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Chapter 1

Introduction

Computer verified mathematics is a field on the border between computer science and math-
ematics: its aim is to develop tools and languages that allow mathematicians to write proofs
that can be verified by a computer program (a proof checker or theorem prover).

The appeal of these programs is that they improve trust in a proof: they are typically
designed around a relatively small kernel of logical rules, with which all proofs must be built:
trusting a proof is reduced to trusting the (implementation of the) kernel, and whether the
statement is translated correctly to the formalism of the proof checker. There are several
proof checkers that have a different way of establishing trust, but the ones we consider in this
thesis are mainly based on this architecture. For a more in-depth discussion on establishing
trust in formal mathematics, we refer to Pollack [73] and Wiedijk [103]. A description of the
social processes involved in accepting (or even creating) a computer-verified proof is given by
Asperti, Geuvers and Natarajan [6]. Wiedijk also gives an overview [102] of the seventeen
theorem provers that are most commonly used.

The improved trust is of benefit both for computer science, where it provides certification
that software behaves according to a certain specification, and in mathematics, where proofs
can become so complex and involved (possibly requiring computation) that it becomes difficult
for humans to judge if a theory is ‘correct’. An example of the former is an operating system
kernel proven correct in Isabelle [54], where the verification guarantees that the kernel operates
according to some specification and only that specification. For the latter, examples are the
formal proof of the Feit-Thompson theorem [37], which is known for its length, and the proof
of the Kepler conjecture [40], which uses computer programs to calculate a number of lower
bounds; this proof, which is used as a case study in Chapter 6 was accepted with 99% certainty
by the referees of the Annals of Mathematics and prompted a project to computer-verify the
proof including the programs doing the calculations.

Apart from establishing trust, formal proofs can also be used to understand a theory: be-
cause a formal proof requires a more detailed explanation and explicitly named assumptions,
writing a formal proof causes the author to consider the “design decisions” of the proof. While
writing a formal proof can provide these insights, reading it is not necessarily useful: because
of the greater amount of detail, and the different languages used (tied to a particular proof
assistant), it can be difficult to see the main points of a proof. This inability for formal
proofs to communicate their contents is not just a problem when trying to explain a proof to
interested outsiders (such as traditional mathematicians or students), but also when commu-
nicating about a proof with collaborators. Moreover, there are no good tools that support the
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2 CHAPTER 1. INTRODUCTION

documentation of a formal proof: not only are the formal proofs themselves unreadable, it is
also hard to add documentation that might provide insight to the reader. In this thesis, we
present several tools and techniques that help in documenting formal proofs. Some of these
tools are fully automatic, using the theorem provers to provide extra information about the
proofs. Other tools are usable by authors of formal proofs, to document their efforts more
easily.

The central theses of this work are:

• The language of formal proof is not suited to support human understanding, and efforts
need to be made to improve this understanding.

• Instead of focusing the efforts on improving the formal languages or the proof checkers
that require them, it is possible to support communication of formal proof by leveraging
existing tools and technologies. In particular, by extracting information from the proof
checkers and disclosing this information through web technologies.

There are several ways to improve the communication quality of formal proofs.

• Make the language of formal proofs similar to the mathematical vernacular (such as is
done for the Mizar system and the Isabelle/Isar language).

• Make proof checkers more powerful, to support larger reasoning steps and more implicit
bookkeeping. Support for this style of proving is given by, for example, the Sledgehammer
tool for Isabelle. Typically, the stronger reasoning tools are also required to make the
language more similar to the mathematical vernacular, as the tool is capable to deduce
the implicit steps that are common in an informally described proof.

• Supply tools that allow users to describe their formal proofs as if they were informal,
and giving automatic support where possible for rendering and displaying the formal
proof for an audience that is not formally experienced: this is the approach taken in this
thesis.

While there are many ways to provide tools for communicating formal proofs, the approach
of this thesis is to support communication by disclosing proof checker information through
‘recent’ developments in web technology. By using the information that is already available in
a formal proof and automatically transforming this in a generic format, we avoid two problems:

• We avoid having to adapt the internals of proof checkers in order to demonstrate new
workflows. Instead, we build the workflows on top of exististing tools, and suggest how
the tools can be improved to better support these workflows. This also means that there
is less adaption involved in bringing different proof checkers to support the workflows.

• It does not require authors of formal proofs to write their proofs in a specific way. Because
we impose no changes on the formal and informal input languages, existing documents
can be supported by the tools developed for this thesis.

Specifically, we have looked at low-level documentation efforts through wikis, and adapted
formal workflows to the wiki model. The discussed workflows are all supported through an
onlne wiki platform for formal mathematics: the Agora system.

1.1 Wikis and other Web Technology
The last decade saw the rise of several interesting technologies hosted on the internet and
based on improved browser technology.
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Wikis The first technology is the wiki : an online collaboratively maintained database, that
gives visitors an easy way to edit the pages they visit. Ward Cunningham developed the first
wiki, aimed at software developers, in 1994, but wikis only hit the mainstream with Wikipedia,
started in 2001, so we still consider it a recent development. The essence of a wiki, according
to Cunningham and Leuf [63] is:

• A wiki invites all users to edit any page or to create new pages within the wiki Web site,
using only a plain-vanilla Web browser without any extra add-ons.

• Wiki promotes meaningful topic associations between different pages by making page
link creation almost intuitively easy and showing whether an intended target page exists
or not.

• A wiki is not a carefully crafted site for casual visitors. Instead, it seeks to involve the
visitor in an ongoing process of creation and collaboration that constantly changes the
Web site landscape.

These principles are not entirely compatible with the principles of formal mathematics. In
particular, inviting all users to edit any pages, including formal proofs, is a challenge: it is
difficult to learn how to write such proofs, and a conceptual mistake in a proof can cause the
entire database to become ‘invalid’. Moreover, there are no stable tools that allow a user to
comfortably edit a formal proof using just a plain Web browser: Kaliszyk’s ProofWeb [50] was
an attempt to create a web editor for formal proofs, but the implementation no longer works
in modern web browsers, making it less comfortable to use, and the architecture does not lend
itself to embedding in other systems (such as a wiki) very well.

On the positive side, because formal proofs have strong semantics, the topic association
mentioned in the second bullet can be done semi-automatically: it is possible to export the
definitions and lemmas of a formal proof, for reference in other texts. Moreover, in a wiki
it becomes possible to refer to a lemma or definition that is not yet defined: the system will
clearly mark that the target definition does not exist, and a user can add it. Obviously this
is not enough for a formal system, which needs a well defined statement, if not a proof, to be
able to use such an undefined lemma, but it does allow communication about formalizations
that are in progress. Finally, the wiki is intended to incite collaboration, which we hope to
extend from developer-developer collaboration to developer-audience collaboration.

Improved web technology Also in the last decade, mainly because of increased bandwidth
in large parts of the world, the internet has seen the advent of technologies, captured under
the umbrella term ‘Web 2.0’ that make it more interactive and dynamic, allowing entire appli-
cations that run in the user’s browser. This makes it possible for us to provide an interactive
web-based interface to theorem provers, and have web pages that are ‘remixable’: allowing
users to reuse parts of the web, and formalizations in particular, in their own creations.

Combined, these two technologies can provide a platform that allows experts and non-experts
to work on formal proofs: both by developing new proofs and by communicating about previous
proof attempts. This thesis describes the integration of current web technologies with theorem
prover tool chains. While we carried out this research, several other community-based web
systems rose to prominence: the most well-known of these are StackOverflow, which provides
a question-and-answer platform for programming, and GitHub, which allows programmers to
easily share their code and accept changes by others. We focus on Wiki technologies here,
because they allow low-level contributions by anyone, as opposed to the more specialized focus
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of StackOverflow and GitHub. However, the ideas used in these platforms do have a place in
the theorem proving world, and have some influence on the designs in this thesis.

1.2 Tools of the Trade: Interactive Theorem
Provers

In this thesis, we focus on the workflows of interactive theorem provers: proof assistants that
not only verify proofs written in its language, but provide feedback while the author is writing
the proof. Especially in Europe, the best-known current systems in this style are Coq1 and
Isabelle.2 In this thesis, we do not focus on so-called ‘batch mode’ systems: proof checkers
that allow a user to write an entire proof, and then verify it in a compilation step. If the proof
is not correct, the author can correct any mistakes that the proof checker pointed out, and
verify it again. While these systems, in particular the Mizar3 system, are a part of the formal
mathematical firmament, the batch-mode interaction style does not pose many new questions
in a web-based setting: most of this thesis focuses on adding web-based interactivity to proof
assistant documents. However, Chapter 4 focuses on a static rendition of formal proofs, and
we do include Mizar in that discussion.

The interactive theorem provers all use the following model of interaction:

• The user writes a phrase, in the syntax of the theorem prover, that needs to be proven.
This phrase, like all user-written commands, gets transcribed in what we call a proof
script in this thesis. Across the field, this document can have different names, such as
proof document or proof text. The choice for ‘script’ is fairly arbitrary, and based on our
experience with the Coq theorem prover, that uses this name.

• The theorem prover responds by parsing the phrase and, if no syntactical errors are
present, returning it as a state: a number of goals that need to be proven, combined
with the hypotheses, including declared variables, that can be used to reach the goals.

• The user responds by writing a command, typically a tactic that is meant to refine the
state. Tactics typically come in one of several forms.4 While we choose Coq as a basis
for this command classification, we believe that this list covers the commands that occur
in proofs written in an arbitrary theorem prover, the difference being what types of
commands are encouraged:

Administrative tactics manage the proof state as a whole: these are, for example,
tactics that introduce a variable to the hypotheses in order to prove a universal
quantification in the goal.

Proof flow tactics are used to break up a proof in sub steps, for example by asserting
a sub goal that can be used as an hypothesis once proven.

Application tactics apply a lemma or an assumption, or use an equivalence to rewrite
the goal or hypotheses.

Case analysis and induction correspond to the proof methods of the same names in
mathematics, and break down the state based on the structure of a hypothesis or
variable.

1http://coq.inria.fr
2http://isabelle.in.tum.de
3http://mizar.org
4Based loosely on the description of tactics in the Coq manual at http://coq.inria.fr/distrib/current/

refman/Reference-Manual010.html

http://coq.inria.fr
http://isabelle.in.tum.de
http://mizar.org
http://coq.inria.fr/distrib/current/refman/Reference-Manual010.html
http://coq.inria.fr/distrib/current/refman/Reference-Manual010.html
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Computational tactics invoke the computation of a certain function. This is a feature
exclusive to interactive systems, which can reduce a function application to some
normal form.

Automation tactics apply some automatic procedure to determine the proof of a goal.

• Using the user-written command, the proof assistant refines the state accordingly, or
gives an error if the command is not applicable to the current state.

• This process iterates: the user writes new commands based on the given state, which
cause the theorem prover to compute a new state.

• Finally, the theorem prover reports that the goal is proven, and the user finishes the
proof, normally by giving a command like ‘Q.E.D.’: in some proof assistants (notably,
Coq) this causes a final verification of the proof by using the proof kernel.

• If the user determines the goal is unsolvable at any point in time, she can backtrack or
abandon the proof entirely.

In Agora, we tap into this interactive process in several ways:

• We display a proof in Agora not just as the proof script, but allow a visitor to also see
the states the proof assistant computed.

• We have Agora mediate between the proof assistant and the user, providing an authoring
interface for formal proof.

• We use the proof assistant’s knowledge of identifiers and their types to provide rich linking
information. This is not limited to interactive proof assistants, and we also provide this
functionality for Mizar.

The connection to the theorem provers is done without modifications to the theorem provers
themselves: instead, we use the provers through the available (program) interfaces and sup-
porting tools.

1.3 Collaboration or Communication
A traditional wiki, as mentioned before, invites visitors to collaborate by making editing any
page easy. As also mentioned, part of the research in this thesis lowers the editing threshold
for formal proof on the web, but another part focuses on the use case of communicating formal
proofs to a reader. We choose to support communication for the following reasons:

• It is underdeveloped: while there has been some research on the readability of formal
proofs, their power of communication has not received much attention.

• Success in this area opens up the field: communication is a way of exposing outsiders
to a formal proof. While communication tools still need a skilled user to live up to its
potential, without the tools, someone wanting to communicate a formal proof is left with
crutches.

• Developing collaboration tools for formal mathematics requires more insight in the pro-
cess of writing formal proofs, in particular to determine how to deal with changes made
by collaborators that are physically separated.
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• Regardless of the specifics of any collaboration workflows, there needs to be a significant
speedup in the (re)verification step of proof assistants, to support a quick turnover on
submissions by new users: this is not limited to just the Coq proof assistant, but has
also been noted for Mizar [91], and a quick sampling of Isabelle’s continuous integration
system5 shows that verification times for large parts of the Isabelle libraries also take
several hours.

The reasons above make communication workflows a ‘low-hanging’ fruit, which we address
in this thesis. During the development of the tools supporting collaboration, we have arrived at
the implementation of a system that can potentially support collaboration on formal projects,
although this requires more research and developmental effort.

1.4 Contributions and Outline of this Thesis
This thesis makes several contributions to the field of formal mathematics:

• identify and detail a number of workflows for communicating formal proofs and support
these workflows with web-based tools (Chapters 3 and 4);

• identify advances in web technology that can support formal proofs and use these to
support authors and explainers of formal proofs (Chapters 4, 5 and, to a lesser extent,
Chapter 3);

• design and develop a platform for supporting the tools developed (the entire thesis, the
actual design is described in Chapter 2);

• show the strength of the platform by including a non-trivial formal development and its
description (Chapter 6).

The rest of this section gives a chapter-by-chapter overview of the thesis, including a pointer
to the original publications, where necessary. Also where necessary, attribution to co-authors
is given. Regardless of co-authorship in the source materials, the author of this thesis takes
full responsibility for the content of these chapters.

Chapter 2: Architecture of Agora globally describes the architecture of Agora: a wiki
platform that gathers sources of formal developments and supports descriptions of these de-
velopments on informal pages. In particular, it details the intended users of Agora, and the
representation of its contents as documents. Beyond this technical description, it gives several
plans for validating how well the user types fit actual users, and how suitable the workflows
detailed in this thesis are for them. This validation is left for future work, because it did
not fit in the scope of the originally proposed research, and can only be carried out with the
knowledge obtained over the course of this research.

This chapter has not been published previously.

