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Abstract

While testing regenerative medicine strategies, the use of animal models that match the research questions and that are
related to clinical translation is crucial. During the initial stage of evaluating new strategies for bone repair, the main goal is
to state whether the strategies efficiently induce the formation of new bone tissue at an orthotopic site. Here, we present a
subperiosteal model in rat calvaria that allow the evaluation of a broad range of approaches including bone augmentation,
replacement and regeneration. The model is a fast to perform, minimally invasive, and has clearly defined control groups.
The procedure enables to evaluate the outcomes quantitatively using micro-computed tomography and qualitatively by
histology and immunohistochemistry. We established this new model, using bone morphogenetic protein-2 as an
osteoinductive factor and hyaluronic acid hydrogel as injectable biomaterial. We showed that this subperiosteal cranial
model offers a minimally invasive and promising solution for a rapid initial evaluation of injectables for bone repair. We
believe that this approach could be a powerful platform for orthopedic research and regenerative medicine.
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Introduction

Non-union fractures and traumatic bone defects represent

severe medical and socio-economic problems. Currently, the gold

standard for the treatment of such bone defects is the implantation

of autologous bone grafts harvested from the patient’s iliac crest

[1]. While effective, this method is associated with donor site

morbidity and limitations in the amount of bone that can be used

[1,2]. Therefore, an overarching aim in orthopedics is the

development of alternative regenerative medicine therapies that

lead to bone augmentation.

Standards for the biological evaluation of new treatment

modalities, established by the International Organization for

Standardization (ISO) 10993, include the evaluation of a number

of variables that must be evaluated before a product can be

considered safe and efficient for human use. At the moment, the

development of regenerative medicine strategies for bone tissue

from concept to product takes 4–10 years from concept to product

and involves a cost of 5–300 million dollars, depending on the

regulatory process required [3]. As part of this development

process, an evaluation of the approach’s safety and biocompati-

bility and the associated immunological response, as well as its

ability to induce bone formation, can only be achieved in vitro [4]

and in animal models [5,6].

As yet, there is no rapid and simple preclinical model to allow

the evaluation of regenerative strategies for bone. The use of large

animals such as sheep is usually required before clinical trials, since

these animals display characteristics of bone anatomy and biology

that are close to those of human [7,8]. However, the cost and time

course of using large animals are not suitable for the screening and

the rapid testing of new strategies. On the other hand, small

animals, and in particularly rats, are easier to handle and more

suitable for initial testing [9]. With rats, outcomes can be

determined after a short period of time, and the variation between

individuals of the same strain, age, gender, and weight is very small

[10]. The handling of the animals is relatively easy and low-cost,

since they are tolerant of surgery [11]. Finally, it is possible to use

advanced functional imaging techniques for rats that are not

available for large animals [4]. For these and other reasons, rats

are currently the most commonly animal used for musculoskeletal

research (45% of animal research) [11].

In our laboratory, we have gained experience with various

animal models, including the ectopic bone formation model

[12,13] and various defect models [14]. As a standard and a first

approach, the ectopic model is often widely used by researchers in

order to evaluate the osteoinductive capacity of cells, morphogens,

and biomaterials [15]. However, while simple and fast, this model

has a drawback in that the formation of bone occurs in an extra-

osseous site. Therefore, the ectopic bone model is not represen-

tative of the clinical needs. The defect models are much more

clinically relevant, although the size of the defect matters, since

defects that are not large enough heal spontaneously [16]. For

example, critical-size defect models at orthotopic sites such as the

tibia are very relevant, but they are complicated and can be

associated with a high failure rate. Moreover, additional stabili-
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zation by heavy fixation devices is often required, and this may

damage surrounding soft tissues and change biomechanical

conditions are often required [3]. A simpler and more relevant

model to illustrate the potential of clinical translation potential is

that of calvarial defects in the rat [3,17]. However, the surgery is

still relatively long and invasive, and it can yield to non-negligible

variability as the result of bleeding. In addition, as in all defect

models, postoperative treatment with painkillers is required for

several days. Thus, when the defect models are used, the long

surgical intervention and the large injury expose animals to an

extremely stressful situation and to postoperative pain that should

be treated with painkillers. However, it is known that both stress

and the use of painkillers can modify the immune response and

strongly influence bone healing [18–20]. In addition, clinical

applications for constructs inducing bone formation are not

limited to repair defects. For instance, one of the main clinical

applications is spinal fusion [15], in which no defects need to be

repaired.

