nonlinear range -
T6 Run accepted even though controls were out of range 9
T7 Aging stock solutions 17
T8 Stock solutions not made of pure substances 3
T9 Below quantitation limit 2
T Subtotal 44 57.1

CLERICAL ERRORS
C1 Results reported in wrong unit -
C2 Decimal point error 1
C3 Transcriptive error into questionnaire 3
C Subtotal 4 5.2

SURVEY
S1 Specimen problem -
S2 Criteria for acceptance too narrow -
S Subtotal 0 0

OTHER
O1 Unexplained/ unassigned cause 11
O Subtotal 11 14.3

Total
77 100
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are also comparable to maximal allowable error specifications for drug measurements

according to the U.S. Clinical Laboratory Improvement Amendments (CLIA) of 1988 [11].

The large interlaboratory variability in performance with respect to antiretroviral drug

measurements may have important implications for TDM. Based on the inaccurate

measurements, wrong dose adjustments might occur, or patients might be adviced not to

adjust doses when an adjustment might be necessary. This may lead to resistance

development, therapy failure, and concentration-related adverse events. In this respect, it is

of special concern that low concentrations were more difficult to measure than medium or

high concentrations. This is because the lowest antiretroviral drug concentrations in a

dosing interval (trough concentrations) are particularly useful to measure; adequate trough

levels appear to be the most critical predictor for the efficacy of PIs [2].

Fortunately, the quality control program alerted the laboratories to inaccuracies and

invited them to inquire possible sources of error. Our findings with respect to the possible

explanations for inaccuracies (distribution over the error categories) differed from other

studies [7,8,12]. In our program, the category of “technical problems” accounted for 57%

of the errors (table 2), whereas the studies of Hoeltge et al. [7], Steindel et al. [8] and

Jenny et al. [12] found 19%, 19%, and 17% for this category, respectively. This difference

can be probably ascribed to the use of complex assays with difficult sample preparation

that are required for analysis of antiretroviral drugs (compared with automatic assays for

many other drugs). In the category of “methodological problems”, all problems were

caused by inappropriate validation of the assays. The participants concerned did not

check their assays for interference of PIs other than the one the assay was developed for,

while the QC samples contained all the PIs.

It seems that corrective action could prevent many errors in the future, although some

failures were unexplained (15% in our study). In fact, it appeared that the laboratories that

were participating in the quality control program for the third time had better results in the

third round than in the first round. It is expected that at least some of these improvements

over time also affect the performance on real samples.

In conclusion, the program revealed a large variability in the performance of laboratories

to measure antiretroviral drugs. The program alerted a number of laboratories to

previously undetected analytical problems. This will enable them to improve their assays.
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In the future more agents will be included in the quality control program (e.g. nucleoside

reverse transcriptase inhibitors). All laboratories measuring antiretroviral drugs are invited

to participate in this program. 

Acknowledgements

The authors thank Corrien Verwey-van Wissen and Noor van Ewijk-Beneken Kolmer for

preparing the quality control samples. The technicians of the Department of Clinical

Pharmacy, UMC Nijmegen are acknowledged for analyzing the quality control samples. 

References

1. Aarnoutse RE, Verwey-van Wissen CPWGM, Underberg WJM, et al. High-performance liquid
chromatography of HIV protease inhibitors in human biological matrices. J Chromatogr B Biomed Sci
Appl 2001;764:363-384.

2. Burger DM, Aarnoutse RE, Hugen PW. Pros and cons of therapeutic drug monitoring of antiretroviral
agents. Curr Opin Infect Dis 2002;15:17-22.

3. Aarnoutse RE, Verweij-van Wissen CPWGM, van Ewijk-Beneken Kolmer EWJ, et al. International
interlaboratory quality control program for measurement of antiretroviral drugs in plasma. Antimicrob
Agents Chemother 2002;46:884-886.

4. Hollanders RMW, van Ewijk-Beneken Kolmer EWJ, Burger DM, et al. Determination of nevirapine, an
HIV-1 non-nucleoside reverse transcriptase inhibitor, in human plasma by reversed-phase high-
performance liquid chromatography. J Chromatogr B Biomed Sci Appl 2000;744:65-71.

5. Hugen PWH, Verwey-van Wissen CPWGM, Burger DM, et al. Simultaneous determination of the HIV-
protease inhibitors indinavir, nelfinavir, saquinavir and ritonavir in human plasma by reversed-phase
high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl 1999;727:139-149.

6. Aarnoutse RE, Grintjes KJ, Telgt DS, et al. The influence of efavirenz on the pharmacokinetics of a
twice-daily combination of indinavir and low-dose ritonavir in healthy volunteers. Clin Pharmacol
Ther 2002;71:57-67.

7. Hoeltge GA, Duckworth JK. Review of proficiency testing performance of laboratories accredited by
the College of American Pathologists. Arch Pathol Lab Med 1987;111:1011-1014.

8. Steindel SJ, Howanitz PJ, Renner SW. Reasons for proficiency testing failures in clinical chemistry and
blood gas analysis. Arch Pathol Lab Med 1996;120:1094-1101.

9. Shahangian S. Proficiency testing in laboratory medicine. Arch Pathol Lab Med 1998;122:15-30.
10. Anonymous. Guidance for Industry. Bioanalytical Method validation (2001). Available at

http://www.fda.gov/cder/guidance/4252fnl.htm.
11. Anonymous. Medicare, Medicaid and CLIA programs; regulations implementing the Clinical

Laboratory Improvement Amendments of 1988 (CLIA)—HCFA. Final rule with comment period. Fed
Regist 1992;57:7002-7186.

12. Jenny RW, Jackson-Tarentino KY. Causes of unsatisfactory performance in proficiency testing. Clin
Chem 2000;46:89-99.

Evaluation of antiretroviral drug measurements



Chapter 4.

Evaluation of undesirable drug-drug and
drug-food interactions



Chapter 4.1

Administration of indinavir and low-dose
ritonavir (800/100 mg twice-daily) with food 
reduces nephrotoxic peak plasma levels of

indinavir

R.E. Aarnoutse1,2, J-C. Wasmuth3, G. Fätkenheuer4, K. Schneider3, K. Schmitz4, 

T.M. de Boo5, P. Reiss6, Y.A. Hekster1,2, D.M. Burger1,2, J.K. Rockstroh3

1 Department of Clinical Pharmacy, University Medical Centre Nijmegen, Nijmegen,

The Netherlands, 2 Nijmegen University Centre for Infectious diseases (NUCI),

University Medical Centre Nijmegen, Nijmegen, The Netherlands, 3 Department of

Internal Medicine, University of Bonn, Bonn, Germany, 4 Department of Internal

Medicine, University of Cologne, Cologne, Germany, 5 Department of Epidemiology

and Biostatistics, University Medical Centre Nijmegen, Nijmegen, The Netherlands,
6 National AIDS Therapy Evaluation Centre & Department of Infectious Diseases,

Tropical Medicine and AIDS, Academic Medical Centre, Amsterdam, The Netherlands

Antivir Ther 2003;8:309-314



108

Abstract

Background
The objective of this study was to compare indinavir peak plasma (Cmax) values after

administration of indinavir/ritonavir (IDV/RTV) 800/100 mg on an empty stomach or

with food. High IDV Cmax values have been associated with IDV-related

nephrotoxicity.

Methods
This was an open-label, randomized, two-treatment, two-period, crossover

pharmacokinetic study performed at steady-state. HIV-infected patients who had been

using IDV/RTV 800/100 mg BID for at least four weeks were randomized to take this

combination with a light breakfast (2 filled rolls and 130 ml of fluid) on a first study

day, and without food on a second day, or in the reverse order. The pharmacokinetics

of IDV and RTV were assessed after plasma and urine sampling during 12 hours. 

Results
Data for 9 patients were evaluated. Administration of IDV/RTV 800/100 mg on an

empty stomach resulted in a higher IDV Cmax (geometric mean (GM) ratio -

fasting/fed and 95% confidence interval (CI): 1.28 [1.08-1.52], p=0.01) and a trend

to a shorter IDV tmax (p=0.07) compared to administration with food. The mode of

administration of IDV/RTV did not affect plasma IDV Cmin and AUC values,

parameters that have been associated with the antiviral efficacy of IDV, nor the urinary

excretion of IDV.

Conclusions
Administration of IDV/RTV 800/100 mg on an empty stomach results in a higher IDV

Cmax compared to ingestion with a light meal. Stated the other way round, intake

with a light meal reduces IDV Cmax, which probably reflects a food-induced delay in

the absorption of IDV. It is recommended to administer IDV/RTV 800/100 mg with

food, as a possible means to prevent IDV-related nephrotoxicity in patients who start

or continue with this regimen.
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Introduction 

The past years have seen an increase in the use of indinavir (and other protease

inhibitors) combined with low-dose ritonavir [1]. A twice-daily (BID) regimen of

indinavir (800 mg) and ritonavir (100 mg) is commonly used. It has been stated that

this indinavir/ritonavir combination can be administered without regard to food, in

contrast to indinavir without ritonavir [2,3]. Indeed it was demonstrated that

indinavir/ritonavir 800/100 mg can be taken with a low-fat or high-fat meal [3,4],

but the pharmacokinetics of this combination have not been investigated after

administration on an empty stomach. We were specifically concerned about an

increase in indinavir peak plasma levels (Cmax) after intake of the 800/100 mg

combination under fasting versus fed conditions, since intake of drugs with food often

results in a blunted Cmax [5-7]. Several studies have pointed to high indinavir Cmax

values as a risk factor for indinavir-related asymptomatic and symptomatic

nephrotoxicity [8-15], especially nephrolithiasis, which occurs in 19-33% of patients

who take indinavir/ritonavir 800/100 mg [16-18]. This study was performed to

evaluate indinavir Cmax values after administration of indinavir/ritonavir 800/100

mg on an empty stomach and with food. 

Methods 

Subjects

HIV-infected patients were recruited from the outpatient clinics of the University of Bonn

and the University of Cologne, Germany. Adult patients were eligible for participation

if they had received indinavir/ritonavir 800/100 mg BID for at least four weeks.

Patients were excluded if they used drugs that are known to affect the

pharmacokinetics of indinavir or ritonavir. The patients gave written informed consent

before participation in the study, which was approved by the Institutional Review

Board of the University of Bonn.

Effect of food on indinavir Cmax
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Experimental design and procedures

This was an open-label, randomized, two-treatment (fed versus fasting), two-period,

two-sequence, cross-over pharmacokinetic study performed at steady state.

Participants were randomly assigned to (i) ingest indinavir/ritonavir 800/100 mg with

a meal on a first study day and without food on a second day (within two weeks of the

first day), or (ii) to complete the study in the reverse order.

On both study days participants attended in the morning after an overnight fast. They

ingested indinavir/ritonavir with a light breakfast, or on an empty stomach. The

breakfast consisted of two filled bread rolls and 130 ml of water, coffee or tea (339

kcal; 14% protein, 32% fat, 54% carbohydrate). Blood sampling was performed pre

dose and at 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.5, 3.0, 4.0, 5.0, 6.0, 7.0,

8.0, 10.0 and 12.0 hours post dose. Participants who ingested indinavir/ritonavir on

an empty stomach had breakfast at two hours after administration of the drugs. Other

drugs were ingested at their prescribed times of administration. 

Urine was sampled in one of the participating centres. Participants voided their

bladder before administration of indinavir/ritonavir and urine samples were collected

at two hour intervals up to 12 hours post dose. During the day, participants drank

three liters of fluid. Plasma and urine samples were stored at -200C until analysis.

Analytical and pharmacokinetic methods

Concentrations of indinavir and ritonavir in plasma and indinavir concentrations in

urine were measured using validated HPLC methods [19,20]. 

Pharmacokinetic parameters were obtained by non-compartmental methods [21]. The

primary pharmacokinetic parameter, the Cmax of indinavir, was defined as the highest

observed plasma concentration, with the corresponding sampling time as tmax.

The number of participants with indinavir Cmax values above 8 mg/L and with

indinavir concentrations above 9 mg/L at one hour post dose were assessed after

administration of indinavir/ritonavir with and without food. The 8 mg/L Cmax value is

a threshold for crystallization of indinavir derived from in vitro crystallization

experiments [8], and 1-h indinavir concentrations above 9 mg/L have been associated

with a 2.3 fold increased risk for persistent leukocyturia [12], a sign of subclinical

nephrotoxicity. The time above indinavir concentrations of 8 and 9 mg/L was derived
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from the pharmacokinetic curves.

The cumulative amount of indinavir excreted in urine up to time t (Aet) was obtained

by summing the amount excreted in each time interval up to that time. Renal clearance

(CLR) of indinavir was calculated using the formula Ae12h/AUC0-12h, where AUC is

the area under the plasma concentration versus time curve. The fraction of indinavir

excreted unchanged (fe) was calculated using the formula: fe * F = Ae12h/800 mg (F

is bio-availability).

Statistical analysis 

The study was powered to show that administration of indinavir/ritonavir 800/100

mg on an empty stomach results in a different mean value for indinavir plasma Cmax

compared to administration with food. All other parameters besides the Cmax of

indinavir were secondary, and results of analyses for these parameters were regarded

as exploratory.

An analysis of variance (ANOVA) was performed on the logarithmically transformed

pharmacokinetic parameters of indinavir and ritonavir to assess the influence of the

mode of administration. The ANOVA model included the effects of subject, period and

treatment (fasting or fed condition). The effect of food was expressed in a geometric

mean ratio (fasting condition/fed condition) plus 95% confidence interval on the

original scale. Tmax and time above 8 mg/L or 9 mg/L indinavir were not log-

transformed and were compared using Wilcoxon signed-ranks test. 

Results

Study subjects

Paired pharmacokinetic curves were recorded in 11 patients. Data for two patients

were not evaluated, as one patient used a drug (carbamazepine) that affects indinavir

and ritonavir concentrations, and the other did not ingest the correct dose of

indinavir/ritonavir on one study day. The nine evaluable patients were all men, with a

median age of 40 years (range 31-54 years), a median weight of 71 kg (range 64-

89 kg), and normal renal and hepatic function parameters.

Effect of food on indinavir Cmax
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Pharmacokinetics of indinavir and ritonavir 

Administration of indinavir/ritonavir 800/100 mg on an empty stomach resulted in a

significant 28% increase in the geometric mean Cmax value of indinavir, compared to

administration with a light meal (figure 1 and table 1). Six out of nine participants

showed a large (29-61%) increase in indinavir Cmax under fasting versus fed

conditions, whereas the other three participants showed minimal (<10%) changes. 

After intake of indinavir/ritonavir on an empty stomach, 8/9 participants had an

indinavir Cmax above 8 mg/L and a 1-h indinavir level above 9 mg/L, compared to

5/9 and 3/9 participants, respectively, after administration with a light meal. Time

above 8 mg/L or 9 mg/L indinavir increased accordingly, but these did not reach

statistical significance.

A trend to a shorter indinavir tmax (p=0.07) and (at most) a trend to a modest

increase in indinavir AUC0-12h (p=0.09) were observed after administration of

indinavir/ritonavir under fasting versus fed conditions. A posteriori power calculations
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Figure 1. Mean (+ standard deviation) indinavir (IDV) plasma concentrations versus time (n=9). Circles:
indinavir/ritonavir 800/100 mg administered with food. Triangles: indinavir/ritonavir 800/100 mg
administered without food. a,b

a Administration with food: intake with a light breakfast (2 filled rolls + 130 ml fluid). Administration without
food: intake on an empty stomach after an overnight fast.
b Displayed Cmax values differ from geometric mean Cmax values reported in table 1. Concentrations in
figure 1 are mean values of concentrations measured at the same time post dose, whereas table 1 shows
the geometric mean of Cmax values that were sampled at different times post dose.
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Parameter Mode of administration   ANOVA
Without food: With food: Point estimate P value
geom. mean (range) geom. mean (range) for geom. mean

ratio  without/with 
food [95% CI]

Indinavir
Cmax (mg/L) 10.6 (5.2-13.8) 8.6 (5.7-14.3) 1.28 [1.08-1.52] 0.01
tmax (h) c 1.0 (0.75-1.6) 1.5 (0.75-2.5) - 0.07 d

time above 8 mg/L (h) c 1.9 (0.0-4.1) 0.4 (0.0-3.0) - 0.09 d

time above 9 mg/L (h) c 1.3 (0.0-3.3) 0.0 (0.0-2.5) - 0.07 d

AUC0-12h (h.mg/L) 43.0 (23.4-70.0) 37.7 (22.6-55.2) 1.19 [0.97-1.46] 0.09
Cmin (mg/L) 0.45 (0.16-1.4) 0.44 (0.18-1.2) 1.16 [0.70-1.92] 0.51
CL/F.kg (L/h.kg) 0.26 (0.18-0.38) 0.30 (0.20-0.42) 0.84 [0.68-1.03] 0.09
Vd/F.kg (L/kg) 0.81 (0.62-1.28) 0.91 (0.56-1.24) 0.87 [0.69-1.10] 0.21
t1/2 (h) 2.2 (1.8-2.4) 2.1 (1.8-2.7) 1.04 [0.94-1.16] 0.37

Indinavir-urinary excretion e

Ae2h (mg) 105 (93-131) 103 (85-152)
Ae4h (mg) 218 (171-260) 209 (145-287)
Ae6h (mg) 293 (215-342) 310 (239-392)
Ae8h (mg) 402 (372-427) 378 (287-442)
Ae12h (mg) 420 (302-528) 406 (303-543)
CLR/F.kg (L/h.kg) 0.12 (0.07-0.15) 0.14 (0.09-0.18)
Fe.F 0.52 (0.38-0.66) 0.51 (0.38-0.68)

Ritonavir
Cmax (mg/L) 1.5 (0.39-3.7) 1.2 (0.70-2.6) 1.33 [0.86-2.06] 0.17
tmax (h) c 2.5 (0.80-5.0) 3.0 (0.75-5.0) - 0.40 d

AUC0-12h (h.mg/L) 9.0 (3.4-18.4) 7.5 (4.2-15.9) 1.27 [0.80-2.02] 0.27
Cmin (mg/L) 0.23 (0.10-0.59) 0.23 (0.06-0.51) 1.10 [0.64-1.90] 0.68
CL/F.kg (L/h.kg) 0.15 (0.08-0.37) 0.19 (0.09-0.34) 0.78 [0.49-1.25] 0.26
Vd/F.kg (L/kg) 0.77 (0.34-2.7) 0.85 (0.38-1.5) 0.84 [0.46-1.55] 0.53
t1/2 (h) 3.5 (2.1-7.6) 3.2 (2.4-5.5) 1.07 [0.75-1.52] 0.66

Table 1. Pharmacokinetic parameters of indinavir and ritonavir after administration of indinavir/ritonavir
800/100 mg with food or without food (n=9) a,b

a Abbreviations: geom.: geometric, CI: confidence interval.
Pharmacokinetic parameters: Cmax : highest observed plasma concentration, tmax : sampling time for
Cmax, AUC0-12h: area under the concentration-time curve from 0 to 12 h, extrapolated to infinity and
corrected for contribution of the predose AUC, Cmin : trough concentration at 12 h, CL/F.kg: total
clearance corrected for weight, Vd/F.kg: volume of distribution corrected for weight, t1/2: elimination half
life, Aet: cumulative amount excreted in urine up to time t, CLR/F.kg: renal clearance corrected for weight,
fe.F: fraction of dose that is excreted unchanged,  F: bio-availability.
b Administration with food: intake with a light breakfast (2 filled rolls + 130 ml fluid). Administration without
food: intake on an empty stomach after an overnight fast.
c median and range. 
d Wilcoxon signed-ranks test.
e Data from 5 participants; this was considered too few data for a sensible statistical analysis.



114

revealed that the statistical power to detect 20% changes in indinavir AUC0-12h and

especially Cmin was low (power less than 0.5, using a = 0.05). 

The pharmacokinetics of ritonavir were not affected by the mode of administration of

indinavir/ritonavir.

Urinary excretion data for indinavir were available for five participants, who all had

an increase in indinavir plasma Cmax of at least 29% after administration under

fasting versus fed conditions (table 1). The results did not suggest differences in the

cumulative amount of indinavir excreted at any of the urine sampling times. All five

patients showed a small to modest decrease in the renal clearance of indinavir after

administration under fasting versus fed conditions. 

Discussion

The results of this study show that intake of indinavir/ritonavir 800/100 mg on an

empty stomach results in a significant 28% increase in the geometric mean Cmax of

indinavir, compared to administration with a light meal. Stated the other way round,

administration of indinavir/ritonavir 800/100 mg with a light meal resulted in a

decrease in the Cmax of indinavir. This decrease, and the accompanying trend to an

increase in indinavir tmax after administration with food, likely reflect a delay in the

absorption of indinavir due to a food-induced decrease in the rate of gastric emptying

[5-7]. The study did not show significant differences in indinavir Cmin and AUC0-12h

values, parameters that have been related to the antiviral efficacy of this protease

inhibitor [22]. Geometric mean Cmin values for indinavir were lower than reported

previously [3,4,23], but all individual indinavir Cmin values were above the mean Cmin

reported for the thrice-daily (TID) regimen of indinavir without ritonavir (0.15 mg/L[2]).

The clinical relevance of the selective effect of food on the Cmax of indinavir depends on

the strength of the association between indinavir Cmax values and nephrotoxicity, the

relevance of the mean 28% food-effect on Cmax, and on the availability of other means to

prevent indinavir-related nephrotoxicity. The critical role of Cmax in the formation of

indinavir crystals and kidney stones has been derived from the high urinary excretion of

indinavir [2], its poor solubility at physiologic pH-values [24,25], and the concept that

intratubular indinavir concentrations depend primarily on the unbound fraction of indinavir
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in plasma that is filtered by the glomeruli [8]. The highest unbound concentrations

(associated with Cmax) then confer the highest risk of indinavir crystallization in the

nephrons, irrespective of the pattern of excretion of indinavir in the lower urinary tract. In

vitro crystallization experiments support such a saturation-driven crystallization process with

a role for Cmax [8], and pharmacokinetic-pharmacodynamic relationships have shown an

association between indinavir Cmax values and nephrotoxicity in HIV-infected patients [9-

12]. The most convincing argument for a conclusive role for indinavir Cmax is the low

prevalence (even absence) of nephrolithiasis among patients who use indinavir/ritonavir

400/400 mg BID [13-15], a regimen with a lower indinavir Cmax (but a higher Cmin and

similar AUC0-24h) compared to the indinavir 800 mg TID regimen without ritonavir

[23,26,27]. 

Considering the observed 28% mean difference in indinavir Cmax, there are only few

reference data that provide insight into the clinical relevance of this difference. One study

demonstrated an increase in relative risk for indinavir-related persistent leukocyturia with

every 1 mg/L increase in Cmax [12]. In addition, evaluation of the observed changes in

Cmax in the light of the 8 mg/L [8] and 9 mg/L [12] thresholds for nephrotoxicity (and the

time above these thresholds, see table 1) shows that the food-induced decrease in Cmax

occurs in a critical concentration window.

As regards to other available means to prevent indinavir-related nephrotoxicity, an

indinavir/ritonavir 400/400 mg combination could be considered, but this regimen is

associated with other adverse events, related to ritonavir [23,27]. A regimen with low doses

of both indinavir and ritonavir (400/100 mg BID) seems promising [28], but experience

with this regimen is limited and its indinavir Cmin levels may be considered too low [29].

Dose reductions guided by plasma concentration measurements (TDM) have proven their

worth in preventing toxicity to indinavir [30], but TDM is not available everywhere.

Based on these considerations and the results of this study, it is recommended that

indinavir/ritonavir 800/100 mg should preferably be administered with food, and not

without regard to food, as a possible means to prevent indinavir-related nephrotoxicity in

patients who start or continue with this regimen. 
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Abstract

Objective
This study evaluated the effect of multiple-dose efavirenz on the steady state

pharmacokinetics of the combination of indinavir (800 mg) and low-dose ritonavir

(100 mg) twice a day, in which ritonavir is used to increase indinavir plasma

concentrations. 

Methods
Eighteen healthy male volunteers participated in this multiple-dose, one-arm, two-

period interaction study. They took a combination of 800 mg indinavir and 100 mg

ritonavir with food for 15 days. From days 15 to 29, a once-daily administration of

600 mg efavirenz was added to the combination. Pharmacokinetics of indinavir and

ritonavir on days 15 and 29 were compared. 

Results
Fourteen volunteers completed the study. The addition of efavirenz resulted in

significant reductions (p<0.01) in indinavir area under the curve (AUC, -25%), trough

concentration (Cmin, -50%) and maximum concentration (Cmax, -17%). All indinavir

Cmin levels on day 29 remained equivalent to or above the mean Cmin value

described for the regimen of 800 mg indinavir three times a day, without ritonavir

(0.15 mg/L). Changes in ritonavir AUC, Cmin and Cmax were -36%, -39% and -34%,

respectively. Pharmacokinetics of efavirenz on day 29 were comparable with

published data.

Conclusions
The addition of efavirenz to a combination of 800 mg indinavir and 100 mg ritonavir

twice-daily results in significant decreases in AUC, Cmax, and especially Cmin of

indinavir. The dose of indinavir or ritonavir should be increased to maintain similar

indinavir drug levels after addition of efavirenz to the indinavir-ritonavir combination.

Dose modifications may not be needed in antiretroviral-naive human

immunodeficiency virus-infected patients if the reference Cmin of the regimen of 800

mg indinavir three times a day is considered to be adequate.
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Introduction

Efavirenz is a member of the class of nonnucleoside reverse transcriptase inhibitors for

the treatment of human immunodeficiency virus (HIV) infection and acquired

immunodeficiency syndrome (AIDS) [1-3]. The combination of efavirenz and two

nucleoside reverse transcriptase inhibitors has shown at least similar antiviral effects

compared with indinavir triple therapy [4]. Likewise, the two-drug combination of

efavirenz and indinavir shows a potent and durable antiretroviral effect [4]. This two-

drug combination can be applied as a nucleoside-sparing regimen in treatment-naive

patients or in treatment-experienced persons for whom previous nucleoside therapy

has failed, but it can also be combined effectively with nucleoside analogues [4,5].

In the combination of efavirenz and indinavir, the former drug has the advantage of

once-daily dosing that is both nonfood dependent and involves few capsules [1-3].

In contrast, indinavir should be taken three times a day under fasting conditions or

with a light low fat meal [6]. However, the pharmacokinetic profile of indinavir can be

improved by combining it with a low dose (100 mg) of ritonavir [7-11]. Ritonavir is

another protease inhibitor and a potent inhibitor of cytochrome P450 3A (CYP3A) and

thereby increases the exposure to indinavir, which is primarily metabolized by this

isozyme. Inhibition of P-glycoprotein activity may be another explanation for the

interaction between indinavir and ritonavir [9]. The combination of indinavir with low-

dose ritonavir allows for a more convenient twice-daily administration (800 mg

indinavir and 100 mg ritonavir twice a day) and permits concurrent intake with food

[9-11]. Furthermore, some HIV strains with reduced susceptibility to indinavir may be

more sensitive to this combination because it results in higher exposure to indinavir,

particularly higher trough levels [9-11]. The combination of indinavir and low-dose

ritonavir is widely used, and available data suggest that its virologic efficacy is at least

comparable to 800 mg indinavir three times a day without ritonavir [11,12]. 

The combination of efavirenz and indinavir combined with ritonavir evidently shows

promise to be a potent compact combination regimen that should offer ease of

adherence. However, these three drugs cannot simply be combined because mutual

drug interactions may alter the pharmacokinetic properties of either of the drugs,

potentially resulting in subtherapeutic drug levels of indinavir or efavirenz. For
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example, when efavirenz is combined with a regimen of 800 mg indinavir three times

a day, it induces a 31% decrease in the exposure to indinavir, which requires an

increase in the dose of indinavir from 800 mg three times a day to 1000 mg three

times a day [3]. Boosting of indinavir concentrations with low-dose ritonavir may

compensate for the effect of efavirenz on indinavir drug levels, but that has not been

studied. Therefore this study was designed to determine the effects of multiple-dose

efavirenz on the steady-state pharmacokinetics of indinavir combined with low-dose

ritonavir. 

Methods

Subjects

Volunteers who met the following criteria were eligible for study participation: male

sex, age of 18 years or older, and good health (i.e. no acute or chronic illness and not

using medications). Female volunteers were excluded because efavirenz has been

reported to have teratogenic properties in animals [3].

Volunteers were excluded if they were known to be hypersensitive to indinavir,

ritonavir, or efavirenz, if they were seropositive for hepatitis B or C or had any kind of

active liver disease, and if they had prespecified abnormal laboratory parameters. 

Eighteen volunteers provided written informed consent to participate in the study,

which was approved by the Institutional Review Board of University Medical Centre

Nijmegen, Nijmegen, The Netherlands. 

Experimental design and procedures

This was a multiple-dose, one-arm, one-sequence, two-period pharmacokinetic

interaction study. During the first 15 days of the study, all participants took indinavir

(800 mg, 2 capsules of 400 mg Crixivan®) and low dose ritonavir (100 mg, 1 capsule

of 100 mg Norvir®) twice a day with food (at least two slices of bread). They were

instructed to ingest the drugs in the morning and evening, with 12-hour intervals.

Furthermore, participants had to drink 1.5 L water in addition to normal daily fluid

intake to avoid possible nephrotoxicity caused by indinavir. The consumption of

grapefruit and grapefruit juice was prohibited because they may influence the
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metabolism of protease inhibitors and efavirenz.

At the end of day 15, participants started to take 600 mg efavirenz (3 capsules of

200 mg Stocrin® ) once daily in addition to the indinavir-ritonavir combination.

Efavirenz was taken at bedtime to attenuate possible central nervous system effects of

this drug [1-3]. The combination of indinavir, ritonavir, and efavirenz was taken until

day 29. 

The study was conducted on an outpatient basis. On days 1, 8, 15, 22, and 29, drug

administration was performed under staff supervision. Compliance with study

medication at home was evaluated at every study visit by inspection of drug-taking

diaries, counting of capsules, measurement of plasma drug concentrations, and

electronic measurement of drug-taking behaviour with the Medication Event

Monitoring System (MEMS). These are prescription vials with caps that contain

microprocessors to record dates and times the vials are opened [13]. 

Intensive blood and urine sampling was performed during days 15 and 29. On these

days participants came to our facility in the morning after an overnight fast. They had

taken efavirenz the preceding evening (day 29 only). Each subject voided the bladder,

and a pre-dose blood sample was taken. Subjects then ingested indinavir and ritonavir

with a standardized medium-fat medium-calorie breakfast (610 kcal in total, 16% of

which was attributable to protein and 33% and 51% to fat and carbohydrates,

respectively). Serial blood sampling was performed at 0.5, 1.0, 1.5, 2.0, 2.5, 3.0,

4.0, 5.0, 6.0, 7.0, 8.0, 10.0, and 12.0 hours after administration of the indinavir-

ritonavir combination. All blood samples were centrifuged within 12 hours. The

separated plasma was stored at -200C. Urine samples were collected at two-hour

intervals up to 12 hour after ingestion of the drugs. Urine samples were also stored at

-200C.

Standard meals were served at lunchtime (4 hours after ingestion of the drugs) and

dinnertime (10 hours after ingestion of the drugs). During the day, participants drank

a total of 3 L fluid (water, tea, or coffee), which is about 1.5 L above normal fluid

intake.  
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Safety and tolerability

Safety and tolerance were assessed by a questionnaire that presented 13 possible

adverse events that may occur during treatment with indinavir, ritonavir, or efavirenz.

The volunteers were questioned 8 times (on days 3, 8, 11, 15, 17, 22, 25, and 29)

about these adverse events. They could also mention adverse events that were not on

the list. Participants were asked to grade every complaint as mild (symptoms do not

interfere with daily activities), moderate (symptoms may interfere with daily activities)

or severe (symptoms interrupt daily activities). On the same 8 days an extensive blood

chemistry and hematology screen and urinalysis were performed.

Analytical methods

Plasma samples were analyzed for indinavir, ritonavir, and efavirenz (efavirenz only

on day 29), and urine samples were analyzed for indinavir concentrations.

The plasma  levels of indinavir and ritonavir were analyzed by a previously described

validated reversed-phase HPLC method [14].

Urine samples were analyzed for indinavir with another HPLC method that has been

described previously [15], but a modified sample pretreatment procedure was used.

Urine was acidified to a pH lower than 3.5 with orthophosphoric acid to dissolve

indinavir that precipitated. After centrifugation, the urine samples were diluted 5 times

with 0.0625-mol/L dibasic sodium phosphate before injection in the chromatographic

system. The lower limit of quantitation was 1 mg/L indinavir, and the standard curve

was linear over the concentration range from 1 to 1300 mg/L. Recovery of the method

was 101% and accuracy ranged from 103 to 105%, dependent on the urinary

concentration level of indinavir. Intraday precision varied between 2.1 and 3.2% and

interday precision was between 5.2 and 8.6%. 

Efavirenz plasma concentrations were measured by means of protein precipitation

followed by reversed-phase HPLC with ultraviolet detection. In brief, 200 µl acetonitrile

was added to 100 µl of the plasma sample. The sample was mixed on a vortex mixer

during 10 seconds and centrifuged, and 20-µl aliquots of clear supernatant were

injected in the chromatographic system. Chromatographic analysis was performed at

an ambient temperature with an Inertsil 2 ODS column (250 x 4.6 mm internal

diameter, Varian BV, Bergen op Zoom, The Netherlands), protected by a Chromguard
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RP stainless steel column (10 x 3 mm internal diameter, Varian BV), with a mixture of

acetonitrile (65%) and 0.06-mol/L potassium dihydrogen phosphate (35%) as the

mobile phase. Elution was at 1.0 ml/min, and detection was by ultraviolet absorption

at 251 nm. Retention time of efavirenz was 8.3 minutes. The efavirenz calibration

curve was linear over a range from 0.20 to 20.0 mg/L. Recovery was 106%, and

accuracy ranged from 99.0% to 100.5%, depending on concentration level. Intraday

and interday precision ranged from 1.8% to 2.6% and from 1.1% to 2.8%,

respectively.    

Pharmacokinetic analysis

The pharmacokinetic values of indinavir and ritonavir were calculated with

noncompartmental methods [16]. The highest observed plasma concentration was

defined as Cmax, with the corresponding sampling time as tmax. Cmin was the

concentration 12 hours after ingestion of the drugs. The terminal log-linear period (log

C versus t) was defined by visual inspection of the last data points (n ≥ 3). The

absolute value of the slope (ß/2.303) was calculated by least-squares linear

regression analysis (ß is the first-order elimination rate constant). The elimination half

life (t1/2) was calculated by the following equation: 0.693/ß. The area under the

concentration-versus-time curve (AUC) was calculated with the trapezoidal rule from 0

to 12 hours. This value was extrapolated to infinity with the following equation:

Cmin/ß, in which Cmin is the concentration 12 hours after ingestion of the drugs. The

AUC value was corrected for the contribution of the predose AUC by subtraction of

C0/ß, in which C0 is the initial plasma concentration. The apparent clearance (CL/F,

where F is bioavailability) was calculated by dividing the dose (D) by AUC, and

apparent volume of distribution (Vd/F) was obtained by dividing CL/F by ß.