Chapter 3: Proviola describes the underlying data structure of Agora’s documents: proof
movies represent the dynamic nature of interactively developed proof by storing both the
commands issued to the theorem prover and the corresponding responses. The responses in
these movies can be dynamically obtained by a Proviola, a display technology integrated in
Agora, but also available as a stand-alone tool. The chapter describes several methods of

5http://isabelle.in.tum.de/testboard/Isabelle/summary

http://isabelle.in.tum.de/testboard/Isabelle/summary
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enriching the data structure for web publication, leading to the final data type used in Agora’s
movies.

The Proviola idea and tooling has been described in three papers: “Proviola: a Tool for
Proof Reanimation” [83] and “Narrating formal proof (work in progress)” [82] have been com-
bined to become Chapter 3. “Dynamic proof pages” [87] speculates on the use of proof movies
for wikis, but has not been used in the formation of the chapter. In the case of all papers, the
co-authors have provided editorial comments and improvements.

Chapter 4: Point and Write describes the infrastructure Agora uses to support including
formal mathematics in informal descriptions. This infrastructure consists of a syntax for
including the entities within the narrative, and semantic annotations that can be used as
‘signposts’ for resolving the syntax into embeddable islands of formal mathematics. While
the syntax is implemented as a part of Agora, the semantic annotations can be added to any
web page, making it possible for Agora users to refer to formalizations outside Agora’s own
repositories.

This chapter is based on the paper “Point-and-Write: Documenting Formal Mathematics
by Reference” [86], co-authored with Christoph Lange and Josef Urban. Lange is the developer
of the OMDoc ontology used for semantic annotation, and also provided the description for
that technology. Urban has implemented the semantic annotation for Mizar documents and
described this part of the implementation.

Chapter 5: Authoring gives a technical overview of an authoring framework for Agora:
it makes use of an off-the-shelf web editor for writing programming code, and attaches this
editor to the underlying data structure, to obtain an asynchronous editor for formal proofs,
that is no longer tied to the old read-eval-print model. The chapter provides an overview of the
editing model, describes the protocols that are used to synchronize editor and server copies,
and shows the power of the movie-based model by adding tools that compute on the movie
representation of a formal proof.

This chapter is based on the paper “Proof in Context — Web Editing with Rich, Modeless
Feedback” [81], written by the author of this thesis.

Chapter 6: Case Study uses Agora to display a chapter of the book describing a formal
proof of the Kepler conjecture (the Flyspeck project). The chapter included in Agora was
translated from the original LATEX sources into Agora’s informal language, and the formal
proofs that the text refers to replaced by the inclusions developed in Chapter 4. For this
chapter, the source code of Flyspeck is also supported in Agora, by creating glue code that
translates HOL Light sources in the movies described in Chapter 3. Movie support for HOL
Light sources also immediately opened up the web editor described in Chapter 5 for the
Flyspeck code.

This chapter is based on the papers “Formal Mathematics on Display — A Wiki for Fly-
speck” [85] and “Communicating Formal Proof — The Case of Flyspeck” [84]. Both papers
were co-authored with Cezary Kaliszyk, Josef Urban and Herman Geuvers. Kaliszyk and Ur-
ban developed the proof advise service described in the chapter and described the service’s
technical details. Urban developed the script translating from LATEX to the Creole syntax.
Geuvers provided editorial comments.
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Chapter 2

Architecture of Agora

2.1 Introduction

This chapter describes the design of Agora as a prototype ‘Wiki for Formal Mathematics’:
the system implementation has occasional problems that make it less suitable for day-to-
day use, but rather serves as a research prototype that contains the experiments described
in the next chapters of this thesis. We do believe that the organizing principles described
in this chapter are good enough to re-implement the system for actual usage and empirical
validation of the workflows discussed here. The source code of the prototype implementation
can be found at https://bitbucket.org/Carst/agora. A version of the system is running
at http://mws.cs.ru.nl/agora_cicm.

This chapter will first describe the user categories that the system is designed for, including
the use cases these user groups have, followed by an overview of how these usage patterns can
be validated1. We then move on to the technological side of the design, giving a high-level
overview of Agora’s organization of sources into structured documents that are gathered into
repositories.

2.2 Users

Because this research is mainly concerned with workflows for communicating formal mathe-
matics, we first need to identify the potential users of Agora.

Instead of focussing on individual users, we will use user stereotypes here: each represents
a class of users for the system, and a single user can inhabit multiple classes. Contrary to the
traditional user role used in software engineering, the stereotype does not have fully specified
use cases, instead, we give a high-level overview of scenarios these users might play. The role
of user stereotypes is similar to that of a stakeholder in software engineering: it presents the
goals and investments a particular party can have in the system. In the case of Agora, we do
not focus on non-user stakeholders, but only give the three stereotypical end users. This means
we also do not consider the users who set up and configure the system: their interactions with
Agora are intended to be limited, and their workflows are of no interest in the communication
of formal mathematics. They should be considered when implementing the system, as they
have a role in deploying the system for end users.

1For reasons given in Section 2.3, the actual validation was not carried out. The Section should be read as
‘future work’.

9
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Author
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Discussion

Figure 2.1: The communication triangle: normal text indicate agents, arrows, labelled in
emphasis, indicate communication between agents.

A similar modelling tool from the interaction design community is the notion of a Per-
sona [24], which is a fleshed out character that designers can use to illustrate how a user
would approach the system. The approach we take here can be considered ’Persona-light’: we
consider the user roles as actual users of the systems, bundling a number of use cases and
scenarios, but do not give any support for these roles beyond observations. Personas are well-
documented descriptions based on empirical user research, while our basis of user requirements
is more observational, based on the typical users on the proof assistant mailing lists and on
the formalization projects developed in our research group.

We first consider three agents working with the content of Agora: the author of formal
mathematics, the reader of the content and the proof assistant that verifies the information.
The diagram in Figure 2.2 lists the possible ways these three agents communicate with each
other, about a formal document.

The figure labels the arrows with the names that we use for the types of communication,
with the main foci of Agora in bold face (for ease of reference, the face is mimicked in the
legend below):

• the communication between theorem prover and author is interactive theorem proving.
This type of communication is not changed in the presence of Agora: we investigate
proving in the context of Agora in Chapter 5, but the scenario itself is not a new one;

• on-demand states are the major communication of the proof assistant to the reader:
they allow the reader to independently discover a formal proof, without changing it, as
explored in Chapter 3;

• explanation is the task of writing a human-understandable description of a proof that
is to be consumed by the reader, something we describe in Chapter 4;

• feedback is the communication from the reader to the author. Agora’s current imple-
mentation does not support feedback in the system (obviously, a reader could send an
e-mail to the author to give feedback), but several texts, in particular in programming
languages have been published on the Internet with support for reader comments, for
example the text book “Programming Scala”2;

• the self-loops on the reader and author points of the triangle represent collaboration
between different users in these roles: when readers communicate about a formal proof,

2http://ofps.oreilly.com/titles/9780596155957/

http://ofps.oreilly.com/titles/9780596155957/
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Author
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Figure 2.2: The communication ‘triangle’ (now a square) revisited: explanation is now carried
out by the narrator

this is discussion, intended mainly to clarify specifics of a document. For the author, the
self-loop is actual collaboration: writing a proof together, possibly mediated by different
tools.

There is no arrow returning from reader to proof assistant, because the when the reader
starts instructing the proof assistant, it is no longer consider reading, but rather writing, so
the reader would fulfill the author role. There might be some cases in which the reader queries
the proof assistant for extra information such as giving the type of a function or searching for
related lemmas, but these are not independent scenarios. Instead, they are one-off use cases
that occur as part of the reader reading a proof: the reader queries the proof assistant to
look up a certain definition or lemma. The author might also use this querying use case when
writing a proof, looking for a lemma that helps in solving the current goal.

There also is no self-loop on the proof-assistant point in this diagram. While there are
scenarios in which proof assistants can verify each other’s proofs, we cannot imagine a scenario
in which proof assistants collaborate on a proof, in particular not on their own accord. In many
ways, the proof assistant is not an independent actor, as it is always driven by actions by the
other players in the diagram.

We believe that the “explanation” arrow deserves extra merit: it has been under-represented
in proof assistant research, but is an important scenario in science in general. To this end,
we actively separate the author role into an author, who interacts with the proof assistant,
and an narrator, who explains a formal proof to the readers. The collaboration arrow on
the author remains the same: authors and narrators can collaborate amongst each other,
something we saw in practice in the development of Homotopy Type Theory [74]. In practice,
the author will usually also play the role of narrators, but there might be narrators who are
only explaining formal mathematics, which justifies this separation. The separation of these
two roles is displayed in Figure 2.2. The figure is an updated version of Figure 2.2, with the
addition of an ‘narrator’ agent. Explanation is now the narrator’s task, and the reader can
give feedback to both author and narrator.

We will now discuss the three user stereotypes in detail, focussing on the arrows in the
diagram.



12 CHAPTER 2. ARCHITECTURE OF AGORA

2.2.1 Reader

The reader is the most important user of the system: without a reader, there would be no
need for publishing the material within it. More specifically, every user of Agora is likely to
be a reader, no matter what other stereotype they belong to: Agora is intended to serve as
a repository of knowledge for people working on a formalization, and this means the users
should be able to look up and read this knowledge.

The pre-existing knowledge of the readers in Agora varies greatly across separate readers: as
evidenced by the conversations of users of proof assistants on their dedicated mailing lists [67,
47, 27], these users range from computer scientists to mathematicians, and from experts of
a particular system (or multiple systems) to students just taking their first course in using
a proof assistant. One of Agora’s goals is to help bridge this experience gap, but it is not
focused on displaying its content adaptively [19], but instead on giving authors and narrators
the tools to manually tailor content to a specific audience, possibly reusing information that
also appears in other displays.

Not all novice readers of the system will come to it with knowledge about formal mathe-
matics, but one of Agora’s goals is to support these novices in becoming authors of the system.
This means that we do not only need to give passive information to the reader, but also allow
exploration and interaction, so the reader can gradually master a formal system enough to
contribute to the system’s content.

The knowledge contained in Agora consists both of formalized mathematics (in the language
of a proof assistant) and informal descriptions of this formal text. The reader comes at this
knowledge armed with just a browser, intending to read through the information and get to
know it. In particular, the reader has several ways of learning (how to use) Agora’s content,
which are explained in the next section.

Scenarios

For a reader, we need to support reading and browsing scenarios and experimentation with the
formal entities in Agora, in order to allow them to consume the mathematics in the system,
as constructed by authors (formal proof scripts) and narrators (informal narratives). Finally,
the reader should be able to discuss the content with other users of the system.

Reading informal text Reading informal mathematical text can be supported by render-
ing the mathematical formulae similar to LATEX, but also by including examples of formal
source code. Beyond this, a web system should support exploration of the text by providing
hyperlinks, which the reader can use to obtain more details about the concepts on a page, as
well as related concepts. This exploration should not be limited to informal text (as is the case
for Wikipedia), but should also support linking within formal texts and cross-linking between
formal and informal mathematics.

Reading formal text To read formal text, the reader not only requires the proof scripts
detailing the proofs, but also the contextual information the proof assistant computes based
on the scripts. The reader should have access to the extra information on-demand, as argued
and described in Chapter 3

Searching The current prototype of Agora does not incorporate search, but it is an impor-
tant scenario. In it, the reader searches for information in different ways: in the informal text,
similar to a database like Wikipedia; using semantic search tools, such as SPARQL [77], and
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using tools specific to formal mathematics, such as the content-based mathematical search
engine, WHELP [7].

Experimenting Because the bulk of information in Agora is code intended to be interpreted
by a proof assistant, the reader can be assisted in understanding the formal content by ex-
perimentation with the formal content. This experimentation can take several forms, such as
trying out different alternatives for a particular formal definition, or directly using a definition
to formalize a certain lemma. These experimentation opportunities can be divided broadly in
two categories, tied to the reader’s experience: experimentation can either occur in a sandbox,
or in a guided exercise.

The sandbox is geared towards more experienced users: it should allow the reader to put
a formal development through its paces, finding out in which situations certain formalizations
and lemmas work, and how they can be applied to other situations. This means that the
sandbox should not be tied to a specific development, but be available wherever the reader
is in Agora. By this availability, we mean that the reader should be able to include specific
formalizations and add to them by writing new code. On the other hand, the novice can be
helped by providing guided exercises, which should indicate whether a formalization is (veri-
fiably) correct, but also whether it matches a solution, to some extent. The latter verification
could be done by an automatic system within Agora (as future work), but could also be done
by a human teacher. What is needed for both of these cases is a way for the reader to start
editing (pre-defined) islands of formal code directly where they appear in Agora: in the case
of the sandbox this helps in starting an experiment that can then be kept around, in the case
of an exercise it means filling in the exercise at the appropriate spot.

Discussion Finally, the reader should have opportunities to discuss the system’s contents
with other users, in order to ask for clarification and assistance or to suggest improvements.
Such discussions should not be limited to just informal comments, but should ideally also allow
a reader to include interpreted formal text. Such discussions should work like the comment
systems, where readers can comment on sections, and also allow ad hoc conversations of the
mailing lists specific to the proof assistants, or on web sites like Stack exchange 3.

2.2.2 Author

In this thesis, the Author stereotype is used to characterise the author of formal proofs. To
carry out this task, the author uses an interactive theorem prover. Any user that writes formal
text is an author, but most prominently, we focus on the scenarios of more experienced users
of the system.

Such users are characterized by specialized workflows and tools beyond the proof assistants:
typical tools include version control systems, as well as specific build configurations (libraries
and settings) of the proof assistant. We do not have any quantifiable data on how authors
use these tools. This implies that we can either guess how to support them based on our
own experience, or first try and obtain any information. Obtaining this information is an
opportunity for future research, potentially based on related research in software engineering:
the more involved developments by experienced users have much in common with software
engineering projects [37]. We opt for the first option, restricting the author scenarios to the
simpler ones of publishing formal code and making minor, low-impact changes.

3http://stackexchange.com

http://stackexchange.com
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Scenarios

In the scenarios for the author, we mainly consider the point in the lifecycle of the development
when the author starts to use Agora.

Start of project In this scenario, the author uses Agora to start a new project. In this
case, some of the reader scenarios also apply: the author browses the libraries in Agora in
order to find developments which can be used as a basis, or obtain documentation for certain
techniques. Beyond that, the author can start a new project directly in Agora, and use Agora
as the development environment, or use Agora as a host for local development in the project,
or a combination of both approaches. The first approach means using Agora for managing
and writing formal code, and requires not only a good editor, but also support for versioning
and team management. The second approach means using Agora as a web site from which the
project’s source code can be obtained, and through which contributors can upload their code.

After the project is started in Agora, the author can use the system either as a remote
repository (similar to sites like Github4) that directly renders the proofs, or use Agora’s editor
to actually write a proof.