Recently, there has been an interest in using the periosteal space

of the bone as the site for biomaterial testing, since this cellular

membrane covering the bone is rich in progenitor cells and various

cytokines [21,22]. For instance, Eryilmaz et al. obtained bone

formation while implanting demineralized bone matrix (DBM)

[23]. However, this method required an elevation of the periosteal

flaps and their suturing. In contrast, Fujimoto et al. induced bone

in the subperiosteal space by less invasive injections of transform-

ing growth factor-b (TGF-b) [24]. Nevertheless, in this study

multiple injections were required because TGF-b was applied

without a scaffold. In contrast, Stevens et al. used an injectable

biomaterial that was placed under the periosteal of the tibia in

rabbits and triggered bone formation [25]. Another interesting

study engineered cartilage in the same way [26].

Recently, we have presented a model in which a bone-inducing

construct, a hyaluronic acid (HA) hydrogel loaded with bone

morphogenetic protein-2 (BMP-2), was tested in the periosteal

space of the mandible [6]. The benefit of using HA hydrogel as a

scaffold for BMP-2 is that it becomes a solid mass after mixing.

Also, implantation by injection makes the intervention shorter and

minimally invasive, and therefore it is easier and less stressful for

the animal. However, we found a periosteal mandibular model to

be specifically relevant for alveolar bone augmentation. Therefore,

we now present a new subperiosteal model in the cranial bone of

the rat. The cranial bone is more accessible than mandible, and

the intervention can be controlled visually. This model allowed us

to rapidly evaluate the osteogenic potential of injectable constructs.

Results

1. Surgical Intervention
HA hydrogels without BMP-2 or containing a high (30 mg) or

low (1 mg) dose of BMP-2 were prepared. The constructs or saline

(sham group) were then injected into the periosteal spaces of rat

cranial bones (Fig. 1 A–F). From anesthesia induction to the skin

closure, the surgical intervention lasted approximately 15 min.

The procedure was easy to perform by one surgeon, and all

constructs were injected at a desired site (Video S1). The

periosteum was only punctured once, and no sutures were

required to close it. No rupture of the periosteum or other

perioperative complications were observed. Postoperative recovery

was uneventful, and the animals resumed normal ambulation

without any sign of pain or distress during the study period. The

wounds healed normally and were covered with hairs. No

abnormal behaviour was noted during the 6-week duration of

the study.

2. Efficacy of New Bone Formation
After 6 weeks, the rats were sacrificed, and the cranial bones

were harvested for further evaluation. The volume of new bone

formed was determined by micro-computed tomography (micro-

CT) (Fig 2 A). Quantitative analysis was performed by comparing

the bone volume of specimens from the rats treated with constructs

to those from animals treated with saline. HA hydrogels that did

not contain BMP-2 (gel alone) showed only a slight bone ingrowth

(18 mm3) (Fig. 2 A and B). In contrast, HA hydrogels with either

the high or low dose of BMP-2 were able to cause significant bone

ingrowth (p,0.05): 139 mm3 and 57 mm3, respectively. No

statistically significant difference was found between the gel alone

and the gel with the low dose of BMP-2. In addition, in order to

determine the degree of correlation between the volume of the

new bone formed and the concentration of BMP-2, we determined

the non-parametric Spearman’s correlation coefficient, and found

a significant correlation between both parameters (p,0.001).

Furthermore, the trabecular number (Fig. 2 C), thickness (Fig. 2 D)

and separation (Fig. 2 E) of bones formed by the gels with BMP-2

were significantly higher than the bone induced by gel alone

(Fig. 2). There was only slight difference in the bone porosity

between three groups (Fig. 2 F).