Clearance and volume of distribution were corrected for weight of the participant. 

The cumulative renal excretion of indinavir (Ae) was approximated from volumes of

urine produced and indinavir concentrations in urine. Renal clearance (CLR) of

indinavir was calculated with the formula Ae/AUC. The fraction of total amount

excreted unchanged to the dose was calculated as follows: fe * F = Ae/D = CLR/CL.

For efavirenz, only the steady state concentrations beyond 8 hours until about 22

hours after ingestion were available because the volunteers ingested this drug at
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bedtime in the evening before study day 29. The concentration at 12 hours after intake

of efavirenz (average steady-state concentration, Css,av) was derived from the

pharmacokinetic curve. The ß and t1/2 could be derived from the log-linear period.

Efavirenz trough levels (Cmin) were calculated with use of the first-order equation of

the regression line through the last data points and filling in 24 hours. The AUC from

0 to 24 hours [AUC(0-24)] was estimated from Css,av and the dosing interval (τ, 24

hours) with use of the following formula: Css,av = D/τ * F/CL = AUC(0-24) /τ. 

Data analysis

All statistical evaluations were performed with SPSS for Windows, version 9.0 (SPSS

Inc, Chicago, IL). Pharmacokinetic parameters were log-transformed before statistical

analysis. Geometric means were calculated for every pharmacokinetic parameter on

study days 15 and 29. The effect of efavirenz on the steady-state pharmacokinetics of

indinavir and ritonavir was evaluated by comparison of the pharmacokinetic

parameters of days 15 and 29 with use of the two-sided Student t-test for paired

samples. Furthermore, geometric mean ratios with 95% confidence intervals were

calculated for every comparison. The values for Cmax sampling time (tmax) were not

transformed and were compared using Wilcoxon signed-rank test. P ≤ 0.05 was

considered to be significant in all analyses. 

The incidence of adverse events was calculated separately for the first and second

study periods. It was expressed as the percentage of participants that reported a

particular adverse event at least one time during the 4 consecutive reporting times in

every study period. 

Subsequently, every reported mild, moderate, or severe adverse event was ascribed a

severity score of 1, 2 or 3 points, respectively. All scores were added up for every

participant and were divided by the number of reporting times. In this way the mean

toxicity scores for the first and second study periods were obtained for all individual

participants. 

Correlation between parameters was calculated with the Pearson correlation coefficient

(ρ) or Spearman’s rho (rank correlation, rs); the choice between these coefficients was

dependent on distributional characteristics of the two variables involved. 
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Results

Study subjects

Eighteen subjects were included in the study; 14 of those completed the study. Three

participants were withdrawn because of adverse events, and one withdrew his consent

for personal reasons. The mean age of the 14 volunteers who completed the study was

27 years (age range, 20-55 years) and their mean weight was 75 kg (weight range,

60-89 kg). 

The combination of methods for measurement of compliance allowed for a reliable

estimation of adherence to study medication. Compliance was good in all volunteers; 9

volunteers showed 100% compliance, and 5 volunteers missed either one or two doses

of the indinavir-ritonavir combination or one dose of efavirenz but not in the 3 days

before the pharmacokinetic assessments.

Pharmacokinetics of indinavir

Coadministration of efavirenz resulted in a decrease in indinavir AUC and Cmin in all

participants (table 1, figures 1 and 2). Marked variability in baseline (day 15)

indinavir plasma concentrations was observed, but the absolute ranges of indinavir

AUC and Cmin clearly narrowed after coadministration of efavirenz. Values for the

highest observed plasma concentration (Cmax) decreased in 9 of the 14 participants.

Both total clearance and CLR of indinavir increased significantly as a result of the

interaction with efavirenz. Close examination of the data in table 1 reveals that the

absolute increase in CLR was small compared with the increase in total clearance,

which means that efavirenz mainly increased the extrarenal (hepatic) clearance of

indinavir.  

No significant linear correlation could be shown between AUC or Cmin values of

indinavir on day 15 and the respective percentage change in each of these

parameters as a result of the coadministration of efavirenz, but baseline Cmax values

at day 15 correlated with the decrease in Cmax (ρ= -.596, p=0.024). 
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Parametera Geometric mean (range) Statis- Geometric mean ratio  
tical (period 2 / period 1)

Study period 1b Study period 2c signifi and 95% CIe

canced

Indinavir
AUC (h.mg/L) 45.9 (30.2-72.6) 34.6 (24.2-44.4) <0.001 0.75 [0.68-0.84]
Cmin (mg/L) 0.66 (0.28-1.4) 0.33 (0.15-0.66) <0.001 0.50 [0.41-0.60]
Cmax (mg/L) 9.17 (6.31-12.22) 7.65 (5.48-11.45) 0.008 0.83 [0.74-0.94]
tmax (h) 2.0 (1.5-4.0)f 2.0 (1.5-3.0)f 0.262g -
CL/F.kg (L/h.kg) 0.23 (0.17-0.30) 0.31 (0.26-0.46) <0.001 1.35 [1.19-1.47]
Vd/F.kg (L/kg) 0.73 (0.56-1.0) 0.90 (0.71-1.2) <0.001 1.23 [1.12-1.34]
t1/2 (h) 2.2 (1.6-2.6) 2.0 (1.7-2.6) 0.052 0.91 [0.86-1.00]

Ae (mg)h 388 (329-495) 353 (245-484) 0.128 0.91 [0.80-1.03]
CLR/F.kg (L/h.kg)h 0.115 (0.079-0.151) 0.137 (0.079-0.180) 0.005 1.19 [1.07-1.33]
fe.Fh 0.49 (0.41-0.62) 0.44 (0.31-0.60) 0.128 0.91 [0.80-1.03]

Ritonavir
AUC (h.mg/L) 15.7 (9.4-32.6) 10.0 (4.0-16.8) 0.005 0.64 [0.48-0.85]
Cmin (mg/L) 0.33 (0.14-0.81) 0.20 (0.04-0.42) 0.003 0.61 [0.46-0.82]
Cmax (mg/L) 2.59 (1.4-4.7) 1.72 (0.89-3.1) 0.016 0.66 [0.48-0.92]
tmax (h) 1.5 (1.0-5.0)f 2.0 (1.0-8.0)f 0.133g -
CL/F.kg (L/h.kg) 0.09 (0.05-0.15) 0.13 (0.08-0.35) 0.006 1.44 [1.17-2.11]
Vd/F.kg (L/kg) 0.28 (0.16-0.56) 0.45 (0.26-1.2) 0.005 1.61 [1.18-2.18]
t1/2 (h) 2.3 (1.6-3.2) 2.3 (1.6-3.0) 0.645 1.00 [0.92-1.14]

Table 1. Summary of results for indinavir and ritonavir; steady-state pharmacokinetic parameters (n=14)

a AUC: area under the concentration-time curve, Cmin : trough concentration at 12h, Cmax : highest
observed plasma concentration, tmax : sampling time for Cmax, CL/F.kg: total clearance corrected for
weight, Vd/F.kg: volume of distribution corrected for weight, t1/2: elimination half-life, Ae: total amount
excreted unchanged in the urine, CLR/F.kg: renal clearance corrected for weight, fe.F: fraction of dose that is
excreted unchanged (ie ratio of renal to total clearance),  F: bio-availability.
b Combination of 800 mg indinavir and 100 mg ritonavir twice a day.
c Combination of 800 mg indinavir and 100 mg ritonavir twice a day plus 600 mg efavirenz once a day.
d P-value for the difference between pharmacokinetic parameters in the two study periods; 2-sided t-test for
paired data.
e CI: confidence interval.
f median and range. 
g Wilcoxon signed-rank test.
h Based on data from 12 participants.
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Figure 2. Indinavir (IDV) steady-state area under the curve (AUC) and minimum plasma concentration
(Cmin) on day 15 (combination of 800 mg indinavir and 100 mg ritonavir [RTV] twice a day) and on day
29, after coadministration of efavirenz (EFV) for 14 days (combination of 800 mg indinavir and 100 mg
ritonavir twice a day plus 600 mg efavirenz once a day) (n=14).  
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Figure 1. Mean (+ SD) indinavir steady state plasma concentrations versus time (n=14). Circles, combination
of 800 mg indinavir and 100 mg ritonavir twice a day; triangles, combination of 800 mg indinavir and
100 mg ritonavir plus 600 mg efavirenz once a day.
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Pharmacokinetics of ritonavir

The effect of efavirenz on the pharmacokinetics of low-dose ritonavir corresponded

roughly to the effects on indinavir (table 1; figure 3). A significant linear association (rs

= -.771, p=0.001) was observed between the AUC of ritonavir on day 15 and the

percentage change in AUC as a result of interaction with efavirenz. A similar

relationship was demonstrated for baseline Cmax and decreases in Cmax (rs = -.585,

p=0.028) but not for Cmin values. 

The pharmacokinetic values of indinavir and ritonavir were clearly associated. For

instance, significant correlations were found between the AUC values of indinavir and

ritonavir on both study day 15 and study day 29. Furthermore, the decrease in

indinavir AUC was significantly correlated with the decrease in ritonavir AUC (rs =

.877, p<0.001), and the same applied to decreases in Cmin values.  

Pharmacokinetics of efavirenz

The geometric mean of the Css,av for efavirenz was 2.34 mg/L (range, 1.31-5.71

mg/L) and the geometric mean Cmin was 1.60 mg/L (range, 0.87-5.06 mg/L). The
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Figure 3. Mean (+ SD) ritonavir steady-state plasma concentrations versus time (n=14). Circles, combination
of 800 mg indinavir and 100 mg ritonavir twice a day; triangles, combination of 800 mg indinavir and
100 mg ritonavir plus 600 mg efavirenz once a day.
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t1/2 values ranged from 14.6 to 167.6 hours, with a geometric mean of 35.1 hours.

The geometric mean of the efavirenz AUC(0-24) was 56.2 h.mg/L (range, 31.5-137.0

h.mg/L). No significant association was found between the exposure to efavirenz

(AUC) and the percentage change in indinavir and ritonavir pharmacokinetic

parameters.

Safety and tolerability 

No serious adverse events (World Health Organization grade 3 or 4) were noticed.

Nevertheless, 3 participants were withdrawn because of adverse events. One volunteer

had gout in his medical history, and an attack of gout developed in that subject in the

first period of the study. He

was withdrawn from the

study because a relationship

with study medication could

not be excluded. Another

participant was withdrawn

after an increase in

creatinine values - from 92

mmol/L (baseline) to 188

mmol/L (ninth day of the

study) - accompanied by

hematuria and flank pain.

The third participant was

withdrawn from the study

because a rash occurred on

the chest, back, and legs on

the study day 22. 

Table 2 shows the incidence

of adverse events as

assessed by repeated

questioning of the 14

participants who completed

Indinavir/ritonavir and efavirenz in healthy volunteers

Adverse event Study period 1b Study period 2c

Fatigue /somnolence 50 64

Dizziness 14 50

Headache 50 29

Impaired concentration 7 50

Insomnia 7 29

Diarrhoea 21 29

Nausea 7 7

Vomiting 0 0

Dyspepsia 7 14

Abdominal pain 14 0

Flank pain 21 14

Circumoral paraesthesia 0 0

Skin reactionsd 14 43

Dry lipse 43 43

Table 2. Incidence of adverse events (%) a

a Incidence in percentage of participants based on active
questioning of the 14 participants who completed the study.
b Combination of 800 mg indinavir and 100 mg ritonavir twice a
day (2 weeks).
c Combination of 800 mg indinavir and 100 mg ritonavir twice a
day plus 600 mg efavirenz once a day (2 weeks).
d Rash, dry skin, or pruritus.
e Not in the questionnaire; spontaneously reported. 
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the study. The median toxicity score during the first study period was 1.1 (range, 0.0-

4.8). In 12 of 14 participants the severity score increased thereafter, resulting in a

median severity score of 1.9 (range, 0.5-6.0) for the second study period. This implies

that the average volunteer had an average of two mild adverse events or one adverse

event of moderate severity at every instance of questioning in the second period. 

Significant or near-significant correlations were found between the toxicity score

during the first study period and indinavir AUC (rs = .478, p=0.084) and Cmax (rs =

.589, p=0.027) and ritonavir AUC (rs = .576, p=0.031), Cmax (rs = .499, p=0.069),

and Cmin (rs = .589, p=0.027). In the second study period no relationships could be

shown between the pharmacokinetics of indinavir, ritonavir, or efavirenz and overall

toxicity scores. Toxicity scores for individual central nervous system effects (fatigue,

dizziness, headache, impaired concentration, and insomnia) or skin reactions were

also not related to the pharmacokinetic parameters of efavirenz. 

Analysis of laboratory parameters in the 14 participants who completed the study

revealed only a small increase in creatinine values in 8 of 14 volunteers after the four

study weeks (median increase, 4 µmol/L; range, 1-12 µmol/L). Total bilirubin increased

in all volunteers from baseline (median value, 9 µmol/L; range 5-17 µmol/L) to

maximum values (median, 18.5 µmol/L, range 11-46 µmol/L), which generally occurred

in the first two weeks of the study. At the end of the study, bilirubin levels had almost

declined toward baseline values (median, 10.5 µmol/L; range, 5-21 µmol/L). Elevations

in fasting cholesterol levels were observed in all participants (median increase at the end

of the study, 1.4 mmol/L; range, 1.0-2.3 mmol/L), whereas fasting triglyceride levels

increased in 11 of 14 participants (median change, +0.60 mmol/L; range, -0.30 to

+2,6 mmol/L). There was no relationship between increases in cholesterol or triglyceride

levels and any pharmacokinetic parameter of indinavir, ritonavir, or efavirenz. The study

medication had no relevant effect on other laboratory parameters. 

Discussion

The results of this study provide steady-state pharmacokinetic data for the twice-daily

combination of indinavir and low-dose ritonavir. A significant effect of multiple-dose

efavirenz on the pharmacokinetics of this combination regimen is shown.
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The baseline steady state pharmacokinetics of indinavir and ritonavir were determined

after 15 days of dosing and are in accordance with the sparse pharmacokinetic data

for this dual protease-inhibitor combination [9-11]. Combination of indinavir with low-

dose ritonavir clearly enhances the exposure to indinavir, as reflected in higher AUC

and Cmin values compared with the same parameters after administration of indinavir

three times a day without ritonavir [6]. The addition of efavirenz to the combination

regimen resulted in significant decreases in steady-state AUC, Cmin and Cmax of both

indinavir and ritonavir. The clinical consequences of these decreases have to be

derived from indinavir pharmacokinetics because low-dose ritonavir is meant only as a

pharmacokinetic enhancer and will not contribute to the antiviral effect of this

indinavir-ritonavir combination. Cmin values appear to be the most important

pharmacokinetic parameters in this respect, inasmuch as there is accumulating

evidence that Cmin values of indinavir and other protease inhibitors should be kept

above certain threshold values to obtain and maintain adequate antiviral efficacy [17].

Because efavirenz halved the mean Cmin value of indinavir (from 0.66 to 0.33 mg/L),

the dose of indinavir or ritonavir should be increased in the combination with

efavirenz to maintain the initial indinavir Cmin levels. This may possibly be achieved

by use of a combination of 800 mg indinavir and a higher dose of ritonavir (200 mg

twice a day) because this regimen results in higher indinavir AUC and Cmin values

than the twice-daily combination of 800 mg indinavir and 100 mg ritonavir [10]. The

pharmacokinetics of this and other adjusted combinations of indinavir, ritonavir, and

efavirenz should be evaluated in future pharmacokinetic studies.  

According to another approach, it may be argued that mean Cmin values of indinavir

still remained higher (despite the effect of efavirenz) than the corresponding value

described for the 800 mg indinavir three times a day without ritonavir (0.15 mg/L

[6]). Even the lowest indinavir Cmin observed in our study (0.15 mg/L in one

volunteer) was equivalent to the mean Cmin in the regimen of indinavir three times a

day, and it remains above the presumed therapeutic threshold value of indinavir (0.10

mg/L [17,18]). In addition, the mean indinavir AUC(0-24) value (extrapolated to

infinity and corrected for predose AUC; 34.6 * 2 = 69.2 h.mg/L; table 1) remained

higher than the corresponding value described for the regimen of indinavir three times

a day without ritonavir (56.4 h.mg/L [6]). In accordance with these considerations, no

dose modifications may be necessary for treatment-naive patients who prefer the

twice-daily indinavir-ritonavir combination regimen for reasons of convenience and
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who start with efavirenz. However, this would not apply to treatment-experienced

patients because these patients may use the indinavir-ritonavir combination to benefit

from a higher exposure to indinavir. Appropriate clinical studies are needed to

validate possible dose modifications (or no such adjustments) on addition of efavirenz

to indinavir and low-dose ritonavir in different patient categories. 

With respect to the mechanism of the pharmacokinetic interaction between efavirenz

and the indinavir-ritonavir combination, it seems most likely that efavirenz caused

induction of CYP3A, the cytochrome P450 isozyme that plays a major role in the

biotransformation of protease inhibitors. Efavirenz is known to act as both an inducer

and an inhibitor of CYP3A [1-3]. Induction of metabolic enzymes is in accordance

with data from this study showing that the increase in clearance of both indinavir and

ritonavir as caused by efavirenz is mainly extrarenal in nature. 

The effect of efavirenz on the pharmacokinetics of indinavir may be direct, because it

has been shown previously that coadministration of efavirenz and indinavir (without

ritonavir) leads to a 31% decrease in the AUC of indinavir [3]. However, data from

this study suggest that the effect of efavirenz on the exposure to indinavir is at least

partly mediated by a decrease in plasma concentrations of the pharmacokinetic

enhancer ritonavir because indinavir and ritonavir pharmacokinetics remained highly

correlated throughout the study. AUC, Cmin, and Cmax values of indinavir and

ritonavir were associated on study day 15, showed highly correlated decreases after

coadministration of efavirenz, and were still associated on study day 29. 

The observed decrease in the AUC of low-dose ritonavir is in contrast with the

influence of efavirenz on the pharmacokinetics of high-dose ritonavir (500 mg twice a

day), which results in a small increase (17%) in the AUC of ritonavir [19]. Efavirenz

therefore appears to have a differential influence on ritonavir pharmacokinetics,

depending on the dose of ritonavir. An explanation may be that enzyme induction by

efavirenz is able to compensate for inhibition of the same enzymes by low-dose

ritonavir, whereas higher doses of ritonavir cause more complete enzyme inhibition

that cannot be reversed. 

This study was not designed to evaluate the influence of indinavir and ritonavir on the

pharmacokinetics of efavirenz. However, the Css,av and Cmin of efavirenz could be

determined accurately and can be compared with the sparse published data. Efavirenz
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AUC values in our study were only estimations because blood samples were not

collected until 8 to 10 hours after the dose. The efavirenz Css,av in this study (2.34

mg/L) is comparable to other findings (2.38 [20] and 2.19 mg/L [21]), and the mean

Cmin level (1.60 mg/L) also corresponds to reference values (1.77 [3] and 1.64 mg/L

[20]). These data do not support the concept of a clinically relevant influence of

indinavir and ritonavir on the pharmacokinetics of efavirenz, which also was not

expected based on literature data. In contrast, efavirenz drug levels in this study were

within the therapeutic ranges for efavirenz proposed in two studies. For the average

drug levels of efavirenz, all Css,av values in this study were within a proposed

therapeutic range from 1-4 mg/L for middosing interval efavirenz levels [21]. Another

study explored the calculated in vivo 90% inhibitory concentration (IC90) for K103N

mutant viruses (1.1 mg/L) as threshold Cmin level for efavirenz in HIV-infected patients

[22]. The percentage of patients with Cmin values above this threshold was 78%,

which is comparable with the results in our study, with 11 of 14 healthy volunteers

(79%) having a trough level above 1.1 mg/L.

There are virtually no published data with regard to pharmacokinetic interactions

between the combination of 800 mg indinavir with 100 mg ritonavir and other drugs.

In addition, only sparse and preliminary data are available about the effect of

efavirenz on other protease inhibitors (saquinavir, amprenavir, lopinavir) combined

with ritonavir [23-30]. These latter data demonstrate that addition of low-dose

ritonavir can compensate for decreases in drug exposure that are induced by

efavirenz. Only ritonavir doses of at least 200 mg twice a day appear to be able to

prevent any decrease in boosted protease inhibitor concentrations after addition of

efavirenz, which corresponds to the results in this study. For example, saquinavir

concentrations were not affected by efavirenz when saquinavir (400 mg twice a day)

was combined with ritonavir (400 mg twice a day) [23]. In addition, amprenavir

concentrations were markedly increased by the addition of ritonavir (200 mg twice a

day), and were unaltered by the subsequent addition of efavirenz [24]. In contrast,

efavirenz was able to induce decreases in amprenavir AUC and Cmin when this

protease inhibitor was combined with only 100 mg ritonavir twice a day [27].

Likewise, when efavirenz was combined with the coformulated lopinavir/ritonavir (400

mg lopinavir and 100 mg ritonavir twice a day), it reduced the AUC and Cmin values

of lopinavir by 20 to 25% and 40 to 45%, respectively [29]. These findings are
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comparable to the results in our study. Finally, ritonavir has also been applied as a

pharmacokinetic booster to explore possible once-daily dosing regimens of indinavir.

The addition of efavirenz to these regimens results in decreased indinavir

concentrations that appear to be too low to prevent selection of indinavir-resistant viral

strains [30]. 

The combination of indinavir, ritonavir, and efavirenz caused a relatively high

incidence of adverse events that were generally mild in severity. That high incidence

may be attributable in part to the active and frequent questioning of volunteers that we

used to guarantee their safety. In addition, the attention of the volunteers was

especially drawn to central nervous system effects that could manifest after

administration of efavirenz. This may have elicited a higher response for these adverse

events. 

The spectrum of adverse events was as we expected, including nephrotoxic adverse

events related to indinavir [6] (one withdrawal) and typical central nervous system

effects that usually manifest in the two weeks after initiation of efavirenz ([1-3]). The

latter were most notably a light feeling in the head or slight dizziness, as well as

concentration problems. Because efavirenz causes a rash in up to 28% of HIV-infected

patients [3], often occurring within the first two weeks of treatment, it was anticipated

that this adverse event would occur in this study. Rash did develop in one volunteer

during the second study period, but we cannot exclude that this event was related to

indinavir or ritonavir.

Toxicity in the first study period was clearly related to the pharmacokinetics of

indinavir and ritonavir, but similar relationships could not be shown in the second

study period. The addition of a third agent in the second study period may have

confounded any such relationships, but development of tolerance to adverse events

may be another explanation.  

The most important laboratory abnormalities were significant increases in cholesterol

and triglyceride values, probably attributable to ritonavir or efavirenz or both. These

increases warrant close monitoring when the indinavir-ritonavir combination and

efavirenz are used in clinical practice. 

In conclusion, data from this study demonstrate that addition of efavirenz to the

combination of indinavir and low-dose ritonavir results in significant decreases in
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steady state AUC, Cmax, and Cmin of both indinavir and ritonavir in healthy

volunteers. This implies that the dose of indinavir or ritonavir should be increased to

maintain similar indinavir drug levels when efavirenz is coadministered with the

combination of 800 mg indinavir and 100 mg ritonavir. Additional pharmacokinetic

studies are needed to assess the appropriate dose modifications to achieve this. For

treatment-naive HIV-infected patients it may be argued that dose modifications may

not be necessary after addition of efavirenz to the indinavir-ritonavir combination

because all Cmin concentrations of indinavir still remained higher than the mean

indinavir Cmin of the conventional three-times-a day regimen without ritonavir. Follow-

up pharmacokinetic analyses in a clinical setting are warranted to confirm the findings

of this study in healthy volunteers.
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Abstract

A pharmacokinetic study was performed in HIV-infected patients who used

indinavir/ritonavir (800/100 mg BID) plus efavirenz (600 mg) in the EASIER study.

Indinavir plasma concentrations were similar to values previously obtained in healthy

volunteers who used the same combination. Efavirenz concentrations were higher than

reported before. The pharmacokinetic data suggest that indinavir/ritonavir plus

efavirenz (without dose modifications) should be effective in treatment-naive patients,

and this was supported by the treatment response of the participants.
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The nucleoside-sparing combination of indinavir plus efavirenz has demonstrated a

potent antiretroviral effect in HIV-infected patients who have not previously been

treated with protease-inhibitors (PIs) and non-nucleoside reverse transcriptase

inhibitors (NNRTIs) [1]. Indinavir plus efavirenz can also be combined effectively with

nucleoside analogues [2]. In the combination of indinavir and efavirenz, the

pharmacokinetic profile of indinavir can be improved by combining it with a low dose

(100 mg) of ritonavir. This allows for twice-daily (BID) dosing of indinavir (800/100

mg BID) and administration with food. However, indinavir, ritonavir and efavirenz can

not be combined without considering the pharmacokinetic interactions between these

drugs. A pharmacokinetic study in healthy volunteers showed that addition of

efavirenz (600 mg once daily) to indinavir/ritonavir (800/100 mg BID) resulted in a

decrease in indinavir concentrations, but indinavir trough (Cmin) values remained

sufficiently high to conclude that dose modifications are not required when this

combination is used in treatment-naive HIV-infected patients [3]. Subsequently, the

European and South American Study of Indinavir, Efavirenz and Ritonavir (EASIER)

evaluated the combination of indinavir/ritonavir plus efavirenz (without dose

modifications) in PI-, NNRTI-, and stavudine-naive HIV-infected patients, and

compared this combination to the same regimen supplemented with stavudine.

Preliminary results from EASIER were presented recently [4]. We evaluated the

pharmacokinetics of indinavir, ritonavir and efavirenz in patients in the EASIER study,

considering that the pharmacokinetics of antiretroviral drugs may differ between

healthy volunteers and HIV-infected patients, and to be able to put clinical data from

EASIER in perspective.

Steady-state pharmacokinetic data were assessed in six participants in EASIER, three

men and three women (median age: 35 years, median weight: 65 kg). Their median

viral load and CD4 cell count before entry in EASIER were 104 347 copies/ml (range:

7 923 to 493 798 copies/ml) and 267 cells/µl (range: 139 to 467 cells/µl)

respectively. Concomitantly administered drugs were stavudine (2x) and levothyroxine

(1x). Fourteen blood samples were drawn at 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0,

5.0, 6.0, 7.0, 8.0, 10.0 and 12.0 h after administration of indinavir/ritonavir

(800/100 mg) with food in the morning. Plasma samples were analyzed for indinavir,

ritonavir and efavirenz using validated high-performance liquid chromatographic

methods [3,5]. Pharmacokinetic parameters were calculated using noncompartmental

Indinavir/ritonavir plus efavirenz in the EASIER study
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methods. For indinavir and ritonavir, the area under the concentration-time curve

(AUC) was derived from the 14 concentrations measured from 0 h to 12 h post dose

(AUC0-12h), using the trapezoidal rule. For efavirenz, the concentrations beyond 8 h

until about 22 h post dose were available, as the participants ingested this drug in the

evening preceding pharmacokinetic assessments. Efavirenz 24-h Cmin concentrations

were calculated by extrapolation of the last concentration (Clast) to 24 h, using the

equation Cmin = Clast * e - ß (24 - tlast), where ß is the elimination rate constant of efavirenz

and tlast is the sampling time for Clast. 

Table 1 presents the results of the pharmacokinetic evaluation. The geometric mean

indinavir Cmin for the six patients in the EASIER study was lower than Cmin values

that were previously reported for HIV-infected patients who used indinavir/ritonavir

(800/100 mg BID) without efavirenz. This difference can be explained by the co-

administration of efavirenz, since efavirenz (an inducer of cytochrome 3A4 in the liver)

also decreased indinavir Cmin concentrations in healthy volunteers who used

indinavir/ritonavir 800/100 mg BID [3]. In effect, the pharmacokinetic data for

indinavir in the six HIV-infected patients closely corresponded to the data obtained in

healthy volunteers who used the same combination of indinavir, ritonavir and

efavirenz. The geometric mean for indinavir Cmin was 0.33 mg/L in healthy

volunteers [3] and 0.32 mg/L in the patients in the EASIER study (table 1) and

geometric mean values for AUC0-12h were 34.6 h*mg/L in healthy volunteers [3] and

41.0 h*mg/L in the HIV-infected individuals (table 1). It should be noted that the

geometric mean Cmin for indinavir in the six patients (0.32 mg/L) remained higher

than the mean Cmin (i.e. 0.15 mg/L [6]) for the conventional 800 mg thrice-daily

regimen of indinavir without ritonavir, and five out of six patients had a Cmin above

0.15 mg/L.

Considering the pharmacokinetics of efavirenz (table 1), it appeared that the geometric

mean Cmin value for efavirenz at t=24 h (2.7 mg/L) was higher than described in the

efavirenz product monograph (1.8 mg/L). The mean efavirenz concentrations at 12 h

(C12h) and 24 h (Cmin) post dose (table 1) were also higher than values that were

previously assessed in healthy volunteers who took the combination of indinavir, low-dose

ritonavir and efavirenz (C12h: 2.3 mg/L and Cmin: 1.6 mg/L [3]). All measured

efavirenz concentrations in the six patients were above 1 mg/L, which is the lower limit of

the proposed therapeutic range for efavirenz (1-4 mg/L) based upon efavirenz
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concentrations that are sampled between 8 h and 20 h post dose [7]. Consequently, the

efavirenz concentrations in the six patients predicted efficacy for this drug. Two

participants had efavirenz concentrations above the upper limit of the therapeutic range (4

mg/L) and one of these had efavirenz C12h and Cmin values of 11.1 mg/L and 7.9

mg/L respectively. There was no obvious explanation for the high efavirenz concentrations

in this patient. High efavirenz concentrations can occur as a result of the large

interindividual variability in the pharmacokinetics of this drug [7]. It should be recognized

that the presence of one such participant with high efavirenz concentrations affects the

average (even the geometric mean) efavirenz concentrations in this small study.

The observed pharmacokinetic parameters suggest that the combination of

indinavir/ritonavir plus efavirenz without dose modifications should be effective in

Indinavir/ritonavir plus efavirenz in the EASIER study

Parameter Geometric mean 95% CI Min.-max.

Indinavir

AUC0-12h (h.mg/L) 41.0 [29.4-57.2] (29.6-70.3)

Cmax (mg/L) 9.4 [7.6-11.6] (7.6-13.0)

Cmin (mg/L) 0.32 [0.13-0.82] (0.07-0.98)

t1/2 (h) 1.9 [1.4-2.5] (1.5-3.0)

Ritonavir b

AUC0-12h (h.mg/L) 11.4 [6.2-21.1] (4.5-25.1)

Cmax (mg/L) 2.4 [1.6-3.7] (1.3-4.4)

Cmin (mg/L) 0.21 [0.07-0.59] (0.04-0.76)

t1/2 (h) 2.4 [1.7-3.3] (1.6-3.6)

Efavirenz

C12h (mg/L) 3.8 [1.9-7.5] (2.0-11.1)

Cmin (mg/L) 2.7 [1.3-5.7] (1.1-7.9)

t1/2 (h) 32.5 [26.5-39.9] (28.4-47.8)

a Abbreviations: CI: confidence interval, min.: minimum value, max.: maximum value, AUC0-12h: area
under the concentration-time curve from 0 to 12 h post dose, Cmax : highest observed plasma
concentration, Cmin : trough concentration at 12 h (indinavir, ritonavir) or 24 h (efavirenz), t1/2:
elimination half life, C12h: concentration at 12 h post dose of efavirenz (mid-dosing interval concentration)
b Ritonavir is used as a pharmacokinetic enhancer and will not contribute directly to the antiretroviral effect
of the combination 

Table 1. Steady-state pharmacokinetics of indinavir, ritonavir and efavirenz in HIV-infected patients using
indinavir/ritonavir (800/100 mg BID) plus efavirenz (600 mg once daily) in the EASIER study (n = 6) a,b
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treatment-naive patients. Indeed five of the six patients (one of whom also used

stavudine) completed the 48 weeks of the EASIER study with an undetectable viral load

(< 50 copies/ml) and all had an increase in CD4 cell count. The sixth patient

discontinued at week 16, with a viral load of 71 copies/ml, due to adverse events

deemed probably related to the study medication. This patient did not have abnormal

pharmacokinetic parameters. One of five patients who completed the study had

elevated efavirenz concentrations (Cmin 7.9 mg/L, see above) together with two mild

to moderate adverse events. However, these adverse events were determined probably

not related to study medication.

In conclusion, we performed a pharmacokinetic study in six HIV-infected patients who

used a combination of indinavir/ritonavir (800/100 mg BID) plus efavirenz in the

EASIER study. The pharmacokinetic data for indinavir were in agreement with data

from a previous study in healthy volunteers. Efavirenz concentrations were higher than

reported before. The pharmacokinetic data suggest clinical efficacy for the

combination of indinavir/ritonavir plus efavirenz in treatment-naive patients, and this

was supported by the treatment response of the patients.
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Chapter 4.4

Abstract 

Introduction
Addition of efavirenz (EFV) 600 mg to indinavir/ritonavir (IDV/RTV) 800/100 mg

results in significant decreases in drug levels of IDV in healthy volunteers. This study

evaluated the steady state pharmacokinetics of IDV/RTV 800/100 mg bid in

combination with EFV 600 mg qd in HIV-infected Thai subjects who used this

nucleoside-sparing combination in the HIV-NAT 009 study.

Methods
At week 4 of the HIV-NAT 009 study, 12-hour pharmacokinetic profiles for IDV/RTV

were obtained from 20 HIV-infected subjects. For EFV, the concentrations at 12 hours

(C12h) and 24 hours (Cmin) post dose were assessed.

Results
All subjects (10 male, 10 female) completed the study. The geometric mean [95%

confidence intervaI] AUC, Cmin and Cmax values of IDV were 45.7 h.mg/L

[39.8–52.5], 0.32 mg/L [0.24-0.44] and 11.1 mg/L [9.4-13.0] respectively. A

greater than 10-fold variation in IDV Cmin was observed. All subjects recorded an

IDV Cmin that was at least comparable to the reported mean population Cmin for IDV

800 mg tid without ritonavir (0.15 mg/L). The geometric mean [95% CI] C12h and

Cmin values of EFV were 3.1 mg/L [2.5-3.7] and 2.1 mg/L [1.6-2.6] respectively.

Conclusions
Despite the known pharmacokinetic interaction between EFV and IDV/RTV, the

combination of IDV/RTV 800/100 mg bid and EFV 600 mg qd results in adequate

minimum concentrations of both IDV and EFV for treatment-naive patients.
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Introduction

The combination of efavirenz and indinavir given with nucleoside analogues has

demonstrated a potent and durable antiretroviral effect in nucleoside-experienced

patients [1]. The same combination of efavirenz and indinavir when given in the

absence of nucleoside analogues has demonstrated similar efficacy to that achieved

with the regimen of indinavir, zidovudine and lamivudine [2].

Efavirenz has the advantage of once daily (qd) dosing with three 200 mg capsules or,

more recently, one 600 mg tablet (available in the USA and Europe). In contrast,

indinavir must be taken three times daily (tid). The pharmacokinetic profile of indinavir

can be improved by combining it with a low dose (100 mg) of ritonavir. The

combination of indinavir with low dose ritonavir allows for a more convenient twice

daily (bid) administration (800/100 mg bid) and permits concurrent intake with food

[3]. This indinavir/ritonavir drug combination is widely used and available data

suggest that its virological efficacy is comparable to that of indinavir 800 mg tid

without ritonavir [4-6].