During project or after project When the author starts using Agora for a project which
is already underway, it is possible that there are dependencies and idiosyncrasies in the author’s
workflow that are not supported by Agora. In this case, Agora should support adding new
dependencies and tool configurations. These dependencies then support the author in working
with the development in Agora, just like in the “Start of project” scenario. Having good
support for dependencies does not amount to trivially uploading local libraries: it is possible
that these libraries conflict with libraries already in Agora, either because they are named
similarly or because they are a different version of the same library. This implies that we
need proper configuration management in the system, possibly supported by version control
systems.

When the author uses Agora after a formalization has been finished, the system should
meet a project’s dependencies as before. The difference in this instance is that the reason
for uploading is different: it is meant either to use Agora as a repository for storing and
disseminating the proof, or to use as a basis for future developments.

2.2.3 Narrator

There is a tension between the roles of author and reader: the author writes formal text, while
the reader is aided by informal text written about the formalization. To relieve this tension,
we explicitly introduce an narrator stereotype: this type of user bridges the gap between the
reader and the author, by writing informal texts that contain formal islands. Because of the
specialized knowledge an author possesses, users will typically have both an author and an
narrator stereotype. However, because some readers are knowledgeable about the informal
domain that is formalized, they can contribute here as well, giving explanations about the
informal text. Finally, it is possible that the narrator is an entirely separate user, one who
specializes in disseminating the formal work to a wider public.

It is the narrator role that is most suited to the editing workflows typical to Wikipedia
(and other wikis). These workflows are intended to invite any reader to edit the content of
the library, both by adding exposition and by cross-referencing articles, which is exactly the
task of the narrator. In particular, there is a cognitive overhead for a reader to edit the formal

4http://github.com

http://github.com
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content of Agora: before this can be done, the reader needs to learn how to write in the syntax
of a proof assistant and the writing itself can make the entire formalization that builds upon
a definition invalid or too slow to be verified. On the other hand, it is easy to write some
informal text, making it less daunting for a reader to start with.

Scenarios

The narrator’s scenarios publish informal texts about formal developments.

Writing and marking up informal text This first scenario is that of the traditional article
author: the goal is not to create new formal content, but to write an informal description, a
narrative about this formal content. Like traditional articles, narratives are written using
a markup language and include formulae, figures and snippets of code. Additionally, this
scenario also incorporates linking to other informal pages in the wiki. This scenario needs to
be very accessible to new users: it should be easy to start editing, and the syntax used for
markup should be close to the languages potential users, in particular mathematicians, use.

Cross-linking formal and informal content Besides linking the informal pages, the nar-
rator should also be able to refer to sections of previously-written formal code. This linking
should not be simple copy-and-pasting: since the formal development might change, this would
lead to inconsistencies between the formal source text and the included portions. On the other
hand, it should be possible to ‘fix’ a certain version of the text to be included, for example to
describe a previous attempt.

Adding interactive elements Finally, the narrator should be able to add interactive ele-
ments, such as exercises and sandboxes. As described earlier, these elements are useful to the
reader, and the narrator is capable of deciding where the elements are most effectively used in
the narrative.

2.3 Validation

The user scenarios described before, and the workflows described in the next chapters are
based on incidental observations and local experience. Because of the reasons listed below,
we have not carried out a validation of how exact the scenarios are, and to what extent
our workflows support the scenarios. We have obtained positive feedback on the Proviola
technology described in Chapter 3 from users on the Coq-club mailing list. The case study in
Chapter 6 shows that the tools can be applied to an actual development that contains both
formal and informal text. This case study also generated positive feedback from the author of
the original text, Tom Hales.

However, it is still desirable to execute a validation of the technology. Because the focus
of this research project was to investigate the suitability of web technology for formal mathe-
matics, and not to execute a use-driven design of an actual system. The following factors in
particular prevented executing the studies from the beginning:

Time The most important reason is a lack of time: Agora has been developed in the context
of the NWO MathWiki project, which had a duration of four years and was aimed at
investigating the, mainly technology-driven, design of a Wiki for interactive theorem
proving. This means that there was little time left for setting up empirical research that
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gathers user information, devises a solution, implements it and iterates, in order to see
if the solution solves the problems the users were having.

User base For the field of formalized mathematics, the user base that can be drawn from for
user studies is rather small, leading to a skewed coverage: there is a cluster of experts,
all tied to their own systems and ecosystems, who might be interested in doing some user
studies, but they would not encounter the same problems that beginners or intermediates
might encounter. In particular, we do not have ready access to mathematicians that
might be interested in using formal mathematics, meaning that we cannot focus on the
users we would like to draw in. We could do experiments on master’s level students,
but the amount of time between the courses (our group is involved in teaching two proof
assistant-assisted courses during a year), makes it difficult to iterate quickly. Beyond
that, we would need to take care that studies on students give enough information, while
not influencing the grading of the course.

Experience Finally, our research group does not have any real experience in running an
empirical study, which can cause considerable setbacks and delays in solving problems.

The above reasons caused us to focus mainly on using proof assistant and web technology
to produce new and improved artefacts. Clearly, it would strengthen the research and design
of a system supporting formal mathematicians if we can quantify our observations as future
work. To this end, we will need to reach out to experts in the field of usability. I will document
some possible methods of validation on each of the different user stereotypes in the rest of this
section.

Empirical data obtained about users should point out how users can interact with the
pages in Agora. Mainly, we are interested in how readers search for information, either formal
definitions for use in a formalizations or informal descriptions of techniques and developments,
and how much they use page content, both the textual content and the interactive elements.
In the case of authors, our main interest is their collaboration, and how their proofs evolve as a
result of this collaboration. Finally, we need information on how narrators write documentation
about proofs, how they communicate their proofs to readers.

There are several categories of users that all have their own data sources and who all
interact differently with the system. We describe the following categories here: beginners with
no domain knowledge, beginners with domain knowledge, and intermediates in using a proof
assistant. Experts are considered as a source of author data. We mention narrators as a
separate data source, split between the occasional Wikipedia-author and writers of academic
articles.

Beginners with no domain knowledge Students are the exemplary beginners: a master’s
student in computer science (in the Netherlands) typically has no prior exposure to a proof
assistant and its library, and normally has no domain knowledge about the subject formalized,
in particular not in a course that teaches a subject using a proof assistant, such as Software
Foundations [72].

To be able to gather data from students, we would need to set up a course that integrates
using Agora, for example by publishing course notes as Agora pages and requesting students
to use Agora as a facility for obtaining information necessary to complete course assignments.
Measuring success can be done through student evaluation, similar to an evaluation of the Ask-
Elle tutor for Haskell [34]. Additional information can be gathered by interviewing individual
students and by evaluating (anonymzzed) server logs for queries submitted to the system and
how the students browsed the pages: whether they used the interactive elements of page and
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what hyperlinks they followed. If we were to execute these experiments, we should take care
that any problems within the system do not detract from the educational goals of a course:
students should not be hindered in learning because a system is prototypical and, therefore
prone to bugs.

Beginners with domain knowledge This group of users mainly consists of mathemati-
cians, who are familiar with traditional, informal mathematics, and want to apply this knowl-
edge in a formal system: either by formalizing existing theory, or by comparing an informal
mathematical text to its formalizations.

It it difficult to obtain hard data from this group as the group is diversified and traditionally
not very interested in formal mathematics. Their interest is increasing however, with significant
formalizations of mathematics (such as described in Chapter 6) becoming more common. Most
likely, individual interviews work best to obtain scenarios that mathematicians are interested
in. This group is particularly interesting for obtaining information about the connection
between informal and formal mathematics, and how to clarify these connections.

Intermediates Intermediates know how to use the proof assistants, and are typically work-
ing on a development. However, they are not experts, and are expected to search for specific
patterns of using a proof assistant, or libraries that implement ideas similar to theirs.

Because intermediate users flock to the prover mailing lists and other community informa-
tion sources, we can obtain quantifiable data by mining the archives of these sources, in order
to find common questions as well as the paths to resolution.

Authors We consider both intermediates and experts here, as their workflows are most likely
to be similar. We do not have much information on how authors of formal mathematics write
their proofs, beyond anecdotal evidence: the field is still small, and there are only a few major
developments. There are parallels between software engineering and formal proof development,
and we could benefit from the extensive research in that field. There are differences between
the fields, however, so techniques from software engineering should be carefully evaluated. In
particular, the following differences stand out:

• Once a proof is finished, it does not change much anymore, compared to a lot of software.
It is possible that a proof gets rewritten for readability or to generalize parts for a future
proof, but the requirements of the development remain fixed: provide a (verified) proof
of a certain theorem. In software development it is possible, even likely, that a program
evolves to meet new demands.

• The development of a formal proof has a fixed requirement from the start, creating the
proof of a theorem, and all efforts can go into developing an efficient way of proving that
theorem. In software, there is a set of requirements that need to be fulfilled by a system,
which can be dropped or changed, depending on the budget of the developers.

• The teams involved in proof development are rather small: the team proving the Feit-
Thomson theorem in Coq consists of at most 23 members5, while software development
teams can grow larger.

Beyond obvious user surveys and interviews, it is possible to determine how a formalization
evolves by analysing the artifacts created during a development. In particular, the proof

5On June 11, 2013, http://www.msr-inria.com/projects/mathematical-components/, the ’Team’ tab, listed
eight current members and fifteen former members.

http://www.msr-inria.com/projects/mathematical-components/
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Figure 2.3: A document in Agora, showing the state of a proof

scripts encode semantically rich notions, which could be analysed by adopting techniques
developed in the Mining Software Repositories research community6. Since most developments
are administrated using a version control system, we believe we can analyse the history provided
by such systems in order to obtain information about the way a development evolves under
collaboration. This information is important in supporting authors that want to collaborate
using Agora.

Narrators While some narrators in Agora might be similar to Wikipedia’s narrators, we
do note that Wikipedia has a larger contributor base than a formal system can ever hope
to achieve. This means that while some lessons can be learned by looking at Wikipedia’s
workflows, they need to be tested on how they would work with less users.

The other source of data is authors of academic articles. Information from these sources is
probably best gathered on an individual basis, searching for the common denominator: each
narrator is different, but they all have the same goals and probably similar ways of achieving
those goals. There has been some research on the writing of scientific literature, in particular
the mining of the arXiv data by Cormode et al. [29]

2.4 Documents

Agora gathers the artefacts of formal proof, in particular proof scripts and descriptions of
proofs, and allows the users to interact with them by writing and reading. These activities
follow the scenarios described before. The user interacts with these documents through a web
interface, which is shown (for a particular document) in Figure 2.4.

This figure shows how several tools, working on the underlying script, come together to
provide a single interface to the user:

• Most noticeably, the document part of the proof is rendered as HTML, this rendering
was done by the rendering tool of the proof assistant (Coq, in this case), to make use of
the semantical information the tool has.

6http://msrconf.org

http://msrconf.org
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• Secondly, the proof state shown corresponds to the command pointed at. This state was
computed by the interactive toplevel of the proof assistant.

• The third feature of this page is that the content is verified by the batch-mode checker
of the proof assistant.

The computations used for these features are illustrated here for Coq, but can be different
for another proof assistant. For example, Mizar generates the documentation as part of the
verification step, and has no interactive toplevel. Despite the different tools involved, the
interface should be uniform across proof assistants, providing the same functionality (where
possible) at the same locations, no matter the underlying system. This means that we need
a way of dispatching the functionality, which is offered through the web interface, to the
underlying tools and proof scripts. To keep this dispatch as clear as possible, we abstract
from the separate files and tools (and tool configurations) into a single data structure, the
document.

The document is based on the proof movie data structure described in more detail in
Chapter 3. That chapter focuses on the content and construction of movies. In this chapter,
we focus on how the movie acts as a generic data structure for providing the functionality
required for Agora. For this discussion it is only necessary to know the following of the data
structure:

• It consists of a set of frames: extensible containers that represent individual commands
in the syntax of the proof assistant. The extensibility comes from the possibility to add
extra information to these commands, such as responses from the interactive toplevel or
markup.

• Structure on the frames is provided through a tree of scenes. Each scene can have any
number of children, which can be scenes or (pointers to) frames.

In the present chapter, we extend these notions with:

• Movie generation for markup languages, so that no matter what files are underlying a
document, the same structure can be assumed.

• A description of scenes that are used to support the scenarios described in Section 2.2.

• A mapping of the movie data structure to high-level functionality.

2.4.1 Markup languages
Agora offers the Creole [76] syntax with a slight modification explained in Chapter 4 to narra-
tors writing informal descriptions in Agora. Creole is a language that is similar to the markup
language provided by Wikipedia, offering:

• inline text markup, such as italicization and bold face;

• block-structure syntax, which allows the author to write paragraphs and then combine
them into sections by providing headers;

• a simple hyperlinking syntax, for links to other pages both within the Wiki and outside
it; and

• an inclusion syntax for formal entities (as described in Chapter 4).
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For formal languages, we split a script into frames based on the computational unit of the
proof assistant, a command. In the case of markup, we do not have a notion of command,
and we define it to be the structural elements defined by the Creole syntax. Each frame
contains both the defining syntax and the HTML markup generated from it. The structural
elements give us a natural organization of a markup text into scenes: each heading with
the paragraphs following it forms a scene, with sub-scenes defined by sub-headings (and the
paragraphs following that).

Inclusions are treated as belonging to a special scene type, described below.
Despite having used a fairly simple markup language, the characteristics described above

also hold for a complex language like LATEX, allowing Agora to include such a language by
having a parser generate the same tree. The main hurdle that is keeping this inclusion back
is defining a map from LATEX syntax to HTML and to the scene structure. To aid in this
definition, a tool such as LATEXML [79] can be used to transform the raw sources into a
structured XML tree.

2.4.2 Scene types
There are several scene types that represent the content of both formal and informal texts.
These scenes have the added usability of supporting the scenarios of Section 2.2.

Because a scene can contain sub-scenes, the type of a scene determines how Agora treats
its sub-scenes, as described in Section 2.4.3. For simplicity, we describe scenes containing only
frames in this section.

Code The code scene is used to represent formal code. It is used in almost all scenarios. In
particular, it can be pretty-printed for a reader of formal text, indexed for searching formal
text, and used for communicating a proof assistant. The sandbox described for the reader’s
“experimenting” scenario can also be implemented as a code scene.