3. New Bone Morphology
Histological assessment of calvarial bone composition at 6 weeks

post-injection was performed on H&E-stained sections to provide

information about the quality and morphologic characteristics of

the newly formed bone tissue. Representative histological images

from each group are shown in Fig. 3. Calvarias injected with HA

hydrogel with a high dose of BMP-2 showed the largest amount of

bone ingrowth (Fig. 3). Within the new bone formed, we observed

structures resembling trabecular bone with bone marrow spaces.

Woven bone with a weak trabecular structure and large bone

marrow spaces was formed in the groups receiving HA hydrogel

containing the lower dose of BMP-2. In this group, more

ossification appeared in the periphery than in the center of the

new bone. As expected, the group without BMP-2 had a minimal

amount of bone formation. In all groups, there was no histological

sign of the presence of inflammatory cells or fibrous tissue.

Moreover, we did not observe cartilage or residual HA hydrogel at

the injection site (data not shown).

As an indicator of the quality of the new bone formed, we

examined the assembly of collagen fibers using Sirius red staining

and detected the presence of osteoclacin (OC), by immunostaining

(Fig. 4). We found collagen fibers of the highest degree

organization, in the group containing the higher concentration

of BMP-2, when compared to those receiving less (or no) BMP-2.

Furthermore, in all experimental groups, positive signals for OC

were detected, at the sites at which tissue ingrowth was identified.

The deposition of bone matrix in the bone tissues formed by the

gels containing 30 mg of BMP-2 was higher than that in the bone

tissue derived from the gels containing 1 mg or no BMP-2 (Fig. 4).

As a control, we used areas of native calvarial bone which were

positive for OC. The negative control (treated only with secondary

antibody) showed no positive staining (data not shown).

4. Angiogenesis within the New Bone Formed
Blood vessels were visualized by immunofluorescent staining for

CD31 (an endothelial-specific marker; Fig. 5A). We observed that

the marrow spaces of the new bone formed were rich in functional

blood vessels containing erythrocytes (marked by green autofluor-

escence).The density of the blood vessel were also quantified. As

shown in Fig. 5 B, HA hydrogels containing the high dose of BMP-

2 had more (16.468.8) blood vessels, as compared to the gel with

Rat Subperiosteal Cranial Model
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the low dose of BMP-2 (15.867.1) and the gel alone (3.360.8).

Therefore, 30 mg as well as 1 mg of BMP-2 in the hydrogels

significantly increased angiogenesis in new bone when compared

to hydrogel alone.

Discussion

Our growing knowledge about stem cells, morphogens,

biomaterials, and delivery systems suggests an incredible number

Figure 1. Key aspects of the surgical procedure. (A, B) The top of a blunt needle is inserted at an angle of 45u into the periosteal space of the
cranial bone and (C) is pushed forward with an angle of 15–20u onto the bone surface towards the face plane. The length of the needle insertion into
the subperiosteal space is visually controlled. After it reaches 1 cm, the tip is moved (D) to the left and (E) to the right, in order to make space for an
injectable construct. (F) The construct is injected in a volume of 200 mL, forming a small bump.
doi:10.1371/journal.pone.0071683.g001

Rat Subperiosteal Cranial Model
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Figure 2. New bone formation. (A) Representative 3D micro-CT reconstruction of cranial bone treated with (i) gel containing 30 mg of BMP-2, (ii)
gel containing 1 mg of BMP-2, (iii) gel without BMP-2, or saline (control) at 6 weeks post-injection. Scale bar is 1 cm. MicroCT analysis of (B) the
trabecular bone volume (BV/TV [mm3]), (C) trabecular number (TbN [/mm2]), (D) trabecular thickness (TbTh [mm]), (E) trabecular separation (TbSp
[mm]), and (F) trabecular porosity (P [%]). Shown are means 6 SD, n = 3. Comparisons between gel groups and the control group were made by two
tailed Student’s t-test for paired samples (*p,0.05; ***p,0.001).
doi:10.1371/journal.pone.0071683.g002