Efavirenz and indinavir combined with ritonavir has the potential to be a potent,

compact combination regimen that should offer ease of adherence. However, mutual

drug interactions between these agents may alter the pharmacokinetic properties of

indinavir, ritonavir, or efavirenz, potentially resulting in subtherapeutic drug levels. A

study conducted in healthy volunteers demonstrated that the addition of efavirenz to

indinavir/ritonavir 800/100 mg bid resulted in significant decreases in drug levels of

indinavir [7]. However, all individual indinavir trough (Cmin) levels remained

equivalent to or above the mean Cmin value described for the 800 mg tid regimen of

indinavir without ritonavir. Therefore it may be argued that dose modifications are not

necessary for protease inhibitor-naive patients who use the combination of

indinavir/ritonavir 800/100 mg and efavirenz 600 mg qd. 

These pharmacokinetic findings have yet to be confirmed in HIV-1 infected subjects,

and it cannot be excluded that there may exist differences between HIV-infected

subjects and non HIV-infected healthy volunteers with respect to the pharmacokinetics

of these antiretroviral drugs. For instance, it has been demonstrated that inflammation
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and infection can affect the activity of the cytochrome P450 isoenzymes that are

involved in the metabolism of both the protease inhibitor and non-nucleoside analogue

reverse transcriptase classes of antiretroviral drugs [8]. Therefore, we undertook this

study to evaluate the pharmacokinetics of indinavir, low-dose ritonavir and efavirenz in

an open label, single arm, non randomised trial (the HIV-NAT 009 study) designed to

evaluate the efficacy, safety and tolerability of indinavir/ritonavir 800/100 mg bid in

combination with efavirenz 600 mg qd.

Methods

Subjects

Twenty subjects were sequentially enrolled from a cohort of 61 patients enrolled in the

HIV-NAT 009 study. Subjects eligible for the HIV-NAT 009 study were at least 18

years of age, HIV-1 positive by ELISA, and had virologically failed current or previous

therapy with nucleoside reverse transcriptase inhibitors (NRTIs) (HIV RNA > 1000

copies/mL). All subjects had serum creatinine < 2 times the upper limit of normal and

AST and ALT < 5 times the upper limit of normal. Exclusion criteria included the need,

or anticipated need, to use any concomitant medications known to interact with the

study medications, an active opportunistic infection or malignancy not under adequate

control, and alcohol or substance abuse which would interfere with patient medication

adherence or safety. Patients enrolled in the pharmacokinetic study were allowed to

participate if they were not suffering from any acute illness on the day of plasma

sampling and had not commenced any regular new medications since commencing

indinavir, ritonavir and efavirenz.

All included patients gave written informed consent to participate in the study, which

was approved by the King Chulalongkorn University Faculty of Medicine Ethics

Committee, Bangkok, Thailand.

Study design and procedures

At the HIV-NAT 009 baseline study visit, all patients were instructed to ingest indinavir

400 mg two capsules together with ritonavir 100 mg one capsule in the morning and

evening at regular 12 hour intervals. Patients were advised to ingest at least two litres
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of water per day in order to reduce the potential for nephrotoxicity from indinavir.

Patients were instructed to ingest efavirenz 200 mg three capsules every night before

bedtime at regular 24 hour intervals.

At week 4, pharmacokinetic profiles were obtained from the participants on an

outpatient basis. On the morning of the study the patients were asked to attend in a

fasted state and specifically instructed not to ingest the morning dose of indinavir and

ritonavir. After arrival the times of last ingestion of all study medications and

concomitant medications were recorded. Subjects then ingested indinavir and ritonavir

with a glass of water under the direct supervision of the study staff, and immediately

after they were provided with a standardised breakfast which consisted of a rice based

meal, a milk or soy milk drink, and a plain bread roll.

At designated time intervals associated with the ingestion of indinavir and ritonavir, 14

blood samples were drawn over a 12 hour period according to the following schedule:

pre-dose, and then at 30, 60, 90, 120, 150, 180, 240, 300, 360, 420, 480, 600

and 720 minutes post dose. Blood samples were collected in 5 ml EDTA tubes and

plasma was isolated within one hour by centrifugation at 3000 G for 10 minutes.

Blood samples were stored at –70 degrees Celsius at the HIV-NAT laboratory until

their transfer packaged in dry ice to The Netherlands for analysis.

Analytical and pharmacokinetic methods

Plasma samples were analysed for indinavir, ritonavir and efavirenz by previously

described validated reversed-phase high-performance liquid chromatographic (HPLC)

methods [7,9]. The pharmacokinetics of indinavir and ritonavir were calculated using

noncompartmental methods [10]. The highest observed plasma concentration was

defined as Cmax, with the corresponding sampling time as tmax. Cmin was the

concentration 12 hours after ingestion of the drugs. The terminal, log-linear period

(log C versus t) was defined by visual inspection of the last data points (N ≥ 3). The

absolute value of the slope (ß/2.303) was calculated by least squares linear

regression analysis, where lz is the first-order elimination rate constant. The elimination

half-life (t1/2) was calculated by the equation 0.693/ß. The area under the

concentration versus time curve (AUC) was calculated using the trapezoidal rule from
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0 to 12 hours. This value was extrapolated to infinity using the equation Cmin/ß and

was corrected for contribution of the predose AUC by subtraction of C0/ß. Apparent

oral clearance (Cl/F where F is bioavailability) was calculated by dividing dose (D) by

AUC, and apparent volume of distribution Vd/F was obtained by dividing Cl/F by ß.

Clearance and volume of distribution were corrected for weight of the participant. 

Since the ingestion of efavirenz occurred on the evening prior to the pharmacokinetics

study day, according to the subjects’ regular schedule, we were unable to assess all

pharmacokinetic parameters for efavirenz. However, the concentration at 12 hours

post ingestion of efavirenz (C12h) was derived accurately from the pharmacokinetic

curve and efavirenz trough levels (Cmin) were calculated using the first order equation

of the regression line through the last data points and filling in the 24 hour time point. 

Data analysis 

All statistical evaluations were performed with SPSS for Windows, version 9.0 (SPSS

Inc., Chicago, IL, USA). Geometric means with 95% confidence intervals were

calculated for each pharmacokinetic parameter. Differences in patient characteristics

between subgroups were compared using Wilcoxon rank-sum test and differences in

pharmacokinetic parameters were tested using the two-sample t-test on logarithmically

transformed data. Correlation between parameters was calculated using Pearson

correlation coefficient (ρ) or Spearman’s rho (rank correlation, r), dependent on

distributional characteristics of the two variables involved. For all analyses, a p-value

of 0.05 or less was regarded as significant.

Results

Twenty Thai subjects (10 males, 10 females) were included and all completed the

study. Concurrently administered medications on the day of study were co-trimoxazole

480 mg two tablets (n=11), isoniazid 100 mg three tablets (n=2), dapsone 100 mg

one tablet (n=1), hydroxyzine 10 mg two tablets (n=1), multivitamin two tablets (n=1),

mineral and vitamin supplement three tablets (n=1), and paracetamol 500 mg two

tablets (n=1). The characteristics of the patient cohort are summarized in table 1. Table

2 summarises the steady-state pharmacokinetic parameters of indinavir and ritonavir,
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together with reference data obtained from two other studies using indinavir/ritonavir

800/100 mg bid. Of note, a greater than 10-fold variation in the Cmin of indinavir

(0.14 mg/L to 1.8 mg/L) was observed, emphasizing the great inter-individual

variability of this important pharmacokinetic parameter. Ritonavir is used in this

regimen only as a pharmacokinetic enhancer and therefore therapeutic concentrations

are not achieved. Table 3 summarises the results for efavirenz, using data from the

study in healthy Caucasian volunteers for reference [7]. Figure 1 displays the

pharmacokinetic curves for indinavir and ritonavir in the presence of efavirenz.

As expected, we observed a strong and significant linear association between the

AUC, Cmax and Cmin values of the same drug, either indinavir, ritonavir or efavirenz. 

We also observed a strong association between the AUC (r = 0.85, p < 0.001), Cmax

(r = 0.59, p = 0.006), and Cmin (r = 0.76, p < 0.001) of indinavir and ritonavir.

Exposure to efavirenz however was not linearly related to the exposure to indinavir

and ritonavir. For example, no significant linear association was found between AUC

values of indinavir and efavirenz (r = 0.20, p = 0.40).

The cohort was stratified

for gender and

descriptive statistics were

calculated for men (n=10)

and women (n= 10)

separately. The results

demonstrated that men

were taller (median

height 163 cm versus

154 cm, p=0.02), and

heavier (median weight

60 kg versus 50 kg,

p=0.01) than women. No

significant differences

between men and women

were observed with

respect to AUC, Cmin or

Cmax values of indinavir,

Indinavir/ritonavir plus efavirenz in Thai HIV-infected patients

Variable HIV-NAT 009

IDV/RTV 800/100mg bid 

+ EFV 600mg qda

Number of patients 20

Gender [M/F] 10/10

Median age (IQR)b [yr.] 39 (34-43)

Median body weight 

(IQR) [kg] 54.5 (49.1-62)

Median height (SD) [cm] 160 (153-164)

Median CD4 cell count (IQR) [per mm3] 136 (39.5-238)

Median log10 HIV RNA (IQR) 4.44

[copies/mL] (3.95-4.63)

Table 1. Summary of patient characteristics

a indinavir 800 mg bid + ritonavir 100 mg bid + efavirenz 600 mg qd
b inter-quartile range
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Parametera Experimental data Reference data

HIV-NAT 009 HIV-NAT 005 HVf study

(n=20) (n=17) (n=14)

IDV/RTVb 800/100mg bidc IDV/RTVb IDV/RTV

+ EFVd 600mg qde 800/100mg bid 800/100mg bidc

+ EFVd 600mg 

qde

Indinavir Geometric mean Range Geometric mean Geometric mean

and 95% CI

AUC (h.mg/L) 45.7 (39.8-52.5) 25.1-86.4 49.20 34.6

Cmin (mg/L) 0.32 (0.24-0.44) 0.14-1.8 0.68 0.33

Cmax (mg/L) 11.1 (9.4-13.0) 5.9-19.0 10.56 7.65

tmax (h)g 1.0 0.6-3.1 1.98 2.0

CL/F.kg (L/h.kg) 0.32 (0.29-0.36) 0.22-0.49 0.26 0.31

Vd/F.kg (L/kg) 0.85 (0.76-0.94) 0.56-1.29 0.76 0.90

t1/2 (h) 1.8 (1.6-2.0) 1.3-2.9 2.12 2.0

Ritonavir Geometric mean Range Geometric mean Geometric mean

and 95% CI

AUC (h.mg/L) 13.7 (10.5-17.8) 4.7-40.8 14.01 10.0

Cmin (mg/L) 0.22 (0.15-0.33) 0.07-1.8 0.40 0.20

Cmax (mg/L) 2.9 (2.2-3.8) 0.91-7.2 2.24 1.72

tmax (h)g 1.0 0.5-5.0 1.76 2.0

CL/F.kg (L/h.kg) 0.14 (0.11-0.17) 0.06-0.38 0.12 0.13

Vd/F.kg (L/kg) 0.49 (0.40-0.61) 0.28-1.19 0.55 0.45

t1/2 (h) 2.5 (2.2-2.9) 1.8-4.5 3.14 2.3

Table 2. Summary of results for indinavir (IDV) and ritonavir (RTV) steady state pharmacokinetic parameters
for the HIV-NAT 009, Healthy Volunteer and HIV-NAT 005 studies

a AUC: area under the concentration-time curve, Cmin: trough concentration at 12h, Cmax: highest
observed plasma concentration, tmax: sampling time for Cmax, CL/F.kg: total clearance corrected for
weight, Vd/F.kg: volume of distribution corrected for weight, t1/2: elimination half life
b indinavir/ritonavir
c twice daily dosing
d efavirenz
e once daily dosing
f healthy volunteer study
g Tmax value is median value
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Figure 1. Mean (standard deviation) indinavir (IDV) and ritonavir (RTV) steady state plasma concentrations
in subjects receiving indinavir/ritonavir (800/100 mg bid) plus efavirenz (600 mg qd) (n=20). Circles:
indinavir 800mg. Triangles: ritonavir 100mg.

Parametera Experimental data Reference data

HIV-NAT 009 HVd Study

(n=20) (n=14)

IDV/RTVb 800/100 mg bid IDV/RTVb 800/100 mg bid

+ EFVc 600 mg qd + EFV 600mg qd

Efavirenz Geometric mean Range Geometric mean

and 95% CI

C12h (mg/L) 3.1 (2.5-3.7) 1.5-7.6 2.34

Cmin (mg/L) 2.1 (1.6-2.6) 0.89-6.9 1.60

Table 3. Summary of results for efavirenz (EFV) steady state pharmacokinetic parameters or HIV-NAT 009
and Caucasian Healthy Volunteer study

a C12h: average steady state concentration at t=12h post ingestion of efavirenz, Cmin: trough concentration
at 24h
b indinavir/ritonavir
c efavirenz
d healthy volunteer
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ritonavir or efavirenz, although there was a trend towards higher Cmin values for

efavirenz in women compared to men (2.5 vs 1.7 mg/L, p=0.097). Men had a

significantly longer elimination half-life for indinavir compared to women (geometric

mean 2.0 vs 1.6 h, p= 0.005) and a significantly longer elimination half-life for

ritonavir (2.9 vs 2.2 h, p=0.04).

Increased weight and an increase in body mass index (BMI) were correlated with a

decrease in indinavir AUC (r = -0.52, p = 0.02 and r = -0.54, p =0.015,

respectively), but otherwise no significant linear associations were observed between

weight or BMI and the AUC, Cmin or Cmax of indinavir, ritonavir or efavirenz.

Discussion

The results from this study provide steady state pharmacokinetic data for the

combination of indinavir/ritonavir 800/100 mg bid combined with efavirenz 600 mg

qd in HIV-1 infected subjects. In order to provide a perspective on these results it is

useful to compare and contrast them with the results of other pharmacokinetic studies

of indinavir/ritonavir 800/100 mg. There are a number of studies that have described

the pharmacokinetics of indinavir/ritonavir 800/100 mg which could be chosen as

comparators [3-7,11,12]. However, we have chosen to compare our results with the

results from two selected studies. The first is a study that reported pharmacokinetic

data for indinavir/ritonavir 800/100 mg used in combination with zidovudine and

lamivudine in HIV-1 infected Thai patients [5]. This study was chosen as a comparator

because the data was drawn from a Thai patient cohort enrolled at the same institution

(HIV-NAT). The second is a study of indinavir/ritonavir 800/100 mg bid and

efavirenz 600 mg qd used in healthy Causasian volunteers from The Netherlands [7].

This study was chosen as it affords a direct comparison with pharmacokinetic data

employing the exact same regimen as utilized in the current study, but in Caucasian

healthy volunteers. In both cases the data were determined using the same

bioanalytical and pharmacokinetic methodology in the same laboratory. The careful

selection of these two compator studies should therefore minimize the potential biases

that exist when comparing independent cohorts.

Baseline characteristics were similar for the Thai HIV infected patients in the

indinavir/ritonavir reference study [5] (median age (IQR) 36 (32-41) years, median
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height (IQR) 163 (155-179) cm, and median body weight (IQR) 59.2 (54.2-73.6) kg)

(see table 1). The healthy Caucasian volunteers [7] were younger (median age (IQR)

22 (20-29) years), taller (median height (IQR) 183 (176-185) cm), and heavier

(median body weight (IQR) 74.6 (71.4-81.3) kg) than the Thai subjects in the current

study.

The comparative pharmacokinetics of indinavir and ritonavir are summarised together

with the experimental data in table 2. 

With regard to indinavir AUC, results are similar for indinavir/ritonavir when given

with and without efavirenz in a Thai population (45.7 h.mg/L v 49.2 h.mg/L

respectively, see table 2), although the indinavir AUC was decreased in the presence

of efavirenz in the Caucasian healthy volunteers (from 45.9 h.mg/L to 34.6 h.mg/L

respectively) [7]. 

For indinavir Cmin, the addition of efavirenz 600 mg to the combination of

indinavir/ritonavir 800/100 mg results in a geometric mean indinavir Cmin (0.32

mg/L) that is substantially lower than the indinavir Cmin level achieved in a similar

Thai population without the addition of efavirenz (0.68 mg/L, see table 2). The

indinavir Cmin value of 0.32 mg/L is comparable to that obtained in the study with

healthy Caucasian volunteers who used indinavir, ritonavir and efavirenz (0.33 mg/L)

[7]. However, despite the reduction, the geometric mean indinavir Cmin value of 0.32

mg/L value is greater than the mean indinavir Cmin of 0.13 mg/L obtained using the

conventional three times daily (tid) regimen of indinavir 800 mg when assessed in Thai

subjects [5]. This value also remains above the mean Cmin of indinavir 800mg tid

quoted in the product monograph (0.15 mg/L [13]). In addition, all 20 participants in

the current study had an indinavir Cmin above a value of 0.10 mg/L that has been

derived as a therapeutic threshold for treatment-naive patients using indinavir 800 mg

tid [14]. This suggests that despite the reduction in indinavir Cmin with the addition of

efavirenz, the regimen should maintain adequate indinavir minimum concentrations in

protease inhibitor-naive subjects. The wide inter-individual variations for indinavir

Cmin have been noted in other studies.

For indinavir Cmax we noted considerably higher values in both Thai study

populations compared to healthy Caucasian volunteers (see table 2), raising the

possibility of greater indinavir toxicity in this population. Higher indinavir Cmax levels

have been associated with an increased prevalence of indinavir-related nephrotoxicity,

particularly nephrolithiasis [15]. The higher indinavir Cmax levels in Thai patients is
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consistent with their lower body mass and therefore likely reflects the effect of a smaller

volume of distribution for indinavir when compared to the heavier Caucasian subjects.

Alternatively, the higher indinavir Cmax values observed in the Thai subjects might be

explained by differences in the composition of the standardized meal that was offered

with the indinavir/ritonavir [16]. The heavy meal used by Caucasian subjects [7] may

have led to a greater delay in gastric emptying and absorption of indinavir, thereby

resulting in a lower Cmax and a longer tmax (see table 2) compared to the Thai

patients in the current study who were fed a lighter rice-based meal.

While this study provides reassuring pharmacokinetic data with regard to the

anticipated efficacy of the use of this drug combination in protease inhibitor-naive

subjects, the same cannot be confidently said for patients with previous protease

inhibitor exposure, in which case the pharmacokinetic threshold indinavir Cmin may

be higher. In this case, dose modifications should be considered. Further studies are

needed to explore the role of dose modifications within this regimen when used in

patients with previous protease inhibitor exposure.

With regard to efavirenz, we were unable to calculate all pharmacokinetic parameters

for this drug in the study, since efavirenz was dosed on the night before the study day.

However, the geometric mean concentrations at 12 hours (C12h) and 24 hours (Cmin)

could be accurately determined and compared to the published post efavirenz dose

data. The geometric mean C12h and Cmin values for efavirenz in this study were 30-

35% higher than findings in the healthy volunteer study (see table 3). The best

evidence for a minimum efficacy threshold for efavirenz has been provided by

Marzolini et al which suggested that the efavirenz level obtained between 8 and 20

hours after ingestion of the drug should be greater than 1 mg/L in order to maintain

virological suppression [17]. In this current study, all patients recorded a 20 hour post

drug ingestion level for efavirenz greater than 1 mg/L. The Marzolini data also

suggested those subjects with an 8-20 h efavirenz level of > 4 mg/L were more likely

to experience central nervous system (CNS) toxicity. Five patients (25%) on study

recorded an efavirenz level between 8 and 20 h post dose of > 4 mg/L, possibly

predisposing these patients to a higher risk of CNS toxicity. The results for efavirenz

600 mg qd in this study therefore predict adequate efficacy but also the potential for

toxicity.
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The determinants of the pharmacokinetics and pharmacodynamics of the antiretroviral

drugs are not well characterised. We investigated the influence of gender, weight and

body mass index (BMI) on the results. For gender, no significant differences were

observed for AUC, Cmin and Cmax values of indinavir, ritonavir and efavirenz

between men and women, but we did observe significant differences in the elimination

half-lives of indinavir and ritonavir. However, it should be understood that the absence

of some significant differences could possibly be due to the small sample size in the

study subgroups, resulting in a lack of statistical power. For weight and BMI we did

observe a statistically significant inverse association with the indinavir AUC, but this

correlation was not found for other pharmacokinetic parameters of indinavir, ritonavir

or efavirenz. Further research in bigger patient samples is needed to determine the

predictors of the pharmacokinetics for this regimen.

CYP3A4 is the cytochrome P450 isoenzyme that plays the major role in the

biotransformation of the protease inhibitors. Efavirenz is an inducer of liver CYP3A4 in

healthy volunteers, but does not appear to induce intestinal CYP3A4 or intestinal P-

glycoprotein [18]. The data from both this and the study in healthy Caucasian

volunteers [7] is in accordance with an induction effect of efavirenz resulting in an

increase in the hepatic clearance of both indinavir and ritonavir. Results from both

studies suggest that the effect of efavirenz on the indinavir exposure is indirect and

mediated by a decrease in the pharmacokinetic enhancing activity of ritonavir, as

indinavir and ritonavir parameters were closely correlated in both studies. However, it

is known that coadministration of efavirenz with indinavir (without ritonavir) leads to a

31% decrease in the AUC of indinavir [19]. Consequently, it cannot be excluded that

the effect of efavirenz on the pharmacokinetics of indinavir is at least to some extent

direct.

In conclusion, the data from this study in HIV-1 infected Thai patients suggests that the

combination of indinavir/ritonavir 800/100 mg bid and efavirenz 600 mg qd results

in pharmacokinetic parameters for indinavir and efavirenz that should confer

adequate antiviral efficacy in patients not previously exposed to these agents. This

confirms the data from a study in healthy Caucasian volunteers who were

administered the same regimen. However, the indinavir Cmax value was higher in the

Thai patients than that observed in the healthy volunteer study, and a number of
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patients experienced efavirenz levels that have been associated with clinical toxicity in

other populations. A follow-up analysis of the pharmacodynamic responses in these

twenty study subjects is planned.
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Abstract

Objective
The protease inhibitor (PI) ritonavir is used in a low dose (100 mg BID) to increase plasma

concentrations of co-administered PIs in the treatment of HIV infection. This boosting effect is

mediated by inhibition of CYP3A4. When applied in a therapeutic dose (600 mg BID),

ritonavir also inhibits CYP2D6. This study was performed to assess the effect of low-dose

ritonavir on the activity of CYP2D6 in vivo. 

Methods
This was a one-arm, two-period, fixed order study in 13 healthy male volunteers who were

extensive metabolizers for CYP2D6. The first period examined baseline CYP2D6 activity by

evaluation of the pharmacokinetics (PK) of a single dose of desipramine, an index substrate

for CYP2D6 (primary measure), and by metabolic phenotyping with dextromethorphan

(secondary measure). During the second period participants took ritonavir 100 mg BID for 2

weeks, followed by repeat assessment of the PK of desipramine and the dextromethorphan

metabolic phenotype in the presence of low-dose ritonavir. Geometric mean (GM) ratios plus

90% confidence intervals (CIs) were calculated for desipramine PK parameters in the second

period relative to the first period. Dextromethorphan/dextrorphan urinary metabolic ratios

were log-transformed and compared with the paired t-test at the 5% significance level.

Results
The GM ratio and 90% CI for the AUC0-∞ and the Cmax of desipramine were 1.26 [1.16-

1.37] and 1.08 [1.00-1.17], respectively. These findings are indicative for a modest effect of

low-dose ritonavir on the bio-availability of desipramine. Low-dose ritonavir did not affect the

dextromethorphan/dextrorphan urinary metabolic ratio; GM and range were 0.0043

(0.0008-0.1226) in the first period versus 0.0066 (0.0005-0.0676) in the second period

(p=0.28). Co-administration of low-dose ritonavir did not convert any extensive metabolizer to

a poor metabolizer.

Conclusions 
Low-dose ritonavir (100 mg BID) exerts a modest inhibitory effect on the activity of CYP2D6 in

extensive metabolizers, as assessed with desipramine as index substrate. This effect was not

apparent when the dextromethorphan/dextrorphan metabolic ratio was used as indicator for

CYP2D6 activity. It is expected that the effect of low-dose ritonavir on CYP2D6 alone will not

require standard dose reductions for CYP2D6 substrates, but the influence of ritonavir on other

metabolic pathways should be evaluated for drugs that are partially metabolized by CYP2D6.
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Introduction

The treatment of HIV infection and AIDS is complicated by the occurrence of many

clinically relevant pharmacokinetic drug interactions [1]. This is incited by the large

number of drugs that is taken by HIV-infected patients. Apart from at least three

antiretrovirals, patients may also be taking drugs for opportunistic infections, other

concurrent diseases, and for management of adverse reactions to antiretroviral drugs.

Antiretroviral protease inhibitors (PIs) and non-nucleoside reverse transcriptase

inhibitors (NNRTIs) are especially prone to be involved in pharmacokinetic drug

interactions, since these drugs are both substrates as well as inhibitors or inducers of

cytochrome P-450 (CYP) isoenzymes [1,2]. 

The PI ritonavir is a potent inhibitor of CYP3A4 and (to a lesser extent) of CYP2D6

when used in a therapeutic dose of 600 mg twice-daily (BID) [3,4]. The inhibition of

CYP3A4 by this agent is now widely used as a means to raise plasma concentrations

of other PIs [5]. This “boosting” strategy can reduce the pill burden and the dose

frequency of the co-administered PIs, thereby facilitating adherence, and may result in

enhanced efficacy against viral strains with reduced susceptibility to PIs. Application of

ritonavir as a boosting agent requires only a low dose of this drug, usually 100 mg

BID. The PIs amprenavir, indinavir, nelfinavir and saquinavir have all been combined

with this low dose of ritonavir, and lopinavir is co-formulated with ritonavir to facilitate

simultaneous administration of lopinavir 400 mg plus ritonavir 100 mg.   

Whereas it is evident that administration of ritonavir in a low dose still results in strong

inhibition of CYP3A4, it has not been investigated whether the same applies to

inhibition of CYP2D6. Consequently, it is unknown whether undesirable interactions

may occur between low-dose ritonavir and CYP2D6 substrates, including many

antipsychotic agents, tricyclic antidepressants, newer antidepressants such as the

selective serotonine reuptake inhibitors (SSRIs), beta-blockers and several

antiarrhytmics [6]. 

The aim of this study was to assess the effect of low-dose ritonavir (100 mg BID) on the

activity of CYP2D6 in vivo. The pharmacokinetic interaction between low-dose ritonavir

and desipramine was evaluated as a primary measure for the effect of ritonavir on

Effect of low-dose ritonavir on CYP2D6
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CYP2D6. Desipramine is a tricyclic antidepressant that is nearly completely dependent

on CYP2D6 for its metabolism [7]. As a secondary measure, the effect of ritonavir on

the dextromethorphan/dextrorphan urinary metabolic ratio was assessed, using

dextromethorphan as probe for CYP2D6 activity (metabolic phenotyping [8]).   

Methods

Subjects

Healthy male volunteers, aged 18-65 years, were eligible for participation. Health

status was assessed on the basis of medical history, physical examination, laboratory

test results and ECG. CYP2D6 is known to exhibit genetic polymorphism, which divides

the population in extensive and poor metabolizers. The study was confined to

extensive metabolizers, as determined by genotyping (Xendo Laboratories, Groningen,

The Netherlands). 

Subjects were excluded if they received any drugs in the two months preceding the

study, if they were HIV or hepatitis B or C seropositive, or if they were hypersensitive to

ritonavir, desipramine or dextromethorphan.

All participants provided written informed consent to participate in the study, which

was approved by the Review Board of the Regional Medical Ethics Committee, Arnhem

and Nijmegen, The Netherlands.

Study design

This was an open-label, one-arm, two-period, fixed-order study (figure 1). The first

period examined the baseline dextromethorphan/dextrorphan urinary metabolic ratio

(days 1-2) and the baseline single-dose pharmacokinetics of desipramine (days 3-6). 

During the whole second period of the study (days 8-27), participants took ritonavir

100 mg BID with food. After two weeks in the second period, the

dextromethorphan/dextrorphan metabolic ratio (days 22-23) and the

pharmacokinetics of single-dose desipramine (days 24-27) were evaluated again. 

The two-week period for use of low-dose of ritonavir (days 8-22) was applied to

achieve steady-state concentrations for ritonavir [4]. Low-dose ritonavir was

administered with food as a further means to simulate clinical practice, since it is
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recommended that several combinations of PIs and low-dose ritonavir are taken with

food. The pharmacokinetics of ritonavir were assessed simultaneously with the

pharmacokinetics of desipramine on day 24. 

The study was conducted on an outpatient basis. On days 10, 13, 16, 20, 24, 25 and

26, administration of ritonavir was supervised. Compliance with study medication at

home was evaluated at every study visit by inspection of drug taking diaries, counting

of capsules, plasma concentration measurements and electronic monitoring of drug

taking behaviour, using the Medication Event Monitoring System (MEMS) [9]. Safety of

the participants was monitored by repeated questioning on the basis of a standardized

inquiry form. Laboratory tests were performed on the same occasions.

Dextromethorphan metabolic phenotyping

In the evening of study days 1 and 22 (figure 1), participants were requested to empty

their bladder and take 30 mg of dextromethorphan hydrobromide monohydrate (2

capsules of Dampo® 15 mg) with two cups of water. All urine produced in the

subsequent 8-hour (overnight) period was collected in a single container. A 5 ml

aliquot of urine was stored at -200C before analysis.

Effect of low-dose ritonavir on CYP2D6

First period Second period

Days 1-2 Days 3-6 Days 8-22 Days 22-23 Days 24-27
(overnight 1-2) (overnight 22-23)

No drugs No drugs Ritonavir Ritonavir Ritonavir
100 mg BID 100 mg BID 100 mg BID

Metabolic Single-dose PK Metabolic Single-dose PK
phenotyping desipramine phenotyping desipramine

Steady-state PK
ritonavir (day 24)

Figure 1. Schematic illustration of the study design. PK; pharmacokinetics
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Pharmacokinetics of desipramine

On study days 3 and 24, participants attended our facility in the morning after an

overnight fast (figure 1). A predosing blood sample was taken before they ingested a

single dose of 50 mg desipramine hydrochloride (two tablets of Pertofran® 25 mg)

with a standardized breakfast. On day 24, participants also ingested ritonavir 100 mg

(one capsule of Norvir® 100 mg) and they continued to use ritonavir 100 mg BID until

the desipramine pharmacokinetic assessment was completed. Blood sampling was

performed at 0.5, 1, 2, 3, 4, 6, 7, 8, 12, 24, 36, 48 and 72 hours after drug

administration. Plasma was separated within 12 hours and stored at -200C until HPLC

determination.

Analytical methods

The concentrations of dextromethorphan and its CYP2D6-mediated metabolite

dextrorphan were analyzed in the urine samples at Xendo Laboratories, The

Netherlands, using a previously described validated HPLC method [10]. 

Desipramine plasma concentrations were analyzed with another validated HPLC

method. Briefly, 100 µl of imipramine 0.1 mg/L (internal standard) and 100 µl

natrium hydroxide 2N were added to 1.0 ml plasma before extraction with 5.0 ml of

a 98.5:1.5 (vol/vol) mixture of heptane/iso-amylalcohol. The organic phase was

evaporated to dryness by a gentle stream of nitrogen and the residue was dissolved in

75 µl of mobile phase. Volumes of 45 µl were injected into the chromatographic

system. Separation was performed on a heated (250C) Chromspher Si 3µ, 4.6 x 100

mm column, with a mobile phase that consisted of dichloromethane/methanol/buffer

(800:200:4.5 vol/vol). The flow rate was 2.0 ml/min. Ultraviolet detection was

performed at 253 nm. Standard curves were composed of 6 concentrations, from

desipramine 2.0 ng/ml to 20 ng/ml. The lower limit of quantitation was 2.0 ng/ml.

Recovery of the method was > 90%. Inter-day precision was 6.2% at 2.0 ng/mL and

6.1% at 20 ng/mL. 

Ritonavir concentrations were measured in the same plasma samples that were used to

assess desipramine pharmacokinetics on study days 24-27, using another validated

HPLC method that was described before [11].
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Data analysis

Metabolic phenotyping

The urinary metabolic ratio of dextromethorphan to dextrorphan (dextromethorphan

(mol/L) / dextrorphan (mol/L)) was calculated after each phenotyping session.

Participants with a metabolic ratio > 0.3 were classified as poor metabolizers of

CYP2D6 and subjects with a metabolic ratio ≤ 0.3 were classified as extensive

metabolizers [8].

Pharmacokinetics of desipramine and ritonavir

The pharmacokinetics of desipramine and ritonavir were calculated using

noncompartmental methods. The terminal, log-linear period (log C versus t) was

defined by visual inspection of the last data points (n ≥ 3). The value of the slope 

(- ß/2.303, where ß is the first-order elimination rate constant) was calculated by least

squares linear regression analysis. For desipramine, the area under the concentration

versus time curve from zero to infinity (AUC0-∞) was calculated using the trapezoidal

rule up to the last measurable concentration (Clast) with extrapolation to infinity using

Clast/ß. The AUC0-12h for ritonavir was calculated by application of the trapezoidal

rule from 0 to 12h. Cmax was the highest observed plasma concentration and tmax

was the corresponding sampling time. Cmin for ritonavir was the concentration at 12h

after ingestion of the drug. The elimination half life (t1/2) was calculated as 0.693/ß.

Apparent clearance (CL/F, where F is bioavailability) was calculated by dividing dose

(D) by AUC0-∞ (desipramine) or AUC0-12h (ritonavir), and apparent volume of

distribution (Vd/F) was obtained by dividing CL/F by ß. 

Statistical analysis

The study was powered based on the anticipated influence of low-dose ritonavir on the

single-dose pharmacokinetics of desipramine, and this was the primary measure for

the effect of ritonavir on the activity of CYP2D6. The influence of ritonavir on the

dextromethorphan/dextrorphan urinary metabolic ratio was regarded as secondary

measure for the effect of ritonavir on CYP2D6. 

Effect of low-dose ritonavir on CYP2D6
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The effect of low-dose ritonavir on the bio-availability of desipramine was evaluated

using the confidence interval approach for bioequivalence studies that is also

recommended for drug interaction studies [12,13]. Geometric means were calculated

for each of the pharmacokinetic parameters of desipramine when administered alone

(first study period) or with ritonavir (second study period). Ratios of geometric means

(with/without ritonavir) and accompanying 90% confidence intervals were calculated

for each of the pharmacokinetic parameters. Equivalence between the administration

of desipramine with and without ritonavir (i.e. lack of an effect of ritonavir on the

pharmacokinetics of desipramine, no pharmacokinetic interaction) was concluded if

the 90% confidence intervals for the geometric mean ratios for AUC0-∞ and Cmax

were entirely contained within 80-125% limits. The results indicated inequivalence, i.e.

the occurrence of a pharmacokinetic interaction, if this condition was not fulfilled.