Because Agora supports multiple proof assistants, a code scene should indicate in which
language its contents are written. Furthermore, a scene might depend on another scene: the
proof assistant should first process dependencies before attempting to process the dependent
scene. In our current implementation, Agora takes scenes to be linearly dependent, with the
frames capable of containing a more fine-grained dependency graph, instead of (also) requiring
a dependency relation on the scene level.

Code scenes can contain sub-scenes that specify the semantics of formal code, see Chapter 4
for more details on this concept.

Documentation Documentation scenes provide plain, human-readable documentation, sup-
ported by markup. This documentation can, for example be generated from a dedicated
markup language like Creole [76], or from a documentation language embedded in the formal
code, such as Coq’s Coqdoc. Documentation scenes are used to communicate informal text,
and are used as sub-scenes for several of the other scenarios.

Inclusion Inclusion is a concept that is strongly linked to Agora’s goal of writing about
a formal text. To keep the inclusions linked to their target, we add inclusion scenes to a
movie, that refer to the target scenes. These inclusions are replaced by the actual scene when
necessary, for example at render time. The targets of inclusions can be any type of scene.

In a future implementation of Agora, this scene can be extended with a “version” argu-
ment, which allows inclusion of a specific version of a scene. This provides a better internal
consistency for presented document, at the cost of not showing the most up-to-date version of
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a scene that is available in the system. This idea has been discussed by Kohlhase and Kohlhase
as their concept of versioned links [57].

Alternatives The alternative scenes are not part of the current design and implementation
of Agora, but can be added to support the other scenarios in Figure 2.2.

Alternatives provide different ways of processing a scene, either informally or formally.
Possible applications include giving a different explanation depending on the experience of the
reader (for example, a mathematician benefits from a different explanation than a computer
scientist), while keeping the full formalization for the proof assistant, or providing a solution
to a formalization exercise in a textbook that is only shown to a teacher.

Alternative scenes are used in the informal communication of a proof, but can also be used
for exploring different formalizations of the same concept, either by the author, or by readers
participating in discussion or feedback: by giving an alternative, they automatically set up the
context in which the content is interpreted.

A special kind of alternative is a comment scene, which also refers to a scene to set up a
context, and then gives some commentary about that scene.

2.4.3 Providing functionality
Agora’s provides functionality by allowing the user to manipulate the scene structure. These
manipulations are exposed as URLs, that are used by the Web interface either as plain hy-
perlinks for navigation, or in JavaScript calls for interactive elements. The following functions
are provided.

Rendering Rendering takes the scene structure of a movie and transforms it into an HTML
page. To mimic the structure of the scenes on the page, we use the basic structure element of
HTML, the div: each scene gets (recursively) mapped to a div, that contains the rendering
of its children. To render a frame, the markup contained in the frame is shown. Additionally,
the rendering step creates a table of content for the page, by gathering all the scenes that have
a title specified.

To give users access to the editing workflows, each scene is decorated with an ‘edit’ link,
which allows the user to start editing any scene, including its children. The dynamic display
provided by the Proviola is only added to rendered code scenes, since documentation scenes
do not contain code interpretable by a proof assistant.

Editing Editing in Agora is done on a per-scene basis: an author or narrator selects a
scene to edit, and that scene is loaded, including its children, into the system’s editing tool.
Chapter 5 explains Agora’s interactive editing model in greater detail. Here, we focus on the
transformation of a scene into editable form.

To make a scene editable, all the frames that descend from it should be transformed into
plain commands, without any markup. Since a frame stores the commands next to markup,
this is just a simple tree traversal that projects out the ‘command’ part of each frame it
encounters. However, we have to consider the fact that there are different types of scenes and
they form a tree: this means that a documentation scene can contain code scenes and vice
versa. We need to represent these embeddings during the translation of scenes to code.

The most straightforward approach to the translation is translating each frame in the scene
directly into the command it contains, and this is the approach that the current implementation
of Agora takes. However, this has some problems that need to be resolved for better support
of the narrator and author roles:
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Lorem ipsum **dolor** sit amet [link]

{{{ .coq

Lemma foo: forall x, x -> x.

Proof.

trivial.

Qed.

}}}

Figure 2.4: Informal text embedding formal source

(** Lorem ipsum _dolor_ sit amet [link] **)

Lemma foo: forall x, x→ x.

Proof.

trivial.

Qed.

Figure 2.5: Formal text embedding informal documentation

• The narrator can accidentally modify the formal code, while only wanting to change the
documentation for that code.

• The narrator might not be used to the documentation markup for a certain system, but
still want to edit documentation for it.

• To support the author, the code scenes should be supported with interactive feedback,
which overloads the narrator. On the other hand, the author is not concerned with
previews of markup, which can be useful for an narrator.

To support both roles, we suggest a design which translates the children of a scene in a
context-aware manner: when a user edits a documentation scene, any descendant code scenes
are clearly marked (such as in the source code example of Figure 2.4) and when a user edits a
code scene, any underlying documentation scenes get transformed into comments (such as in
Figure 2.5, which uses the Coq syntax). These figures show an additional feature, that is not
yet implemented in Agora: the translation to an editable text is not only aware of the different
scenes, but can also translate between different markup languages. To support this, we need
more information on the differences between markup languages (as not all markup languages
support the same set of features) and a model that stores the markup in a language-agnostic
way, inside the frames. Then, the system can translate to markup or editable code on the fly,
based on the target language.

Next to the different ways of generating editable text based on code and documentation
scenes, we also need to decide how to handle reference scenes. Currently, Agora translates
references to the referring syntax. The alternative is to allow the users to change a referred
scene directly through the reference. This is an interesting idea, as it allows the user to change
a scene where they see it. The main problem with this approach is that a scene that is displayed
by reference might be used by a completely different document. Handling this requires better
support of verification than is currently in Agora.

Verification Verification comprises the extraction of formal text of a document and running
an appropriately configured theorem prover on it. The result is cached on the document and
displayed to the user. This result is typically that the content is correct or that there is an
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error (or multiple errors) in the text. Most theorem provers return the locations of errors,
together with some description of what went wrong, which is also stored in the document’s
data structure. In Agora, verification is done after editing, meaning we have all code scenes
flattened, then edited, then verified. After verification, the scenes are reconstructed.

This verification process is oversimplified: it only concerns the internal consistency of a
document: that its content is correct, with respect to other document it imports. What it does
not verify is the external consistency of a document: the correctness of documents relying on
this document: it is trivial to make a document internally consistent by removing its content,
but this makes other documents that include the changed document no longer consistent. The
verification of documents is not necessary for informal Wikis such as Wikipedia: in those
systems, there is no formal notion of (any) consistency. For these systems, there is a notion
of links between pages, which are informally checked by contributors to the Wiki: when the
target of a hyperlink is not found, the link is rendered in a recognizable way (typically in red).
When a reader sees such a link, they can try to repair the problem: either by changing the
link to point to an existing page, or by writing the missing page.

The interplay between documents means that we do not only need to verify internal con-
sistency, but also external consistency. We will describe the verification in Section 2.5, which
describes the organization of documents.

2.5 Repositories
While documents provide a convenient abstraction from files and interactions with those files,
formal developments are rarely constrained to a single file: typically, such a development
consists of multiple files that together represent a theory, where later files (normally) prove
the main result, building on top of definitions and lemmas defined in earlier files. Additionally,
the larger formalizations are worked on by not just a single author, but by multiple users in
the author and narrator stereotypes.

This means that we need to organize the documents in such a way that the organization
supports multiple users and is aware of the dependencies between documents. These dependen-
cies are used to support users in their interactions with documents and to guide the theorem
provers in the verification task, especially to maintain the external consistency.

To this end, documents are organized into repositories: a repository collects a number of
files and manages instantiation of the documents from the underlying files. Additionally, the
repository provides an interface to the file system for updates and provides access to configured
tools whenever a document action requires them.

The term “repository” is borrowed from version control systems and the central code hubs
that grew around them (e.g. GitHub, Bitbucket, or SourceForge), and this is what inspired the
organization of the documents in repositories. Actual version control is roughly implemented
in Agora and left for future work. This integration would make it easier to tie in with the
author’s workflows. We also believe that integrating community features based on the source
code hubs is useful for involving readers and narrators in writing formal code.

2.5.1 Version control
Version control systems allow users to manage files in collaboration: they submit a new version
of a file after editing, and the system supports reconciling multiple edits happening at (nearly)
the same time, through the process of merging : after a merge, the file in the versioning system
represents the changes both users made. Should the changes be in conflict (for example,
touch the same lines in a file), the user should do manual conflict resolution. For centralized
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version control systems such as Subversion and CVS, there is always one recent version of the
repository, stored on a centralized server. Each user can obtain that version, and changes need
to be moved back to the server. Distributed version control systems, such as Git and Mercurial,
on the other hand, do not have a central, up-to-date version. Instead, each user maintains a
branch of changes compared to a previous version, and this branch can be distributed to other
users, who then merge the changes into their own branches.

This branch-and-merge model of version control can help us in managing repositories of
documents:

• Any user can freely experiment with changes to scenes (or entire documents) by creating
a branch. If a branch turns out well, it can be integrated in Agora’s version of the
document. This experimentation is not limited to the source documents defining a
scene, but also to locations where a scene is referenced: a branch can apply only to
the occurrence of a scene within an informal text, or to the source document.

• Verification can be done on an entire branch of related changes: the system can verify the
external consistency of documents with respect to this branch, and accept it as correct
or point out problem spots.

This is currently not implemented in Agora, because it requires a way to represent branches
within the system, so that they can be applied to the scene structure, and because it needs
a well-designed interface through which users can manage branches from within Agora: there
are some tools that help in management of branches that are part of version control systems,
but it is not obvious how to integrate them in Agora.

2.5.2 Community features
There are several portals for open source development tied to version control systems, both
centralized and decentralized. Beyond offering hosting of (branches of) a repository, these
web sites also offer their users tools for inspecting and commenting on different changes and
branches. The interfaces offered can serve as an inspiration for future work on Agora’s repos-
itory management.



Chapter 3

Proviola

3.1 Introduction

In Chapter 2, we have described the generic organization of Agora’s data in a collection of
documents. In particular, we described documents as a data structure with functionality
defined on it. We did not go into detail on the specifics of this data structure, or how the
rendering functionality is implemented. This is the goal of this chapter, which is based on two
previous papers [83, 82].

The Proviola data structure (a proof movie) has first been described [83] as the memo-
ization of a proof assistant session, captured by submitting a proof script to the prover and
recording the responses. The movie does not just keep commands and responses, but can be
extended with arbitrary data. This allows Agora to use the movie not just to store proof
scripts, but also informal documentation. The data is stored in frames, with a structure
overlaid on it through the use of a tree structure comprised on scenes. The resulting data
structure can easily be rendered as an interactive HTML page, making it ideal to use in Agora.
However, the technology is also usable stand alone, as a tool that transforms a proof script
into a movie and then into a web page.

We will first motivate the main usage of the Proviola, making formal proofs available to
inexperienced readers, and then introduce the data structure in more detail, followed by the
construction of the movie through parsing both plain proof scripts and marked up HTML.
We finally describe the generation of Agora’s HTML pages out of the data structure, as well
as present an old idea on allowing narrators to write a narrative as a scene structure, a tool
that inspired the syntax described in Chapter 4. All this is illustrated by a case study on a
transformation of the Software Foundation course notes [72].

3.2 Motivation

It can be difficult for a reader to understand a formal proof: in preparing a proof for a proof
assistant, a proof needs to be transformed to a specific syntax and style. This style typically
requires more administration than an informal proof, for example by spelling out analogous
cases and by making small, computer-understandable (but not human-understandable) steps,
a growth factor Freek Wiedijk calls the De Bruijn factor [101]. Additionally proofs for a
procedural proof assistant, like Coq or HOL Light, are written interactively: the author writes
commands that cause the proof assistant to refine and destruct a proof state. The transcript
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of these commands is stored in a proof script, which is typically distributed as ‘the’ formal
proof. Because of these reasons, however, the proof script is typically not understandable as
a stand-alone document: the reader needs to be able to work with a proof assistant that can
interpret the script and conjure up the proof states. This leads to a cognitive overhead in the
form of at least:

1. It is necessary to become (at least somewhat) familiar with the technical details of the
proof assistant, since the user needs to install and configure it before use;

2. The user needs to understand the tools the proof assistant gives her, in terms of libraries
and commands, and how to use them to achieve a formalization of the proof. Not only
is this important for the author, who needs this knowledge in writing, but also for the
reader, who needs to be able to find out what roles these libraries play in the proof under
investigation;

3. The user needs to know the proof and its implicit assumptions in far greater detail than
required to communicate the main ideas to another person: the proof assistant requires
that the proof is explained in greater detail than a human requires, with a justification
even for ‘trivial’ steps.

Much of the effort in interaction design for proof assistant s has focused on the second and
third of these issues from the point of view of defining a language of suitable basic proof steps,
augmented with automation layers which are either fully programmable, or else encapsulate
well-defined larger-scale proof steps, together with an editing model of how to soundly maintain
a partially completed proof.

That is to say, the basic proof assistant use case of “writing a proof” has received most
attention, while those of “reading a proof” (written by someone else) or “browsing a library”
rather less so: the narrative or explanatory possibilities afforded by a formal proof text have
been largely overlooked in favour of (variously prettily rendered) static digests of named def-
initions and theorem statements. These are necessary prerequisites for these use cases, but
hardly sufficient for gaining insight into how such proofs ‘work’ (or even: how partial proof
attempts may fail, as when trying to discuss such examples on a mailing list).

In each use case, however, there still remain the computational and cognitive bottlenecks
arising from the first and second problems. For example, as illustrated by Kaliszyk [50], before
being able to formalize a theorem in Isabelle, a user needs to install the system, comprising
the program itself, an HOL heap and a version of PolyML. While the process for Isabelle has
improved in the years since Kaliszyk mentioned this, there are still similar issues with other
proof assistants, such as Coq, which needs to be compiled on Linux systems and is difficult
to configure on Mac OS X. Having installed the proof assistant, the user is then left with
understanding it: digging through a tutorial or manual, and finding out what contributions
and libraries are necessary for the formalization of the proof.

Previous work at Nijmegen has partially addressed the first issue. By providing a generic
web-interface for proof assistant s, the ProofWeb system [50] removes the computational load
on users by uncoupling interaction with a proof assistant via a dedicated webserver. This
relieves the user from the installation problem: she can just visit a website and use a web-
interface to access the proof assistant. However, when trying to understand a (part of a)
formal proof script, it is often necessary to see how the proof state changes through execution
of a specific tactic. This requires first to bring the proof assistant into that specific state —
finding and loading the required libraries and files — a significant overhead, not addressed by
ProofWeb.
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Similarly, when explaining a tactic or a part of a proof script, with the current technology,
a proof author has to publish the proof script, sometimes with an explanation of the output the
proof assistant returns to her. This is not very satisfactory and often not informative enough,
especially when the publication of the script is intended to show the intricacies of the proof: if
the reader is uninitiated in the specifics of the proof assistant, she might not understand the
proof script.