Figure 3. Morphology of the new bone formed. Representative transversal micro-CT reconstructions and cross-sections stained with H&E of
cranial bone treated with gel containing 30 mg of BMP-2, gel containing 1 mg of BMP-2, gel without BMP-2, or no gel (saline control) at 6 weeks post-
injection. The red square on the micro-CT reconstructions represents the area stained with H&E.
doi:10.1371/journal.pone.0071683.g003

Rat Subperiosteal Cranial Model
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of possible combinations for the development of new treatments

for non-union fractures, traumatic bone defects, and spinal fusion

[20]. In order to evaluate the potential of these new treatments, it

has become critical to be able to test them rapidly with

standardized preclinical models. This need applies especially to

emerging strategies that do not yet have specified applications but

that require initial validation.

The development of a standardized model in rats that is

reproducible and easy to perform would be an important

contribution to tissue engineering and orthopedic research. In

the current study, we present a subperiosteal cranial model in rats

that was developed on the basis of our previous observations and

information in the literature, with the goal of producing a rapid,

easy, and reproducible model. We chose the cranial subperiosteal

region for this model, since it is easily accessible and because the

injection can be visually controlled (Video S1). Because the surgery

is based on a single injection and the whole intervention does not

exceed 15 min, a single operator without surgical experience can

perform the intervention. Moreover, the minimally invasive

surgery involved also decreased risk of postoperative infection,

experimental failure [27], and morbidity/mortality. Thus, the fact

that the surgery is minimally invasive is important to consider in

regards to ethical and cost-effectiveness issues, since with currently

used animal models of the lowest invasiveness such as the rat

Figure 4. Quality of the new bone formed. Representative cross sections of cranial bone treated with gel containing 30 mg of BMP-2, gel
containing 1 mg of BMP-2, gel without BMP-2, or no gel (saline control) at 6 weeks post-injection. The specimens were stained with Sirius red to show
collagen fiber orientation and were also stained for OC (in red). Nuclei are in blue. The green-yellowish color represents organized collagen fibers.
doi:10.1371/journal.pone.0071683.g004

Figure 5. Angiogenesis within the new bone formed. Representative cross sections of cranial bone treated with (i) gel containing 30 mg of
BMP-2, (ii) gel containing 1 mg of BMP-2, (iii) gel without BMP-2, or no gel (saline control) at 6 weeks post-injection. Sections were immunostained for
CD31 (green). Erythrocytes in vessels are shown by green autofluorescence. Nuclei are in blue. (B) The number of blood vessels per 10x field was
quantified. Means 6 SD were calculated from n = 3 (3 sections per sample). Comparisons between gel groups and the control group were made by
the two tailed Student’s t-test for paired samples (*p,0.05).
doi:10.1371/journal.pone.0071683.g005

Rat Subperiosteal Cranial Model
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calvarial defect model, the morbidity/mortality variable is about

5–10% [28]. In addition, the cranial location offers the advantage

to preventing self-injuries or injuries by other rats housed in the

same cage [29]. Injection into the periosteal space allows the

maintenance of the construct is situ (Fig. 1F) and prevents its

leakage into the surrounding soft tissues. Moreover, the subperi-

osteal space is particularly relevant for direct study of the influence

of a treatment on mesenchymal stem cells, fibroblasts and other

precursor cells, since the periosteum is a source of progenitor cells

[21,22].

Among the currently known regenerative medicine strategies for

bone, the use of scaffolds loaded with bone BMP-2 is one of the

most promising. Clinically available, BMP-2 is involved in the

recruitment and differentiation of bone progenitor cells at the site

of bone injury, and it triggers new bone formation [30]. Thus, for

the development of our model, we used BMP-2 as an

osteoinductive factor. In order to deliver this growth factor, we

used the well-established HA hydrogel as an injectable biomaterial

standard, because HA scaffolds have been shown to be very

efficient as a BMP-2 delivery carriers for BMP-2 in various animal

models [12,14,31]. For example, we have previously shown that

the encapsulation of BMP-2 in HA hydrogel resulted its sustained

release in vitro for almost a month. This efficient encapsulation was

corroborated by potent in vivo bone formation at an ectopic site in

a rat [12] and calvarial defects in mini-pigs [14]. We decided to

use a 6-week time point, because both ectopic and calvarial defect

models in the rat are usually stopped within at 4 to 8 weeks

[15,32,33]. Thus, we believe that a 6-week time period is ideal for

evaluating the efficacy of various treatments.