Tmax values of desipramine were not log-transformed and were compared using

Wilcoxon signed-ranks test. 

Dextromethorphan/dextrorphan urinary metabolic ratios as assessed without and with

concurrent use of ritonavir were log-transformed (because these data were not

normally distributed) and were compared using the paired t-test at the 5% significance

level. This is equivalent to calculation of the geometric mean ratio (with/without

ritonavir) plus 95% CI for the dextromethorphan/dextrorphan urinary metabolic ratio. 

All statistical evaluations were performed with SPSS for Windows, version 10.0 (SPSS

Inc., Chicago, IL, USA). 

Results

Thirteen healthy male participants, all extensive metabolizers for CYP2D6 as

determined by genotyping, were included. All subjects were Caucasians. The median

age of the participants was 26 years (range 20-56 years) and median weight was 84

kg (range 69-93 kg). All participants completed the study. 

Table 1 shows the steady-state pharmacokinetic parameters for low-dose ritonavir.

The single-dose pharmacokinetic parameters of desipramine when administered alone
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and under the steady-state conditions for low-dose ritonavir are shown in table 2, and

figure 2 shows the corresponding concentration-time profiles for desipramine. Marked

inter-individual variability in desipramine pharmacokinetic parameters was observed,

both with and without ritonavir. Upon co-administration of ritonavir, 12/13

participants had an increase in the AUC0-∞ of desipramine, varying from +4% to

+71% (figure 3), resulting in a geometric mean ratio (with ritonavir / without ritonavir)

plus 90% CI of 1.26 [1.16-1.37] for AUC0-∞. Based on these data, equivalence could

not be concluded for administration of desipramine without and with low-dose

ritonavir. Cmax values for desipramine were equivalent (table 2).    

The baseline CYP2D6 phenotyping results obtained on days 1-2 were consistent with

the results for CYP2D6 genotyping, since all participants had a dextromethorphan/

dextrorphan metabolic ratio below 0.3, which classifies them as extensive

metabolizers. The geometric mean metabolic ratio was 0.0043 (range 0.0008-

0.1226) at baseline (days 1-2) and 0.0066 (range 0.0005-0.0676) after

administration of ritonavir (days 22-23). The paired t-test on the log-transformed

Effect of low-dose ritonavir on CYP2D6

Parametera Geometric mean [95% CI]b Range

AUC0-12h (h.mg/L) 6.2  [4.8-7.9] 3.2-10.8

Cmax (mg/L) 0.89 [0.67-1.18] 0.42-1.8

Cmin (mg/L) 0.22 [0.16-0.32] 0.08-0.49

tmax (h) 4.0c 0.9-7.0

t1/2 (h) 4.7 [3.6-6.1] 2.6-12.9

CL/F (L/h) 16.1 [12.6-20.6] 9.3-31.4

Vd/F (L) 108.6 [70.8-166.6] 40.9-504.6

Table 1. Steady state pharmacokinetic parameters of ritonavir 100 mg BID (n=13)

a AUC0-12h: area under the concentration-time curve from zero to 12h, Cmax : highest observed plasma
concentration, Cmin: trough plasma concentration at t=12h, tmax : sampling time for Cmax, t1/2:
elimination half life, CL/F: total clearance, Vd/F: apparent volume of distribution,  F: bio-availability.
b CI: confidence interval 
c median 
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Figure 2. Plasma concentration-time curves of desipramine administered alone (50 mg) and concurrently
with low-dose ritonavir (100 mg BID) in extensive metabolizers for CYP2D6 (n=13, mean and standard
deviations).

Parametera Geometric mean (range) Geometric mean ratio P-value

(period 2 / period 1)

Study period 1b Study period 2c and 90% CId

AUC0-∞ (h.ng/ml) 393 (89-1683) 495 (100-1745) 1.26 [1.16-1.37] <0.001

Cmax (ng/ml) 14.5 (4.2-25.2) 15.7 (4.0-28.6) 1.08 [1.00-1.17] 0.11

tmax (h) 6.0 (2.1-8.1)e 6.0 (2.0-12.0)e - 0.42f

t1/2 (h) 17.1 (10.3-44.2) 22.3 (14.5-43.2) 1.31 [1.17-1.45] 0.001

CL/F (L/h) 127 (30-564) 101 (29-501) 0.80 [0.73-0.87] <0.001

Vd/F (L) 3137 (1654-8646) 3253 (1785-10495) 1.04 [0.93-1.16] 0.57

Table 2. Pharmacokinetic parameters of a single oral dose of desipramine 50 mg given alone and
concomitantly with ritonavir 100 mg twice-daily (n=13)

a AUC0-∞: area under the concentration-time curve from zero to infinity, Cmax : highest observed plasma
concentration, tmax : sampling time for Cmax, t1/2: elimination half life, CL/F: total clearance, Vd/F:
apparent volume of distribution,  F: bio-availability.
b Desipramine single dose 50 mg
c Desipramine single dose 50 mg in the presence of steady-state ritonavir 100 mg BID
d CI: confidence interval 
e median and range 
f  Wilcoxon signed-ranks test
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Figure 3. Individual desipramine AUC0-∞ values when administered alone (first study period) and
concurrently with low-dose ritonavir (100 mg BID, second study period). The dotted line joins the geometric
mean desipramine AUC0-∞ values in the first and second study period.
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dextromethorphan/dextrorphan metabolic ratios did not reveal a statistically

significant difference (p=0.28), corresponding to a geometric mean ratio (metabolic

ratio with/without ritonavir) plus 95% CI of 1.56 [0.66-3.71]. Examination of results

for individual participants showed a variable change in metabolic ratio (figure 4). The

metabolic ratio for all subjects remained at less than 0.3 after administration of low-

dose ritonavir.

In the first study period, a significant linear association was found between the

dextromethorphan/dextrorphan metabolic ratio and the desipramine AUC0-∞

(Spearman’s rho=0.67, p=0.02). However, this association was not observed after co-

administration of ritonavir in the second period (rho=0.36, p=0.25). In addition, there

was no linear association between the change in desipramine AUC0-∞ (AUC0-∞ on

day 24-27 / AUC0-∞ on day 3-6) and the change in dextromethorphan/dextrorphan

metabolic ratio (ratio day 22-23 / ratio day 1-2) (rho=0.01, p=0.97).

The exposure to low-dose ritonavir (AUC0-12h) was not linearly associated with the

change in desipramine AUC0-∞ or the change in dextromethorphan/dextrorphan

metabolic ratio (rho=-0.16, p=0.60 and rho=-0.07, p=0.82, respectively).

Administration of desipramine and low-dose ritonavir was well-tolerated without any

serious adverse reactions (WHO grade 2, 3 or 4). After administration of

desipramine, mild fatigue and dry mouth were reported by three to five participants in

each study period. The median fasting cholesterol increased from 4.4 mmol/L at

baseline to 4.7 mmol/L at the end of the study (median increase was 0.6 mmol/L),

and median triglyceride values increased from 0.9 mmol/L to 1.2 mmol/L (median

increase was 0.3 mmol/L). No other laboratory abnormalities were observed. 

Discussion

This study shows that co-administration of low-dose ritonavir (100 mg BID) results in a

26% increase in the geometric mean AUC0-∞ of a single dose of desipramine.

Therefore bioequivalence could not be concluded between desipramine when

administered alone and combined with low-dose ritonavir. These results suggest that

low-dose ritonavir exerts an inhibitory effect on the activity of CYP2D6. However, this

inhibitory effect is modest and was not apparent when the dextromethorphan/
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dextrorphan metabolic ratio was used as an indicator for CYP2D6 activity in the same

subjects.

The biotransformation of the antidepressant desipramine to its principal metabolite, 2-

hydroxy-desipramine, is almost exclusively mediated by CYP2D6 [7]. Consequently the

2-hydroxylation of desipramine is used as an index reaction to assess CYP2D6 activity

in vitro [14,15], and desipramine is applied as CYP2D6 index substrate in intensive

pharmacokinetic studies that aim to assess the effect of other drugs on CYP2D6 activity

in vivo [16,17]. The latter approach was used in this study and served as the primary

measure to evaluate the effect of low-dose ritonavir on the activity of CYP2D6,

considering that a pharmacokinetic evaluation directly shows the clinical consequences

of CYP2D6 inhibition in terms of plasma concentrations that are unequivocal and easy

to interpret. A previous pharmacokinetic study combined single oral doses of

desipramine with a high dose of ritonavir (500 mg BID [3]). In that study, the mean

AUC ratio for desipramine (AUC during ritonavir divided by AUC without ritonavir)

was 2.45, corresponding to a 145% increase in the AUC of desipramine upon

administration of ritonavir. Compared to these findings, the effect of low-dose ritonavir

on CYP2D6, as assessed in the current study, is marginal. This is in accordance with

the preliminary results of another study, that found no effect of low-dose ritonavir (100

mg BID) plus lopinavir (400 mg BID) on the activity of CYP2D6 [18]. 

Metabolic phenotyping with dextromethorphan was used as a secondary measure to

assess the effect of low-dose ritonavir on CYP2D6 in this study. The main metabolic

route for dextromethorphan is its O-demethylation to dextrorphan, a pathway that is

largely mediated by CYP2D6 [8]. The transformation of dextromethorphan to

dextrorphan is very rapid in extensive metabolizers for CYP2D6 (elimination half-life

for dextromethorphan is 2-4 h), but not in poor metabolizers, and dextromethorphan

and metabolites are readily excreted in urine. Thus the dextromethorphan/dextrorphan

urinary metabolic ratio can be used to assess the CYP2D6 phenotype [8,19]. This

approach is noninvasive and involves only one timed urine sample rather than

intensive blood sampling. In this study, administration of low-dose ritonavir did not

result in a significant change in the mean dextromethorphan/dextrorphan metabolic

ratio. This finding contrasts with the clear but modest effect of low-dose ritonavir on

the bio-availability of desipramine. However, it has been shown before that the
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dextromethorphan/dextrorphan metabolic ratio is not a very sensitive marker for

inhibition of CYP2D6 [16,20]. This may be explained by the large intra-individual

variability in baseline dextromethorphan/dextrorphan metabolic ratios [21-24] that

could mask small changes in CYP2D6 activity. Repeat baseline and treatment

phenotyping assessments may be required if metabolic phenotyping for CYP2D6 is

used as the primary measure to assess the effect of a drug on CYP2D6 activity [21].

As another explanation for the discrepancy between the effects of low-dose ritonavir

on desipramine and dextromethorphan, it could be argued that assessment of the

CYP2D6 phenotype with dextromethorphan is not sufficiently validated in the presence

of a CYP3A4 inhibitor such as ritonavir, despite the fact that several studies have

actually used the dextromethorphan/dextrorphan metabolic ratio to assess whether

moderate to strong inhibitors of CYP3A (claritromycin [25], fluoxetine [26-28],

fluvoxamine [29]) did also affect the activity of CYP2D6. Inhibition of CYP3A could be

relevant to the dextromethorphan/dextrorphan metabolic ratio, considering that

dextromethorphan is metabolized by CYP3A4 to a small extent and that dextrorphan

is further metabolized by this iso-enzyme [30]. Although it has been demonstrated that

grapefruit juice or erythromycin (inhibitors of CYP3A4) did not affect the

dextromethorphan/dextrorphan metabolic ratio [30,31], it has not been shown that

concurrent inhibition of CYP3A4 also permits the accurate assessment of CYP2D6

activity with dextromethorphan as probe. 

The clinical consequences of the modest inhibitory effect of low-dose ritonavir on the

activity of CYPD6 are dependent on the CYP2D6 substrate. This modest effect of low-

dose ritonavir may be relevant for substrates that are both largely dependent on

CYP2D6 for their metabolism and have a narrow therapeutic index (e.g. desipramine).

However, based on the results of this study it is expected that standard, pre-emptive

dose reductions are not warranted when such substrates are combined with low-dose

ritonavir 100 mg BID. It seems rather sufficient to advise physicians to titrate the dose

of these CYP2D6 substrates carefully, using plasma concentration measurements for the

CYP2D6 substrate if a therapeutic range has been defined. In addition, these patients

should be monitored for adverse reactions related to the CYP2D6 substrate. The effect

of low-dose ritonavir on the activity of CYP2D6 is not relevant for CYP2D6 substrates

that are only partly metabolized by CYP2D6, or for substrates that do not have a

narrow therapeutic index. However, it should be recognized that such CYP2D6
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substrates may still interact with low-dose ritonavir if they are metabolized by CYP3A4

to a large extent. 

Some additional considerations are important for the extrapolation of the results of this

study to patients. Firstly, it should be noticed that the participants in this study were all

healthy and male subjects and extensive metabolizers for CYP2D6. It can not be

excluded that the pharmacokinetics of ritonavir and CYP2D6 substrates are different in

HIV-infected patients compared to healthy volunteers [32]. A slightly higher CYP2D6

activity in women versus men was found in some [23,33,34] but not all [21,24] studies.

However, we do not expect that gender will have a large effect on the magnitude of the

interaction between low-dose ritonavir and CYP2D6 substrates. The results of this study

do not apply to poor metabolizers for CYP2D6, but it is worthwile to mention that the

effects of CYP2D6 inhibition on the pharmacokinetics of CYP2D6 substrates are generally

less pronounced in poor metabolizers [35-38]. 

Secondly, it should be considered that this study evaluated the effect of low-dose ritonavir

on the activity of CYP2D6, irrespective of the PI that is administered with ritonavir. Other

PIs do not affect CYP2D6 themselves, but they may have an effect on the exposure to

low-dose ritonavir. Available data suggest that exposure to low-dose ritonavir is lower in

the combination with lopinavir or amprenavir [39], and that indinavir slightly increases

the exposure to low-dose ritonavir [4]. However, any such between-PI differences in the

exposure to low-dose ritonavir will be small compared to the ritonavir exposure that

strongly inhibits CYP2D6 (i.e. exposure to ritonavir 600 mg BID; AUC0-12h is 60.8

h*mg/L [40]). The relevance of these small differences will probably be limited,

considering that the current study only found a modest effect of low-dose ritonavir on

CYP2D6 activity and no association between the AUC0-12h of low-dose ritonavir and

the change in desipramine pharmacokinetics. Administration of low-dose ritonavir with

or without food may also have a slight effect on the exposure to low-dose ritonavir, and

this warrants further study. 

Finally, this study evaluated the pharmacokinetics of a single dose of desipramine

administered under steady-state conditions for low-dose ritonavir. It would be valuable to

substantiate the results of this study by evaluating steady-state concentrations of CYP2D6

substrates in HIV-infected patients who use a low-dose of ritonavir combined with regular

doses of other antiretroviral drugs.   
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In conclusion, this study shows that low-dose ritonavir exerts a significant but modest

inhibitory effect on the activity of CYP2D6 in extensive metabolizers. Based on these

data, it is expected that no standard dose reductions are required if CYP2D6

substrates that are largely metabolized by CYP2D6 and have a narrow therapeutic

index are combined with low-dose ritonavir. Patients who take such a combination

should be closely monitored for adverse reactions to the CYP2D6 substrate. The effect

of low-dose ritonavir on CYP2D6 appears to be clinically irrelevant for CYP2D6

substrates that are only partly metabolized by this iso-enzyme or that have a wide

therapeutic index.   
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Abstract

Aims
This study was performed to evaluate the steady-state pharmacokinetics, food intake

requirements and short term tolerability of once daily combinations of nelfinavir and low-

dose ritonavir.

Methods
Twenty-seven healthy volunteers were randomized over three groups to receive a once-daily

regimen of nelfinavir/ritonavir 2000/200 mg (group 1), 2000/400 mg (group 2) or

2500/200 mg (group 3) with food for 14 days. Pharmacokinetic parameters for nelfinavir

and its active metabolite M8 were assessed on study days 15 and 16, after administration

of the regimens with a full (610 kcal) or light (271 kcal) breakfast, respectively. 

Results
Pharmacokinetic data were evaluable for eight volunteers in group 1, eight in group 2 and

four in group 3. Administration of nelfinavir/ritonavir with a full breakfast resulted in

geometric mean (GM) nelfinavir AUC24h values of 76.8, 51.3, and 61.9 h*mg/L in group

1, 2 and 3, respectively. GM 24-h Cmin concentrations of nelfinavir were 0.76 mg/L, 0.43

mg/L and 0.47 mg/L, respectively. Co-administration of ritonavir increased M8

concentrations more than nelfinavir concentrations, resulting in GM AUC24h and Cmin

values for nelfinavir plus M8 that were higher than or comparable to reference values for

the approved regimen of nelfinavir (1250 mg BID without ritonavir). In the 2000/200 mg

group, seven out of eight subjects had a Cmin value of nelfinavir plus M8 above a

threshold of 1.0 mg/L. Administration of the combinations with a light breakfast resulted in

significant decreases in the AUC24h and Cmin of nelfinavir and nelfinavir plus M8,

compared with intake with a full breakfast. For the Cmin of nelfinavir plus M8, the GM

ratio (light/full breakfast) was 0.76 (90% confidence interval:  0.67-0.86, participants from

all groups combined). Short-term tolerability was satisfactory, apart from a higher than

expected incidence of mild rash (12%).

Conclusions
Administration of nelfinavir in a once daily regimen appears feasible. A nelfinavir/ritonavir

2000/200 mg combination appears appropriate for further evaluation. Once daily

nelfinavir/ritonavir should be taken with a meal containing at least 600 kcal. 
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Introduction

The availability of highly active antiretroviral therapy (HAART) has dramatically

decreased mortality and morbidity in HIV infection [1]. However, up to 50% of

treatment-naive patients do not have sustained antiviral response after one year of

therapy [2,3]. To a considerable extent this can be ascribed to difficulties in achieving

adequate adherence to the complex HAART regimens [4,5]. Simpler dosing regimens

are associated with better adherence [6-8], and there is a move to decrease the

frequency of HAART dosing to a once-daily regimen.

Pharmacokinetic interactions between protease inhibitors (PIs) can be exploited as a

means of decreasing the dosing frequency of these antiretroviral drugs. More

specifically, the exposure to PIs can be raised, and their half-lives can be prolonged,

by coadministration of low-dose ritonavir [9]. The latter impairs the metabolism of

other PIs by potent inhibition of cytochrome (CYP) 3A4. Data from recent studies

suggest that ritonavir can adequately boost concentrations of amprenavir, indinavir

and saquinavir, to allow for once-daily dosing of these PIs [10-15]. 

Nelfinavir is another PI that is widely used for treatment of HIV infection. It is approved

for twice-daily dosing (1250 mg BID), and should be taken with food [16]. In vitro

studies revealed that nelfinavir is metabolized by at least five different pathways,

catalysed by several CYP isoenzymes (CYP3A4, CYP2C19, CYP2D6 and CYP2C9

[17]). CYP3A4 and CYP2C19 are the predominant contributors to nelfinavir

metabolism. CYP2C19 catalyses exclusively the conversion of nelfinavir to an active

metabolite termed M8, which in turn is metabolized by CYP3A4 [18]. Plasma levels of

M8 are about 30% of those of nelfinavir after BID dosing of the latter [19]. M8 has

equipotent activity to nelfinavir in vitro, binds to plasma protein in vivo to a similar

extent to nelfinavir (≥ 98%), and has an almost identical molar weight [20]. Assuming

additive virological efficacy, this suggests that the sum nelfinavir and M8 plasma

concentrations may represent all active drug after administration of the parent drug. 

Nelfinavir appears to be an appropriate PI for once-daily administration, because of

its pharmacokinetic properties and its good tolerability. Nelfinavir shows slow oral

absorption and an elimination half-life that is relatively long (3.5-5 h) compared with

most other PIs [16]. In addition, previous pharmacokinetic studies have demonstrated
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that exposure to nelfinavir can be increased by coadministration of low-dose ritonavir

(100-400 mg BID) [21,22]. In these studies, ritonavir also increased M8

concentrations, as well as the M8:nelfinavir ratio, enhancing the relative contribution

of M8 to the antiviral efficacy of nelfinavir. Thus, it appeared feasible that therapeutic

plasma concentrations of nelfinavir plus M8 could be maintained over 24 h after once-

daily administration of nelfinavir and ritonavir. 

With respect to the tolerability of such a once-daily regimen, it appeared

advantageous that no clear relationship has been demonstrated between the adverse

effects of nelfinavir and its plasma concentration, particularly Cmax [23,24].

Therefore this study was performed to characterize the steady-state pharmacokinetics

and short-term tolerability of possible once-daily nelfinavir/ritonavir combinations. We

also evaluated whether ingestion with a light meal would permit adequate absorption

of these combinations.

Methods

Subjects

Male or female healthy volunteers, aged 18 to 65 years, were eligible for enrolment.

Subjects were excluded if they were hepatitis B- or C-seropositive, pregnant,

hypersensitive to PIs or loperamide, if they had positive serology for HIV infection or

prespecified abnormal laboratory parameters, and if they were taking any medication

or illicit drugs. 

All subjects gave written informed consent after full explanation of the study details.

The study was approved by the Institutional Review Board of University Medical Centre

Nijmegen, The Netherlands.

Study design and procedures

This study had an open-label, randomized, multiple-dose, parallel-group design.

Twenty-seven volunteers were randomized (stratified by gender) over three dosage

groups. Participants took once-daily doses of either 2000 mg nelfinavir plus 200 mg

ritonavir (group 1), 2000 mg nelfinavir plus 400 mg ritonavir (group 2), or 2500 mg

nelfinavir plus 200 mg ritonavir (group 3). Nelfinavir (Viracept®) was administered as
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film-coated tablets, each containing 250 mg. Ritonavir (Norvir®) was given as capsules

containing 100 mg. 

Nelfinavir and ritonavir in all three combinations were ingested concomitantly with

food (at least two slices of bread) at 24-h intervals and for 14 days.

Participants in the 2000/400 mg group (group 2) started with a 4-day lead-in period

of 300 mg (instead of 400 mg) ritonavir combined with nelfinavir in order to attenuate

possible ritonavir-associated adverse events in the initial period of the study [9]. 

Blood samples for two consecutive 24-h pharmacokinetic profiles were collected on

study days 15 and 16. Participants attended in the morning after an overnight fast

and a predose blood sample was drawn. On day 15 they ingested nelfinavir and

ritonavir with a standardized, full breakfast, which consisted of 130 ml water and four

slices of bread, filled with butter plus cheese, ham, paste or jam (610 kcal: 33% fat,

16% proteins and 51% carbohydrates). Blood samples were drawn at 0.5, 1.0, 1.5,

2.0, 2.5, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 10.0, 12.0, 16.0 and 24.0 h post dose. Plasma

was isolated by centrifugation within 12 h of sampling and was stored at -200C until

analysis. 

After an overnight fast, the same procedure was repeated on day 16. However, the

drugs were ingested with a light instead of a full breakfast. This comprised one slice of

bread with butter and cheese and 130 ml of semiskimmed milk (271 kcal: 37% fat,

24% proteins, 39% carbohydrates).

The study was conducted on an outpatient basis. Subjects received their study

medication in a vial that contained sealed plastic sachets, each holding the

appropriate number of tablets and capsules for one day. Drug administration was

witnessed on days 1, 4, 11, 15 and 16. Compliance with study medication at home

was verified at every study visit by inspection of drug-taking diaries, counting of

sachets, measurement of plasma drug concentrations, and electronic monitoring of

opening of vials, using the Medication Event Monitoring System (MEMS®) [25]. 

Drug analysis 

Nelfinavir and ritonavir concentrations were assayed using a previously described

validated reversed-phase HPLC method with u.v. detection [26]. M8 concentrations
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were determined simultaneously using the same method without modifications. The

retention time of M8 was 12.7 min. The accuracy of the method for nelfinavir ranged

from 96% to 100%, depending on the concentration. Those for ritonavir and M8 were

102-108% and 93-108%, respectively. Intra-day precision and between-day precision

were 2.1-7.5% and 0.4-3.5% for nelfinavir, 2.0-8.1% and 0-2.4% for ritonavir, and

2.8-4.3% and 2.0-3.0% for M8. The limit of determination was 0.04 mg/L for

nelfinavir, ritonavir and M8.

Pharmacokinetic analysis

Pharmacokinetic parameters for nelfinavir, ritonavir and M8 were obtained by

noncompartmental methods [27]. The highest observed plasma concentration was

defined as Cmax, with the corresponding sampling time as tmax. Cmin was the

concentration at 24 h after ingestion of the drugs. The terminal, log-linear period (log

C versus t) was defined by visual inspection of the last data points (n ≥ 3). The value of

the slope (- ß/2.303) was calculated by least-squares linear regression analysis,

where ß is the first-order elimination rate constant. The elimination half life (t1/2) was

calculated from the expression 0.693/ß. 

The area under the concentration vs time curve (AUC24h) was calculated using the

trapezoidal rule from 0 to 24 h. The time of ingestion of nelfinavir/ritonavir on day 14

(the day preceding pharmacokinetic assessments) varied among participants, resulting

in different contributions of this dose to the AUC24h on day 15. Therefore AUC24h

values for study day 15 were corrected for the contribution of the previous dose by

subtraction of C0/ß (where C0 is the concentration just before ingestion of

nelfinavir/ritonavir at t=0), and area under the curve was extrapolated to infinity by

adding Cmin/ß. Accordingly, the corrected AUC24h value (AUC24h,corr) for day 15

was obtained from the equation: 

AUC24h,corr = AUC24h - C0/ßday15 + Cmin/ßday15 . 

The AUC24h for day 16 was corrected in the same way, but the contribution of the

predose AUC was calculated using the elimination-rate constant ß determined on day

15: AUC24h,corr = AUC24h - C0/ßday15 + Cmin/ßday16.

Apparent clearance (CL/F, where F is bioavailability) was calculated by dividing dose

(D) by AUC24h,corr, and apparent volume of distribution (Vd/F) was obtained by

dividing CL/F by ß. Both were corrected for weight. 
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Safety and tolerability

Safety and tolerability were assessed by a questionnaire that described 15 possible

adverse events that could occur during treatment with nelfinavir or ritonavir. The

questionnaire was completed four times each, on study days 4, 8, 11 and 15.

Participants were asked to grade every event as mild (symptoms do not interfere with

daily activities), moderate (symptoms interfere with daily activities) or severe

(symptoms markedly interrupt daily activities). An extensive blood chemistry and

haematology screen and urinalysis were performed on the same four study days. If

WHO grade 2 diarrhoea occurred, use of loperamide was allowed. 

Data-analysis

The study was not powered to enable formal statistical comparisons of pharmacokinetic

parameters between the study groups. Therefore pharmacokinetic parameters are

presented descriptively for every study group. 

To assess the effect of the composition of the concurrent meal on the pharmacokinetics of

nelfinavir, M8, nelfinavir plus M8, and ritonavir, a two-way mixed analysis of variance

(ANOVA) was performed on the logarhitmically transformed values of AUC24h,corr, Cmax

and Cmin, with the study group as between-subjects factor and the composition of the

breakfast as within-subjects factor. Absence of an effect of the meal composition on

AUC24h,corr, Cmax or Cmin was concluded if the 90% confidence interval (CI) for a

geometric mean ratio (light breakfast / full breakfast) was contained within 0.8 and 1.25

[28]. Tmax values were not log-transformed and were compared using the Wilcoxon

signed-ranks test. 

The incidence of adverse events was expressed as the percentage of participants who

reported a particular event at least once during the four reporting moments. Consequently

every reported mild, moderate or severe adverse event was ascribed a severity score of 1,

2 or 3 points respectively. Scores were added up for each participant and were divided

by the number of reporting moments. In this way mean toxicity scores over the study

period were obtained for all individual participants. All statistical evaluations were

performed with SPSS for Windows, version 10.0 (SPSS Inc., Chicago, IL, USA). 
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Results

Subjects

Twenty-seven volunteers were enrolled into the study. Five male and four female

subjects were included in each group. Median ages were 28, 23 and 25 years in

groups 1, 2, and 3, respectively, and median weights were 71, 73 and 71 kg. All

subjects were Caucasians.

Twenty-one volunteers completed the study and data for 20 volunteers were evaluated

(eight volunteers in group 1, eight in group 2 and four in group 3). 

One subject in group 1 and one in group 2 and three in group 3 were withdrawn

because of toxicity concerns. An additional volunteer in group 3 withdrew his

informed consent. One subject in group 3 did not convert nelfinavir to M8, probably

because of CYP2C19 poor metabolizer genotype status, which occurs in 3-5% of

Caucasian subjects [18]. Because of this, pharmacokinetic data for this volunteer were

not analysed, which reduced the number of evaluable participants in group 3 to four. 

Pharmacokinetics of nelfinavir and M8 

Table 1 summarizes the pharmacokinetic parameters of nelfinavir, M8 and nelfinavir

plus M8 after once daily administration of the combinations for 14 days. Figures 1 and

2 display the corresponding plasma concentration-time curves for nelfinavir and M8,

showing that coadministration of nelfinavir and ritonavir in once-daily combinations

resulted in detectable and appreciable concentrations of nelfinavir and M8 throughout

the whole 24-h dosing interval. Concentration-time curves for nelfinavir and M8 after

administration of nelfinavir alone are shown for reference. 

M8 concentrations after once-daily administration of nelfinavir and ritonavir (table 1,

figure 2) were relatively high compared with those of nelfinavir. Coadministration of

nelfinavir and ritonavir appeared to raise M8 concentrations to a greater extent than

nelfinavir concentrations, resulting in high M8:nelfinavir ratios for AUC24h,corr and

especially for Cmin (table 1).

The geometric mean values for the AUC24h,corr and especially Cmin of nelfinavir were

highest in group 1 (nelfinavir/ritonavir 2000/200 mg once daily). In contrast, the
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Parameter b Values (geometric mean + range)

group 1: Group 2: group 3:
nelfinavir/ritonavir nelfinavir/ritonavir nelfinavir/ritonavir
2000/200mg 2000/400mg 2500/200mg
(n=8) (n=8) (n=4)

Nelfinavir
AUC24h, corr (h.mg/L) 76.8   (32.4-121.3) 51.3   (23.5-114.8) 61.9   (48.1-89.3)
Cmax (mg/L) 7.2     (3.4-9.3) 5.1    (2.9-9.4) 6.7     (6.4-7.6)
Cmin (mg/L) 0.76   (0.28-2.1) 0.43   (0.16-1.8) 0.47   (0.18-1.8)
tmax (h) c 4.0    (2.5-5.0) 4.6    (2.6-6.0) 4.5     (3.0-5.0)
CL/F.kg (L/h.kg) 0.35  (0.16-0.84) 0.51  (0.24-0.95) 0.52   (0.27-0.74)
Vd/F.kg (L/kg) 3.2    (1.8-5.4) 4.5    (2.9-9.2) 4.3     (3.6-5.0)
t1/2 (h) 6.5    (4.4-11.3) 6.1   (4.3-9.2) 5.8     (4.0-9.1)

M8 d

AUC24h,corr (h.mg/L) 38.5   (21.5-57.7) 40.9   (30.1-58.8) 45.3   (30.0-63.4)
Cmax (mg/L) 3.4     (2.3-5.6) 3.7     (2.8-4.9) 4.3     (2.9-5.9)
Cmin (mg/L) 0.63   (0.46-1.1) 0.59   (0.32-1.1) 0.67   (0.35-1.7)
tmax (h) c 5.0     (4.0-5.0) 5.0     (4.0-6.1) 4.5     (4.0-5.0)
t1/2 (h) 9.7     (7.5-13.6) 8.6     (6.0-11.8) 8.9     (7.4-13.3)

Nelfinavir + M8
AUC24h,corr (h.mg/L) 116.4  (53.9-172.6) 94.6   (61.6-173.7) 108.3  (94.6-152.8)
Cmin (mg/L) 1.4     (0.81-3.2) 1.1   (0.61-2.9) 1.2    (0.77-3.5)

M8-to-nelfinavir ratio
Ratio for AUC24h, corr 0.50 (0.32-0.75) 0.80 (0.42-1.6) 0.73 (0.46-0.98)
Ratio for Cmin 0.83 (0.43-1.9) 1.36 (0.50-4.3) 1.43 (0.61-3.3)

a Pharmacokinetic parameters were assessed after intake of drugs with a full breakfast:
610 kcal, 33% fat, 16% proteins, 51% carbohydrates and 130 ml water (study day 15). 
b AUC24h,corr , corrected  24 h-area under the concentration-time curve (see text); Cmin, trough concentration
at 24 h; Cmax, highest observed plasma concentration; tmax, sampling time for Cmax; CL/F.kg, total
clearance corrected for weight; Vd/F.kg, volume of distribution corrected for weight; t1/2, elimination half
life; F, bio-availability.
c Median (and range).
d CL/F.kg and Vd/F.kg can not be calculated for M8, as dose is unknown.

Table 1. Pharmacokinetics of nelfinavir, M8, and nelfinavir plus M8 after once-daily
administration of nelfinavir/ritonavir combinations for 14 days a  
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Figure 1. Nelfinavir steady state plasma concentrations on day 15 (geometric mean values) after
administration of once-daily (OD) nelfinavir/ritonavir combinations.a

a In-house reference data for nelfinavir 1250 mg BID are displayed for reference (see also table 5)

Figure 2. M8 steady-state plasma concentrations on day 15 (geometric mean values) after administration of
once-daily (OD) nelfinavir/ritonavir combinations.a

a In-house reference data for M8 (after administration of nelfinavir 1250 mg) are displayed for reference
(see also table 5)
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geometric mean AUC24h,corr and Cmin values for M8 appeared remarkably similar

across the study groups (table 1). As a result, the summed AUC24h,corr and Cmin values

for nelfinavir plus M8 were also highest in group 1. Neither increasing the dosage of

ritonavir to 400 mg (group 2), nor increasing the nelfinavir dose to 2500 mg (group 3)

led to a proportional increase in nelfinavir (or nelfinavir plus M8) concentrations.

High inter-individual variability in pharmacokinetic parameters was noted in all three

once-daily groups (table 1, figure 3). Figure 3 shows the variability in 24-h Cmin levels

for nelfinavir and nelfinavir plus M8 in the three study groups, along with proposed

therapeutic thresholds for nelfinavir and M8 [29-31]. It appeared that 7/8 participants

in group 1 had a nelfinavir Cmin above a proposed therapeutic threshold of 0.45 mg/L

for nelfinavir (M8 not included [29]), compared with 2/8 participants in group 2 and

2/4 participants in group 3 (figure 3, left panel). Comparison of individual’s Cmin with

a higher threshold concentration of 0.8 mg/L for nelfinavir [30,31] revealed that 4/8,

2/8 and 1/4 participants in groups 1, 2 and 3 had nelfinavir Cmin values above this

concentration. The 0.8 mg/L threshold for nelfinavir corresponds roughly to a third

threshold of 1.0 mg/L for nelfinavir and M8 together (0.8 + (30% * 0.8) = 1.0 mg/L).

When nelfinavir and M8 Cmin concentrations were summed (figure 3, right panel), 7/8

volunteers in group 1 had a nelfinavir plus M8 Cmin above 1.0 mg/L, compared with

4/8 and 1/4 volunteers in groups 2 and 3 respectively.