In this chapter, we consider the following scenario in particular: the author wishes to com-
municate a script to a reader, who might not have prior experience with a proof assistant and
is definitely not an expert in using the system. This restriction on reader expertise means that
to interpret the script, it should be embedded in a document satisfying at least one of the
following properties:

• it is enriched with a high-level narrative, explaining why certain decisions (in design,
representation, tactic invocation, etc.) were taken and what their effect is;

• in the case of a tactic-based language, the proof script can be resubmitted to the proof
assistant, so the reader can evaluate the effects of each tactic on the proof state; or

• the proof language in which the document is written mimics closely the vernacular of
informal mathematics.

In this chapter we further consider specific instances of author, reader and proof assistant.
These instances are chosen to represent artefacts that are already available to us, and allow
us to consider how to improve the artefacts and workflows.

Author The author is writing a coursebook for use in a computer science curriculum. The
book does not necessarily have to teach the use of a proof assistant, but can present a
formal model of (a slice of) computer science that is verified by the proof assistant. This
particular content means that the proof assistant technology is not on the foreground:
instead of focusing on specific constraints imposed on proof style, the formal proofs in
the book are meant to illustrate and provide more certainty.

Reader The reader then becomes the prime consumer of a coursebook: a student taking the
course. We assume the student has no prior experience with the proof assistant used to
write the coursebook. This restriction means that a student has much to gain by the
dynamics of the Proviola implementation.

proof assistant For concrete examples and tools, we focus on the Coq system and its asso-
ciated toolset [88]: this choice is motivated by our local expertise, and the existence of
at least two coursebooks written in the form of a Coq script. These books are “Software
Foundations” by Pierce et al. [72] and “Certified Programming with Dependent Types”
by Chlipala [22]. Despite this choice, we believe that the techniques illustrated here are
also applicable to other proof assistant s, especially tactic-based ones. In particular, we
have verified this idea by implementing a prototype tool for the Isabelle proof assistant1
and tooling for HOL Light (see Chapter 6 for details).

Choosing a coursebook as a concrete proof document allows us to make some assumptions
about the content of such a document:

1Available through https://bitbucket.org/Carst/isabelle_proviola. Since this tool was developed using the
API to Isabelle 2012 and has not been brought up-to-date since then, we do not discuss it in detail here.

https://bitbucket.org/Carst/isabelle_proviola
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• The non-formal content of the document is structured in chapters, sections, subsections
and paragraphs.

• The formal content of the document is the underlying ‘spine’ of the document, subservient
to the total narrative of the book. At some points, the commands might be brought to the
foreground to be explained or to serve as an example or exercise, but the text explaining
it is just as important as the proof script.

• To improve a student’s understanding, the coursebook contains exercises. We assume
these exercises consist of proofs or definitions that have holes in them, to be filled out
by the reader.

A coursebook created as a Coq script generally exists in two different forms:

1. A rendered version of the document, in which the narrative is displayed together with
the formal content. The rendering is meant to reinforce the reader’s assimilation of the
text, using bullet points, emphasis and other markup.

2. The script itself, loaded in an interface to the proof assistant such as CoqIDE or Proof-
General [10]. This gives an interactive view of the document, allowing the student to
step through the tactics and see their effects, as well as fill in holes in exercises. The
version displayed in the interface does not have the markup of the rendered version.

These two modes of display correspond to the first two ways of assisting a reader in under-
standing a proof document: describing a proof using a high-level narrative and reviewing the
proof script dynamically, by loading it in a proof assistant and stepping through the tactics.

Switching between a rendering of a document and the script requires a reader to switch
contexts between the renderer and the proof assistant: to our knowledge, no interface to a
proof assistant actually renders the documentation of a proof document in a nice way, and the
rendering does not incorporate the proof assistant output based on reader focus. The tmEgg
tool [66] is an attempt to do this, but requires the document to be written and viewed using
the TEXmacs editor. Additionally, installing and configuring a proof assistant requires effort
on the part of the reader, effort that we have lightened by integrating script and output in the
form of a proof movie.

3.3 Communicating a Formal Proof
This section describes the existing use cases of communicating formal proofs, from the author
to the reader. To this end, we first describe the two use cases of writing and reading a proof,
executed by the author and the reader, respectively. These use cases describe the current
usage of proof assistant technology, but serve as a basis for the new use case of the Proviola:
that of ‘watching’ a proof, described in Section 3.4.1. The figures accompanying the use case
descriptions are based on UML, but use the following conventions:

• A stick figure represent a user role (proof author and proof reader).

• A ‘package’ represents a tool/program instance (here: the proof assistant s).

• The cloud represents the Internet.

• A folded page is a file (here: the proof script).

• Arrows represent data flow; a double arrow implies interaction between two parts.
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Figure 3.1: Creating a proof script

Figure 3.2: Reading a proof script

Writing a Proof To create a proof, an author writes commands to be interpreted by the
proof assistant. In response, the state of a proof changes by decomposing the theorem to be
proved, generating new proof obligations or discharging goals as proven. A proof script stores
a transcript of the commands issued.

In Figure 3.1, we display the traditional implementation of this use case, in which the proof
assistant is locally installed, and creates a local copy of the proof script.

Note that in this use case, the commands in the proof script are given by the author in
response to proof assistant output, so the script is only one side of the conversation that
generated the proof. Typically, however, it is this side of conversation that is published as
a formal proof, with the tacit assumption that the reader has his own proof assistant for
replaying the conversation.

Reading a Proof To read a proof, the reader obtains a (copy of a) proof script, possibly via
the Internet. Subsequently, he can load it in his copy of the proof assistant, and ‘replay’ the
proof: many proof assistant interfaces have a notion of stepping through a script, by sending
commands one-by-one to the proof assistant or by undoing the last command sent. Because
the proof assistant does not know that the commands it receives are extracted from a script, it
responds to commands in the same way as in the creation use case: by sending the new proof
state.

The interaction between reader and proof assistant in this use case is illustrated in Fig-
ure 3.2.

Discussion The communication style describe in the previous two use cases has two prob-
lems:

1. If only a small part of the script is relevant, it might still be necessary to send the entire
script to the reader: the parts of interest might require definitions defined previously in
a script, or might use lemmas proved earlier.

2. Before a proof can be reviewed, the reader needs to install (ideally the same version of)
the proof assistant the author used, or be so familiar with its technology to interpret the
script mentally2. Especially when the script is used to communicate a proof to a reader
who is not part of the proof assistant community, this can be a large handicap.

2For a proof assistant that uses a procedural proof style (tactics), it is hopeless to try to interpret a proof
script purely mentally, without seeing it executed.
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Figure 3.3: Communication using ProofWeb

A possible solution to the first problem, frequently exercised on the Coq-club mailing list [27],
is to simplify a proof script to a minimal example, which focuses on the problem in the script,
and the definitions directly necessary to obtain this problem. But such simplification might
be too drastic, abstracting away crucial details. Furthermore, abstraction is not an option
when the main purpose of the communication is not to point out a problem, but to display a
(partial) formalization of a proof to an outsider, because it is necessary to stay close to the
vocabulary and methods of the target audience.

The ProofWeb system developed by Kaliszyk [49] places the proof assistant on a central
server that is accessible through an AJAX-based web application. This means that to review
a proof, a reader needs only a web browser and the proof script, which could be hosted on
the same server as the proof assistant, an architecture shown in Figure 3.3. The architecture
effectively puts proof assistant behind the Internet (from a user’s perspective), but does not
change the reading and writing scenarios in any other way.

ProofWeb is an Internet-mediated realisation of the ‘creation’ use case, which mitigates
the second problem of having to install and configure a proof assistant, but does not yet allow
partial communication of the proof to a reader. It does not provide fast access to an arbitrary
proof state: to obtain the state after a given command, all preceding ones need to be resent
to the proof assistant for reprocessing.

3.4 Proof Movies
To solve the problem of computational overhead involved in obtaining an arbitrary proof state,
we have enriched the proof script data structure. In the new data structure, which we call the
proof movie, we record the commands sent to the proof assistant coupled together with the
response of the proof assistant to each command. Such a pair of a command and a response
is a frame. The exact Document Type Definition for the movie data structure can be found
at http://mws.cs.ru.nl/proviola/movies/film.dtd.

The proof movie is designed to be self-contained and generic:

Self-contained Making the movie self-contained means that a proof reader only needs a movie

http://mws.cs.ru.nl/proviola/movies/film.dtd
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<frame frameNumber="2">

<command>

intros A x.

</command>

<response>

1 subgoal

A : Type

x : A

============================

A

</response>

</frame>

Figure 3.4: An example frame of a Coq movie

and a tool capable of displaying it to replay the proof: no other tools are necessary for
this. Aside from this, the frames themselves contain the exact state of the proof at the
point represented, meaning that it is possible for an author to publish a proof partially,
omitting or reordering frames before publication.

Generic By making the movie generic, creation and display do not depend on a specific proof
assistant or proof assistant version: this does require that one can specify a transforma-
tion from the proof assistant’s interaction model generating discrete frames.

Within Agora, movies are kept as the underlying data structure for documents. For per-
sistence, Agora stores the movie in the eXtensible Markup Language (XML), which is also
the output format of the stand alone Proviola. An example frame in this implementation can
be found in Figure 3.4. This example contains the notion of a ‘frame number’: a sequence
number identifying the order in which the commands were submitted to the proof assistant.

We do not consider the movie to be a complete replacement for a script. Instead, it is a
container of a part of the script, together with the output of the proof assistant. This output
does not need to be correct, but this does not interfere with our intention of the movie: we see
a movie as an explanation of a proof, not as checked proof script per se. If a movie contains
a complete script, the concatenation of all the command segments of all frames in the movie
reproduces the script, which can then be (re-)checked by a proof assistant.

The movie introduces a new use case, creating a movie, which we describe in Section 3.4.2.
Having the movie also changes the use case of reviewing a proof script, and we describe this
modified use case first, in Section 3.4.1.

3.4.1 Watching a Movie

When the reader has obtained a proof movie, he wants to access the data within it to review
the proof, much like when he obtained a proof script. In effect, the “reading a script” use case
described in Section 3.3 and illustrated in Figure 3.2 has not changed, only the data structure
supporting it has changed.

We call the system used for displaying a movie a Proviola. Just as in film-making, where
an editor uses a Moviola to review a film while editing, and moreover quickly fast-forward
and rewind the movie to see individual shots, we wish to achieve similar access speed and
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Figure 3.5: Watching a movie: Proviola and movie proxy proof assistant behaviour

portability. Indeed, our Proviola is not a separate tool: rather, we realize it through the use
of HTML and very simple JavaScript code.

Reading a proof script, revisited: watching the movie The movie is self-contained,
and can be distributed like a script. Unlike a script, the contents of a movie can be inspected
without any external tools except a web browser: the movie can be located anywhere, and
inspected from this location. In particular, a proof assistant is not required to compute the
proof’s state and the movie can be watched offline, at any time. After the reader loads a
movie in the Proviola, he wants to step through the proof much like when a proof assistant
was loaded with a script: by indicating for which command he wants to see the response.

As illustrated in Figure 3.5, the Proviola and the movie together proxy [32, Chapter 5] the
behaviour of a proof assistant: the responses shown to the proof reader are stored (or cached)
in the movie, after having been computed by the proof assistant.

A prototype implementation of the Proviola We implemented a prototype of the
Proviola as an XSLT transformation from the movie into an HTML file containing embedded
JavaScript. This page initially shows the commands within the movie, much like a proof script.
Figure 3.6 illustrates this: when the reader places his cursor over a command, the corresponding
response is revealed dynamically. The command pointed to is highlighted as a visual reminder.
The prototype Proviola can be inspected at http://mws.cs.ru.nl/proviola/examples.html

3.4.2 Creating a Movie
Before a movie can be replayed, it must be created from a proof script by a tool we call a
camera. Such creation of a movie is a new use case, shown in Figure 3.7.

The displayed process is non-interactive: the user of the camera invokes it on a script, after
which the tool does all the work, yielding a movie.

After it has been invoked, the camera parses the proof script given to it into separate
commands. These commands are stored in a frame and sent to the proof assistant. When the
proof assistant responds to a command, the response is recorded alongside the command. The
frame is subsequently appended to the movie.

From the perspective of the proof assistant, the camera and the script behave like an actual
proof author. In other words: in creating the movie, the camera and script together proxy the
behaviour of a proof author.

Because the author holds the original script, it seems natural that she invokes the camera
on it to obtain a movie, for distribution to readers. However, a reader might also play the role
of cameraman, given access to the script.

Prototype implementation We implemented the camera as a client to the Coq, Isabelle
and HOL light system. Each implementation utilises the interface that the proof assistant

http://mws.cs.ru.nl/proviola/examples.html
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Figure 3.6: Screenshot of a Proviola

Figure 3.7: Creating a movie: camera and script proxy user behaviour
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offers, generating a movie in the fixed format. In addition, we also implemented a camera as
a client to the ProofWeb system, available at http://mws.cs.ru.nl/proviola/camera/camera.

html. This implementation does not require a reader to install a proof assistant, while still
making the movies himself (if the author neglected it), but requires the ProofWeb system to
support the correct proof assistant version.

Agora creates the movie on-demand: when a document is requested, the system runs the
parser step of the camera to create a rendered page for that document. When the reader points
at a command on the page, the system then runs the proof assistant to fill in the responses and
display the one pointed at. The responses are then cached for future retrieval. It is possible
to generate the full movie when the document is stored in Agora, but this would cause longer
delays before a page can be shown, with pages that are not inspected taking up extra time
(and storage).

3.5 Rich Movies: Narratives in Coqdoc

The setup described thus far focused on plain text movies: they are obtained from a non-
marked up proof script, and only add proof assistant responses to the display. To obtain a
better exposition for a reader, the narrator can add a narrative to the movie: this describes
a proof script in a possibly non-linear fashion with respect to that script.

There already exist approaches to narratives for proof scripts, falling broadly into two
categories: either one can use specific syntax to write documentation inside the proof script
(typically as comments). This documentation style is taken by tools inspired by JavaDoc [70].
It is intended to provide library documentation for software modules, by documenting for each
function what arguments are expected and what the intended results (and side effects) are,
as well as potential exceptions that can occur. As such, it does not provide a self-readable
narrative, but mainly provides a documentation for each part of a library.