Using this cranial subperiosteal model, we found a significant

correlation between the dose of BMP-2 delivered and the amount

of new bone formed. This correlation demonstrated the repro-

ducibility of the model and its potential for use in the evaluation of

the tretament efficacy. The same type of relationship was observed

in a previously published study using a subperiosteal mandibular

model in the rat [6]. Using three animals per group, we found low

standard deviations for the new bone volume formed in each

groups (Fig. 2 B), indicating that the variability of the surgical

intervention was low. Furthermore, we found remarkable more

and thicker trabeculae with smaller trabecular separation in the

bone induced by the gel with high BMP-2 compared to the bone

formed by the gel with los BMP-2 and the gel only (Fig. 2C–E).

This account for the trabecular thickening and reduction of the

trabecular space due to a bone ingrowth.

In addition to the micro-CT evaluation, we used histological

staining to further characterize the new bone tissue formed with

this model, using various histological techniques. First, we assessed

the network of trabecular structure, since it is well accepted that

continuity and connectivity of bone trabeculae are important for

the transmission of functional forces in human body. For example,

in osteoporosis, spontaneous fractures occur when trabeculae in

the long bones are resorbed and display disrupted connectivity

[34]. As expected, animals treated with the highest dose of BMP-2

displayed new bone tissue with a dense network of trabeculae

(Fig. 3). In contrast, the animals treated without BMP-2 or with a

low dose of BMP-2 had less extensive trabeculae. As another

marker that appears at the stage of bone formation, we detected

osteocalcin (OC) within the new bone that was formed. Under all

conditions, we were able to detect OC at the sites at which new

tissue ingrowth was identified. However, the highest signal was

shown in the bone tissues induced by the gels containing 30 mg of

BMP-2 (Fig. 4). Furthermore, as another indication of the quality

of the new bone formed, we examined the assembly of collagen

fibers (Fig. 4). We found collagen fibers of higher organization in

the group containing the highest concentration of BMP-2. Finally,

we addressed the amount of angiogenesis within the newly formed

tissue, since the formation of functional blood vessels plays a

pivotal role in skeletal development and bone fracture repair, and

inadequate vascularization delays bone graft regeneration [35].

We observed that the marrow spaces of the new bone formed were

rich in blood vessels containing erythrocytes (Fig. 5). The higher

density of blood vessels was shown in the ectopic bones induced by

the high BMP-2 compared to the low BMP-2 and the gel alone. In

fact, it was previously reported that BMP-2 does not only

stimulates osteogenesis but also enhances angiogenesis [36].

Importantly, in contrast to a previous ectopic bone study in the

rat, we did not observe any remaining gels in any of the groups

which could be explained by the differences in the local cellular

enzymatic activities in the two locations locations used [37].

As a mechanism for bone formation in our model, we propose

the following: (1) The progenitor cells from the calvarial bone and

from the periosteum migrate toward the BMP-2 gradient in

response to its chemotactic activity [38]. The cells adhere to the

gel and penetrate its outer surface. (2) They start to differentiate

into bone cells and produce organic matrix composed mainly of

collagen fibers and non-collagen proteins such as OC. (3)

Angiogenesis occurs within the newly formed tissue and contrib-

utes to the formation of a bone marrow-like tissue. The vessel

network in the new bone is formed from sprouting capillaries

existing in the periosteal space, which are subsequently expanded

and then mature [39]. (4) The bone-like tissue forms an initial shell

of bone that, with time, transforms into a mineralized bone

extending toward the center of the scaffold and replacing the gel

[40].