In group 1, a linear association was found between the AUC24h,corr values for M8 and

ritonavir (Spearman’s rho = 0.786, p=0.021), but the AUC24h,corr values for nelfinavir

and ritonavir, or nelfinavir and M8 were not related. No corresponding associations

were found in group 2. Correlation analyses were not performed for group 3, because

of the small number of participants remaining in this group.

Pharmacokinetics of ritonavir

The geometric mean AUC24h,corr , Cmin and Cmax for ritonavir in groups 1 and 3 (200

mg of ritonavir once-daily) were comparable (table 2). Increasing the dose of ritonavir

from 200 mg to 400 mg (group 2) resulted in a more than proportional increase in the

AUC24h,corr for ritonavir. The AUC24h,corr of ritonavir in group 2 was significantly higher

than that in groups 1 and 3 (p < 0.001).

Once daily nelfinavir/ritonavir
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Food effects 

A significant effect of meal composition on the AUC24h,corr and Cmin values for

nelfinavir and nelfinavir plus M8 was found. No significant differences between study

groups could be demonstrated for these parameters and the interaction between study

group and meal composition was never significant. 

The geometric mean ratios (light/full breakfast) and 90% CI were 0.70 [0.62-0.78]

and 0.76 [0.68-0.85] for nelfinavir AUC24h,corr and Cmin, respectively, and 0.71

[0.63-0.81] and 0.76 [0.67-0.86] for the AUC24h,corr and Cmin of nelfinavir plus M8

(data of all three groups combined). The geometric mean ratios fell below 

0.8-1.25 limits and the 90% CI were not contained within these limits; thus, the

absence of a food-effect could not be concluded.   

As the lack of significant between-group differences and the lack of a group-by-meal

interaction could be attributable to the small number of participants in each group,
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table 3 shows geometric mean ratios and CIs for each of the study groups separately.

The food-effect data in individual groups were in accordance with the data for all

groups together. Confidence intervals for group 3 were broad due to the small number

of participants in this group.

With respect to ritonavir, the data suggested that the AUC24h,corr in group 2 (400 mg of

ritonavir) was less affected by the composition of the breakfast than AUC24h,corr values

in groups 1 and 3 (200 mg of ritonavir). 

Safety and tolerability 

Five volunteers were withdrawn because of concerns over toxicity. Three of these (one

in each study group) suffered a mild rash. A second subject in group 3 was withdrawn

as a precautionary measure, as he had complaints (without any objective sign of

toxicity) which reminded him of a hypersensitivity reaction that he experienced once

before. A third subject in group 3 was withdrawn because of severe fatigue (WHO

Once daily nelfinavir/ritonavir

Parameter b Values (geometric mean + range)

group 1: group 2: group 3: 
nelfinavir/ritonavir nelfinavir/ritonavir nelfinavir/ritonavir
2000/200mg 2000/400mg 2500/200mg
(n=8) (n=8) (n=4)

Ritonavir
AUC24h,corr (h.mg/L) 12.2   (8.2-18.3) 32.4   (14.0-53.7) 11.8   (7.9-23.4)
Cmax (mg/L) 1.7    (1.1-2.9) 4.0     (2.3-5.7) 1.8     (1.2-3.9)
Cmin (mg/L) 0.04   (0.00-0.12) 0.15   (0.06-0.24) 0.04   (0.02-0.13)
tmax (h) c 4.0    (2.0-5.0) 4.1    (1.0-6.0) 5.0     (1.5-5.0)
CL/F.kg (L/h.kg) 0.22  (0.16-0.35) 0.15  (0.06-0.30) 0.22   (0.12-0.37)
Vd/F.kg (L/kg) 1.1   (0.58-1.5) 0.95  (0.32-2.2) 1.3     (0.62-2.6)
t1/2 (h) 3.4   (2.4-5.7) 4.4    (3.7-7.0) 4.1     (2.7-5.4)

Table 2. Pharmacokinetics of ritonavir after once-daily administration of nelfinavir/ritonavir combinations for
14 days a

a Pharmacokinetic parameters were assessed after intake of drugs with a full breakfast:
610 kcal, 33% fat, 16% proteins, 51% carbohydrates and 130 ml water (study day 15). 
b Abbreviations of pharmacokinetic parameters: see table 1.
c Median (and range).
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Parameter a Geometric mean ratio (light/full breakfast) + 90% Cl b,c

Group 1: Group 2: Group 3: 
nelfinavir/ritonavir Nelfinavir/ritonavir nelfinavir/ritonavir
2000/200mg 2000/400mg 2500/200mg
(n=8) (n=8) (n=4)

Nelfinavir
AUC24h,corr (h.mg/L) 0.75 [0.67-0.84] 0.75 [0.66-0.85] 0.53 [0.29-0.98]
Cmax (mg/L) 0.88 [0.80-0.97] 0.84 [0.75-0.94] 0.57 [0.32-1.00]
Cmin (mg/L) 0.78 [0.65-0.94] 0.77 [0.61-0.99] 0.69 [0.53-0.90]
tmax (h) d +0.1 (-2.4 to +1.0) -0.5 (-3.0 to +5.0) -0.75 (-2.0 to 0.0) 

M8
AUC24h,corr (h.mg/L) 0.83 [0.68-1.01] 0.77 [0.65-0.91] 0.55 [0.28-1.06]
Cmax (mg/L) 0.93 [0.90-0.96] 0.84 [0.71-0.98] 0.63 [0.40-0.99]
Cmin (mg/L) 0.83 [0.69-0.99] 0.82 [0.63-1.07] 0.62 [0.36-1.05]
tmax (h) d -1.0 (-1.0 to 0.0) -1.0 (-2.0 to +5.0) -0.75 (-2.0 to 0.0)

Nelfinavir + M8
AUC24h,corr (h.mg/L) 0.78 [0.68-0.91] 0.75 [0.65-0.87] 0.53 [0.28-1.00]
Cmin (mg/L) 0.80 [0.67-0.96] 0.80 [0.62-1.02] 0.63 [0.43-0.91]

Ritonavir
AUC24h,corr (h.mg/L) 0.78 [0.66-0.92] 0.92 [0.78-1.08] 0.52 [0.29-0.95]
Cmax (mg/L) 0.95 [0.78-1.15] 1.07 [0.89-1.27] 0.49 [0.24-0.98]
Cmin (mg/L) 0.90 [0.74-1.09] 1.03 [0.59-1.80] 1.17 [0.91-1.50]
tmax (h) d +0.5 (-1.0 to +2.0) +0.5 (-1.0 to +5.1) -0.5 (-2.0 to 0.0)

Table 3. Effect of food on the steady-state pharmacokinetics of nelfinavir/ritonavir given once-daily 

a Abbreviations of pharmacokinetic parameters: see table 1. 
b CI: confidence interval. 
c A ratio refers to the fraction of a pharmacokinetic parameter after administration of nelfinavir/ritonavir
with a light breakfast (day 16) to the same parameter after administration with a full breakfast (day 15).
Full breakfast: 610 kcal, 33% fat, 16% proteins, 51% carbohydrates, 130 ml water. 
Light breakfast: 271 kcal, 37% fat, 24% proteins, 39% carbohydrates, 130 ml fluid.
d Median difference in tmax after administration of nelfinavir/ritonavir with a light breakfast compared to a
full breakfast (tmax day 16 - tmax day 15), and range. 
No significant differences in tmax values (light breakfast versus full breakfast) were found for nelfinavir, M8,
or ritonavir, except for M8 in group 1 (p = 0.03, Wilcoxon-signed ranks test).
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Adverse event Study group 

group 1: group 2: group 3: All groups: 

nelfinavir/ nelfinavir/ nelfinavir/

ritonavir ritonavir ritonavir

2000/200mg 2000/400mg 2500/200mg

(n=9) (n=9) (n=8) a (n=26)

Incidence (any severity) b

Diarrhoea 100 78 50 77

Flatulence 56 78 38 58

Nausea 11 56 25 31

Vomiting 0 11 25 12

Abdominal pain 22 44 50 38

Asthenia 11 22 38 23

Fatigue/somnolence 22 56 75 50

Fever 0 0 13 4

Headache 56 33 25 38

Skin reaction or rash 22 33 63 38

Taste perversion 11 11 25 15

Peroral paraesthesia 33 11 13 19

Peripheral paraesthesia 22 22 13 19

Arthralgia 22 22 25 23

Myalgia 11 22 13 15

Median severity score c 1.5 2.5 3.1 2.4

a Data are from all participants, including those who withdrew. One participant in group 3 withdrew
informed consent before taking the drugs and before the first evaluation of adverse events. 
b Incidence expressed as the percentage of participants who reported a particular adverse event at least
once.
c A severity score of 3.0 represents three mild adverse events, or one moderate adverse event (2 points) plus
a mild one, or one severe adverse event (3 points) at an average reporting moment.

Table 4. Adverse events: incidence and toxicity scores a



200

grade 3 toxicity) after 11 days of nelfinavir/ritonavir. One day after stopping the

medication, increased liver transaminases were found in this subject (AST grade 2,

ALT grade 3 toxicities), but these readings normalized in the next three weeks. 

Apart from these adverse events, the nelfinavir/ritonavir regimens were tolerated

reasonably well. The most common adverse reactions are shown in table 4.

Median toxicity scores were 1.5, 2.5 and 3.1 in study groups 1, 2 and 3 respectively.

This means that subjects in group 1 had an average of 1.5 mild adverse events (or

almost one event of moderate intensity, which would count for 2.0) at an average

moment of questioning. Diarrhoea was mild, as expressed in a median score of less

than 1.0 for this adverse event in all three study groups. No significant correlations

were found between the toxicity scores and the AUC24h,corr, Cmax or Cmin of nelfinavir,

nelfinavir plus M8, or ritonavir. 

Small increases in fasting cholesterol were observed in the majority of participants

who completed the study  (6/8, 6/8 and 2/4 participants in group 1, 2 and 3,

respectively). Median changes in cholesterol were +0.50, +0.25 and 0.0 mmol/L in

groups 1, 2 and 3, whereas median changes in triglycerides were negligible (+0.04,

+0.04 and +0.16 mmol/L in groups 1, 2 and 3). The study medication had no

material effect on other laboratory parameters.

Discussion  

The results of this study suggest it is possible to achieve effective exposure to nelfinavir

and M8 after once-daily dosing of nelfinavir in combination with low-dose ritonavir.

These data are in agreement with results from a similar study, presented in abstract

[32]. A nelfinavir-based HAART regimen with once-daily dosing for all drugs is simple

and also facilitates witnessed therapy of HAART. Both these advantages may result in

improved long-term adherence [6-8], which is associated with improved efficacy of

HAART [4,5]. Once-daily administration of HAART may be particularly useful for a

subgroup of patients who cannot adhere to more complex drug regimens, due to

unstable lifestyles, imprisonment, or injectable drug misuse. 

Whereas once-daily administration of nelfinavir may prove more convenient, the

number of tablets that need to be taken and food restrictions still make a once-daily

Chapter 5.1
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regimen quite complex. The proposed development of 625-mg tablets of nelfinavir will

enable further simplification of the regimen. With respect to food restrictions, once-

daily administration offers patients the flexibility to adapt the dosing time to their

dietary habits, assuming that the pharmacokinetics of nelfinavir/ritonavir do not

change with the time of dosing.

It is important not to over-interpret the apparent pharmacokinetic differences or

similarities between the three nelfinavir/ritonavir regimens in this exploratory study.

Each study group comprised a relatively small number of participants, and

considerable interindividual variability was observed for all pharmacokinetic

parameters. The number of participants who completed the study in group 3 was

particularly small (n = 4). Therefore, no firm conclusions can be drawn with regard to

the nelfinavir/ritonavir 2500/200mg combination.

With these considerations taken into account, two approaches could be applied to

evaluate the pharmacokinetics of nelfinavir and nelfinavir plus M8 after once-daily

administration. According to a first approach, geometric mean pharmacokinetic

parameters for nelfinavir and nelfinavir plus M8 (table 1) are compared to reference

values for the approved regimen of nelfinavir (1250 mg BID without ritonavir). The

AUC24h,corr and Cmin values should be regarded as the most important parameters for

this comparison, since both AUC and Cmin values of PIs have been related to efficacy

of these drugs [33]. Reference pharmacokinetic data for the approved BID regimen of

nelfinavir are presented in table 5 [16,19,22,31,34]. Comparison of table 1 and table

5 reveals that the geometric mean AUC24h,corr values for once-daily nelfinavir are at

least comparable to similar values reported for the approved BID regimen of nelfinavir,

and are considerably higher when the contribution of M8 is included. Therefore,

AUC24h,corr values predict efficacy for all three once daily regimens. In contrast, only

group 1 (nelfinavir/ritonavir 2000/200 mg once daily) yielded a geometric mean 24-

h Cmin value for nelfinavir that was comparable to the lowest 12-h Cmin values

reported for the BID regimen. When M8 levels are taken into consideration, the mean

24-h Cmin values in all groups are comparable to reference data, with group 1

showing the most favourable results again.

Comparing experimental data to reference data in this way could be confounded by

differences across studies. Firstly, the current study was performed in healthy

volunteers, whereas most reference data (table 5) are from HIV-infected patients. No

Once daily nelfinavir/ritonavir
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substantial differences in nelfinavir pharmacokinetics have been observed between

these two groups [16], but they can not be excluded. Secondly, differences in the

composition of meals taken with nelfinavir as well as different analytical methods could

also confound comparison of pharmacokinetic parameters. Our in-house reference

data (table 5) were obtained using the same breakfast content and the same bio-

analytical method as in the current study. Thirdly, some reference AUC12h values

reported for the BID regimen were doubled to enable comparison with once-daily

AUC24h,corr values. However, this neglects circadian variations that appear to occur in

the pharmacokinetics of nelfinavir. 

According to a second approach for evaluation of the pharmacokinetics of once-daily

nelfinavir, individual (instead of mean) 24-h Cmin values for nelfinavir and nelfinavir

plus M8 could be compared to therapeutic threshold values (see figure 3). The 0.45

mg/L (800 nM) threshold for nelfinavir is based upon in vitro 95% effective

concentrations (IC95) against HIV, with adjustment for in vivo protein binding and the

elevated concentrations of α1-acid glycoprotein in HIV infected patients [29].

Thresholds derived from in vivo patient response data may be more relevant, and the

0.8 mg/L nelfinavir threshold for wild-type HIV-1 (i.e. in treatment-naive patients) has

been independently assessed in two patient cohorts [30,31]. This threshold

corresponds to about 1.0 mg/L when the Cmin values of nelfinavir and M8 are

added. Regardless of the threshold chosen and the inclusion or exclusion of M8

concentrations, the 2000/200 mg regimen (group 1) appeared to be most favourable

again (figure 3). As this combination was also associated with the lowest toxicity score

(table 4), it appears to be an appropriate regimen for further evaluation. 

The boosting effect of ritonavir on nelfinavir AUC24h,corr values appears less pronounced

than those seen after addition of ritonavir to indinavir and especially saquinavir

therapy. This could be explained by the relatively small contribution of CYP3A to

nelfinavir metabolism, compared with the other PIs. The increase in M8 levels may

reflect the possible inducing effect of ritonavir on CYP2C19 (leading to enhanced

formation of M8) and inhibition of CYP3A4 (which limits the clearance of M8) [9].

Exposures to M8 seemed similar among study groups, which may suggest saturation

of M8 formation, or a lack of additional effects of ritonavir (above a dose of 200 mg

once-daily) on the subsequent metabolism of M8. 

The apparent lack of increase in nelfinavir concentrations with further dose escalations
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Parameter b Reference
[16,34] c [31] c [19] [22] d,f [in house 

data] e,g

n = 10 n = 84 n = 355 n = 12 / 12 n = 5

intens. PK h pop. PK pop. PK intens. PK intens. PK

Nelfinavir
AUC24h (h.mg/L) 51.0 52.0 i 48.0 i 52.5 / 55.5 f 41.8 i

Cmax (mg/L) 4 8.33 3.4 3.39 / 4.25 f 3.9
Cmin, morning (mg/L) 2.2 1.02 1.60 1.16 / 1.24 1.30
Cmin, evening (mg/L) 0.7 0.85 1.76 / 1.35 0.65 

M8 
AUC24h (h.mg/L) 15.2 i 24.6 / 26.7 f 12.9 i

Cmax (mg/L) 1.1 1.76 / 1.95 f 1.4  
Cmin, morning (mg/L) 0.41 0.44 / 0.48 0.39
Cmin, evening (mg/L) 0.28 0.71 / 0.65 0.05

Nelfinavir + M8 j

AUC24h (h.mg/L) 63.2 77.1 / 82.2 54.7
Cmin, morning (mg/L) 2.01 1.60 / 1.72 1.69
Cmin, evening (mg/L) 1.13 2.47 / 2.00 0.70

M8-to-nelfinavir ratio j

ratio for AUC24h 0.32 0.47 / 0.48 0.31
ratio for Cmin,morning 0.26 0.38 / 0.39 0.30
ratio for Cmin, evening 0.33 0.40 / 0.48 0.08

Table 5. Reference pharmacokinetic data for nelfinavir, M8 and nelfinavir plus M8
after twice-daily administration of nelfinavir (1250 mg BID) a

a Reference data were assessed in HIV-infected patients, except for [22] (healthy volunteers).
b AUC24h, 24 h-area under the concentration-time curve; Cmax , highest observed plasma concentration;
Cmin, trough concentration, either in the morning (before the morning dose) or in the evening (before the
evening dose).
c Median values.
d Mean values.
e Geometric means.
f Reference 22 was a two-group study; data for both groups are shown. Mean values for AUC24h were
estimated by summing mean AUC12h values reported for the morning dose and evening dose. Cmax values
refer to the morning dose.
g In-house reference data were retrieved from our own dataset of intensive pharmacokinetic assessments.
These data were assessed after intake of nelfinavir with a full breakfast that was identical to the breakfast
used in the study, and the same bioanalytical method was used for measurement of drug concentrations.
h Reference data were assessed by intensive (intens.) pharmacokinetic (PK) measurements in a limited
number of individuals, or by population (pop.) pharmacokinetic approaches.
i AUC24h values were obtained by doubling AUC12h values that were reported in the references.
j Values for Nelfinavir + M8 and for M8:nelfinavir ratios were derived from the mean values reported for
nelfinavir and M8 separately (this is an approximation).  
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of ritonavir (from 200 mg in group 1 to 400 mg in group 2) or nelfinavir (from 2000

mg in group 1 to 2500 mg in group 3) seems counterintuitive and may reflect random

variability in this exploratory study. However, the effect of ritonavir on the

pharmacokinetics of nelfinavir (comparison of groups 1 and 2) is hard to predict, due

to the complex metabolism of nelfinavir, the influence of ritonavir as both an inhibitor

or inducer of the metabolic enzymes involved, and the presence of such enzymes in

both the gut wall and liver. For example, it could be argued that higher doses of

ritonavir (group 2) increase the first-pass metabolism of nelfinavir in the gut wall,

resulting in lower nelfinavir Cmax and AUC24h,corr values in group 2 (see table 1).

Any differences between groups 1 and 3 (increase in the dose of nelfinavir) should be

interpreted even more cautiously, considering the small number of participants in

group 3 of the study. Nevertheless, the apparent lack of increase in nelfinavir

concentrations after a higher dose of nelfinavir corresponds to other literature data

[19,21] and may be explained by saturation of absorption from the gut. 

As regards to the effect of food, it was hypothesized that food restrictions for nelfinavir

might possibly change with co-administration of ritonavir, as has been demonstrated

for indinavir in combination with ritonavir (400/400 mg BID) [9]. However, AUC24h,corr

and Cmin values for nelfinavir and M8 significantly decreased after administration

with a light compared with a full breakfast. Accordingly, it is recommended that once-

daily regimens of nelfinavir/ritonavir are administered with a meal comparable in

calories (circa 600 kcal) and fat content (circa 33%) to the full breakfast used in this

study.

The spectrum of adverse events was as expected. Mild diarrhoea is a common adverse

effect of both nelfinavir and ritonavir. The incidence of rash in this study (3 out of 26

participants who took at least one dose of nelfinavir/ritonavir, i.e. 12%) was higher

than the 3% value reported for phase III studies in which nelfinavir was administered

without ritonavir [29]. This adverse event requires close study when once-daily

nelfinavir/ritonavir regimens are tested in HIV-infected patients. Similarly, the observed

increases in cholesterol values warrant close monitoring of blood lipids when the

nelfinavir/ritonavir regimen is used in HIV-infected patients, especially if combined

with other antiretroviral agents with known lipid-elevating effects. 
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In conclusion, data from this study demonstrate that coadministration of nelfinavir and

low-dose ritonavir offers the potential for once-daily administration of nelfinavir. A

once-daily regimen of 2000 mg nelfinavir and 200 mg ritonavir seems appropriate

for further evaluation. The once daily combination of nelfinavir and ritonavir should be

taken with a meal containing at least 600 kcal. Short-term tolerability was satisfactory,

apart from a higher than expected incidence of rash. Follow-up pharmacokinetic and

tolerability assessments in HIV-infected patients are warranted to confirm the findings

of this study in healthy volunteers. 
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Abstract

Background
We have previously reported that administration of nelfinavir (NFV) with low-dose

ritonavir (RTV) offers the potential for OD administration of NFV. This study was an

extension of the previous study and evaluated the influence of OD nevirapine (NVP) on

the pharmacokinetics (PK) of OD NFV/RTV combinations.

Methods
The study had a three-arm, one-sequence, two-period design. Twenty healthy

volunteers who had been taking one of 3 possible NFV/RTV OD regimens 

(A. 2000/200 mg, n=8; B. 2000/400 mg, n=8; or C. 2500/200 mg, n=4) with food

during 15 days were included in the extension study. OD nevirapine was added to the

NFV/RTV combinations from day 16-38, starting with a dose of 200 mg OD 

(2 weeks) followed by 400 mg OD (1 week). PK parameters for NFV, its active

metabolite M8, and RTV were assessed on days 15 and 38, and NVP parameters

were assessed on day 38. Since RTV increases the M8/NFV-ratio, NFV and M8

concentrations were also summed. Geometric mean (GM) ratios plus 90% confidence

intervals (CIs) were calculated for the PK parameters on day 38 (with nevirapine)

relative to the parameters on day 15 (without nevirapine).       

Results
All participants completed the study. The GM ratio and 90% CI for the AUC0-24h and

the 24-h trough level (Cmin) of nelfinavir were 1.13 [0.94-1.37] and 1.42 [1.06-

1.90] for regimen A; 1.83 [1.52-2.19] and 3.04 [2.17-4.27] for regimen B; and 1.30

[0.80-2.11] and 1.80 [0.74-4.36] for regimen C. The GM ratio and 90% CI for the

sum AUC0-24h and Cmin for nelfinavir plus M8 were 0.95 [0.79-1.14] and 1.01 [0.83-

1.25] for regimen A; 1.44 [1.23-1.68] and 2.01 [1.52-2.66] for regimen B, and 0.96

[0.62-1.48] and 0.99 [0.54-1.81] for regimen C. These results indicate that the

exposure to NFV and M8 in the presence of OD NVP was equivalent to, or higher

than exposures without NVP. The GM AUC0-24h values for OD NVP (155, 171, and

146 h*mg/L for regimen A, B and C, respectively) appeared to be higher than

reported before. In the period from day 15 to 38, two participants developed grade I

and one participant grade II hepatotoxicity. Another participant developed grade II-III

hepatotoxicity after the study. Rash was not observed.
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Conclusions
It is feasible to add a OD dose of NVP to a OD combination of NFV/RTV to obtain a

once-daily dual PI and NNRTI antiretroviral regimen. A combination of NFV/RTV

2000/200 mg plus NVP 400 mg OD seems preferable, since this combination results

in adequate plasma concentrations of NFV and M8, whereas exposure to RTV is

limited. 

Introduction

Adherence to highly active antiretroviral treatment (HAART) has become one of the most

important challenges for HIV-infected patients who have access to these potent drug

regimens. Patients have to maintain near perfect adherence to their prescribed regimen

on a long-term basis to prevent the emergence of viral resistance and an increase in

viral replication [1], which is usually followed by immunologic deterioration.

Unfortunately, many patients do not achieve sustained optimal adherence [1,2]. This

has been associated with a wide array of determinants, among which the complexity of

HAART regimens appears to have a weighty impact [3]. Consequently, current efforts to

maximize adherence focus on development of less complex HAART regimens that can

be dosed once-daily [4]. Several protease-inhibitors (PIs), nucleoside reverse

transcriptase inhibitors (NRTIs) and non-nucleoside reverse transcriptase inhibitors

(NNRTIs) have been approved for once-daily administration, or are being studied in a

once-daily dosing scheme.

Once-daily dosing of PIs can be achieved by exploiting the pharmacokinetic interaction

of these drugs with ritonavir, a strong inhibitor of cytochrome (CYP) 3A4. Previously we

reported that administration of the PI nelfinavir with low-dose ritonavir offers the

potential for once-daily administration of nelfinavir [5]. Three once-daily combinations

of nelfinavir and ritonavir were studied in healthy volunteers; nelfinavir/ritonavir

2000/200 mg, 2000/400 mg, and 2500/200 mg. Co-administration of nelfinavir

and ritonavir resulted in an increase in the formation of the active metabolite of

nelfinavir, M8. The 2000/200 mg combination yielded the most favorable

concentrations of nelfinavir and M8 at 24 h post dose. Furthermore it was found that

nelfinavir/ritonavir combinations have to be taken with a sufficient amount of food to

assure adequate absorption of nelfinavir. 
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Since entirely once-daily HAART regimens comprise several antiretroviral drugs, further

evaluation of once-daily nelfinavir/ritonavir combinations requires an assessment of

possible pharmacokinetic interactions between these combinations and other once-daily

antiretrovirals. We were specifically interested in combinations of nelfinavir/ritonavir

and the NNRTIs nevirapine and efavirenz. Such combinations of PIs and NNRTIs could

be applied as first-line therapy to spare the class of NRTIs and to prevent toxicity related

to NRTIs [6]. In addition, PI/NNRTI combinations are increasingly used as second-line

therapy (with or without NRTIs) in patients who are resistant or intolerant to NRTIs [6].

The pharmacokinetics of nevirapine in a once-daily dose have been characterized

before [7,8], and this NNRTI has demonstrated good antiviral response in once-daily

regimens [9-12]. Therefore we evaluated the influence of once-daily nevirapine on the

pharmacokinetics of once-daily nelfinavir/ritonavir combinations in healthy volunteers.

Methods

Subjects

This study was performed as an extension of the previously reported pharmacokinetic

study that explored the feasibility of once-daily administration of nelfinavir plus ritonavir

in healthy volunteers. All volunteers who completed this study were subsequently

included in the extension study. The participants were healthy males or females, aged

18 to 65 years, who were not using any medication or illicit drugs prior to these

studies. The subjects had negative serology for HIV infection, were hepatitis B- or C-

seronegative, were not pregnant or hypersensitive to PIs, and had normal laboratory

parameters according to prespecified criteria. 

All subjects gave written informed consent after full explanation of the study details. The

study was approved by the Institutional Review Board of University Medical Centre

Nijmegen, The Netherlands.

Study design and procedures

This was an open-label, randomized, three-arm, one-sequence (fixed-order), two-period

pharmacokinetic interaction study. In the preceding study (period 1), twenty-seven

volunteers were randomized (stratified by gender) over three groups of nine participants
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[5]. The participants took once-daily doses of either nelfinavir/ritonavir 2000/200 mg

(group 1), 2000/400 mg (group 2), or 2500/200 mg (group 3) with food during 15

days (period 1). Nelfinavir (Viracept®) was administered as film-coated tablets, each

containing 250 mg. Ritonavir (Norvir®) was applied as capsules containing 100 mg. The

drugs were taken in the morning. Blood samples for two consecutive 24-h

pharmacokinetic profiles were collected on study day 15 (administration with food) and

day 16 (administration without food) [5].

On day 17, the extension of this previous study was started (period 2). The remaining

participants continued their nelfinavir/ritonavir combination, and nevirapine was

added to these combinations, starting with a dose of 200 mg once-daily during two

weeks (nevirapine lead-in period) followed by 400 mg once-daily during one week,

until study day 38. The lower dose of nevirapine in the lead-in period accounts for

autoinduction of metabolic enzymes by nevirapine, and this dose escalating scheme

also reduces the incidence of rash [13]. Nevirapine was administered as 200 mg

tablets of Viramune® and was taken together with nelfinavir/ritonavir and with food.

On the morning of day 38, the participants reattended the pharmacokinetic unit for a

repeat pharmacokinetic assessment.

Pharmacokinetic assessments on day 15 (nelfinavir/ritonavir) and day 38

(nelfinavir/ritonavir plus nevirapine) were performed after an overnight fast. A

predose blood sample was drawn and participants ingested nelfinavir and ritonavir

(plus nevirapine on day 38) with a standardized, full breakfast, which consisted of 4

filled slices of bread and 130 ml of water (610 kcal in total: 33% fat, 16% proteins

and 51% carbohydrates). Blood samples were drawn at 0.5, 1.0, 1.5, 2.0, 2.5, 3.0,

4.0, 5.0, 6.0, 7.0, 8.0, 10.0, 12.0, 16.0 en 24.0 h post dose. Plasma was isolated by

centrifugation within 12 hours and was stored at -200C until analysis. 

The study was conducted on an outpatient basis. Subjects received their study

medication in a vial that contained sealed plastic sachets, each holding the

appropriate amount of tablets and capsules for one day. Drug administration was

directly observed on 12 study days. Compliance at home was verified at every study

visit by inspection of drug taking diaries, counting of sachets, measurement of plasma

drug concentrations, and electronic monitoring of opening of vials, using the

Medication Event Monitoring System (MEMS®). 
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Bio-analysis 

Nelfinavir and ritonavir concentrations were assayed with a previously described

validated high-performance liquid chromatographic (HPLC) method with UV detection

[14]. Concentrations of the active metabolite of nelfinavir (M8) were determined

simultaneously using the same method without modifications. Retention time for M8

was 12.7 min. The accuracy of the method for nelfinavir ranged from 96% to 100%,

depending on the concentration level. Those for ritonavir and M8 were 102-108% and

93-108%, respectively. Intra-day precision and between-day precision were 2.1-7.5 %

and 0.4-3.5 % for nelfinavir, 2.0-8.1% and 0-2.4% for ritonavir, and 2.8-4.3% and

2.0-3.0% for M8. The limit of quantitation was 0.04 mg/L for nelfinavir, ritonavir and

M8. Nevirapine concentrations were measured with another method that was

described previously [15]. The accuracy of this method varied from 97 to 103%,

depending on the concentration level. Intra-day precision and between-day precision

were 1.3-3.9% and 1.9-3.0 %, and the limit of quantitation was 0.1 mg/L.   

Pharmacokinetic analysis

Pharmacokinetic parameters for nelfinavir, M8, ritonavir, and nevirapine were

obtained by non-compartmental methods. The highest observed plasma concentration

was defined as Cmax, with the corresponding sampling time as tmax. Cmin was the

concentration at 24 h after ingestion of the drugs. The terminal, log-linear period (log

C versus t) was defined by visual inspection of the last data points (n ≥ 3). The value of

the slope (- ß/2.303) was calculated by least-squares linear regression analysis,

where ß is the first-order elimination rate constant. The elimination half life (t1/2) was

calculated by the equation 0.693/ß. The area under the concentration versus time

curve (AUC0-24h) was calculated using the trapezoidal rule from 0 to 24 h. AUC0-24h

values for nelfinavir, M8 and ritonavir were corrected for contribution of the predose

AUC by subtraction of C0/ß (where C0 is the concentration just before ingestion of

nelfinavir/ritonavir at t=0), and area under the curve was added at the end of the

curve (extrapolation to infinity by adding Cmin/ß). AUC0-24h values for nevirapine

were not corrected. The AUC values for nelfinavir and M8 and the Cmin values for

nelfinavir and M8 were also summed, considering that M8 has equipotent activity to

nelfinavir in vitro, similar in vivo protein binding [16], and an almost identical molar
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weight. Cmax values were not summed, since these do not necessarily refer to the

same time post dose.

Safety and tolerability

Safety and tolerability were assessed by a questionnaire, that presented 14 possible

adverse events that could occur during treatment with nelfinavir, ritonavir or

nevirapine. The questionnaire was presented 11 times during the study, 4 times during

period 1 (day 1-15) and 7 times during period 2 (day 16-38). An extensive blood

chemistry and hematology screen were performed on the same study days.

Statistical analysis

The effect of nevirapine on the pharmacokinetics of nelfinavir/ritonavir was evaluated

with the confidence interval approach for bioequivalence studies that is recommended for

drug interaction studies [17,18]. Ratios of geometric means (day 38 / day 15, i.e. with

nevirapine / without nevirapine) and accompanying 90% confidence intervals (CI) were

calculated for the AUC, Cmax, Cmin and t1/2 of nelfinavir, M8, nelfinavir plus M8, and

ritonavir. Equivalence between the test condition (administration of nelfinavir/ritonavir

with nevirapine) and the reference condition (administration of nelfinavir/ritonavir

without nevirapine) was concluded for a specific pharmacokinetic parameter if the 90%

CI for the geometric mean ratio of that parameter was entirely contained within 80-125%

limits. Inequivalence was concluded if a 90% CI fell entirely outside 80-125% limits.

Equivalence was suggested if a geometric mean ratio was enclosed in the 80-125%

interval, but one limit of its 90% CI fell outside the 80-125% interval. Likewise,

inequivalence was suggested if a geometric mean ratio fell outside the 80-125% interval,

whereas one limit of its 90% CI was enclosed in the 80-125% interval [18]. Tmax values

were not log-transformed and were compared with Wilcoxon signed-ranks test. 

Individual Cmin values in each of the study groups were compared to a 0.8 mg/L

efficacy threshold for nelfinavir in treatment-naive patients [19,20], and to a

corresponding threshold of 1.0 mg/L for the sum of nelfinavir and M8.

All statistical evaluations were performed with SPSS for Windows, version 10.0 (SPSS

Inc., Chicago, IL, USA). 
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Results

Subjects

Twenty-one participants from the previous study were enrolled into the extension study,

eight participants in group 1 (nelfinavir/ritonavir 2000/200 mg), eight in group 2

(nelfinavir/ritonavir 2000/400 mg) and five in group 3 (nelfinavir/ritonavir 2500/200

mg). All participants completed the extension study. After analysis of plasma samples, it

appeared that one volunteer in group 3 did not convert nelfinavir to M8. This volunteer

was probably a poor metabolizer for CYP2C19, the iso-enzyme that exclusively

catalyzes the conversion of nelfinavir to M8. Because of this different metabolic pattern,

pharmacokinetic data for this volunteer were excluded. The remaining participants were

5 men and 3 women (median age and weight: 30 years, 71 kg) in group 1; 4 men and

4 women (median age and weight: 24 years, 76 kg) in group 2; and 2 men and 2

women (median age and weight: 33 years, 73 kg) in group 3. All subjects were

Caucasians.