The second approach is known as literate proving [21] and requires the author to write
both documentation and proof in tandem. This approach is inspired by Knuth’s literate
programming [56], which is a programming paradigm that encourages authors to write the
explanation of a program, with the actual program code interleaved, non-linearly into the
description. A pre-processor can then extract either the documentation or the program out of
the full document.

Coqdoc is a Coq tool that is mostly used for the first approach. Distributed together with
the Coq proof assistant, the tool produces a rendered (in HTML or in LATEX) version of a proof
script. This rendered document contains both a pretty-printed version of the commands, and
special comments extracted from the proof script. These comments are taken as a narrative,
and rendered as documentation. To provide some control over the appearance of the docu-
mentation, a light (Wikipedia-like) syntax is provided for marking up the narrative. While it
supports a more literate style of proving, the documentation is still linear with respect to the
proof.

As an example of the second approach, Aspinall, Lüth and Wolff [11] have developed an
extension to their PG kit architecture based on literate proving. The extension is designed
around a central document, that can be manipulated by the author and by tools. Example
tools are a proof assistant, taking tactics and inserting proof state, or LATEX-related tools,
creating PDF out of the narrative. To insert proof assistant data inside the narrative, an
author can use a command to insert a placeholder for the proof state, to be replaced later by
actual proof assistant output.

Both of these approaches could produce HTML pages, but the pages are static renditions

http://mws.cs.ru.nl/proviola/camera/camera.html
http://mws.cs.ru.nl/proviola/camera/camera.html


3.6. ENHANCING MOVIES WITH COMMENTARY 35

of the script, only containing pretty-printing to support communication and teaching: any
prover output in the resulting document is there because it was inserted by the narrator, not
because a reader requested it. In the next section, we make the Coqdoc-produced pages more
dynamic, by adding a movie-reel.

Another interesting problem arises in both approaches when a new author wants to narrate
a script that is provided ‘read only’: such a scenario, which might occur when documenting
a third-party library, is not supported by either tool, although the PG kit approach might be
adapted to support the scenario, by having the parts of a script represented by placeholders,
just like the proof state is represented by a placeholder in the document.

3.5.1 Course notes

We have decided to focus on coursebooks for education using a proof assistant, and as a specific
instance, we will look at the course notes by Pierce et al. for a course on Software Foundations
taught at the University of Pennsylvania [72]. As the name implies, the course is not about
proof assistants — although Coq is introduced during the course, but about the mathematical
foundations of software and the semantics of programs.

The coursebook is entirely written as a set of Coq scripts, with the narrative as Coqdoc
comments. Beyond the structuring in separate files, one for each chapter, the text is further
structured in sections and subsections, by giving Coqdoc headers at the appropriate locations.
This allows us to see the nesting of a single chapter as follows:

1. At the highest level we find a separation in sections. Each section can contain zero or
more subsections.

2. At the deepest level of the document tree, the subsections have paragraphs as leaves.
These leaves can be either commands to the proof assistant or paragraphs in the narra-
tive.

3. The proof script forms a special structure outside the structure of the text, that of a
sequential set of commands interpretable by a proof assistant.

Chlipala has also written a coursebook, one on dependently typed programming [22], but
we do not focus on it here, beyond the observation that he includes proof assistant output as
part of the narrative, reinforcing our belief that it is desirable to perform the interleaving of
movie and state rendering.

3.6 Enhancing movies with commentary
We now show how we can overlay our movies, representing the command structure of the
proof script, on top of the Coqdoc-rendered document representing the narrative structure of
the document. This is an enhancement of our original (plain text) movie data structure: by
including rendered content the movie becomes more of a document than just a proof script.
On the other hand, it is also an improvement over the text rendered by Coqdoc: instead of
the static pages produced by this tool, the reader can request the results of a tactic to better
understand why a tactic was chosen or what its use is.

The ‘pretty’ rendering of a movie, provided by Coqdoc, can easily be integrated in the
movies. To do so, we created a tool to take commands from the frames and feed them to
Coqdoc, which then outputs an HTML tree, containing more information about the intention
of the command. In particular the tree can have nodes of the following types:
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Figure 3.8: A screenshot of the movie

• Documentation nodes, further structured in:

– section headers, for different section levels,

– narrative paragraphs, containing the text of the commentary.

• Code nodes. These nodes contain the tactics of the script.

The markup nodes produced by Coqdoc are stored in the frame as additional data, next to
the command and respons. This data can be used for several purposes, especially for displaying
the paragraphs nicely, but also for extracting semantic information, like we do in Chapter 4.

3.6.1 Rendering enhanced movies

Instead of displaying the plain text of a movie, we display the rendered text as created by
Coqdoc instead. This is similar to the normal display of Coqdoc HTML pages, with the
exception that placing a cursor on the code fragments dynamically displays the response to
the command currently in focus.

Due to its dynamic nature, the best way to see the results is via the web, so we have pro-
vided a web page displaying these course notes dynamically at http://mws.cs.ru.nl/proviola/
examples.html Despite the obvious limitations of including static screenshots here in order to
illustrate a dynamic feature, Figure 3.8 displays the effect of placing the cursor on a tactic: the

http://mws.cs.ru.nl/proviola/examples.html
http://mws.cs.ru.nl/proviola/examples.html
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tactic is highlighted in grey, and the result of executing the tactic is displayed to the right of
the code, inside the document. If the cursor moves to another tactic, the result of that tactic
on the proof state would be displayed instead.

3.6.2 Scenes: Structuring a Narrative
The approach to Proviola-izing Coqdoc-rendered pages has one major drawback: Coqdoc works
on a per-file basis it does not build create a rich rendering when provided with code snippets,
which is what our Proviola provides in the form of frames. Not only is the hyperlinking
lost, the system also does not provide the internal structure of a document. To remedy this
situation, we turn the processing around: instead of first parsing the script and then rendering
the fragments using Coqdoc, we first render the script, and parse the resulting HTML. This
has some requirements:

• The rendering of code should be non-destructive, because the Proviola’s camera cannot
guess the missing commands. In practice, this means that Coqdoc should be instructed
not to omit the proofs of lemmas and the script should not contain so-called ‘hide’ blocks:
these blocks cause Coqdoc to drop all code that occurs inside a block.

• The camera should be capable of extracting code out of HTML nodes: in particular, it
should remove markup from the code nodes without changing the code, and it should
not consider documentation nodes as code.

• The movie data structure should represent the document. In particular, it should main-
tain the structuring into sections and the separation between code and documentation
represented in the HTML document as div elements.

The last point is solved by enhancing the movie with a scene structure, already described
on a high level in Chapter 2. Instead of just keeping the content of the document as a list
of frames, we extend the movie with a tree structure in the form of scenes. Since scenes can
freely refer to other scenes and frames, it is also possible to write narratives that are not linear
with respect to the script they describe.

Narrative extracted from a script does have the major disadvantage compared to a normal
text written for a coursebook: it is written inside a proof script and forms a linear interleaving
with it: any explanatory text is sandwiched either side by tactics, and can therefore only
easily refer to these tactics. When explaining a larger piece of code, this might not suffice, but
instead require recalling a previous definition or lemma, or first showing the main theorem of
a chapter, before going into the details of proving it.

Scenes form an alternative to this rigid structure. Like a section in a regular text, a scene
is a unit of explanation, containing a text describing a part of the proof together with relevant
references parts of the proof. That is, a scene has the following elements:

• structuring in the form of sub-scenes, and

• references to frames, which can either contain code or just marked up descriptions.

As mentioned in Chapter 2, scenes are equipped with a type, that guide the processing of the
frames lying beneath a scene.

By this design, the scene structure forms a ‘comb’, including only specific frames of the
movie (the ‘teeth’ of the comb) and narrating them in a continuous text (the ‘handle’). This
idea is illustrated in Figure 3.9.

We discern two tasks necessary for an author to compose a scene:
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Figure 3.9: A scene forms a comb structure on the movie

1. select the frames that the scene describes (creating the teeth of the comb);

2. write the textual scenes, including references to the selected sub-scenes or frames (con-
necting the teeth with the handle).

When the author is writing the text, she should have a view on the frames she selected
only and can then insert references in the text to the entries in this distilled list. To add or
remove entries from the list of frames, the author should at any time be able to switch back
to the selection task.

Structuring a movie into scenes can be done automatically, based on the Coqdoc output.
We already mentioned that Coqdoc sorts nodes into code and documentation nodes, and that
documentation nodes can be either paragraphs or section headers. So, to create a scene from
a Coqdoc-annotated script, we only need to mimic the document structure using scenes and
subscenes. Each documentation node in the script creates a scene, with the frames referred by
it the code beyond it.

Agora’s parser for Coqdoc HTML pages follows the page’s grouping when creating scenes,
and does not add any extra grouping. We have done a small experiment that creates scenes
not only for textual structuring, but also for proofs of lemmas and theorems: because Coqdoc
loses this information during processing, this entailed enhancing Coqdoc so it would create a
div element for a lemma, which marks both the statement and the proof. The camera could
then be extended to generate the corresponding scene. We did not pursue this further, as the
patch to Coqdoc was difficult to maintain or apply to multiple versions of the tool.

3.7 Adding Commentary to a Proof

We believe scenes to be particularly useful for writing commentary after the proof script has
been written. For this, the script should first be turned into a movie, and then further edited:
selecting the frames and describing them in the narrative, as well as stringing scenes together
into a commentary track.

We have experimented with an interface for writing the commentary track, but based on
the scene structure and an initial prototype, we observe that the interface should provide for
the following activities:

• writing the text of a scene;

• selecting the frames that appear in the scene;

• adding references to the selected frames; and

• string the scenes into a narrative.
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Writing the actual text can be done in either a WYSIWYG editor or with some light
markup language (as used in Wikipedia and Coqdoc), and should not introduce new HCI
problems.

The first design decision we make is how to allow an author to group text into scenes. As
the resulting document structure is a tree, a tree editor could be used for adding or removing
or reordering scenes to the document, and selecting scenes for further editing. The main
advantage of this approach is that the structure can be seen at a glance, and edited easily.

On the other hand, inferring the movie’s structure when the author inserts a header might
provide a faster editing workflow, as adding a new scene does not require her to switch to a
different menu or editor.

These two approaches could be combined, inferring the document structure from commands
typed in the editor and explicitly allowing an author to insert scenes or move scenes in a
structure editor, actions which get translated to modifications of the text in the editor.

Selecting the frames to appear in a scene can be done by simply toggling them: the author
is presented with a movie, in which she can click on the frames she wants to appear in the
scene.

We have experimented with an interface that has a tree editor for adding scenes to a
movie (only one level deep) and a rich text editor for writing the narrative per scene. To
link this text with the code of the command, a third pane gives the author a view on the
movie’s commands and the responses, and allowing her to toggle frame inclusion by a click
on the desired frames. A screenshot is shown in Figure 3.10; it can be experimented with at
http://mws.cs.ru.nl:8080/proofcomment.

The implementation of this interface still forces the user in a rather restricted workflow:
she would first need to add a scene, then alternate between typing and choosing code to be
included.

This interface imposes a rather strict workflow. A lighter-weight approach based on adding
syntax to Agora’s markup language is investigated in Chapter 4.

3.8 Towards Interactive Movies

We have added dynamic content to Coqdoc documents, but this does not make a proof doc-
ument really interactive: a reader cannot change the underlying proof script when watching
a movie, to try out, for example, an alternative approach to a given proof. In the context
of course notes, a more important example is making exercises: when teaching with a proof
assistant, this includes letting a student give missing definitions or complete certain proofs.

Providing the original proof script with the necessary definitions to a student is one way
of giving exercises, but then he would need to switch to a proof assistant to actually do the
exercise, instead of staying in the environment of the browser. Instead, we propose to add
interactive elements on top of the movie’s narrative. These interactive elements are scenes
that can be edited using an editor such as the one described in Chapter 5.

For course notes, only specific parts of the movie are allowed to be edited by a reader, these
sections need to be indicated by the author of the movie. However, when a movie is completely
editable, it will no longer be necessary to generate a movie from a script; instead, an author
can write a proof document in her browser, with the underlying machinery computing proof
states and rendering the movie on-the-fly.

http://mws.cs.ru.nl:8080/proofcomment
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Figure 3.10: A screenshot of the commentary tool
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3.8.1 Writing Editable scenes
An editable scene is a scene that contains some code frames to be edited by the reader after
the movie is published. Adding such a feature requires:

• an interface option for the author through which she can mark which scenes can be edited
later, and which should remain locked, and

• a proof assistant processing the commands the reader types in an exercise scene.

The author of a proof movie determines which scenes are editable and which scenes are
locked: this can be done while she prepares a movie, by setting a property of the scene,
comparable to making a file read-only in the file system. How the property is set depends
on the editor style chosen: a WYSIWYG editor might provide it as an option in a context
menu, while a markup language could allow some meta-command for setting the attribute of
a scene. In particular, the sources for the Software Foundations course notes have explicitly
marked “exercise” blocks, which are used for their document preparation, but which could also
be harvested by our camera: this would make the addition of an exercise scene semi-automatic.

3.8.2 Interacting with Editable Scenes
Once we have integrated the notion of an editable scene within the movie’s data structure, the
display of the movie needs to accommodate editing these scenes. The first step in this would
be indicating to the student that a scene is editable, for example by providing an edit button
next to the scene, and by including a proof assistant-backed editor for filling out the exercise.

Chapter 5 describes such an editor, which fulfills the first four steps of the following use
case.

1. The student clicks the ‘edit button’.

2. The movie’s server brings a proof assistant into the state necessary for doing the exercise.

3. The editor is shown to the student, including the proof assistant’s state (context and
goals) for the exercise.

4. In the editor, the student types commands, which update the proof assistant’s state.

5. If the student solves the exercise, it is stored, if he abandons it, the exercise gets aban-
doned.

The main open problem is handling the proof assistant state efficiently: before the editor
is shown, quite some computation is necessary to bring the proof assistant into the right state.
How to handle this computation remains an open question, but we have some ideas on how to
tackle it:

• At the moment the document is shown to the student, also feed it to the proof assistant
as a background process, stopping at the first exercise. This is a naive, but easily
implemented solution, that does not account for exercises being skipped or abandoned.

• To handle a student skipping an exercise, we could tacitly insert a command like Admitted,
which assumes the open goal as an axiom, for every exercise. Once a student has solved
it, we then remove the admission. This would work for Coq, but not all proof assistant
s support an Admitted-like construct, so this solution cannot be easily adapted to other
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proof assistant s that we might want to adapt our technology to. Apart from that, the
computation to get to the focused exercise might betoo slow, as the student might start
with the last exercise, requiring the entire chapter to be sent to the proof assistant in
order to start the exercise.