The robust bone formation in the animals receiving the high

concentration of BMP-2 could be explained by the rapid initial

release of some of the BMP-2, while the amount trapped in the

scaffold could stimulate later differentiation. In case of the gel with

low-dose of BMP-2 it is likely that most of the protein is released at

early stage. Similar sequences of bone formation have been

observed in an ectopic model after 4 weeks [31] and 8 weeks with

the same HA hydrogel in our previous studies [12]. It is also of

interest to us to investigate whether and how the excess of bone

induced by BMP-2 undergoes remodeling. The excessive bone

growth may affect the external contour of the bone, especially in

the craniofacial area, and may also affect surrounding structures

and organs [14]. Because this model, as an orthotopic model, is

suitable for studying osteoclastic resorption in the vicinity of bone,

we will complement the dose-response study with an evaluation of

the earlier and later time points in a future study.

Like other animal models for bone regeneration, this model has

some inherent disadvantages. Rats have quite distinct bone

anatomy from that of humans, because they do not have a

Harversian system [4]. Therefore, the minimum dose of BMPs

necessary to induce consistent bone formation is higher in humans

than in rodents [41]. However, the models based on the rat offer

the possibility of testing strategies involving non-autologous cells

and even xenogenic cells, because athymic rats are available [42].

Another limitation is that this model is not based on a defect,

whereas, except for spinal fusion surgery, most clinical applications

for bone regeneration tend to be for repair of defects where the

availability or supply of bone precursor cells may be less than in

just below the periosteum. The defect models have a larger

negative impact on the animals’ well-being. In contrast to the

defect models in the rat, the model presented here is much faster

and easier to perform, and it is certainly more clinically relevant

than the ectopic bone model, since the formation of bone occurs in

an orthotopic site. In addition, since it is based on a single injection

Rat Subperiosteal Cranial Model
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at a specific site, this model is nearly non-invasive and highly

reproducible (low standard deviation in the groups) that can lead

to a reduction in the number of animals during the course of the

study. Consequently, this model is in accord with the principles of

the 3 Rs (refinement, reduction, replacement) [43] and, at the

same time, allows the possibility of conducting large initial

screenings of bone-inducing constructs. Moreover, since HA gels

and BMP-2 has been already used in the patients [44,45], we

considered future clinical translation of the construct presented in

the study. However, we must be aware that the complexity of

human body requires that the final judgment of certain therapy

utility and its specific application can be made only after a clinical

trial with a long follow-up.

Materials and Methods

1. Protocol
The surgical protocol was approved by the Local Animal

Committee of Uppsala University, Sweden (approval no. 222/10).

Housing and experiments were performed accordingly to the

European Community Council Directive (86/609/EEC). Twelve

adult male Sprague-Dawley rats (Taconic M&B, Lille Skensved,

Denmark) weighting approximately 250–300 g were housed in a

specialized animal facility with an adjusted conditions such as

temperature 22–24uC, relative humidity 30–60% and light/dark

hours schedule: 12/12. The rats were maintained two per cage

and with ad libitum access to water and standard rodent diet.

Individual body weight was recorded prior to intervention.

Animals were acclimated for 10 days prior to surgery. Special

attention was given to perform each procedure with the same

order and time interval.

2. Injectable Construct
Recombinant human BMP-2 (InductOsH Pfizer, former Wyeth

Europe) delivered as a lyophilized powder in a formulation buffer

containing 2.5% glycine, 0.5% sucrose, 0.01% Polysorbate 80,

5 mM NaCL and 5 mM L-glutamic acid, was reconstituted at

concentration of 1.5 mg/mL according to the manufacturer’s

instructions by the addition of deionized water and stored at 4uC.

The lyophilized form of hydrogel components were synthesised as

described elsewhere [12]. Briefly, HA aldehyde (HA-al) and HA

hydrazyde (HA-hy) derivatives were dissolved at 16 mg/mL in

PBS. HA-hy mixed or not with BMP-2 was loaded into a one

1 mL sterile Luer-lock syringe (Bectron Dickens Medical) and

connected by a Luer-lock adapter (Qosina) to another 1 mL

syringe loaded with HA-al. The final concentration of BMP-2 was

150 mg or 5 mg per 1 mL of gel. The solutions were mixed 30

times back and forward for 30 s at a room temperature. The

gelation time was approximately 1 min.