Pharmacokinetics of nelfinavir, M8 and ritonavir

Table 1 shows the steady-state pharmacokinetic data for nelfinavir, M8, nelfinavir plus

M8, and ritonavir after once-daily administration of nelfinavir/ritonavir without

nevirapine (period 1) and with nevirapine (period 2). The accompanying geometric

mean ratios (day 38 / day 15, with nevirapine / without nevirapine) and 90% CIs in

table 2 illustrate the effect of nevirapine in the three groups. The pharmacokinetic data

for period 1 have been presented before [5]. 

Considering the results for the nelfinavir/ritonavir 2000/200 mg combination (group

1), equivalence was suggested when comparing the AUC0-24h and Cmax values of

nelfinavir after administration of the 2000/200 mg combination with or without

nevirapine (table 2 and figure 1). Inequivalence was suggested for nelfinavir Cmin

values, but this resulted from an increase (rather than a decrease) in the geometric

mean nelfinavir Cmin upon addition of nevirapine. M8 concentrations strongly

decreased in seven of eight participants after administration of nevirapine in group 1.

The decrease in M8 concentrations paralleled with a uniform decrease in exposure to
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the pharmacokinetic enhancer ritonavir. Based on the AUC0-24h and Cmin values of

nelfinavir plus M8, equivalence between the test and reference regimen was

suggested.

The results in group 2 (nelfinavir/ritonavir 2000/400 mg) differed from those in group

1 (table 2 and figure 2). Uniform increases in nelfinavir concentrations were observed

upon addition of nevirapine to this combination, and inequivalence between the test

and reference regimen was concluded for the AUC, Cmax and Cmin of nelfinavir. A

variable change in M8 concentrations was observed upon addition of nevirapine. The

sum of nelfinavir and M8 revealed an increase in AUC0-24h and Cmin values in seven

of eight participants after addition of nevirapine. As a consequence, inequivalence

between the test and reference condition was suggested or confirmed, respectively,

after comparison of AUC0-24h and Cmin values of nelfinavir plus M8. The exposure to

ritonavir (400 mg once-daily) was not affected by nevirapine (equivalence

documented), contrary to the results in group 1 (200 mg of ritonavir). 

Group 3 (nelfinavir/ritonavir 2500/200 mg) comprised only four participants, hence

the broad 90% CI in table 2. In view of the small number of participants, no

conclusions can be drawn for the effect of nevirapine on this combination. However,

the effects of nevirapine seemed to correspond to those in group 1. 

As reported before, M8-to-nelfinavir ratios were elevated after co-administration of

nelfinavir and ritonavir (period 1, see table 1) compared to a mean M8-to-nelfinavir

ratio of circa 0.3 after administration of nelfinavir (1250 mg BID) without ritonavir [5].

Addition of nevirapine (period 2) lead to a decrease in M8-to-nelfinavir ratios in all

three groups (table 1), caused by decreasing M8 concentrations and increasing

nelfinavir concentrations (groups 1 and 3) or by increasing nelfinavir concentrations

(group 2).

Tmax values of nelfinavir, M8 or ritonavir were not affected by the addition of

nevirapine in all three groups.

Once-daily nelfinavir/ritonavir plus nevirapine
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Parameter Geometric means

Group 1 (n=8): Group 2 (n=8): Group 3 (n=4): 

NFV/RTV 2000/200mg NFV/RTV 2000/400mg NFV/RTV 2500/200mg

Period 1 Period 2 Period 1 Period 2 Period 1 Period 2

NFV

AUC0-24h (h.mg/L) 76.8 87.1 51.3 93.8 61.9 80.5

Cmax (mg/L) 7.2 7.2 5.1 8.1 6.7 7.1

Cmin (mg/L) 0.76 1.1 0.43 1.3 0.47 0.84

tmax (h)c 4.0 4.5 4.6 4.5 4.5 3.3

t1/2 (h) 6.5 7.8 6.1 8.3 5.8 8.5

M8

AUC0-24h (h.mg/L) 38.5 22.1 40.9 37.3 45.3 21.8

Cmax (mg/L) 3.4 1.7 3.7 2.5 4.3 1.8

Cmin (mg/L) 0.63 0.36 0.59 0.73 0.67 0.30

tmax (h)c 5.0 5.0 5.1 5.0 4.5 5.0

t1/2 (h) 9.7 10.4 8.6 10.9 8.9 9.8

NFV + M8

AUC0-24h (h.mg/L) 116.4 110.2 94.6 136.0 108.3 103.8

Cmin (mg/L) 1.4 1.5 1.1 2.2 1.2 1.2

M8:nelfinavir ratio

AUC0-24h (h.mg/L) 0.50 0.25 0.80 0.40 0.73 0.27

Cmin (mg/L) 0.83 0.33 1.36 0.55 1.43 0.35

RTV

AUC0-24h (h.mg/L) 12.2 7.3 32.4 33.6 11.8 6.7

Table 1. Pharmacokinetics of once-daily nelfinavir/ritonavir combinations administered without nevirapine
(period 1) and with nevirapine (period 2) a,b

a Pharmacokinetic parameters were assessed after intake of drugs with a full breakfast:
610 kcal, 33% fat, 16% proteins, 51% carbohydrates and 130 ml water
b Abbreviations: NFV: nelfinavir, RTV: ritonavir, AUC0-24h: 24 h-area under the concentration-time curve,
Cmax : highest observed plasma concentration, Cmin : trough concentration at 24h, tmax : sampling time
for Cmax, t1/2: elimination half life
c Median



Comparison of nelfinavir and M8 Cmin values to thresholds 

In group 1, the number of participants with a nelfinavir Cmin above 0.80 mg/L

increased from 4/8 on day 15 (end of period 1) to 7/8 participants on day 38 (end

of period 2). In group 2, the number of Cmin values above this threshold increased

Once-daily nelfinavir/ritonavir plus nevirapine

Parameter Geometric mean ratio (with NVP, period 2 / without NVP, period 1)b

+ 90% confidence interval

Group 1 (n=8): Group 2 (n= 8): Group 3 (n=4): 

NFV/RTV 2000/200mg NFV/RTV 2000/400mg NFV/RTV 2500/200mg

NFV

AUC0-24h (h.mg/L) 1.13 [0.94-1.37] 1.83 [1.52-2.19] 1.30 [0.80-2.11]

Cmax (mg/L) 0.99 [0.85-1.17] 1.59 [1.31-1.91] 1.06 [0.69-1.61]

Cmin (mg/L) 1.42 [1.06-1.90] 3.04 [2.17-4.27] 1.80 [0.74-4.36]

tmax (h)c +0.5 0.0 -0.75

t1/2 (h) 1.21 [1.03-1.41] 1.35 [1.15-1.59] 1.47 [0.93-2.32]

M8

AUC0-24h (h.mg/L) 0.57 [0.45-0.72] 0.91 [0.68-1.22] 0.48 [0.28-0.82]

Cmax (mg/L) 0.50 [0.45-0.57] 0.68 [0.55-0.83] 0.41 [0.28-0.61]

Cmin (mg/L) 0.56 [0.45-0.71] 1.24 [0.87-1.78] 0.44 [0.20-0.99]

tmax (h)c 0.0 -0.1 0.0

t1/2 (h) 1.07 [0.93-1.22] 1.28 [1.09-1.50] 1.10 [0.88-1.38]

NFV + M8

AUC0-24h (h.mg/L) 0.95 [0.79-1.14] 1.44 [1.23-1.68] 0.96 [0.62-1.48]

Cmin (mg/L) 1.01 [0.83-1.25] 2.01 [1.52-2.66] 0.99 [0.54-1.81]

RTV

AUC0-24h (h.mg/L) 0.59 [0.53-0.67] 1.03 [0.91-1.18] 0.57 [0.44-0.74]

Table 2. Effect of nevirapine on the pharmacokinetics of nelfinavir/ritonavir combinations a

a Pharmacokinetic parameters were assessed after intake of drugs with a full breakfast:
610 kcal, 33% fat, 16% proteins, 51% carbohydrates and 130 ml water
b NVP: nevirapine. Other abbreviations: see table 1 
c Median change in tmax after administration of nelfinavir/ritonavir with nevirapine (period 2) compared to
administration without nevirapine (period 1). No significant differences in tmax values were found for
nelfinavir, M8 or ritonavir (Wilcoxon-signed ranks test).
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Figure 2. Steady-state plasma concentrations of nelfinavir, and nelfinavir plus M8, after administration of
nelfinavir/ritonavir 2000/400 mg once-daily (group 2) without and with nevirapine 400 mg once-daily
(geometric mean values).
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Figure 1. Steady-state plasma concentrations of nelfinavir, and nelfinavir plus M8, after administration of
nelfinavir/ritonavir 2000/200 mg once-daily (group 1) without and with nevirapine 400 mg once-daily
(geometric mean values).   
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from 2/8 to 8/8 participants after co-administration of nevirapine, and in group 3

these figures were 2/4 and 3/4 respectively. 

After summing nelfinavir and M8 Cmin concentrations, 7/8 volunteers in group 1 had

a combined Cmin above a threshold of 1.0 mg/L, both on day 15 and on day 38. In

group 2, 4/8 participants had a combined Cmin above 1.0 mg/L and this increased

to 8/8 participants after addition of nevirapine. In group 3, 1 /4 and 2/4 volunteers

had nelfinavir plus M8 Cmin values above 1.0 mg/L on day 15 and 38 respectively.

Thus, addition of nevirapine to nelfinavir/ritonavir caused an increase in the number

of participants with nelfinavir Cmin values above thresholds, especially in group 2.

Pharmacokinetics of nevirapine

Table 3 presents the pharmacokinetic data for nevirapine after co-administration with

nelfinavir/ritonavir in an entirely once-daily combination. The results do not suggest

relevant differences in the exposure to nevirapine between the three study groups. 

The exposure to nevirapine was not related to any pharmacokinetic parameter (or

change in parameter) of nelfinavir, M8 or ritonavir.

Once-daily nelfinavir/ritonavir plus nevirapine

Parameterb Geometric mean

Group 1 (n=8): Group 2 (n=8): Group 3 (n=4):
NFV/RTV 2000/200mg NFV/RTV 2000/400mg NFV/RTV 2500/200mg

Nevirapine
AUC0-24h (h.mg/L) 155.1 170.5 146.0
Cmax (mg/L) 8.0 9.2 8.1
Cmin (mg/L) 5.2 6.0 4.7
tmax (h)c 4.0 4.0 2.0
t1/2 (h) 34.0 41.6 34.8

a Pharmacokinetic parameters were assessed after intake of drugs with a full breakfast:
610 kcal, 33% fat, 16% proteins, 51% carbohydrates and 130 ml water
b Abbreviations: see table 1
c Median

Table 3. Pharmacokinetics of nevirapine (400 mg once-daily) after co-administration with
nelfinavir/ritonavir combinations a
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Safety and tolerability 

As reported before, five participants were withdrawn during period 1 [5]. No

participants withdrew during the extension phase (period 2). The most prevalent

adverse events in period 2 (all groups combined) were mild diarrhoea (reported at

least once by 85% of the participants), fatigue (80%), flatulence (65%) and abdominal

pain (60%). The severity of adverse events was generally mild. As result, the

combinations of nelfinavir/ritonavir and nevirapine were reasonably well tolerated. Of

note, no participant developed rash after administration of nevirapine from day 15 to

day 38. No significant correlations were found between incidences or severities of

adverse reactions on the one hand and pharmacokinetic parameters for nelfinavir, M8,

ritonavir or nevirapine on the other.

The study medication appeared to have an effect on fasting cholesterol concentrations

(median values at baseline, day 15, day 38: 4.7, 4.8, 5.3 mmol/L; median change

from baseline to day 38: +0.6 mmol/L) and fasting triglyceride values (median values

at baseline, day 15, day 38: 1.3, 1.5, 1.7 mmol/L, median change from baseline to

day 38: +0.2 mmol/L).  No general effect was discernible on other laboratory

parameters, especially the liver enzymes aspartate aminotransferase (ASAT), alanine

aminotransferase (ALAT) and alkaline phosphatase. At the end of the study three

participants had elevated gamma-glutamyltransferase (GGT) values, corresponding to

grade I toxicity (two participants) and grade II toxicity (one participant), according to

the criteria of the AIDS Clinical Trial Group. The grade II toxicity was probably due to

intercurrent illness during the study. A fourth participant showed grade II-III toxicity for

ASAT, ALAT and GGT at the post-study visit. These parameters normalized in the

subsequent weeks.

Discussion 

The results of this study show that is feasible to add a once-daily dose of nevirapine to

a once-daily combination of nelfinavir and low-dose ritonavir to obtain a once-daily

dual PI and NNRTI antiretroviral regimen. This follows from the observed effects of

nevirapine on the AUC0-24h and Cmin values of nelfinavir (and nelfinavir plus M8) in

participants who used nelfinavir/ritonavir 2000/200 mg or 2000/400 mg once-daily.

Chapter 5.2



223

The effect of nevirapine on Cmin values of nelfinavir (plus M8) may be considered

most important, since there is accumulating evidence that PIs require certain minimum

concentrations throughout the whole dosing interval (i.e. time-dependent viral

inhibition). It was reported before that the nelfinavir/ritonavir 2000/200 mg

combination yields the most favorable nelfinavir (and nelfinavir plus M8) Cmin

concentrations without co-administration of nevirapine [5]. The results of this study

suggest that addition of nevirapine to this combination caused a modest increase

(rather than a decrease) in nelfinavir Cmin, and the results suggested equivalence

between the sum nelfinavir plus M8 Cmin values in the presence or absence of

nevirapine. The mean 24-h Cmin values for nelfinavir (and nelfinavir plus M8) in the

nelfinavir/ritonavir 2000/200 mg plus nevirapine regimen were comparable to 12-h

Cmin values after twice daily administration of nelfinavir (1250 mg BID) without

ritonavir [19,21,22]. Individual nelfinavir Cmin values of this combination also

compared well to therapeutic thresholds that have been derived for twice-daily

administration of nelfinavir. As to the 2000/400 mg combination, an unexpected,

uniform increase in nelfinavir concentrations was observed after addition of nevirapine

to this combination. This raised the Cmin values for nelfinavir (and nelfinavir plus M8)

of this combination to adequate levels as well. No conclusions can be drawn for the

2500/200 mg combination, considering the small number of participants in group 3.

This study was not designed to evaluate the influence of nelfinavir/ritonavir on the

pharmacokinetics of nevirapine in a once-daily dose. Based on available data, no

such influence was expected. Nevertheless, an interaction cannot be excluded,

considering that the geometric mean AUC0-24h, Cmax and Cmin values of once-daily

nevirapine in this study (table 3) appear to be higher than reported previously. More

specifically, Havlir et al reported an AUC0-24h of 130 h.mg/L, a Cmax of 7.2 mg/L

and a Cmin of 4.0 mg/L for once-daily administration of nevirapine [7], whereas van

Heeswijk et al found AUC0-24h, Cmax and Cmin values of 106 h.mg/L, 6.8 mg/L and

2.9 mg/L [8], respectively; these data were all assessed in HIV-infected patients. If

these cross-study differences are real, it is unknown what their clinical relevance would

be, as there is no clear upper (toxicity) threshold for nevirapine at this moment. Some

studies did not show any, or only a weak, association between nevirapine plasma

concentrations and hepatotoxicity [23,24], but one study did find such a relationship

[25]. A possible relationship between nevirapine plasma concentrations and

Once-daily nelfinavir/ritonavir plus nevirapine
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hepatotoxicity could be explained as high nevirapine concentrations causing

hepatotoxicity, but it is also possible that liver damage itself caused reduced clearance

of nevirapine and increased concentrations of this drug. 

The results of this study indicate that the interaction between nelfinavir, ritonavir and

nevirapine is complex. This is not surprising, considering the complicated metabolism

of nelfinavir and the inhibiting and inducing effects of ritonavir and nevirapine on the

hepatic enzymes involved. 

In vitro studies revealed that nelfinavir is metabolized by at least five different

pathways, catalysed by several CYP isoenzymes (CYP3A4, CYP2C19, CYP2D6 and

CYP2C9) [26]. CYP3A4 and CYP2C19 are the predominant enzymes in the

metabolism of nelfinavir. CYP2C19 exclusively catalyzes the conversion of nelfinavir to

M8, which in turn is metabolized by CYP3A4 [27]. 

The effect of ritonavir on nelfinavir and M8 concentrations can be explained by

inhibition of the metabolism of nelfinavir and M8, since ritonavir is a strong inhibitor

of CYP3A. In addition, ritonavir may be an inducer of CYP2C19, thereby increasing

the formation of M8 [28]. 

The effect of nevirapine on nelfinavir concentrations has raised some controversy in the

past [29-31], but it is now assumed that this effect is clinically insignificant [13].

Furthermore, it is known that nevirapine only slightly affects ritonavir concentrations, at

least when ritonavir is used in high doses [13]. In the current study it appeared that

nevirapine, a moderate inducer of CYP3A, was able to decrease the exposure to a

low-dose of ritonavir (200 mg, groups 1 and 3). In contrast, nevirapine was not able

to reverse the enzyme inhibition by a larger dose of ritonavir (400 mg, group 2). The

effect of nevirapine on the pharmacokinetic enhancer ritonavir may drive the effects on

M8, since decreases in ritonavir concentrations paralleled with decreases in M8

concentrations. Whereas the effect of nevirapine on M8 concentrations can be

explained in this way, no obvious explanation seems to be available at this time for the

uniform and strong increase in nelfinavir concentrations that occurred following

addition of nevirapine to the nelfinavir/ritonavir 2000/400 mg combination.  

All participants in this extension study completed the 23 study days (from day 15 to

38) in which they took nelfinavir/ritonavir plus nevirapine. The absence of any rash

after administration of nevirapine was not anticipated, as the incidence of rash
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attributable to nevirapine (dosed according to the escalation scheme) among HIV-

infected patients was 16% in phase II/III trials, and the majority of rashes occur within

the first 6 weeks of treatment [13]. An explanation for the absence of rash may be that

several participants with predisposition for rash were withdrawn in the study that

preceded this extension study. Hepatic reactions are an another frequent adverse

reaction to nevirapine in the first 6 weeks of treatment [13]. These reactions are of

special concern, since one large study showed that once-daily administration of

nevirapine is associated with a higher incidence of liver associated laboratory

abnormalities than twice-daily administration of nevirapine [12]. In the current study,

two of 20 participants had grade I hepatotoxicity (based on isolated elevations of

GGT) that was probably related to the study medication, and one participant

developed grade II-III toxicity. Hepatotoxic reactions, as well as increases in cholesterol

values, warrant close monitoring when the nelfinavir/ritonavir plus nevirapine

combination is used in HIV-infected patients.

Based on the results of this study, both the nelfinavir/ritonavir 2000/200 mg and the

nelfinavir/ritonavir 2000/400 mg combinations could be combined with nevirapine.

The combination of nelfinavir/ritonavir 2000/200 mg plus nevirapine seems to be

preferable. This combination results in adequate plasma concentrations of nelfinavir

and M8 that are not unnecessarely high, whereas the exposure to ritonavir is much

lower than observed with the nelfinavir/ritonavir 2000/400 mg plus nevirapine

combination. Higher plasma concentrations of ritonavir will probably infer more

toxicity in the long-term [32]. In addition, nelfinavir/ritonavir 2000/200 mg comprises

less pills than nelfinavir/ritonavir 2000/400 mg. A once-daily combination of

nelfinavir/ritonavir 2000/200 mg plus nevirapine still represents a large number of

tablets and capsules, but the announced introduction of 625-mg tablets of nelfinavir

will enable further simplification. 

In conclusion, this study shows that once-daily combinations of nelfinavir and low-dose

ritonavir can be combined with once-daily nevirapine to obtain an entirely once-daily

dual PI plus NNRTI regimen. A combination of nelfinavir/ritonavir 2000/200 mg plus

nevirapine 400 mg appears to be preferable. The combinations of nelfinavir/ritonavir

plus nevirapine were reasonably well-tolerated, but require close monitoring of liver

enzymes and cholesterol values. Follow-up pharmacokinetic and tolerability

Once-daily nelfinavir/ritonavir plus nevirapine
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assessments in HIV-infected patients are warranted to confirm the results of this study

in healthy volunteers. 
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Abstract

Introduction
There is an increased interest in developing once-daily regimens for the treatment of

HIV-infected patients. A phase II study was conducted to investigate the

pharmacokinetics and short-term safety and efficacy of an indinavir/ritonavir

combination as part of a once-daily regimen.

Methods 
HIV-infected patients with either proven poor compliance to HAART regimens in the

past or an anticipated poor compliance to such a regimen in the future were eligible

for this study. They received a once-daily regimen consisting of indinavir 1200 mg,

ritonavir 400 mg, and one or two nucleoside reverse transcriptase inhibitors, also

administered once-daily with food. A 24h pharmacokinetic profile was constructed in

a subset of patients. Short-term safety and efficacy were evaluated at 4, 12, and 24

weeks after initiation of treatment.

Results 
A total of 64 patients were included in this study, of whom 27 (42.2%) were treatment-

naive. The geometric mean (+ 95% CI) of indinavir AUC0-24h, Cmax and Cmin as

determined in an unselected group of 16 patients were 84.9 (69.7-103.5) mg/L.h,

12.0 (10.2-14.1) mg/L, and 0.15 (0.09-0.26) mg/L, respectively. A large interpatient

variability was observed, with 5 out of the 16 subjects having a Cmin value below the

minimum effective concentration of 0.10 mg/L. During the 24 weeks of follow-up 9

patients (14.1%) discontinued study medication, two due to medication-related toxicity.

Gastrointestinal adverse events were reported most frequently (50.0%), followed by

skin effects (45.3%), joint pain (9.4%) and urological complaints (7.8%). No patient

developed nephrolithiasis. The median (+ interquartile range) serum creatinine level in

the 64 patients increased slightly from 74 (63-88) micromol/L to 79 (66-92)

micromol/L during the 24 weeks of follow-up. One patient reached a grade 1

elevation in serum creatinine which normalized during the follow-up; 5 other patients

with elevated serum creatinine at baseline remained stable. During the 24 weeks of

follow-up, the proportion of patients with a viral load < 500 copies/mL increased from

35.1% at baseline to 71.4% (ITT NC=F analysis) or 83.3% (OT analysis), and from 0%

at baseline to 76.2% (ITT NC=F analysis) or 100.0% (OT analysis) in treatment-

experienced and -naive patients, respectively. This was accompanied by a mean
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increase in CD4 cell count of 52 and 220 cells/mm3 in these two subgroups,

respectively.

Conclusion 
The 24-weeks follow-up data of this study indicate favorable pharmacokinetics of an

indinavir/ritonavir 1200/400 mg combination as part of a once-daily regimen

consisting also of one or two NRTIs. Short-term safety and efficacy were also

satisfactory. Long-term follow up is planned to evaluate the durability of these results.

Introduction

Highly active antiretroviral therapy (HAART) with two nucleoside reverse transcriptase

inhibitors (NRTIs) and one non-nucleoside reverse transcriptase inhibitor (NNRTI) or a

(boosted) protease inhibitor (PI) has become standard treatment of HIV-1-infected

patients [1]. Although the convenience of taking these medications has improved by

the introduction of newer formulations and the use of ritonavir as a booster of other

PIs, many patients still find it hard to adhere to these complex regimens [2,3]. Nearly-

perfect adherence is required for optimal response [4], so HAART regimens should be

as simple as possible. One approach to simplify therapy is to develop drugs or

combinations of drugs that can be taken once-daily. This is attractive for the general

patient population, and especially in settings in which observed therapy is given, e.g.

ambulant methadone clinics, prisons, nursing homes.

So far, only a few antiretroviral agents have been approved for once-daily use

(didanosine, lamivudine, efavirenz, and tenofovir) and the approvals for a number of

others is expected soon (abacavir, stavudine extended-release, and atazanavir). The

relatively long elimination half-life of these compounds or their intracellular metabolites

has made once-daily use possible. All currently available PIs have relatively short

elimination half-lives, but this is considerably changed when their metabolism is

inhibited by a low-dose of ritonavir [5,6]. Several studies have demonstrated that a

once-daily PI containing regimen can be constructed by increasing the dose of the PI in

combination with low-dose ritonavir [7-11]. With regard to indinavir, dose-finding

studies in healthy volunteers [12,13] have indicated that a 1200 mg dose of indinavir

in combination with 200 or 400 mg of ritonavir once-daily should provide adequate

exposure to indinavir. A number of pilot studies in HIV-infected patients were

A once-daily HAART regimen containing indinavir + ritonavir
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conducted to translate this experience with once-daily use of indinavir into clinical

practice [14-16]. In most of these studies, however, other components of the

combination were given twice-daily. So, the benefit of administering indinavir/ritonavir

once-daily was partly lost by the twice-daily schedule of the other components.

We have conducted a phase II study of a regimen containing indinavir + ritonavir and

one or two NRTIs, all given once-daily, to explore further the pharmacokinetics and

short-term safety and efficacy of an indinavir-based once-daily combination.

Methods

Patients and regimens

The PIPO study was a phase II study to investigate the 24 weeks pharmacokinetics,

safety, and efficacy of a once-daily regimen containing indinavir 1200 mg, ritonavir

400 mg, and one or two NRTIs. Patients could be either treatment-naive or 

-experienced. Patients were eligible for participation in the study if the physician

judged a once-daily regimen to be the most appropriate regimen for a specific patient.

Poor compliance to other, more complex regimens was either proven to be a problem

in the past, or it was anticipated to become a problem in the near future. Concomitant

use of NNRTIs or other agents known to interfere with the metabolism of indinavir

and/or ritonavir was not allowed. Other exclusion criteria were pregnancy or

breastfeeding, a change in the antiretroviral regimen within 4 weeks prior to start of

the study, abnormal liver or renal function, an active opportunistic infection, and

previous hypersensitivity to one of the drugs in the regimen.

The use of two NRTIs in combination with indinavir would make a triple drug regimen.

The use of a double drug regimen (one NRTI + indinavir/ritonavir combination) was

also considered acceptable based on the favorable results of the Prometheus trial [17]

in which a ritonavir/saquinavir + one NRTI combination demonstrated excellent

antiretroviral activity. It was specifically recommended to add two NRTIs in patients

with high viral load at baseline (i.e.: > 500,000 copies/mL). Allowed NRTIs

administered once-daily were didanosine (400 mg as chewing tablets, later replaced

by the enteric coated formulation), lamivudine (300 mg) and stavudine (60-80 mg

immediate-release capsules, doses based on body weight). 
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The study was approved by the local Ethics Committees and all patients gave written

informed consent.

Pharmacokinetics

An unselected cohort of study participants was sequentially enrolled in a

pharmacokinetic substudy. Two weeks after the start of treatment, a 24h

pharmacokinetic curve was recorded. Patients were admitted to the hospital and took

their medication with a standardized, low-fat meal (approximately 350 kcal). Blood

was sampled just prior to dosing, and at 0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 7, 8, 10, 12,

16, and 24 hours post ingestion. Blood was centrifuged immediately and plasma was

frozen at -20°C until analysis. Indinavir and ritonavir plasma concentrations were

determined by a validated reversed-phase high-performance liquid chromatographic

assay as previously described [18]. Pharmacokinetic parameters were calculated by

noncompartmental methods [19].

Safety and efficacy measurements

Patients were seen at the outpatient clinic at week 0, 4, 8, 12, 16 and 24 after start of

treatment. At each study visit, patients were questioned about adverse events.

Laboratory abnormalities were evaluated at the same time points. Serum creatinine

A once-daily HAART regimen containing indinavir + ritonavir
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Figure 1. Geometric mean indinavir (IDV) and ritonavir (RTV) plasma concentrations vs. time curves of the
16 patients who participated in the pharmacokinetic substudy.
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levels were evaluated for toxicity according to AIDS Clinical Trials Group (ACTG)

guidelines, i.e. grade 1 = 1.1 – 1.6 times the upper limit of normal (ULN); grade 2 =

1.6 – 3.0 times ULN; grade 3 = 3.1 – 6.0 times ULN; grade 4: > 6.0 times ULN. Also,

blood was sampled for measurement of HIV-1 RNA (Roche Amplicor®, detection limit

500 copies/mL) and CD4 cell counts at week 0, 4, 12, and 24. During the study, a

more sensitive assay became available with a detection limit of 50 copies/mL, but for

a uniform analysis of all HIV-1 RNA data points, the results below 500 were

considered < 500 copies/mL in all analyses.

Data analysis

Geometric means, 95% confidence intervals and min-max range were calculated for

all pharmacokinetic parameters and compared to literature data of indinavir three

times daily and twice-daily indinavir/ritonavir combinations. Viral load responses

were evaluated by intent-to-treat (ITT, non-completer equals failure) and on-treatment

(OT) analysis. 

Results

Patients

A total of 64 patients (49 males, 15 females) have been included between May 1999

and May 2002. The initial sample size was 20 patients, but due to the encouraging

initial safety and virological response data as reported previously [20] it was decided

to extend this study to 60-70 patients to assess these items in a larger study

population. The majority of the population (59.4%) was Caucasian, the remainder was

African (35.9%) or Hispanic (4.7%). Median (+ interquartile range) age was 39 years

(35-46). This cohort contained 52 (former) intravenous drug users. Twenty-seven

patients were treatment-naive vs. 37 pretreated patients; 13 of these pretreated

patients had received indinavir previously. Concomitant medications (n; %) were

lamivudine (48; 75.0%), didanosine (1; 1.6%), stavudine (5, 7.8%),

stavudine+lamivudine (8; 12.5%), stavudine+didanosine (1; 1.6%), or

didanosine+lamivudine (1; 1.6%). During the 24 weeks of follow-up, 9 patients

(14.1%) discontinued the study medication: one patient died due to a cocaine
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overdose, one patient developed severe anemia, one patient suffered from severe

vomiting, 5 patients withdrew consent for personal reasons, and one patient

discontinued for unknown reasons. 

Pharmacokinetics

An unselected cohort of 16 patients participated in the 24h pharmacokinetic substudy.

Median (+ IQR) age and body weight were 38 years (32-55) and 67 kg (52-81),

respectively. The pharmacokinetic curve of the geometric mean values of these 16

patients (1 female) are presented in figure 1. The pharmacokinetic parameters of

indinavir and ritonavir are listed in table 1. A large interpatient variability was

observed, in particular for the indinavir Cmin, leading to 5 out of the 16 subjects

A once-daily HAART regimen containing indinavir + ritonavir

Parameter Geometric mean 95% CIa Range

Indinavir

AUC0-24h (h.mg/L) 84.9 69.7-103.5 36.2-156.0

Cmax (mg/L) 12.0 10.2-14.1 5.1-18.5

Cmin (mg/L) 0.15 0.09-0.26 0.03-0.94

tmax (h) 2.2 b - 0.5-6.0

CL/F (L/h) 14.1 11.6-17.2 7.7-33.1

Vd/F (L) 55.3 36.7-83.3 5.7-145.2

t1/2 (h) 2.7 2.0-3.8 0.51-5.2

Ritonavir

AUC0-24h (h.mg/L) 64.0 49.3-83.0 22.7-129.6

Cmax (mg/L) 6.4 5.1-8.1 2.1-12.4

Cmin (mg/L) 0.24 0.13-0.45 0.05-1.8

tmax (h) 3 b - 1.0-7.0

CL/F (L/h) 6.3 4.8-8.1 3.1-17.6

Vd/F (L) 36.8 30.8-44.0 23.9-92.2

t1/2 (h) 4.1 3.3-5.1 2.6-8.5

Table 1. Summary of pharmacokinetic data for indinavir 1200 mg and ritonavir 400 mg once-daily; steady
state pharmacokinetic parameters (n=16)

a. CI: confidence interval
b. Median value
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having a value below 0.10 mg/L, the proposed minimum effective concentration for

indinavir in treatment-naive patients. However, virological failure was not detected

during the 24 weeks of follow-up in any of these 5 patients with low indinavir Cmin

values.

Safety

The treatment was generally well-tolerated during the 24 weeks of follow-up. Only two

subjects discontinued medication because of adverse events. No serious adverse event

occurred with the exception of one patient who died of myocardial infarction following

a cocaine overdose, which was considered to be unrelated to the study medication

(see above). Gastrointestinal (GI) adverse events were reported most frequently

(50.0%), followed by skin effects (45.3%), joint pain (9.4%) and urological complaints

(7.8%). No patient developed nephrolithiasis. At baseline, 5 patients (of whom 3

indinavir-pretreated) had elevated serum creatinine (4 patients grade 1 and one

patient grade 2). One new patient reached a grade 1 elevation in serum creatinine

which normalized during the follow-up; those with elevated serum creatinine at

baseline remained stable. The median (+ interquartile range) serum creatinine level in

these 64 patients increased from 74 (63-88) micromol/L to 79 (66-92) micromol/L

during the 24 weeks of treatment (figure 2). 

Efficacy

In the subgroup of 37 treatment-experienced patients, 13 had a viral load < 500

copies/mL at the start of the trial (35.1%). This proportion of patients with a viral load

< 500 copies/mL increased to 71.4% (ITT NC=F analysis) or 83.3% (OT analysis),

respectively (figure 3). For the 27 treatment-naïve patients in this study, the percentage

of patients with an undetectable viral load increased from 0% at baseline to 76.2% (ITT

NC=F analysis) or 100.0% (OT analysis), respectively, during the 24 weeks of follow-

up. Parallel to this virological response, the geometric mean CD4 cell count rose from

112 at baseline to 164 cells/mm3 at week 24 in the treatment-experienced patients

(OT analysis); for the treatment-naive patients, the change in CD4 cell count was from

64 at baseline to 284 cells/mm3 at week 24 (figure 4).
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Figure 2. Evolution of serum creatinine levels (median ± IQR) during 24 weeks of follow-up.
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Discussion

This phase II study demonstrated that a once-daily regimen containing

indinavir/ritonavir plus one or two NRTIs results in adequate pharmacokinetic

parameters of indinavir as compared to the licensed use of indinavir three times daily

without ritonavir [21]. Average Cmin levels of indinavir were similar (0.15 mg/L), and

interpatient variability (5/16 subjects had a Cmin below 0.10 mg/L) was also

comparable to previous observations [22-26]. In addition, AUC0-24h of this once-daily

indinavir regimen was on average 1.5 times higher than usually reported for indinavir

three times daily (corrected for 24h exposure) [22-26]. 

Given the fact that both AUC and Cmin concentrations of indinavir have been related

to antiviral response (for review see [27]), it can be expected that this once-daily

regimen of indinavir would have adequate antiviral activity. In line with the adequate

pharmacokinetic parameters for indinavir, the short-term efficacy of this regimen was

satisfactory. This may be somewhat surprising given the fact that mainly patients were

selected based on a proven or predicted poor adherence with antiretroviral regimens.

In this study, adherence was not independently assessed, although some of the drop
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outs actually did not meet their appointments and can be considered non-adherent.

We have no information on adherence of patients who remained in the study.

Indinavir was originally licensed in a three times daily dose of 800 mg. Several studies

have shown that addition of ritonavir makes twice-daily dosing possible [28-30]. A

subsequent step to once-daily use was investigated in two separate healthy volunteer

studies [12,13]. These studies evaluated three different indinavir doses (400, 800 and

1200 mg) and three ritonavir doses (100, 200 and 400 mg). Optimal exposure was

predicted in the 1200/400 mg dose group and this dose was selected for the phase II

study as described here. The observation that 5 out of the 16 patients had a Cmin

level below the minimum effective level of 0.10 mg/L, and the absence of published

data on other doses, suggests that this dose can be considered the minimum effective

dose and that Therapeutic Drug Monitoring may be needed to optimize treatment in

selected cases. 