• We could be smarter about the inter-proof dependencies: most proof assistant s interpret
the script as a linear sequence, each command depending on all of the previous. This is
not always the case, however, especially for exercises, where the proof structure resembles
a tree, with the exercise being leaves depending on the content of the explanation above
it. We could exploit this structure by only checking the path to the leaf that is focused,
instead of all subtrees. To actually make this work, either the proof assistant needs to
be more permissive about the proof structure, or external tools could submit only the
commands that are necessary to get to the selected leaf to a proof assistant.

• Finally, we observe that a large part of the proof does not change when a student starts
an exercise: the proof script that is part of the explanation is locked by the author, and
would not need to be rechecked each time an exercise is attempted. So, we could ‘restore’
a proof session starting at the exercise. This approach works for systems implemented
in Poly/ML (such as Isabelle), but we have not investigated the space requirements for
keeping a reasonably-sized set of exercises in a ‘frozen’ state.

Once we have the machinery for checking proof text in place, we can further investigate
how to support (unsupervised) e-learning using proof assistant s: by checking the ‘correctness’
of a solution (e.g. that it does not contain commands that automatically find proofs) and by
giving hints to students on how to solve a given exercise.

3.9 Related work
Leading up to this chapter, we created a dynamic version of the Software Foundations course
notes [72]. We have applied our techniques to create handouts for a proof assistant and type
theory course Geuvers teaches at the Eindhoven University of Technology. Other documents
that we could transform are the Coq tutorial by Huet et al. [46] and the tutorial by Bertot
[17].

Several approaches exist based around a central document for formal proof, similar to our
movie, of which we have already mentioned the PG kit approach by Aspinall, Lüth and Wolff
[11], and the tmEgg experimental document-oriented Coq plugin for TEXmacs by Mamane and
Geuvers [35]. Hinze and Löh’s lhs2TEX [64] which is meant for literate Haskell programming
has been adapted to allow writing literal proof documents, from which both Coq code and
LATEX documentation can be extracted: this approach is an implementation of Knuth’s literal
programming paradigm. The coq-tex tool in the Coq distribution does something similar,
executing Coq commands within a LATEX document and returning the output in a LATEXsource
file for further processing by the author: the output has to be placed by the author, and not
by the reader.

These approaches are mainly used for writing proof and documentation together, while our
movie allows an author to first write a proof script, and then create a dynamic presentation
of this script. The presentation can then be used in a narration of the proof.

Nordström has suggested [69] using dependent type theory to enforce syntactic wellformed-
ness of books and articles, ‘live’ documents, programs, and formal proofs in a unified way. In
particular, his notion of typed placeholders could be used to represent exercises in a online
coursebook: such placeholders represent the form of a solution as a dependent type, allowing
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the system to verify whether an exercise is syntactically correct. On the other hand, it allows
the system to verify a document that contains placeholders, meaning it is possible to write a
movie that contains open exercises, but that can be still be verified.

3.10 Conclusions
We have shown how we can make on-line coursebooks using a proof assistant more dynamic:
by adding the proof assistant’s output to the document and showing it when requested by the
student reading the book. Constructing these dynamic books is the result of combining two
techniques: our previous work on creating movies out of a proof script, and the addition of
markup and commentary to a proof document using tools such as Coqdoc.

We have further sketched how a commentary track can be added to proof documents, and
how to add interactive elements to these documents.

The techniques for creating the dynamic, non-interactive documents have been applied
to the course notes for a “Software Foundations” course and have been received with great
enthusiasm by the authors of these notes. This shows that the documents we create with the
described tooling add value to the Coqdoc output, and gives motivation for improving the
workflow and output.

The data structure and the rendering engine have been used in Agora to represent the
structure of proof scripts. This allows several workflows to be defined that not only use the
dynamic display of proofs, but the structure as well. These workflows are described in the rest
of this thesis.
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Chapter 4

Point and Write

This chapter is based on the paper “Point-and-Write — Documenting Formal Mathematics by
Reference” by Tankink, Lange and Urban [86]. The modifications are minor textual changes,
and some extended explanations.

4.1 Introduction

Formal, computer-verified, mathematics has been informally discussed and written about for
some fifty years: on dedicated mailing lists [27, 67, 47], in conference and journal articles,
online manuals, tutorials and courses, and in community Wikis [23, 68] and blogs [89].

In such informal writings, it is common to include and mix formal definitions, theorems,
proofs and their outlines, and sometimes whole sections of formal articles. Such formal “islands”
in a text do not have to follow any particular logical order, and can mix content from different
articles, libraries, and even content based on different proof assistants. In this respect, the
collection of such formal fragments in a particular text is often informal, because the fragments
do not have to share and form a unifiable, linear, and complete formal context.

In a Web setting, however, such pieces of formal code can be equipped with semantic and
presentation functions that make formal mathematics attractive and unique. Such functions
range from “passive” markup, like (hyper)linking symbols to their precise definitions in HTML-
ized formal libraries, detailed and layered explanations of implicit parts of reasoning (goals,
types, subproofs, etc.), to more “active”, like direct editing, re-verification, and HTML-ization
of the underlying formal fragment in its proper context, and using the formal code for querying
semantic search engines and automated reasoning tools, such as the one described by Sutcliffe
and Urban [93].

In this chapter, we describe a use case of an author writing such an informal text: she gives
references (points) to (fragments of) formalization on the Web, and then describes (writes
about) them in a natural language narrative, documenting the formal islands. This use case
is described in Section 4.2.

We further give the design (and implementation) details of tools that support this use case
in a light-weight manner, based on HTML presentations of formal mathematics. The author
can write pointers to formal objects in a special syntax (described in Section 4.3), which get
resolved to the objects when rendering the narrative. To follow the pointers, our tools equip
HTML pages for formalizations with annotations describing what a particular HTML fragment
represents (Section 4.5): in the pointer-analogy, these annotations form the signposts. The
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annotations are drawn from suitable RDF vocabularies,1 described in Section 4.4.
We show an implementation of the mechanisms in the Agora prototype,2 described in

Section 4.6. The actual rendering of the final page with its inclusions gives rise to several
issues that we do not consider here. We discuss some of these rendering issues and how we
handle them in our implementation, but these decisions were not made systematically: we
focus here on the author’s use case of writing the references, and provide the prototype as a
proof of existence. As we show in Chapter 6, this prototype is powerful enough to handle a
large formalization, although this required some ad hoc modifications to the prototype. The
main reason that we still consider the tool a prototype lies in usability issues as well as some
engineering issues.

To our knowledge, there is no system that provides similar functionality for inclusion: there
are alternatives for including formal text, as well as alternative syntaxes, which we will compare
with our approach in the relevant sections. Additionally, the MoWGLI project has developed
some techniques for rendering formal proofs with informal narratives, which are compared to
in Section 4.6.

4.2 Describing and Including Formal Text

The techniques described in this chapter are mainly driven by a single use case, that of an
author writing a description (a “narrative”) of a development in formal, computer-verified,
mathematics. In this work, we assume that the author writes this narrative for publication
in a Wiki, although the use case could also be applied for more traditional authoring, in a
language like LATEX.

4.2.1 Use Case

While writing a natural language narrative, the author will eventually want to include snippets
of formal code: for example to illustrate a particular implementation technique or to compare
a formalization approach with a different one, possibly in a different formal language. An
advanced example is Section 5.3 of [14] rendered in Agora.3

Because we allow for including formal text from the Web, there is a wrinkle we have to
iron out when supporting this use case, but before we get to that, we describe typical steps an
author can carry out while executing the use case:

Formalization An author works on a formalization effort in some system and puts (parts of)
this formalization on the Web, preferably on the Wiki. We will refer to the results of
these efforts as source texts.

Natural language description Sometime before, during or after the formalization, the au-
thor gives a natural language account of the effort on the Wiki. As mentioned, we
assume she writes this in a markup language suitable for Wikis, extended with facilities
for writing mathematical formulae.4 We refer to the resulting description as a narrative.

1The RDF data model (Resource Description Framework) essentially allows for identifying any thing (“re-
source”) of interest by a URI, giving it a type, attaching data to it, and representing its relations to other
resources [1].

2http://mws.cs.ru.nl/agora/
3http://mws.cs.ru.nl/agora/cicm_sandbox/CCL/
4The specifics of suitable languages for writing in Wikis for formal mathematics are not a subject of this

chapter; we refer to [62] for an overview.

http://mws.cs.ru.nl/agora/
http://mws.cs.ru.nl/agora/cicm_sandbox/CCL/
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Figure 4.1: Example of informal narrative with formal snippets

Including formalizations into the narrative In the natural language description, the au-
thor includes some of the formal artifacts of her effort, and possibly some of the formal-
izations by other authors. These inclusions need to look attractive (by being marked up)
and should not be changed from the source: the source represents a verifiable piece of
mathematics, and a reader should be able to ascertain himself that nothing was lost in
transition.

These steps are not necessarily carried out in order, and can be carried out by different
authors or iteratively. In particular, the formal text included in the narrative does not have to
originate from the author or her collaborators, but could be from a development that serves
as competition or inspiration.

The end results of the workflow are pages like the one shown (in part) in Figure 4.1: it
includes a narrative written in natural language (including hyperlinks and markup of formulae)
and displays formal definitions marked up as code.

Because the source texts are stored on the Web, we consider their content to be fluid :
subject to change at any particular moment, but not under control of the author. This implies
that the mechanism for including formal text should be robust against as much change as
possible.

To determine how we can support this workflow, we first survey the existing methods that
are suitable for including formal mathematics.

4.2.2 Alternatives for Inclusion
Typical options for including formal mathematics—or any other type of code—, when working
with a document authoring tool like LATEX include:

1. Referral: place the code on some Web page and refer readers to that page from the
document (by giving the URL),

2. Inclusion: include and format the source code files as listings, e.g. using the LATEX
package listings [45],

3. Literate proving: the more extreme variant of (2): write the article in a literate style,
and extract both formal code and marked up text from it,

4. Copy-paste: manually copy-paste the code into the document.

All of these options have their own problems for our use case.

1. Referral collides with the desire for juxtaposability [18]: a reader should not have to
switch between pages to look at the referred code and the text that refers to it. Instead,
he should be able to read the island within the context of the narrative.
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2. We certainly want the author to be able to include code, but most of the tools only allow
her to refer to the code by location, instead of a more semantic means: she can give a
range of lines (or character offsets) in a file, but cannot write “include the Fundamental
Theorem of Algebra, and its proof”.

3. Literate proving [21] is a way to tackle code inclusion, but it does not solve the use case:
it requires the author to shift her methods from writing code and article separately to
writing both aspects interleaved. While the approach given by Cairns and Gow does
allow an author to mark up a formal proof with literate elements after the proof has
been written, this still takes the proof as the leading subject instead of the article. In
particular, this means that it is not possible to change the order in which a formalization
is displayed.

It also does not allow an author to include existing external code for citation (without
copy-pasting) and does not allow her to write a document including only snippets of
formal code. These cases can arise where a lot of setup and auxiliary lemmas are neces-
sary for formalizing a theorem, but only the theorem itself is the main focus of a paper.
Typical literate programming setups provide mechanisms for hiding code fragments, but
we prefer to take an inclusive instead of an exclusive view on the authoring process: the
former seems to be more in line with actual practices in the interactive theorem prov-
ing community (see, for example, the proceedings of the Interactive Theorem Proving
conference [94]).

4. Copy-pasting code has the traditional problem of maintaining consistency: if the source
file is changed, the citation should change as well. On the positive side, it does not require
much effort to implement, apart from adding facilities for marking up code, which can
be reused for in-line (new) code. To make the implementation threshold even lower, the
listings LATEX package previously mentioned also supports marking up copy-pasted code.

The shortcomings of these methods mean we need to design a system providing the following
facilities:

Requirement 1. A syntax for writing, in a natural language document, references to parts of
a formal text, possibly outside of the referring text, and a mechanism for including the referred
objects verbatim in a rendered version of the natural language text.

Requirement 2. A method for annotating parts of formal texts, so they can be referenced by
narratives.

The rest of this chapter gives our approach to satisfying these two requirements, demon-
strating how they interact, and gives a tour of our working implementation.5

4.3 Syntax for Referring

We first focus on how the author can write references to formal content. Below, we discuss
considerations that guided the design of this syntax. The considerations are partially based
on the goals for a common Wiki syntax [76].

5http://mws.cs.ru.nl/agora/cicm_sandbox

http://mws.cs.ru.nl/agora/cicm_sandbox
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4.3.1 Requirements on syntax
Simple To encourage its use, the syntax should not be too elaborate. An example of a

short enough syntax is the hyperlink syntax in most Wiki systems: only four characters
surrounding the link, [[ and ]].

Collision free The syntax should not easily be ‘mistyped’: it should not be part of the syntax
already used for markup, and not likely used in a natural language narrative.

Readable It should be recognizable in the source of the narrative, to support authors in
learning a new syntax and making the source readable.

Familiar We do not intend to reinvent the wheel, but want to adapt existing syntax to suit
our needs. This also keeps the syntax readable: when the base syntax is already known
to an author, it should be clear to her how this syntax works in the context of referring
to formal text. Because keeping things similar but not completely equal could cause
confusion, it also requires us not to deviate the behavior too much from the original
syntax.

In resolving these requirements on the syntax, we need to consider the context in which it
will be used. In our proposed use case, the syntax will be used within a Wiki, so we prefer
a syntax that fits with the markup families used for Wiki systems. It should be possible to
extend a different markup language (for example, LATEX or literate comments for a formal
system) with the reference syntax, but this requires reconsidering the decisions we make here,
to better fit those contexts.

Considering that we want to base the reference syntax on existing mechanisms (in line with
the familiarity requirement), there are three basic options to use as a basis: import statements
like those used in LATEX (or, programming and formal languages), Wiki-style hyperlinks, and
Isabelle/Isar’s antiquotation syntax.

Each of these is considered in the rest of this section, and tested against the requirements
stated before.