3. In vivo Experiment
3.1 Experimental design. Rats were randomly placed in

four groups (n = 3) that were treated with 200 mL of the following

constructs: (i) HA gel with 30 mg of BMP-2 (ii) HA gel with 1 mg of

BMP (iii) gel without BMP-2 and (iv) saline. After 6 weeks, animals

were sacrificed by CO2 asphyxiation. The area of injection with

1 cm of neighboring bone was collected from the skull. The

samples were fixed in 4% paraformaldehyde in PBS at pH 7.4 for

at least 48 h at room temperature and stored in 70% ethanol until

further analysis.

3.2 Surgical procedure. All surgical procedures were carried

out under strictly aseptic and antiseptic conditions. Rats were

anesthetized with isoflurane (ForeneH, Abbott Scandinavia). After

an induction with 5% isoflurane in a small induction chamber,

animals were placed in a prone position and anesthesia was

maintained with 2% isoflurane in oxygen delivered via a facemask.

Once sedated, the rats were shaved and the cranial surface was

disinfected with iodine solution and alcohol. The periosteum of

frontal bone was exposed by a midline skin incision of

approximately 1 cm long, using a surgical blade. A blunt needle

(21G) attached to one 1 mL syringe was inserted under the bone

periosteum at 45u to the frontal bone surface. The needle was

shifted for 15 mm towards the face direction. The periosteum was

carefully elevated by the tip in left and right directions. A volume

of 200 mL injectable construct or ,40 mL saline was placed into

the subperiosteal space. This amount of saline was used in the

previous study where the solution was placed in the periosteal

space of the mandibular bone in the rat [6]. In order to avoid the

risk of the periosteal contraction we used the same dose of saline.

Then, the wound was carefully closed by suturing the skin (4-0

suture, EthilonTM, Ethicon) and there was no need for suturing the

periosteum. The intervention was shown in a video file (Video S1).

Postoperative pain was managed by the administration of

0.05 mg/kg buprenorphine (Temgesic, Schering-Plough) subcu-

taneously. Animals presented no sign of pain, distress or infection.

Rats were allowed to move freely and were monitored daily.

4. Bone Evaluation
4.1 Bone volume calculation. Following sacrifice, the

clavariae were resected using an oscillating autopsy saw. Micro-

CT analyses were performed using the Skyscan 1072 micro-CT

imaging system (Skyscan, Kontich, Belgium) after placing the

samples vertically onto the sample holder. Micro-CT images were

acquired with a spatial resolution of 18.88 mm (X-ray Source

100 kV/98 kA; Ex posure Time 3.9 sec; Magnification 15X;

1 mm filter applied). Then, using NRecon V1.4 (SkyScan), a cone

beam reconstruction was performed on the projected files. Finally,

3D-reconstructions of the samples were obtained (3D-DOCTOR

4.0, Able Software Corp, Lexington, MA). Analysis was performed

in the same manner for each rat with a volume of interest

corresponding to the injection area. Average bone volume was

calculated as bone volume/total tissue volume (BV/TV, mm3). In

order to determine correlation between BV/TV and the dose of

BMP-2, we performed non-parametric Spearman correlation

coefficient. Furthermore, the following structural parameters were

estimated: trabecular number (TbN,/mm2), trabecular thickness

(TbTh, mm), trabecular separation (TbS, mm) and porosity (P, %).

The parameters TbN, TbTh, TbS and P were tested for normality

by the Shapiro-Wilks test. As the data were compatible with a

normal distribution, the two-tailed Student’s t-test for paired

samples was used in the comparison between groups [46]. The

standard deviation (SD) was calculated for n = 3. The differences

at P,0.05 was considered as statistically significant. The software

SAS version 8.2 was used.