The question remains, however, whether this threshold of 0.10 mg/L as derived from

three times daily use of indinavir without ritonavir can be extrapolated to boosted

indinavir regimens taken twice or once-daily. In this study, none of the 5 patients with

a Cmin below 0.10 mg/L had virological failure during the short-term follow-up. One

explanation for this apparent discrepancy may be that a suboptimal trough level of

indinavir may occur in some patients three times a day in three times daily regimens

vs. only once a day in a once-daily regimen as described here. As a result, it can be

postulated that patients with suboptimal exposure to indinavir are at a higher risk for

virological failure when they have a trough below 0.10 mg/L in a three times daily

regimen compared to a once-daily regimen. So far, no studies have demonstrated a

minimum effective concentration of indinavir in these boosted regimens. Use of the

0.10 mg/L threshold for all indinavir containing regimens can be considered a

conservative approach while awaiting more data for the boosted indinavir regimens. 

Another explanation for a difference in minimum effective concentrations for indinavir

in three times daily vs. once daily regimens may be a difference in the relationship

between indinavir Cmin and AUC in the different schedules. Usually indinavir Cmin

and AUC show co-linearity, but this may change when the dose and dose interval are

changed. For example, the average indinavir trough of 0.15 mg/L in the unboosted

three times daily regimen corresponds to an indinavir AUC0-24h of approximately 60

A once-daily HAART regimen containing indinavir + ritonavir
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mg/L.h [21-23]. In contrast, the AUC0-24h as observed in this once-daily regimen is

approximately 50% higher (GM 84.9 mg/L.h) in the absence of a change in the

indinavir trough. Therefore, if we consider a similar AUC0-24h value as the target for

unboosted three times daily indinavir and boosted once-daily indinavir, the target

C24h in the latter regimen may be considerably lower than the proposed minimum

value for C8h of 0.10 mg/L in the unboosted regimen [27]. Long-term follow up of

patients using once-daily indinavir regimens is required to evaluate the relationships

between indinavir Cmin or AUC and virological response for this regimen. 

When the once-daily use of indinavir was initially considered, there was a

considerable fear of increased nephrotoxicity due to the elevated indinavir peak levels

that were observed in the healthy volunteer studies of the once-daily dose. Indeed,

Cmax levels of indinavir as observed in this study are substantially higher than those in

other indinavir regimens: 12.0 mg/L for once-daily (+ ritonavir) vs. 8-11 mg/L for

twice-daily (800 mg + 100 mg of ritonavir) [29,30] vs. 7-9 mg/L for three times daily

(800 mg without ritonavir) [21-23,25,26]. The higher Cmax levels of indinavir in this

study, however, do not appear to result in increased renal toxicity as compared to

other indinavir regimens. No patient developed nephrolithiasis. Only 5 out of the 64

patients had urological complaints (i.e. hematuria and dysuria) during the 24 weeks of

follow up, and none discontinued indinavir for this reason. In addition, there was a

slight increase of 5 micromol/L in serum creatinine during the 24 weeks of treatment.

A possible explanation for the absence of an increased incidence in renal toxicity,

despite the high Cmax levels of indinavir in this once-daily regimen, may be the fact

that this peak occurs only once-a-day. Subjects were instructed to drink at least 1.5

liter of fluid around the intake of indinavir, and this advice may be better adhered to

than when a similar recommendation needs to be followed at three different time

points during the day. The incidence of renal toxicity in patients using other indinavir

regimens has been presented in largely varying incidences, probably due to

differences in definitions and duration of follow-up. Long-term follow up of this cohort

is planned and may indicate any long-term renal complications of this regimen. 

In contrast to the low incidence of renal toxicity, a much higher frequency of GI and

skin toxicity was observed. GI toxicity may be partly related to ritonavir plasma levels

as a relatively high dose for boosting was used here. Skin toxicity (esp. dry skin) is

probably most related to indinavir exposure; a higher incidence of skin effect was
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observed in the boosted twice daily 800/100 mg regimen vs. the unboosted three

times daily 800 mg regimen in the BEST study [31]. 

The initial antiviral response is encouraging, especially considering the proven poor

compliance in the past or an anticipated poor compliance for new patients and the

high proportion of treatment-experienced patients in this cohort (57.8%). The duration

of follow-up of this phase II study, however, was too short to draw any firm conclusions

with regard to antiviral response. Furthermore, comparisons with other once-daily

regimens are needed to assess the place of this regimen in current treatment options.

In conclusion, the 24-weeks follow-up data of this study indicate favorable

pharmacokinetics of an indinavir/ritonavir 1200/400 mg combination as part of a

once-daily regimen consisting also of one or two NRTIs. Short-term safety and efficacy

were also satisfactory. Long-term follow up is planned to evaluate the durability of

these results.

Acknowledgements

This study was supported by an unrestricted research grant from Merck & Co. Marja

Bendik, Bert Zomer, Karin Grintjes, and Marjolein Bosch are acknowledged for data

collection. The technicians of the Department of Clinical Pharmacy are thanked for

analysing the plasma levels of indinavir and ritonavir.

References

1. Yeni PG, Hammer SM, Carpenter CC, et al. Antiretroviral treatment for adult HIV infection in 2002:
updated recommendations of the International AIDS Society-USA Panel. JAMA 2002;288:222-235.

2. Hugen PW, Burger DM, Aarnoutse RE, et al. Therapeutic drug monitoring of HIV-protease inhibitors to
assess noncompliance. Ther Drug Monit 2002;24:579-587.

3. Nieuwkerk PT, Sprangers MA, Burger DM, et al. Limited patient adherence to highly active antiretroviral
therapy for HIV-1 infection in an observational cohort study. Arch Intern Med 2001;161:1962-1968.

4. Paterson DL, Swindells S, Mohr J, et al. Adherence to protease inhibitor therapy and outcomes in
patients with HIV infection. Ann Intern Med 2000;133:21-30.

5. Heeswijk van RPG, Veldkamp AI, Mulder JW, et al. Combination of protease inhibitors for the treatment
of HIV-1-infected patients: a review of pharmacokinetics and clinical experience. Antivir Ther
2002;6:201-229.

6. Acosta EP. Pharmacokinetic enhancement of protease inhibitors. J Acquir Immune Defic Syndr
2002;29(Suppl 1):S11-S18.

A once-daily HAART regimen containing indinavir + ritonavir



242

7. Sale M, Sadler BM, Stein DS. Pharmacokinetic modeling and simulations of interaction of amprenavir
and ritonavir. Antimicrob Agents Chemother 2002;46:746-754.

8. Cardiello PG, van Heeswijk RP, Hassink EA, et al. Simplifying protease inhibitor therapy with once-daily
dosing of saquinavir soft-gelatin capsules/ritonavir (1600/100 mg): HIVNAT 001.3 study. J Acquir
Immune Defic Syndr 2002;29:464-470.

9. Kilby JM, Sfakianos G, Gizzi N, et al. Safety and pharmacokinetics of once-daily regimens of soft-gel
capsule saquinavir plus minidose ritonavir in human immunodeficiency virus-negative adults. Antimicrob
Agents Chemother 2000;44:2672-2678.

10. Heeswijk van RPG, Veldkamp AI, Mulder JW, et al. Once-daily dosing of saquinavir and low-dose
ritonavir in HIV-1-infected individuals: a pharmacokinetic pilot study. AIDS 2000;14:F103-F110.

11. Aarnoutse RE, Droste JA, Van Oosterhout JJ, et al. Pharmacokinetics, food intake requirements and
tolerability of once-daily combinations of nelfinavir and low-dose ritonavir in healthy volunteers. Br J Clin
Pharmacol 2003;55:115-125.

12. Hugen PW, Burger DM, ter Hofstede HJ, et al. Dose-finding study of a once-daily indinavir/ritonavir
regimen. J Acquir Immune Defic Syndr 2000;25:236-245.

13. Saah A, Winchell G, Seniuk M, et al. Multiple-dose pharmacokinetics and tolerability of indinavir and
ritonavir combinations in a once-daily regimen in healthy volunteers (Merck 089) [abstract 329]. 39th
Interscience Conference on Antimicrobial Agents and Chemotherapy, San Francisco, USA, 1999. 

14. Mole L, Schmidgall D, Holodniy M. A pilot trial of indinavir, ritonavir, didanosine, and lamivudine in a
once-daily four-drug regimen for HIV infection. J Acquir Immune Defic Syndr 2001;27:260-265.

15. Hsieh SM, Hung CC, Lu PL, et al. Preliminary experience of adverse drug reactions, tolerability, and
efficacy of a once-daily regimen of antiretroviral combination therapy. J Acquir Immune Defic Syndr
2000;24:287-288.

16. Mallolas J, Blanco JL, Sarasa M, et al. Dose-finding study of once-daily indinavir/ritonavir plus
zidovudine and lamivudine in HIV-infected patients. J Acquir Immune Defic Syndr 2000;25:229-235.

17. Gisolf EH, Jurriaans S, Pelgrom J, et al. The effect of treatment intensification in HIV-infection: a study
comparing treatment with ritonavir/saquinavir and ritonavir/saquinavir/stavudine. Prometheus study
group. AIDS 2000;14:405-413.

18. Hugen PWH, Verwey-van Wissen CPWGM, Burger DM, et al. Simultaneous determination of the HIV-
protease inhibitors indinavir, nelfinavir, saquinavir and ritonavir in human plasma by reversed-phase
high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl 1999;727:139-149.

19. Chapter 2. Compartmental and noncompartmental pharmacokinetics. In: Gibaldi M. Biopharmaceutics
and clinical pharmacokinetics (4th ed). Philadelphia, London: Lea & Febiger; 1991, 14-23.

20. Burger DM, Hugen PW, Van der Ende ME, et al. Once-daily indinavir plus ritonavir: preliminary results
of the PIPO study. AIDS 2000;14:2621-2623.

21. Anonymous. Product monograph Crixivan® Merck and Co. Inc., West Point, PA 19486, USA, 1996.
22. Acosta EP, Henry K, Baken L, et al. Indinavir concentrations and antiviral effect. Pharmacotherapy

1999;19:708-712.
23. Burger DM, van Rossum AM, Hugen PW, et al. Pharmacokinetics of the protease inhibitor indinavir in

human immunodeficiency virus type 1-infected children. Antimicrob Agents Chemother 2001;45:701-
705.

24. Hsu A, Granneman GR, Cao G, et al. Pharmacokinetic interaction between ritonavir and indinavir in
healthy volunteers. Antimicrob Agents Chemother 1998;42:2784-2791.

25. Shulman N, Zolopa A, Havlir D, et al. Virtual inhibitory quotient predicts response to ritonavir boosting
of indinavir-based therapy in human immunodeficiency virus-infected patients with ongoing viremia.
Antimicrob Agents Chemother 2002;46:3907-3916.

26. Ghosn J, Lamotte C, Ait-Mohand H, et al. Efficacy of a twice-daily antiretroviral regimen containing 100
mg ritonavir/400 mg indinavir in HIV-infected patients. AIDS 2003;17:209-214.

27. Acosta EP, Kakuda TN, Brundage RC, et al. Pharmacodynamics of human immunodeficiency virus type

Chapter 5.3



243

1 protease inhibitors. Clin Infect Dis 2000;30(Suppl 2):S151-S159.
28. Saah AJ, Winchell GA, Nessly ML, et al. Pharmacokinetic profile and tolerability of indinavir-ritonavir

combinations in healthy volunteers. Antimicrob Agents Chemother 2001;45:2710-2715.
29. Heeswijk van RPG, Veldkamp AI, Hoetelmans RMW, et al. The steady-state pharmacokinetics of

indinavir alone and in combination with a low dose of ritonavir in twice daily dosing regimens in HIV-1-
infected individuals. AIDS 1999;13:F95-F99.

30. Burger DM, Hugen PWH, Aarnoutse RE, et al. A retrospective, cohort-based survey of patients using
twice daily indinavir + ritonavir combinations: pharmacokinetics, safety and efficacy. J Acquir Immune
Defic Syndr 2001;26:218-224.

31. Arnaiz JA, Mallolas J, Podzamczer D, et al. Continued indinavir versus switching to indinavir/ritonavir
in HIV-infected patients with suppressed viral load. AIDS 2003;17:831-840.

A once-daily HAART regimen containing indinavir + ritonavir



Chapter 6. 

General discussion



246

Introduction

The overall objective of this thesis was to contribute to the optimization of dosage

regimens for antiretroviral protease inhibitors (PIs) and non-nucleoside reverse

transcriptase inhibitors (NNRTIs) by the application of pharmacokinetics. After a

review of the literature, an interlaboratory quality control program was introduced as

a means to enable laboratories to assess and improve their ability to analyze PIs and

NNRTIs in plasma. Pharmacokinetic studies were performed that aimed to provide

pharmacokinetically-based dosing recommendations for (combinations of)

antiretroviral drugs. Finally, the feasibility of once-daily administration of two PIs was

evaluated in pharmacokinetic studies. This chapter discusses the main findings of these

studies and presents perspectives for future studies.

Bioanalysis and interlaboratory quality control

A prerequisite for any pharmacokinetic study and for Therapeutic Drug Monitoring

(TDM) is the availability of bioanalytical methods for the drugs in question. Chapter
2.1 presented a review of HPLC methods for analysis of PIs in human biological

matrices. This review summarized analytical techniques that have been applied for

sample pretreatment, chromatographic separation and detection of PIs, and discussed

the requirements for HPLC measurement of these drugs in terms of accuracy, sensitivity

and selectivity of the method. The review suggested variability between laboratories

with respect to the rigour of intralaboratory method validation. This prompted the

development of an international interlaboratory quality control (QC) program for

measurement of antiretroviral drugs in plasma (chapters 3.1 and 3.2). The first

rounds of this newly established QC program defined the state-of-the-art in terms of

analytical methodology for and performance of laboratories in measurement of PIs

and NNRTIs, and evaluated sources of error in analytical performance. Most

importantly, the program alerted laboratories to unknown deficiences in their methods,

and this enabled them to undertake corrective actions.  

The results of the first rounds of the interlaboratory QC program revealed large

variability in the ability of laboratories to measure PIs and NNRTIs accurately. In the

third round of the program (chapter 3.2), 82% of all measurements performed by 30
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laboratories were considered satisfactory, i.e. within 80-120% limits for accuracy.

Nineteen of 30 laboratories (63%) reported at least 80% of their results within the

acceptance range. These results can be considered as indicative for the performance

of laboratories, considering that every round of the program represented a

comprehensive set of measurements for multiple drugs at three concentration levels.

Moreover, some general limitations to the validity of a QC program as an indicator for

laboratory performance were not applicable [1,2]. That is, the risk of disturbing matrix

effects was limited since all samples were prepared in human plasma and were not

lyophilized, and criteria for a satisfactory measurement were well-founded and

accepted by all participants. However, it can not be excluded that laboratories focused

an inordinate amount of effort to the measurement of the QC samples, compared to

real samples [1,2]. If this is taken into consideration, it can only be concluded that too

many laboratories had an unsatisfactory performance in the first rounds of the

program. In pharmacokinetic studies, this could lead to assessment of incorrect

pharmacokinetic parameters. In TDM, inaccurate measurements could result in

inappropriate dose adjustments or the advice not to adjust doses where it might

actually be desirable.   

The reasons for unsatisfactory measurements were inquired by the participating

laboratories themselves as part of the third round of the program (chapter 3.2). A

common reason for inaccurate measurements appeared to be an insufficient validation

of analytical methods. Several methods for particular PIs and/or NNRTIs were not

tested for interference by other antiretrovirals. Since the interlaboratory QC samples

contained more than one drug, the drugs affected eachother’s assay. In this way the

design of the program may have caused an overestimation of the number of

unsatisfactory measurements, but these findings also highlighted that the specificity

and selectivity of these methods were not (appropriately) validated. Another deficiency

in method validation was reflected in the significantly worse performance for

measurement of low plasma concentrations versus medium and high concentrations.

This indicates that several methods were not suitable for measurement of low (trough)

plasma concentrations, or lower limits of quantitation were not well validated.

Interestingly, review of the literature with respect to HPLC analysis of PIs (chapter 2.1)

already suggested that some methods had deficiencies with respect to the validation

parameters specificity/selectivity and limit of quantitation. Apparently, there is some
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scope for individual interpretation with respect to the conduct and acceptance criteria

for a validation procedure in the bioanalysis of drugs, despite (or maybe due to) the

availability of many guidelines for validation of bioanalytical methods. 

Apart from inadequate method validation, laboratories reported other sources of error,

such as dilution and pipetting errors, acceptance of runs even though controls were out

of range, and use of ageing stock solutions. These errors reflect deficiencies in regular

intralaboratory quality control.   

The results of the first rounds of the QC program raise the question how the overall

performance of laboratories in measuring antiretroviral drugs could be improved.

Clearly, laboratory directors have the prime responsibility to ensure that critical validation

parameters are evaluated appropriately before a method is put into use. It seems that

scientific journals could verify this more carefully before a method is accepted for

publication. A continuing role remains for this (and other) programs as a tool to alert

laboratory directors to unrecognized deficiencies in their quality assurance systems.

Whereas participation in the program is voluntary at this moment, it could be questioned

whether this is desirable in the long-term, considering the importance of bioanalysis for

pharmacokinetic studies and TDM. In the interest of patients, it seems justified (and

useful, based on data from the USA [3]) to use interlaboratory QC not only as an

educational tool, but also as a regulatory tool. As for the current program, subsequent

steps in this direction would be the definition of specific criteria for an acceptable

performance, the issue of certificates after an adequate performance over time, the

mandated (rather than recommended) participation in the program (or similar programs)

and, finally, the accreditation of laboratories for measurement of antiretroviral drugs,

based upon performance in QC programs and other criteria. Some of these steps are in

the hands of regulatory authorities. The combined use of interlaboratory QC both as an

educational and regulatory tool requires courage from laboratories to allow

interlaboratory QC to detect errors in the short-term, in order to profit from it in the long

run, and a judicious response by regulatory authorities when failure occurs [1]. In the

short term, the (educational) role of the current program could be improved by an

increase in the frequency of send-arounds, an extension of the program to measurement

of NRTIs, and incorporation of the post-analytical stage of antiretroviral drug

measurements. The latter issue means that the program includes QC samples that are

accompanied by a real-life TDM casus that should be interpreted by the laboratory. 
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Drug-drug and drug-food interactions

The studies in chapters 4 and 5 aimed to provide dosing recommendations for

(combinations of) antiretroviral drugs. All these studies evaluated pharmacokinetic

interactions of PIs and NNRTIs. The studies in chapter 4 focused on potentially

undesirable interactions, whereas the studies in chapter 5 actually exploited the

interactions between PIs to achieve once-daily administration of these drugs. All studies

involved PIs that were combined with low-dose ritonavir (boosted PIs). The interactions

that were studied can be classified as interactions between an individual drug

(combination) and food (chapters 4.1 and 5.1), interactions between antiretroviral

drugs (chapters 4.2-4.4 and 5.1-5.3), and interactions between antiretroviral drugs

and concomitantly administered drugs (chapter 4.5). The interactions involved

alterations in absorption (chapters 4.1 and 5.1) or metabolism (chapters 4.2-4.5, 5.1-

5.3) of the agents that were co-administered. The relevance of the interactions was

evaluated by comparison of the obtained pharmacokinetic parameters (especially the

area under the curve, AUC; the peak plasma concentration, Cmax; and the trough

concentration, Cmin) to reference values. These reference values were either the mean

pharmacokinetic parameters for a drug (combination) in an approved dosing scheme

that is known to confer adequate efficacy and limited toxicity, or they were threshold

values that have been derived from pharmacokinetic-pharmacodynamic relationships.    

Interactions between antiretroviral drugs and food

The studies described in chapters 4.1 and 5.1 assessed the effect of food (or the

amount of food) on the bioavailability of indinavir/ritonavir 800/100 mg BID or once-

daily nelfinavir/ritonavir combinations. In the study in chapter 4.1 it was found that

intake of indinavir/ritonavir with a light meal decreased the rate, but not the extent, of

absorption of indinavir, compared to intake on an empty stomach. A decrease in the

absorption rate of drugs is the most commonly observed effect of food [4]. It can be

explained by a food-induced delay in gastric emptying [4-6]. Although this effect is

generally of minor clinical significance, it could be relevant for indinavir, since

available data suggest an association between indinavir Cmax values and

nephrotoxicity [7-16]. Thus, based on this study, it was recommended that

indinavir/ritonavir 800/100 mg should preferably be taken with food. A heavy, high
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caloric meal is expected to delay gastric emptying more strongly than the light meal

that was used in this study [5,6] and could therefore induce a further reduction in

indinavir Cmax.   

In the study in chapter 5.1, it was assessed that intake of once-daily combinations

of nelfinavir and ritonavir with a light meal resulted in a decrease in the extent of

absorption of nelfinavir, compared to administration with a full meal. Since plasma

concentrations of nelfinavir are only slightly higher than proposed therapeutic

thresholds [17,18], it was recommended that once-daily combinations of nelfinavir

plus ritonavir should be taken with a full meal. The mechanism of the effect of food on

the bioavailability of nelfinavir/ritonavir remains unknown. In theory, this effect may

have been exerted in each step of the bioavailability pathways of nelfinavir and

ritonavir, from tablet disintegration, dissolution of the drugs, transit through the gastro-

intestinal tract, to metabolic transformation in the gastro-intestinal wall and liver [4-6]. 

The lack of data on food-effects of PIs continues to raise questions in everyday clinical

practice. In fact, the minimum requirements for a meal to guarantee adequate

absorption are still unknown for all available PIs. There is a need for comprehensive

food-effect studies that evaluate such minimum requirements and the effect of

determinants such as fat content, caloric content, volume of food and amount of fluids

on the bioavailability of PIs.  

Interactions between antiretroviral drugs

The studies in chapters 4.2-4.4 included both healthy volunteers and HIV-infected

patients to evaluate the pharmacokinetics of the same dual PI plus NNRTI combination

of indinavir/ritonavir 800/100 mg BID and efavirenz. Such combinations of PIs and

NNRTIs could be applied as first-line therapy to spare the class of NRTIs and to

prevent toxicity related to NRTIs [19]. In addition, PI/NNRTI combinations are

increasingly used as second-line therapy (with or without NRTIs) in patients who are

resistant or intolerant to NRTIs [19]. Blood sampling schemes and bioanalytical and

pharmacokinetic methodology were similar across the studies in chapters 4.2-4.4. 

The combination of indinavir/ritonavir plus efavirenz was first studied in healthy

volunteers who were all Caucasian and male (chapter 4.2). It was concluded that

efavirenz decreases the plasma concentrations of indinavir in the indinavir/ritonavir
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combination, but not to an extent that dose modifications are required for treatment-

naive patients. However, it could not be excluded that such pharmacokinetic data in

healthy volunteers would differ from those in HIV-infected patients. For example, it is

known that the activity of CYP P450 enzymes can be altered by certain

proinflammatory cytokines that are released during inflammation and infection [20].

As to the specific effects of HIV infection, some studies have found differences in

zidovudine phosphorylation between healthy volunteers and HIV-infected patients

[21,22], and other studies suggested that patients with AIDS might have alterations in

specific patterns of drug metabolism [23]. Results from one study indicated that the

magnitude of pharmacokinetic interactions could differ between healthy volunteers and

HIV-infected patients [24]. Therefore it was desirable to obtain follow-up

pharmacokinetic data of the indinavir/ritonavir plus efavirenz combination in HIV-

infected patients, and these data were assessed in Caucasian and Asian (Thai) HIV-

infected patients (chapters 4.3 and 4.4). Most importantly, these assessments

confirmed that indinavir Cmin values and efavirenz concentrations were adequate in

HIV-infected patients, as predicted by the study in healthy volunteers. Cross-study

comparisons suggested that indinavir Cmax and AUC values were higher in Thai

patients who used the combination of indinavir/ritonavir plus efavirenz; efavirenz

concentrations seemed to be somewhat higher in HIV-infected patients compared to

healthy volunteers. An explanation for these apparent differences is complicated by the

simultaneous occurrence of several determinants of pharmacokinetic variability in the

study participants, i.e. disease, race or ethnicity, gender and body weight. For

example, the seemingly higher indinavir Cmax in Thai patients could possibly be

explained by genetic (racial) differences in absorption of indinavir (e.g. due to

differences in gut or hepatic first-pass effects [25]), but could also be ascribed to

interethnic differences in meals that may have affected the rate of absorption of

indinavir [25]. Moreover, it could be argued that the high indinavir Cmax values in

Thai patients were attributable to their relatively low body weights, associated with

lower volumes of distribution. Similarly, the apparently higher efavirenz levels in HIV-

infected patients could be explained as an effect of disease, but could also be ascribed

to the presence of women (50%) among the included HIV-infected patients. Women

generally have higher efavirenz plasma concentrations [26]. Clearly, more research is

warranted to elucidate the relative importance of several determinants of

pharmacokinetic variability for PIs and NNRTIs. Although the effects of race/ethnicity,
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gender, body weight and other determinants could be subtle, they may be relevant for

drugs with a narrow therapeutic index such as PIs and NNRTIs. It is not expected that

these determinants could change the direction of pharmacokinetic interactions, but the

magnitude of interactions could be affected.    

The study in chapter 5.2 also evaluated the effect of an NNRTI (nevirapine) on the

pharmacokinetics of a boosted PI (nelfinavir/ritonavir in a once daily dosing scheme).

This interaction appeared to be very complex and probably involved multiple hepatic

enzymes. The results showed that once-daily nevirapine can be added to once-daily

nelfinavir/ritonavir to obtain an entirely once-daily regimen.

The studies in chapters 5.1 and 5.3 evaluated interactions between PIs and low-

dose ritonavir. Ritonavir inhibited the metabolism of these PIs to an extent that once-

daily administration was made possible (see next paragraph). 

Interactions between antiretroviral drugs and concomitantly
administered drugs

There is a large potential for interactions between antiretroviral drugs and

concomitantly administered drugs. Especially low-dose ritonavir can be expected to

raise levels of many drugs, not just PIs. These drugs include many substrates for

CYP2D6. Unfortunately, there is a limit to the number of in vivo interaction studies that

can reasonably be performed, and in vitro methods for predicting drug interactions

have their limitations [27]. The study in chapter 4.5 used an in vivo model drug

approach to investigate the effect of low-dose ritonavir on the activity of CYP2D6.

According to such a model drug approach, the elimination of one (or a few) model

drugs is studied as a means to predict the elimination of many other compounds [28].

In this case, the effect of low-dose ritonavir on CYP2D6 was evaluated in a

pharmacokinetic interaction study with desipramine, a model substrate for CYP2D6,

and by assessment of urinary ratios of dextromethorphan and its CYP2D6 mediated

metabolite dextrorphan (metabolic phenotyping of CYP2D6) in the presence or

absence of ritonavir.  The results showed that low-dose ritonavir caused a modest

increase in the exposure to desipramine. Based on this finding, it is expected that

many CYP2D6 substrates can be combined with low-dose ritonavir without dose-
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adjustments. Interestingly, the modest inhibitory effect of low-dose ritonavir on CYP2D6

was not detected by changes in metabolic ratios as assessed by metabolic

phenotyping. Thus metabolic phenotyping with dextromethorphan appeared to be less

sensitive (i.e. would have required more participants or phenotyping sessions) for the

assessment of the effect of ritonavir on CYP2D6 than an intensive pharmacokinetic

study with a model substrate. Another (more general) disadvantage of metabolic

phenotyping is the difficulty of interpreting the relevance of changes in metabolic ratios

of model drugs (probes). In this respect, changes in plasma drug levels, as determined

in an intensive pharmacokinetic study with a model substrate, are easier to

understand. In any case, each of these two model drug approaches requires (nontoxic)

model drugs that are specifically metabolized by a certain metabolic route and have

documented predictive value to other drugs. Whereas such model drugs are available

for CYP2D6, they are not available for all hepatic enzymes at this time. In addition,

many drugs do affect multiple enzymes whereas other drugs are biotransformed by

multiple pathways. This means that the model drug approach often requires several

concomitantly administered model drugs. In the end, it will probably be difficult to

predict many interactions. This means that direct pharmacokinetic evaluations of

interacting drugs will remain essential to yield information that is clinically applicable.

Once-daily administration of protease inhibitors

The studies in chapter 5 evaluated the feasibility of once-daily administration of the PIs

nelfinavir and indinavir by combining these drugs with low-dose ritonavir. In this way,

pharmacokinetic interactions were exploited as a means to modulate adherence, an

important determinant of treatment response to HAART. 

Each of the studies in chapter 5 represents a stage that needs to be passed through

before a once-daily combination can be applied in clinical practice. Firstly, explorative

studies should reveal whether once-daily administration of an individual antiretroviral

drug is feasible at all, based on pharmacokinetic data and a short-term evaluation of

safety and tolerability in healthy volunteers. Chapter 5.1 described such an

explorative study for once-daily combinations of nelfinavir plus low-dose ritonavir. As

a next step in the development of a once daily HAART regimen, it should be

considered that potential once-daily agents can not always be assembled in an entirely
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once-daily regimen, due to pharmacokinetic interactions or different food restrictions.

Chapter 5.2 described the pharmacokinetic interaction between once-daily

nelfinavir/ritonavir combinations and once-daily nevirapine. Based on these studies in

healthy volunteers, a once-daily nelfinavir/ritonavir regimen could now be tested in

HIV-infected patients. Chapter 5.3 described such a study, but for the once-daily

combination of indinavir plus low-dose ritonavir. The favourable results of this study

pave the way for comparative (e.g. once-daily versus twice-daily) long-term trials that

would constitute the final step in the development of this once-daily indinavir/ritonavir

combination. Such trials should incorporate adequate assessments of adherence, as it

remains unknown whether once-daily administration of HAART really improves

adherence. Data for other chronic diseases suggest advantages for once-daily versus

twice-daily administration of drugs, both in terms of doses taken and timing-accuracy,

but these differences did not reach statistical significance [29]. 

Future trials should also include pharmacokinetic substudies, since there are several

pharmacokinetic issues concerning once-daily administration that need to be resolved.

Firstly, there is a lack of data about pharmacokinetic-pharmacodynamic relationships

after once-daily administration of antiretroviral drugs. For PIs, it is assumed that the

24-h Cmin value is the most important pharmacokinetic parameter associated with

therapeutic response, consistent with pharmacokinetic-pharmacodynamic relationships

obtained for twice- and thrice-daily administration of these drugs. However, it is

unknown whether the same Cmin threshold would apply to once-daily and twice- or

thrice-daily dosing regimens of a PI. More specifically, thresholds for Cmin could

possibly be lower after once-daily administration, considering that Cmin levels occur

only once every 24 h in a once-daily dosing scheme. In the absence of data, the

studies in chapters 5.1 and 5.2 used conservative target values for the 24-h Cmin of

nelfinavir and M8, i.e. target values that were similar to mean Cmin values after twice

daily-administration of nelfinavir without ritonavir. Similar to therapeutic response,

there is uncertainty about the relationship between pharmacokinetics and toxicity in

once-daily combinations. For example, the once-daily indinavir/ritonavir combination

(chapter 5.3) was associated with a low incidence of indinavir-related nephrolithiasis,

despite high indinavir Cmax and AUC values. This could possibly be explained by the

occurrence of just one Cmax every 24 h.  

A second pharmacokinetic issue relates to the consequences of missing a dose in a

once-daily dosing scheme. Some argue that this results in a prolonged period of
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suboptimal drug exposure, compared to missing a dose in a twice-daily scheme

[30,31]. However, the forgiveness of a regimen is dependent on the pharmacokinetic

properties of the drugs involved, not on the number of times a drug is dosed. In this

respect, a long elimination half-life could be advantageous, as long as plasma levels

remain above concentration windows that favor resistance development [32]. On the

other hand, a long half-life could actually be undesirable if plasma levels are only

slightly higher than concentration windows that are associated with the emergence of

resistance. In this case it would be desirable if drug concentrations declined rapidly

through these windows [33]. Pharmacokinetic studies should reveal whether individual

PIs and NNRTIs differ in this respect. In the end, only clinical trials can demonstrate

whether improved adherence afforded by once-daily dosing outweighs the

consequences of missing a dose.  

As a third issue, there is concern that interindividual variability in key pharmacokinetic

parameters may be increased after once-daily administration of antiretroviral drugs.

Lopinavir Cmin values showed substantially greater interpatient variability among

patients receiving the once-daily regimen versus the twice-daily combination [34]. In

contrast, variability in indinavir Cmin after once-daily administration of indinavir

(chapter 5.3) appeared to be similar to variability observed after thrice-daily

administration of this drug.  

Therapeutic Drug Monitoring

The concept of TDM goes beyond the application of pharmacokinetics in the design of

fixed dosing regimens for the average patient. It seeks to individualize drug dose,

guided by measurement of plasma drug concentrations. Chapter 2.2 provided a

review of the prospects, limitations, clinical trial results and recent developments with

respect to this ultimate application of pharmacokinetics in HIV-infection. Data from two

clinical trials support the use of TDM in treatment-naive patients who start with an

indinavir- or nelfinavir-based regimen. Application of TDM in other patient groups

(treatment-experienced patients) or for other drugs (other PIs, NNRTIs) is speculative at

this moment and warrants further study. Trials in treatment-naive patients can probably

no longer be performed in some European countries such as the Netherlands and

France, where TDM for antiretroviral drugs is widely available. Studies in these

countries could focus on the combined application of TDM and resistance testing as a
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means to optimize response in treatment-experienced patients. Large TDM-studies in

treatment-naive and experienced patients will likely provide more insight in

pharmacokinetic-pharmacodynamic relationships (especially the target values to be

used) for antiretroviral drugs. In turn, this information could be applied in the design

of fixed dosing regimens, demonstrating the close association between these

applications of pharmacokinetics to optimize dosing regimens.  

Methodological issues

Study design

Several studies in chapters 4 and 5 can be categorized as experimental studies. Some

experiments were designed to test a hypothesis (chapters 4.1, 4.2, 4.5, 5.2), whereas

one experimental study was explorative in nature (chapter 5.1). The studies in chapters

4.3, 4.4 and 5.3 are descriptive pharmacokinetic studies that were performed in the

context of a clinical experiment (trial). 

The studies that were designed to test a hypothesis were typical drug interaction

studies. In drug interaction studies, drugs that cause a change in the pharmacokinetics

or pharmacodynamics of another drug are denoted as “precipitant drugs”, whereas

drugs affected by the precipitant drug are designated as “object drugs” [35]. Just like

other experiments, drug interaction studies can either have a parallel design, with one

group of subjects receiving the object drug and another group receiving the object

drug plus the suspected precipitant drug, or a self-controlled design in which

participants receive both treatments. The latter self-controlled (or within-subject, or

paired) design was chosen for the studies in chapters 4.1, 4.2, 4.5 and 5.2. This was

motivated by the large interindividual variability in pharmacokinetic parameters of

antiretroviral drugs and the efforts that are required to characterize the

pharmacokinetics of just one patient. A self-controlled design controls for variability

among patients, and therefore requires much less patients and less pharmacokinetic

assessments to obtain the same statistical power [35,36]. The self-controlled studies in

chapters 4.1, 4.2, 4.5 and 5.2 were all two-period (nonreplicated) studies; the number

of treatments was equal to the number of study periods.  
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A two-period self-controlled interaction study can be performed in two ways [35,36].

The studies in chapters 4.2, 4.5 and 5.2 had a fixed-order design in which the

participants received the object drug in the first study period (A) and the object plus

precipitant drug in the second period (A+B). The alternative design is a crossover study

in which the participants are randomized over two sequences, sequence A - A+B, or

sequence A+B - A. This design was used in chapter 4.1 with food as precipitant agent. 

Each of these two designs have advantages and disadvantages [35,36]. The

advantage of a two-period fixed-order design is that the precipitant drug is never

administered in the first period. This means that the effect of this drug (e.g. inhibition

or induction of CYP P450 enzymes) will never persist in the second period (no carry-

over effect – i.e. treatment-by-period interaction). This is advantageous when the

occurrence of carry-over or the duration of an adequate washout period is unknown a

priori; in fact, this was the main reason to use a fixed-order design in the study

described in chapter 4.5. As a second advantage, a fixed-order design is very

efficient when the object and/or precipitant drug are to be studied at steady-state.

Steady-state achieved in the first study period can be maintained in the second period,

as no wash-out period (to exclude carry-over) is usually required. This was the main

reason to use a fixed-order design in the studies described in chapters 4.2 and 5.2.

An important disadvantage of a fixed-order design is that any apparent treatment

effect could have been caused by the precipitant drug, but also by some other

intercurrent difference between the study periods (period effect).   

The advantage of a crossover design is that it allows for detection of (and correction

for) period effects [37]. The disadvantage of a crossover design is that differential

carry-over could occur [35-37]. A carry-over effect can be tested for, but the statistical

power of this test is low with the sample size used in crossover studies [37]. Therefore

the crossover design can only be used if the assumption of no carry-over is absolutely

valid on theoretical grounds, and this condition was met in the study in chapter 4.1.

Pharmacokinetic analysis and statistical analysis

The studies in this thesis were individual-based pharmacokinetic studies, i.e. studies in

which pharmacokinetic estimates for each individual subject were assessed after

sampling of the subject at a series of prespecified times. The pharmacokinetic analysis
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was performed using noncompartmental methods; these methods can be applied

irrespective of the distribution characteristics of the drugs involved [38]. 

Several studies in this thesis were designed to test hypotheses based on the

pharmacokinetic data. Two statistical approaches were used, a traditional analysis

(chapters 4.1 and 4.2) and a bio-equivalence approach (chapters 4.5 and 5.2).

According to the traditional analysis, the objective is to reject a null hypothesis of no

difference (pharmacokinetic parameters for the object drug(s) are equivalent in the

presence or absence of the precipitant drug, i.e. lack of interaction) versus an

alternative hypothesis (there is a pharmacokinetic interaction). The disadvantages of

this approach are that a clinically important difference may not be statistically

significant if the sample size is small and within- and between-subject pharmacokinetic

variability is large, whereas a clinically irrelevant difference could become statistically

significant. Therefore it is said that the traditional approach does not adequately

control the consumer risk of an incorrect conclusion of “lack of interaction”, nor the

producer risk of an incorrect conclusion of “interaction” [35,39]. In the studies in

chapters 4.1 and 4.2 significant differences were found and these were either large

and clinically relevant (chapter 4.2) or interpreted cautiously (chapter 4.1). 

For the studies in chapters 4.5 and 5.2 it was decided to use the bioequivalence

approach that better controls the consumer and producer risks. According to this

approach, the null hypothesis is inequivalence and the alternative hypothesis of

equivalence is defined by a prespecified equivalence criterion and limits [40]. In the

studies in chapters 4.5 and 5.2, equivalence (lack of interaction) was concluded when

the 90% confidence interval of the geometric mean ratio for a specific pharmacokinetic

parameter was contained within 80-125% limits, or a similar statement.

The bioequivalence approach has been elaborated further in the past years. New

approaches for bioequivalence testing, the population approach and the individual

approach, have been included in recent guidelines for bioequivalence testing [40].

These developments will likely influence the execution and evaluation of interaction

studies in the near future.

Chapter 6
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Final remarks

The studies in this thesis lead to the introduction of an interlaboratory QC program for

measurement of PIs and NNRTIs in plasma. This program highlighted large variability

in the performance of laboratories in measuring antiretroviral drugs, revealed common

sources of error, and appeared to be useful in alerting laboratories to unknown

deficiencies in their analytical methods. In addition, studies in this thesis have provided

pharmacokinetically-based dosing recommendations for the mode of administration of

indinavir/ritonavir 800/100 mg, for the combined use of indinavir/ritonavir 800/100

mg plus efavirenz, and for combination of low-dose ritonavir with CYP2D6 substrates.

Studies in healthy volunteers provided a basis for once-daily administration of

nelfinavir/ritonavir and nelfinavir/ritonavir plus nevirapine, and once-daily

administration of indinavir/ritonavir was supported by pharmacokinetic, safety and

efficacy data in HIV-infected patients.

In the near future, the interlaboratory QC program should be continued as an

educational tool, but its additional value as regulatory tool should be explored. The

frequency of send-arounds could be increased, and the program could be extended to

measurement of NRTIs and to interpretation of drug levels in the context of TDM. More

food-effect studies should be performed to assess the minimum requirements for a

meal to achieve adequate absorption of PIs. The introduction of new antiretroviral

drugs, the combined use of antiretroviral drugs, and the wide use of low-dose ritonavir

will continuously require drug interaction studies. Results from drug interaction studies

in healthy volunteers should be confirmed in HIV-infected patients, and dosing

recommendations based upon such studies should be validated. More research is

warranted to elucidate the relevance of other determinants of pharmacokinetic

variability besides the occurrence of drug interactions. Clinical trials that evaluate

once-daily dosing regimens should incorporate pharmacokinetic assessments to obtain

more data about pharmacokinetic-pharmacodynamic relationships after once-daily

administration of antiretroviral drugs. The consequences of missing a dose in a once-

daily regimen should be evaluated and interindividual variability in the

pharmacokinetics of once-daily dosing schemes should be assessed. Finally, more

studies are warranted to assess the value of TDM for antiretroviral drugs other than

indinavir and nelfinavir, and for treatment-experienced patients. Ultimately it is hoped

General discussion
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that pharmacokinetic optimization of fixed dosing regimens and individualization of

doses by plasma concentration measurements will help to improve the response to

HAART. 
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Summary 

The introduction of protease inhibitors (PIs) and non-nucleoside reverse transcriptase

inhibitors (NNRTIs) has allowed for treatment of HIV-infected patients with “highly

active antiretroviral treatment” (HAART). Unfortunately, response to HAART is

suboptimal. There is convincing evidence for PIs and accumulating evidence for

NNRTIs to conclude that the plasma concentration of these drugs is a better correlate

of response than the dose. This provides a rationale to evaluate the pharmacokinetic

characteristics of these agents and to incorporate this information into the design of

dosing regimens. The overall objective of the studies in this thesis was to contribute to

the optimization of dosage regimens for antiretroviral drugs by the assessment and

interpretation of pharmacokinetic characteristics of these agents, i.e. by the application

of pharmacokinetics. Optimized dosage regimens are expected to improve the

response to antiretroviral drugs.  

Chapter 2 presented a review of the literature on bioanalytical methods for PIs and the

practice of Therapeutic Drug Monitoring (TDM) for antiretroviral drugs. 

The availability of bioanalytical methods is a prerequisite for any pharmacokinetic

study and for TDM. Chapter 2.1 reviewed the available high-performance liquid

chromatographic (HPLC) methods for analysis of PIs in human biological matrices. It

summarized analytical techniques that have been applied for sample pretreatment,

chromatographic separation and detection of PIs, and discussed the requirements for a

reliable HPLC method. 

Whereas adequate bioanalytical methods provide the foundation for pharmacokinetic

studies, TDM may be considered the ultimate application of pharmacokinetics in

therapeutics. TDM is the individualization of the dose of a drug guided by

measurement of plasma drug concentrations. Chapter 2.2 presented a review on the

practice of TDM for antiretroviral drugs. Clinical trials support the use of TDM for

treatment-naive patients who start with an indinavir- or nelfinavir based regimen. In

addition, TDM appears to be worthwile in certain selected patient groups. More

clinical trials are needed to assess the value of TDM for patients who take other PIs or

NNRTIs, and for patients who are treatment-experienced.
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Since plasma concentration measurements are essential for any pharmacokinetic study

and for TDM, an international interlaboratory quality control (QC) program was

developed to enable laboratories to assess and improve their performance with respect

to these measurements. The studies in chapter 3 described the design and first results

of this QC program. Chapter 3.1 described the results of the first round, that was

confined to nine laboratories and to measurements of PIs. The results of the mature

program, as reflected in the third round, are described in chapter 3.2. The program

revealed large variability in the ability of laboratories to measure PIs and NNRTIs

accurately. Measurement of these drugs needs to be improved in about one third of the

laboratories that participated in the program. The performance in measurement of low

plasma concentrations was worse than for medium or high concentrations. Sources of

error were inquired and appeared to be inadequate method validation and common

deficiencies in intralaboratory quality assurance. By participating in the program,

laboratories were alerted to previously unknown errors in their methods, and this may

enable and incite them to optimize their analytical methods or intralaboratory quality

assurance system.  

The studies in chapter 4 aimed to provide pharmacokinetically-based dosing

recommendations for some existing antiretroviral drugs (or drug combinations) when

used alone, in combination with other antiretroviral drugs, or when administered with

co-medicated agents. These studies evaluated pharmacokinetic interactions that were

potentially undesirable. 

The study in chapter 4.1 assessed the effect of food on the peak plasma

concentration (Cmax) of indinavir when administered in an indinavir/ritonavir

(800/100 mg twice-daily) combination in HIV-infected patients. High indinavir Cmax

values have been associated with indinavir-related nephrotoxicity. Administration of

indinavir/ritonavir on an empty stomach resulted in a higher indinavir Cmax and a

trend to a shorter time to Cmax (tmax) compared to administration with a light meal.

Stated the other way round, intake with a light meal reduced indinavir Cmax. This

probably reflected a food-induced delay in the absorption of indinavir. The mode of

administration of indinavir/ritonavir did not affect the indinavir area under the

concentration versus time curve (AUC) or Cmin, nor the urinary excretion of indinavir.

Based on this study it is recommended to administer indinavir/ritonavir 800/100 mg

with food, as a possible means to prevent indinavir-related nephrotoxicity in patients
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who start or continue with this regimen.

Chapters 4.2, 4.3 and 4.4 were devoted to the pharmacokinetics of a combination of

indinavir/ritonavir (800/100 mg twice-daily) combined with efavirenz 600 mg once-

daily. The study in chapter 4.2 assessed the effect of multiple-dose efavirenz on the

steady-state pharmacokinetics of indinavir/ritonavir in healthy volunteers. The addition

of efavirenz resulted in significant decreases in the AUC, Cmax, and especially Cmin

of indinavir. However, all indinavir Cmin levels remained equivalent to or above the

mean Cmin value described for the approved regimen of 800 mg indinavir three times

a day, without ritonavir. Based on these findings, it was recommended that the dose of

indinavir or ritonavir should be increased to maintain similar indinavir concentrations

after addition of efavirenz to the indinavir/ritonavir combination. It was argued that

dose modifications might not be needed in antiretroviral-naive HIV-infected patients,

since the indinavir Cmin appeared to remain sufficiently high for these patients.  

Follow-up pharmacokinetic assessments to the study in chapter 4.2 were performed in

HIV-infected patients, considering that the pharmacokinetics of healthy volunteers and

HIV-infected patients may differ. The study in chapter 4.3 assessed the steady-state

pharmacokinetic parameters for the combination of indinavir/ritonavir plus efavirenz

(without dose modifications) in a small group of predominantly treatment-naive

patients who were included in the EASIER study. Indinavir plasma concentrations were

similar to values previously observed in the healthy volunteers, but efavirenz

concentrations appeared to be higher. The treatment response of the patients to the

antiretroviral combination was satisfactory. This supports the conclusion that co-

administration of indinavir/ritonavir and efavirenz results in concentrations of both

indinavir and efavirenz that are adequate for treatment-naive patients.  

The study described in chapter 4.4 also evaluated the steady-state pharmacokinetics

of indinavir/ritonavir plus efavirenz, but in a larger group of Thai HIV-infected

patients. Again, all participants in this study recorded an indinavir Cmin that was at

least comparable to the reported mean population Cmin for indinavir 800 mg thrice

daily without ritonavir. The Thai patients had an elevated indinavir Cmax compared to

the Caucasian healthy volunteers who were studied in the study in chapter 4.2. This

may be related to their lower body mass, but could also be ascribed to interethnic

differences in meals. 

Taken together, the studies in chapters 4.3 and 4.4 confirm the pharmacokinetic data

for the indinavir/ritonavir plus efavirenz combination as obtained in healthy volunteers

Summary 
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(chapter 4.2). The three studies together provide a strong pharmacokinetic basis for

the application of this combination regimen in HIV-infected patients. 

The study in chapter 4.5 was performed to assess the effect of low-dose ritonavir on

the activity of cytochrome P450 isoenzyme CYP2D6 in vivo. Many drugs are

metabolised by this isoenzyme and could possibly interact with low-dose ritonavir. The

results of this study showed that low-dose ritonavir (100 mg twice-daily) exerts a

modest inhibitory effect on the activity of CYP2D6 in extensive metabolizers for

CYP2D6. Therefore it is expected that no standard dose reductions are required if

CYP2D6 substrates that are largely metabolized by CYP2D6 and have a narrow

therapeutic index are combined with low-dose ritonavir. Patients who take such a

combination should be closely monitored for adverse reactions to the CYP2D6

substrate. The effect of low-dose ritonavir on CYP2D6 appears to be clinically

irrelevant for CYP2D6 substrates that are only partly metabolized by this iso-enzyme

or that have a wide therapeutic index.   

The studies in chapter 5 aimed to provide dosing recommendations for new PI-based

dosing regimens that can be administered once-daily. The interactions that were

studied in this chapter were desirable rather than undesirable. 

The study in chapter 5.1 evaluated the steady-state pharmacokinetics, food intake

requirements and short-term tolerability of once-daily combinations of nelfinavir and

low-dose ritonavir in healthy volunteers. Co-administration of nelfinavir and ritonavir

resulted in appreciable concentrations of nelfinavir and M8 (the active metabolite of

nelfinavir) throughout the 24-h dosing interval. Mean AUC and Cmin values of

nelfinavir plus M8 were at least comparable to reference values for the approved

regimen of nelfinavir 1250 mg twice daily without ritonavir. Administration of the

nelfinavir/ritonavir combinations with a light meal (300 kcal) reduced the

bioavailability of nelfinavir compared to administration with a full meal (600  kcal).

Short-term tolerability of the nelfinavir/ritonavir combinations was satisfactory, apart

from a higher than expected incidence of mild rash. It was concluded that once-daily

administration of nelfinavir is feasible. A once-daily nelfinavir/ritonavir 2000/200 mg

combination appeared most appropriate for further evaluation, and this combination

should be taken with a full meal.  

The study in chapter 5.2 was an extension of the study in chapter 5.1 and assessed

the influence of once-daily nevirapine on the pharmacokinetics of the once-daily
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nelfinavir/ritonavir combinations. The AUC and Cmin values of nelfinavir and

nelfinavir plus M8 combined with nevirapine were at least comparable to plasma

concentrations without nevirapine. This means that once-daily nelfinavir/ritonavir and

nevirapine can be combined to obtain an entirely once-daily dual PI plus NNRTI

regimen. A combination of nelfinavir/ritonavir 2000/200 mg plus nevirapine 400 mg

once-daily seemed preferable, since this combination results in adequate plasma

concentrations of nelfinavir and M8, whereas exposure to ritonavir is limited

compared to a combination of nelfinavir/ritonavir 2000/400 mg plus nevirapine. 

The study in chapter 5.3 investigated the pharmacokinetics and short-term (24

week) safety and efficacy of a once-daily indinavir/ritonavir combination in treatment-

naive and treatment-experienced HIV-infected patients. The participants in this study

received a regimen consisting of indinavir 1200 mg, ritonavir 400 mg, and one or

two nucleoside reverse transcriptase inhibitors, all to be administered once-daily with

food. A pharmacokinetic evaluation in this study revealed that the mean indinavir

Cmax value of the once-daily combination was high, and the mean Cmin was

comparable to the Cmin reported for the approved thrice-daily regimen of indinavir.

The high indinavir Cmax value did not result in nephrolithiasis. The short-term

treatment response was adequate, both in treatment-naive and -experienced patients.

Long-term follow-up is planned to evaluate the durability of the favorable response to

this entirely once-daily antiretroviral combination. 

Chapter 6 discussed the main findings of the studies in this thesis and presented

perspectives for future studies. 

Summary 



Samenvatting

De ontwikkeling van proteaseremmers (PIs) en non-nucleoside reverse transcriptase

remmers (NNRTIs) heeft het mogelijk gemaakt om HIV-geïnfecteerde patiënten te

behandelen met krachtige combinatietherapie (“highly active antiretroviral treatment”,

HAART). Helaas blijkt de therapeutische respons op HAART suboptimaal te zijn. Voor

de PIs is er overtuigend bewijs dat de respons op deze geneesmiddelen beter wordt

voorspeld door de bereikte plasmaconcentraties dan door de gegeven dosis. Ook voor

de NNRTIs zijn er aanwijzingen voor een relatie tussen plasmaconcentratie en effect.

Dergelijke concentratie-effect relaties vormen de rationale voor onderzoek naar de

farmacokinetische eigenschappen van PIs en NNRTIs en voor het gebruik van

farmacokinetische gegevens bij het vaststellen van doseerregimes voor deze

geneesmiddelen. De doelstelling van de onderzoeken in dit proefschrift was om bij te

dragen aan de optimalisatie van doseerregimes van PIs en NNRTIs door het vaststellen

en interpreteren van de farmacokinetische eigenschappen van deze geneesmiddelen

en hun combinaties. Geoptimaliseerde doseerregimes worden geacht de respons op

PIs en NNRTIs te verbeteren.  

Hoofdstuk 2 geeft een literatuuroverzicht van analysemethoden voor PIs in biologische

matrices en van het gebruik van Therapeutic Drug Monitoring (TDM) van

antiretrovirale geneesmiddelen. 

De beschikbaarheid van adequate analysemethoden is een voorwaarde voor elk

farmacokinetisch onderzoek en voor TDM. Hoofdstuk 2.1 beschrijft de beschikbare

HPLC methoden voor bioanalyse van PIs. Dit hoofdstuk beschouwt diverse analytische

technieken voor de voorbehandeling van monsters, voor chromatografische scheiding

en voor detectie van PIs, en bespreekt de kenmerken van een betrouwbare HPLC

methode voor PIs. 

Terwijl geschikte analysemethoden het fundament vormen voor elke farmacokinetisch

onderzoek, kan TDM worden beschouwd als de meest geavanceerde toepassing van

farmacokinetiek in de behandeling van patiënten. TDM is het individualiseren van de

dosis van geneesmiddelen aan de hand van metingen van plasmaconcentraties.

Hoofdstuk 2.2 geeft een literatuuroverzicht van TDM voor antiretrovirale

geneesmiddelen. Uit klinische trials is gebleken dat TDM zinvol is voor de PIs indinavir
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en nelfinavir als deze middelen worden toegepast bij patiënten die niet eerder werden

behandeld met antiretrovirale geneesmiddelen. Bovendien lijkt TDM waardevol voor

bepaalde geselecteerde patiëntengroepen. Meer klinische trials zijn gewenst om vast te

stellen of TDM ook zinvol is bij NNRTIs of bij andere PIs dan indinavir of nelfinavir,

alsook bij patiënten die wél zijn voorbehandeld met antiretrovirale geneesmiddelen. 

Omdat meting van plasmaconcentraties de basis vormt voor zowel farmacokinetisch

onderzoek als voor TDM werd een internationaal kwaliteitscontroleprogramma

opgezet voor analyse van antiretrovirale geneesmiddelen in plasma (Hoofdstuk 3). Het

hoofddoel van dit programma was om laboratoria in staat te stellen de kwaliteit van

hun analyses te toetsen en waar mogelijk te verbeteren. Hoofdstuk 3.1 beschrijft de

resultaten van de eerste ronde van het kwaliteitscontroleprogramma. Deze ronde

beperkte zich tot 9 laboratoria en tot meting van PIs. De resultaten van het volgroeide

programma (derde ronde) worden beschreven in hoofdstuk 3.2. Deze resultaten

gaven aan dat er grote verschillen tussen laboratoria bestaan in hun vermogen om

plasmaspiegels van PIs en NNRTIs accuraat te meten. De analyse van deze

geneesmiddelen diende te worden verbeterd in ongeveer één derde van de

deelnemende laboratoria. Lage plasmaconcentraties bleken slechter te worden

gemeten dan middelhoge of hoge plasmaconcentraties. De oorzaken van onjuiste

metingen werden geïnventariseerd; onvoldoende validatie van analysemethoden en

tekortkomingen in reguliere, dagelijkse kwaliteitsborging verklaarden de meeste

onjuiste metingen. Door de deelname aan het kwaliteitscontroleprogramma werden

laboratoria gewezen op foutenbronnen die tevoren onvoldoende waren onderkend.

Deze kennis zou laboratoria in staat moeten stellen (en moeten aansporen) om

verbeteringen aan te brengen in hun analysemethoden of kwaliteitsborgingssysteem.   

In de onderzoeken in hoofdstuk 4 werden aan de hand van farmacokinetisch

onderzoek doseringen (of wijzen van toediening) vastgesteld voor antiretrovirale

geneesmiddelen, voor combinaties van antiretrovirale geneesmiddelen, en voor

combinaties van antiretrovirale geneesmiddelen en andere geneesmiddelen. De studies

in hoofdstuk 4 hadden alle betrekking op ongewenste farmacokinetische interacties.

Het onderzoek in hoofdstuk 4.1 bestudeerde het effect van voedsel op de piek

plasma spiegel (Cmax) van indinavir bij gebruik van deze PI in combinatie met een

lage dosis ritonavir (indinavir/ritonavir 800/100 mg twee maal daags). Hoge
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indinavir Cmax waarden worden in verband gebracht met nefrotoxiciteit op indinavir.

De toediening van indinavir/ritonavir op een nuchtere maag resulteerde in een hogere

Cmax van indinavir en een trend tot een kortere tijd tot Cmax (tmax) vergeleken met

toediening van indinavir/ritonavir met een lichte maaltijd. Andersom geformuleerd

leidde inname van indinavir/ritonavir met een lichte maaltijd tot een lagere Cmax van

indinavir. Dit kan waarschijnlijk worden verklaard als een vertraging in de absorptie

van indinavir ten gevolge van de inname met voedsel. De wijze van toediening van

indinavir had geen invloed op de “area under the concentration versus time curve”

(AUC), de plasma dalspiegel (Cmin) of de excretie van indinavir in de urine. Op basis

van deze resultaten werd geadviseerd om indinavir/ritonavir 800/100 mg mét

voedsel in te nemen, als een mogelijke manier om nefrotoxiciteit op indinavir te

voorkomen.

De hoofdstukken 4.2, 4.3 en 4.4 waren alle gewijd aan de farmacokinetiek van een

combinatie van indinavir/ritonavir 800/100 mg twee maal daags in combinatie met

efavirenz 600 mg één maal daags. In het onderzoek in hoofdstuk 4.2 werd onder

gezonde vrijwilligers het effect vastgesteld van herhaalde toediening van efavirenz op

de steady-state farmacokinetische parameters van indinavir/ritonavir. Toevoeging van

efavirenz aan indinavir/ritonavir leidde tot significante afnames in de AUC, Cmax en

met name Cmin van indinavir. Individuele indinavir Cmin waarden bleven echter

tenminste gelijkwaardig aan de gemiddelde Cmin die is beschreven voor het

geregistreerde doseerregime van indinavir (zonder ritonavir), 800 mg drie maal

daags. Naar aanleiding van de resultaten van deze studie werd geconcludeerd dat de

dosering van indinavir of ritonavir in de indinavir/ritonavir combinatie verhoogd zou

moeten worden om bij gelijktijdig gebruik van efavirenz dezelfde indinavir

plasmaspiegels te handhaven. Voor patiënten die niet zijn voorbehandeld met

indinavir is een dosisaanpassing wellicht niet nodig, aangezien de indinavir Cmin

voor deze patiënten voldoende hoog blijft. 

Het onderzoek onder gezonde vrijwilligers beschreven in hoofdstuk 4.2 werd gevolgd

door farmacokinetisch onderzoek onder HIV-geïnfecteerde patiënten die dezelfde

combinatie van indinavir/ritonavir plus efavirenz (zonder dosisaanpassingen)

gebruikten. Er kan namelijk niet worden uitgesloten dat er verschillen bestaan tussen

gezonde vrijwilligers en HIV-geïnfecteerden voor wat betreft de farmacokinetiek van

antiretrovirale geneesmiddelen. De studie in hoofdstuk 4.3 onderzocht de steady-

state farmacokinetische parameters van de indinavir/ritonavir plus efavirenz
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combinatie in een kleine groep van voornamelijk niet-voorbehandelde patiënten die

waren geïncludeerd in de EASIER-studie. Indinavir plasma concentraties waren

vergelijkbaar met de waarden zoals vastgesteld in gezonde vrijwilligers, maar de

concentraties efavirenz leken hoger onder HIV-geïnfecteerde patiënten. De

therapeutische respons van de patiënten op de combinatie van indinavir/ritonavir en

efavirenz was adequaat. Dit bevestigt dat gelijktijdig gebruik van indinavir/ritonavir

plus efavirenz resulteert in plasmaconcentraties van zowel indinavir als efavirenz die

voldoende hoog zijn voor niet-voorbehandelde patiënten. 

In het onderzoek in hoofdstuk 4.4 werd opnieuw de steady-state farmacokinetiek

van de indinavir/ritonavir plus efavirenz combinatie onderzocht, maar nu in een

grotere groep van Thaise HIV-geïnfecteerde patiënten. In dit onderzoek bleken alle

deelnemers een indinavir Cmin te hebben die tenminste gelijk was aan de gemiddelde

populatie-Cmin voor het doseerschema van indinavir 800 mg drie maal daags zonder

ritonavir. Vergeleken met Caucasische gezonde vrijwilligers (hoofdstuk 4.2) hadden de

Thaise patiënten een hogere indinavir Cmax. Dit kan worden toegeschreven aan hun

lagere lichaamsgewicht of aan interethnische verschillen in de samenstelling van de

maaltijd die met indinavir/ritonavir werd ingenomen. De onderzoeken in de

hoofdstukken 4.3 en 4.4 bevestigen de farmacokinetische gegevens voor de

combinatie van indinavir/ritonavir plus efavirenz in gezonde vrijwilligers (hoofdstuk

4.2). De studies vormen samen een solide farmacokinetische basis voor toepassing van

dit combinatieschema in HIV-geïnfecteerde patiënten.

De studie in hoofdstuk 4.5 onderzocht het effect van lage dosis ritonavir (100 mg

twee maal daags) op de activiteit van het cytochroom P450 iso-enzym CYP2D6.

CYP2D6 medieert de metabole omzetting van een heterogene groep aan

geneesmiddelen. Uit het onderzoek bleek dat lage dosis ritonavir een bescheiden

remmend effect heeft op de activiteit van CYP2D6 in “extensive metabolizers” voor

CYP2D6. Op grond van dit onderzoek wordt verwacht dat er géén dosisaanpassingen

vereist zijn bij gebruik van lage dosis ritonavir (100 mg twee maal daags) samen met

CYP2D6 substraten die grotendeels door CYP2D6 worden gemetaboliseerd en ook een

nauwe therapeutische breedte hebben. Patiënten die een dergelijke combinatie

gebruiken zouden wel moeten worden gemonitord op het optreden van bijwerkingen

van het CYP2D6 substraat. Het effect van lage dosis ritonavir op CYP2D6 lijkt in het

geheel niet relevant voor CYP2D6 substraten die slechts gedeeltelijk door CYP2D6

worden gemetaboliseerd of CYP2D6 substraten met een breed therapeutisch gebied. 
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De onderzoeken in hoofdstuk 5 waren erop gericht doseerrichtlijnen vast te stellen

voor één maal daagse toepassing van PIs. De interacties die in dit hoofdstuk werden

bestudeerd waren niet ongewenst, maar werden juist geëxploiteerd.

De studie in hoofdstuk 5.1 onderzocht de steady-state farmacokinetische

parameters, de voedselvoorschriften voor inname, en de korte termijns-

verdraagbaarheid van één maal daagse combinaties van nelfinavir en ritonavir in

gezonde vrijwilligers. Gezamenlijke toediening van nelfinavir en ritonavir resulteerde

in detecteerbare concentraties van nelfinavir en M8 (de actieve metaboliet van

nelfinavir) gedurende het gehele 24-uurs doseerinterval. De gemiddelde AUC en Cmin

van nelfinavir plus M8 in de één maal daagse combinaties waren tenminste

vergelijkbaar met dezelfde waarden voor het geregistreerde doseerregime van

nelfinavir zonder ritonavir (1250 mg twee maal daags). Toediening van

nelfinavir/ritonavir met een lichte maaltijd (300 kcal) leidde tot een lagere biologische

beschikbaarheid aan nelfinavir vergeleken met toediening met een volledige maaltijd

(600 kcal). Op grond van dit onderzoek werd geconcludeerd dat één maal daagse

toepassing van nelfinavir mogelijk is. Een één maal daagse combinatie van 2000 mg

nelfinavir en 200 mg ritonavir lijkt het meest geschikt voor vervolgonderzoek; deze

combinatie moet daarbij met een volledige maaltijd worden ingenomen.

Het onderzoek beschreven in hoofdstuk 5.2 was een vervolg op de studie van

hoofdstuk 5.1. Dit onderzoek bestudeerde het effect van één maal daagse toepassing

van nevirapine op de farmacokinetiek van één maal daagse nelfinavir/ritonavir

combinaties. De AUC en Cmin waarden van nelfinavir en nelfinavir plus M8 mét

nevirapine bleken tenminste vergelijkbaar met dezelfde waarden zonder nevirapine.

Dit betekent dat één maal daags nelfinavir/ritonavir en één maal daags nevirapine

kunnen worden gecombineerd tot een volledig één maal daags combinatieschema van

een PI plus een NNRTI. Een combinatie van nelfinavir/ritonavir 2000/200 mg plus

nevirapine 400 mg lijkt daarbij te verkiezen, daar deze combinatie resulteert in

adequate spiegels van nelfinavir en M8, terwijl de blootstelling aan ritonavir wordt

beperkt in vergelijking tot een nelfinavir/ritonavir 2000/400 mg combinatie.

In het onderzoek in hoofdstuk 5.3 werden de steady-state farmacokinetische

parameters en korte-termijns (24-weeks) effectiviteit en veiligheid bestudeerd van een

één maal daagse indinavir/ritonavir combinatie in HIV-geïnfecteerde patiënten. De

deelnemers aan dit onderzoek gebruikten een volledig één maal daags

combinatieschema van indinavir 1200 mg, ritonavir 400 mg en één of twee
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nucleoside reverse transcriptase inhibitors, alle in te nemen met voedsel. De

gemiddelde Cmax van indinavir in dit één maal daagse regime bleek hoog, en de

gemiddelde Cmin voor indinavir was vergelijkbaar met de gemiddelde Cmin bij drie

maal daagse toepassing van indinavir zonder ritonavir. Ondanks de hoge indinavir

Cmax waarden werd in deze studie geen nefrolithiasis waargenomen. De korte-

termijns-effectiviteit van het één maal daagse regime bleek adequaat, zowel in

voorbehandelde als niet-voorbehandelde patiënten. De deelnemers aan dit onderzoek

zullen verder worden vervolgd om de duurzaamheid van de respons op dit volledig

één maal daagse regime vast te stellen.

In hoofdstuk 6 werden de belangrijkste resultaten van het proefschrift

bediscussieerd en mogelijkheden voor toekomstig onderzoek beschreven. 
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Prof dr Chiel Hekster, mijn promotor, ik ben je zeer erkentelijk voor je grote
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onderzoeker. Bij dat alles heb je ook nog oog gehouden voor mijn functie als

ziekenhuisapotheker en de mogelijkheden voor mij om ook hierin verder te kunnen

groeien. 

Dr Peter Koopmans, co-promotor, hoofd van het Nijmeegse AIDS behandelcentrum, ik

ben je dankbaar voor de medische begeleiding die voor de diverse onderzoeken onder

gezonde vrijwilligers zo noodzakelijk was. Op bepaalde momenten was het zeer

geruststellend dat we op je expertise konden vertrouwen. De door jou geleide

patiëntenbesprekingen waren voor mij van belang om inzicht te krijgen in de context

van het farmacokinetiek-onderzoek. Je gezond-kritische houding zette regelmatig aan

tot nadenken.   

Zonder de participatie van vele gezonde vrijwilligers en patiënten waren de

onderzoeken in dit proefschrift niet mogelijk geweest. 
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Droste dank ik voor de nodige uren ondersteuning bij de uitvoering van

farmacokinetische onderzoeken. Pieter Knoester deelde in de teamgeest en vormde als

vriend en collega-ziekenhuisapotheker-promovendus een dankbare gesprekspartner.
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Karin Grintjes, verpleegkundig specialist HIV/AIDS, verzorgde de voorbereiding van
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dank gaat uit naar Khalid Asouit, Michel Broekman, Jackie Droste, Noor van Ewijk,

Carlo Raijmakers, Niels Staring, Marga Teulen en Corrien Verweij, en naar de andere

analisten voor hun betrokkenheid. Corrien Verweij en Noor van Ewijk waren betrokken

bij de opzet van de eerste ronden van het kwaliteitscontroleprogramma en Jackie

Droste nam de derde ronde voor haar rekening. Jackie Droste en Marga Teulen

assisteerden daarnaast bij de farmacokinetische analyse bij enkele onderzoeken.

Remco de Jong, hoofd van de Afdeling Apotheek/Klinische Farmacie, schiep de ruimte

en mogelijkheden voor het onderzoek dat heeft geleid tot dit proefschrift. Ik ben hem

zeer erkentelijk voor de manier waarop mijn combinatiefunctie van ziekenhuisapotheker

en promovendus gestalte kon krijgen en voor de grote vrijheden die me in deze functie

werden gegund.
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De medewerkers van het Bedrijfsbureau en het stafsecretariaat speelden een belangrijke

rol bij de registratie van vrijwilligers voor verschillende onderzoeken: de telefoon stond

bij tijd en wijle roodgloeiend. Lex Kuypers en Jan Stegeman hebben menig (vaak futiel)
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Dr Theo de Boo, Lex Bouts en prof dr Bert Felling boden me hulp als ik op het gebied
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Die Studie beschrieben in Kapitel 4.1 war das erste Resultat der Zusammenarbeit (unter
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