4.2 Bone morphology observation. After micro-CT anal-

ysis, the cranial bone specimen was completely decalcified using an

electrophoresis system (Tissue-Tek Miles scientific, Histolab,

Göteborg) with formic acid. Following paraffin processing, 5 mm

thick cross-sections were cut with microtome (Thermo Microm

HM 355) and stained. For morphological evaluation, the cross

sections were stained with Hematoxylin and Eosin (H&E,

Histolab, Göteborg). Sections were photographed with a digital

camera connected to an optical microscope (Eclipse TE 2000U,

Nikon). For collagen observation, the sections were stained with

Sirius red (Fluka) [47] and photographed on the polarized light

microscope (Leica DM2500 P).

4.3 Expression of angiogenic and osteogenic markers in

bone. Immunofluorescence stainings were performed on paraf-
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fin sections to visualize osteocalcin (clone FL-100, Santa Cruz

Biotechnology) and CD31 (Abcam, ab28364). The sections were

deparaffinized, dehydrated in increasing ethanol solutions (ethanol

100-96-80-70-50%, 2 min each), washed in PBS (365 min),

incubated in a Target Antigen Retrieval Solution pH 9 (Dako)

at 95uC for 20 min, and washed with PBS. After blocking in 12%

bovine serum albumin (BSA) solution for 1 h at room tempera-

ture, the slides were incubated with primary antibody (anti-OC

antibody diluted 1:50, and anti-CD31 antibody diluted 1:50)

overnight at 4uC. Sections were then washed 3 times with PBS and

blocked for additional 15 min with 12% BSA in PBS. To visualize

the primary antibody, TRITC or FITC-conjugated polyclonal

swine or goat F(ab9)2 fragments directed to rabbit immunoglob-

ulins (Dako) were added to the sections. Slides were washed 3

times for 5 min in PBS. Sections not treated with the primary

antibody were used as a negative control. Finally, the slides were

incubated for 5 min in PBS containing 1 mg/mL of Hoechst

33342 (Sigma-Aldrich), washed again with PBS, and mounted

with Dako mounting solution (Dako). Pictures of immunofluores-

cence staining were taken with a DXM1200F digital camera

connected to a Nikon Eclipse TE2000-U inverted microscope.

The device was equipped with Hoechst 33342, FITC, and TRITC

filter sets (Nikon AG; Software: Nikon ACT-1 vers. 2.70). Images

were processed with Photoshop 7.0 (Adobe Systems Inc). Instead

of qualitative analysis, the density of blood vessels (number of

blood vessels per 10x field) was calculated. The standard deviation

(SD) was calculated from n = 3 (3 sections per sample). Compar-

isons between gel groups and the control group were made by the

two tailed Student’s t-test for paired samples (*p,0.05).

Conclusions
The evaluation of tissue engineering concepts for bone takes a

long time and requires relevant animal models that are suitable for

large screening. There is currently no orthotopic model in

common use that is cost-effective, easy to perform, reproducible,

and employs small animals. As a solution, we presented here a

minimally invasive subperiosteal rat model that can be a suitable

and relevant tool for the initial screening of regenerative medicine

strategies. The model offers a promising approach, even for

investigators with little experience in surgery. We have demon-

strated that this model provides a stable measuring tool for

assessing the biocompatibility and bioactivity of a tissue engineer-

ing construct. The outcomes can be rapidly assessed, by

correlating quantitative micro-CT data with histological analysis.

We believe that this new technique can be used as an alternative to

the defect models and can serve as a powerful tool for evaluating

regenerative medicine strategies and their mechanisms of action.

Supporting Information

Video S1 The video presents a new subperiosteal model
in the cranial bone of the rat. First, the anesthetized animal is

placed in a prone position. Further, anesthesia is maintained with

2% isoflurane in oxygen delivered via a facemask. The cranial

surface is shaved and disinfected. A surgical blade is used to expose

the periosteum of frontal bone by a midline skin incision of

approximately 1 cm long. Next, a blunt needle (21G) attached to

one 1 mL syringe is inserted under the bone periosteum at 45u to

the frontal bone surface. The needle is shifted for 15 mm towards

the face direction. The periosteum is carefully elevated by the tip

in left and right directions. Then, a volume of 200 mL injectable

construct is placed into the subperiosteal space. Finally, the wound

is closed by suturing the skin (4-0 suture, EthilonTM, Ethicon).

(ZIP)
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