LATEX-style include statements. The purpose of these statements in a LATEX document
is to include the content of a file in another, before rendering the containing file. While there
are several such commands, the most recognizable is \input{file.tex}, which includes the
contents of file.tex verbatim in the place of the input statement, before rendering the page.
The command does not allow inclusion of file fragments, but could be modified to allow this, by
adding an options that allows specifying the part of the content to be included. As a concrete
example of this approach, the listings package mentioned earlier has the option to include file
fragments by giving a line offset, but not a pointer to an object. In theory, the language can be
extended with a semantic map of objects to file lines, but this requires an external processor
for each language that needs to be included, and the post-processing needs to be done when
a (static) PDF is rendered for the source document. Because the input statement is tied to
including a file (or a web page), we cannot extend this easily to indirect references (which use
queries, or an external resolution service).

Syntactically, the input statements are recognizable by LATEX users or users of a formal
language that uses inclusions, but the statements are rather long: if the author wants to use
them more often, it might become tedious to write.

The MediaWiki engine has a similar syntax for including entire pages.6 To include frag-
ments of pages, however, one either needs to factor out these fragments of the source text and

6http://www.mediawiki.org/wiki/Transclusion

http://www.mediawiki.org/wiki/Transclusion
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include them both in the source text and the referring text, or mark fragments of the source
page which will be included. Both do not give the author of a narrative fine-grained control
over inclusion.

An extension to these inclusions7 allows inclusion of sections. This mechanism is a valid
option for adaption, but if we would want to support the informal inclusion that this mechanism
is intended to support, it would be difficult for a reader of the source code to distinguish
between an informal inclusion and a formal one.

Wiki-style hyperlinks. These cross-reference statements are not hard to learn and short,
but also using them for inclusion can overload the author’s understanding of the markup
commands: if she already knows how to use hyperlinks, she needs to learn how to write
and recognize links that include formal objects. It is hard to distinguish between ‘normal’
hyperlinks and links that cause an included formal entity to render on the page.

Antiquotations. Isabelle/Isar [100] uses antiquotations to allow the author of Isar proof
documents to write natural-language, marked-up snippets in a formal document (the ‘quota-
tion’ from formal to informal), while including formal content in these snippets (the ‘antiquo-
tation’ of informal back to formal): these antiquotations are written @{type [options] syntax

}, where type declares what kind of syntax the formal system can expect, the syntax specifying
the formal content, and the options defining how the results should be rendered. The formal
system interprets these snippets and reinserts the results into the marked-up text.

For example, the antiquotation @{term [show_types] "% x y. x"} would ask Isabelle to
type-check the term λx y. x (% is Isabelle’s ASCII shorthand for λ, which can also be written
directly using a Unicode-aware editor) in the context where it appears and reinserts the term
annotated with its type: it inserts the output λ(x::’a) y::’b. x.

Another example is @{thm foo} which inserts the statement of the theorem labeled foo in
the marked up text. The syntax also provides an option to insert the label foo, but only if
the labelled entity is correct. This allows the author to mark up a text that has references to
verified theorems, both by giving the name and by statement.

4.3.2 Resulting Syntax
From the options listed above, the antiquotation mechanism is closest to what we want: it
allows the inclusion of formal text within an informal environment, relying on an external
(formal) system to provide the final rendering. There are some differences in the approaches
that require some further consideration.

Context In Isar, the informal fragments are part of a formal document, which gives the
context in which to evaluate the formal content. In our use case, there is no formal
context: the informal and the formal documents are strictly separated, so the formal
text has to exist already, and is only referred to from a natural-language document.

We could provide an extension that allows the author to specify the formal context in
which formal text is evaluated. This would allow her to write new examples based on
an existing formalization, or combine literate and non-literate approaches. This is an
appealing idea, but beyond the scope of this thesis.

Feedback In our use case, the natural language text only refers to the formal text, and does
not feed back any formal content into the formal document. In Isar, it is possible to

7http://www.mediawiki.org/wiki/Extension:Labeled_Section_Transclusion

http://www.mediawiki.org/wiki/Extension:Labeled_Section_Transclusion
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prove new lemmas in an antiquotation, but Wenzel notes in his thesis [100, page 65]
that antiquotations printing well-typed terms, propositions and theorems are the most
important ones in practice, at least for documentation purposes: later versions of Isabelle
also provide antiquotations from ML fragments embedded within the proof document,
but we do do not consider this here.

With these considerations in mind, we adopt the following syntax, based on the antiquota-
tions: @{ type reference [options] }. The main element is reference, which is either a path
in the Wiki or an external URL, pointing to a formal entity of the given type. We will discuss
possible types in the next section.

The options element instructs the renderer of the Wiki about how to render the included
entity. Compared to Isar, it has swapped positions with reference because it provides ren-
dering settings, and no instructions to a formal tool. This means that they are processed last,
after the reference has been processed to an object. Possible uses include flagging whether
or not to include the proof of a theorem, or the level of detail that should be shown when
including a snippet.

The reference points to an annotated object, by giving the location of the document it
occurs in and the name given in the annotation for that object. The type corresponds to the
type in the annotation of the object: it serves as a disambiguation mechanism, but can be
enforced in a more strict manner. If the system cannot find a reference of the given type, it
should fail in a user friendly way: in our implementation, we inline reference in the output,
marked up to show it is not found. Inspired by MediaWiki, we color it red, and put a question
mark after it. An addition to this would be to make this rendering a link, through which the
author can write the formal reference, or search for similar objects.

The antiquotation for the Coq code in Figure 4.1, is
@{oo:Definition CoqBinomialCoefficient#C}. It points to the Definition C, found in the
location (a Wiki page) CoqBinomialCoefficient. This reference gets resolved into the HTML
shown in the screenshot in Figure 4.1.

4.4 Annotation of Types and Content
For transforming antiquotations to HTML, we could implement ad hoc reference resolution
mechanisms specific to particular formal systems. Then, any new formal system would require
building another specific dereferencing implementation from scratch. We present a more scal-
able approach with lower requirements for formal systems. We enrich the HTML export of the
formal texts with annotations, which clearly mark the elements that authors can refer to. The
Wiki can resolve them in a uniform way: when an author writes an antiquotation, the system
can dereference it to the annotated HTML, without further requirements on the structure of
the underlying formal texts.

This section introduces the two main kinds of annotations that are relevant here; the next
section explains how to put them into formal texts. Firstly, we are interested in annotating
an item of formalized mathematics with its mathematical type (such as definition, theorem,
proof), which allows an author to refer to these annotations in her references, and allows the
rendering process to collect the correct island by searching for a labelled item of the given
type. Secondly, we want to annotate items by pointing to related content (such as pointing
from a formalized proof to the Wikipedia article that gives an informal account of the same
proof), which allows an author to refer not only to the strict name of an entity, but also to a
more generic concept. Type annotation requires a suitable annotation vocabulary, whereas we
had to identify suitable datasets that can be used for labeling items with contents.
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4.4.1 The Type Vocabulary of the OMDoc Ontology

The OMDoc ontology provides a wide supply of types of mathematical knowledge items, as
well as types of relations between them, e.g. that a proof proves a theorem [60, 61]. It is a
reimplementation of the conceptual model of the OMDoc XML markup language [59] for the
purpose of providing semantic Web applications with a vocabulary of structures of mathemati-
cal knowledge. We use the terms “ontology” and “vocabulary” synonymously. When annotating
documents or data, one usually speaks of an “annotation vocabulary”, whereas using the term
“ontology” emphasizes that a vocabulary has been implemented in an ontology language (here:
OWL) having a formal, logic-based semantics. It is thus one possible vocabulary (see [61] for
others) applicable to the lightweight annotation of mathematical resources on the Web desired
here, without the need to translate them from their original representation to OMDoc XML.

The OMDoc language has originally been designed for exchanging formalizations across
systems, e.g. for structured specification, automated verification, and interactive theorem
proving [59]. OMDoc covers a large subset of the concepts of common languages for formalized
mathematics, such as Mizar or Coq; in fact, partial translations of these specific languages to
OMDoc have been implemented (see, e.g., [13]).

The OMDoc ontology covers most of the concepts that the OMDoc language provides
for mathematical statements, structured proofs, and theories. Item types include Theory,
Symbol [Declaration], Definition, Assertion (having subtypes such as Theorem or Lemma),
and Proof ; types of relations between such items include Theory–homeTheoryOf–<any type
of statement>, Symbol–hasDefinition–Definition, and Proof–proves–Theorem. The ontology
leaves the representation of document structures without a mathematical semantics, such as
sections within a theory that have not explicitly been formalized as subtheories, to dedicated
document ontologies (cf. [61]).

4.4.2 Datasets for Content Annotation

Our main use case for content annotation (annotating a formal entity with a pointer to re-
lated information, in particular what content it contains) is annotating formalizations with
related informal representations, but added-value services may still benefit from such informal
representations having a partial formal semantics. Consider linking a formalized proof to a
Wikipedia article that explains a sketch and the historical or application context of the proof.8
The information in the Wikipedia article (such as the year in which the proof was published) is
not immediately comprehensible to Web services or search engines. For this purpose, DBpedia9

makes the contents of Wikipedia available as a linked open dataset.10

Further suitable targets for content annotation of mathematical formalizations – albeit not
yet available as machine-comprehensible linked open data –, include the PlanetMath encyclo-
pedia, the similar ProofWiki, and Wolfram’s MathWorld.11

In the interest of machine-comprehensibility, the links from the annotated sources to the
target dataset should be typed. The two most widely used link types, which are also widely
supported by linked data clients, are rdfs:seeAlso (a generic catch-all, which linked data clients
usually follow to gather more information) and owl:sameAs (asserting that all properties as-
serted about the source also hold for the target, and vice versa). The OMDoc ontology

8The Wikipedia category “Article proofs” lists such articles; see http://en.wikipedia.org/wiki/Category:

Article_proofs.
9http://dbpedia.org

10A collection of RDF descriptions accessible by dereferencing their identifiers [44]
11See http://www.planetmath.org, http://www.proofwiki.org, and http://mathworld.wolfram.com, respectively.

http://en.wikipedia.org/wiki/Category:Article_proofs
http://en.wikipedia.org/wiki/Category:Article_proofs
http://dbpedia.org
http://www.planetmath.org
http://www.proofwiki.org
http://mathworld.wolfram.com
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furthermore provides the link type formalizes for linking from a formalized knowledge item to
an informal item that verbalizes the former, and the inverse type verbalizes.

4.5 Annotating Formal Texts

Now that we have established what to annotate formal texts with, we need to look at the how.
Considering that the formal documents are stored on the Web, we assume that each document
has an HTML representation. Indeed, the systems we support in our prototype each have
some way of generating appropriate type annotations.

Text parts are annotated by enclosing them into HTML elements that carry the annotations
as RDFa annotations. RDFa is a set of attributes that allows for embedding RDF graphs into
XML or HTML [2]. For identifying the annotated resources by URIs, as required by RDF, we
reuse the identifiers of the original formalization.

Desired Results. Regardless of the exact details of the formal systems involved, and their
output, the annotation process generally yields HTML+RDFa, which uses the OMDoc on-
tology (cf. Section 4.4.1) as a vocabulary. For example, if the formal document contains an
HTML rendition of the Binomial Theorem, we expect the following result (where the prefix
oo: has been bound to the URI of the OMDoc ontology12):

<span typeof="oo:Theorem" about="#BinomialTheorem">...</span>
<span typeof="oo:Proof"><span rel="oo:proves" resource="#BinomialTheorem"/>
...</span>

The “. . . ” in this listing represent the original HTML rendition of the formal text, possibly
including the information that was used to infer the annotations now captured by the RDFa
attributes. @about assigns a URI to the annotated resource; here, we use fragment identifiers
within the HTML document.

In this example, we wrap the existing HTML in span elements, because in most cases, this
preserves the original rendering of the source text. In particular, empty spans, as typically
used when there is no other HTML element around that could reasonably carry some RDFa
annotation, are invisible in the browser. If the HTML of the source text contains div elements,
it becomes necessary to wrap the fragment in a div instead of a span. In Agora’s data model,
we can add annotations to scenes, which fits the model of scenes as semantical entities.

Mizar texts. Mizar processing consists of several passes, similar in spirit to those used in
compilation of languages like Pascal and C. The communication between the main three passes
(parsing, semantic analysis, and proof checking) is likewise file-based. Since 2004, Mizar has
been using XML as its native format for storing the result of the semantic analysis [90]. This
XML form has been since used for producing disambiguated (linked) HTML presentation of
Mizar texts, translating Mizar texts to ATP formats, and as an input for a number of other
systems. The use of XML as a native format guarantees that it remains up-to-date and usable
for such external uses: the external tools use the XML representation as a basis, and do not
need to assume the internals of Mizar, which might change without warning.

This encoding has been gradually enriched to contain important presentational information
(e.g., the original names of variables, the original syntax of formulas before normalization,
etc.), and also to contain additional information that is useful for understanding of the Mizar
texts, and ATP and Wiki functions [93, 91] over them (e.g., showing the thesis computed by

12http://omdoc.org/ontology#

http://omdoc.org/ontology#
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the system after each natural deduction step, linking to ATP calls/explanations, and section
editing in a Wiki).

We implemented the RDF annotation of Mizar articles as a part of the XSL transforma-
tion that creates HTML from the Mizar semantic XML format. While the OMDoc ontology
defines vocabulary that seems suitable also for many Mizar internal proof steps, the current
Mizar implementation only annotates the main top-level Mizar items, together with the top-
level proofs. Even with this limitation this has already resulted in about 160000 annotations
exported from the whole MML,13 which is more than enough for testing the Agora system.
The existing Mizar HTML namespace was re-used for the names of the exported items, such
that, for example, the Brouwer Fixed Point Theorem:14

:: $N Brouwer Fixed Point Theorem
theorem Th14:
for r being non negative (real number), o being Point of TOP-REAL 2,

f being continuous Function of Tdisk(o,r), Tdisk(o,r)
holds f has_a_fixpoint

proof ...

gets annotated as15

<div about="#T14" typeof="oo:Theorem">
<span rel="owl:sameAs"

resource="http://dbpedia.org/resource/Brouwer_Fixed_Point_Theorem"/> ...
<div about="#PF23" typeof="oo:Proof"><span rel="oo:proves" resource="#T14"/> ... </div>

</div>

Apart from the appropriate annotations of the theorem and its proof, an additional link la-
beled owl:sameAs is produced to the DBpedia (Wikipedia) “Brouwer_Fixed_Point_Theorem”
resource. Such links are produced for all Mizar theorems and concepts for which the author
defined a long (typically well-known) name using the Mizar ::$N pragma. Such pragmas
provide a way for the users to link the formalizations to Wikipedia (DBpedia, ProofWiki,
PlanetMath, etc.), and the links allow the data consumers (like Agora) to automatically mix
together different (Mizar, Coq, etc.) formalizations using DBpedia as the common namespace.

Coq texts. Coq has access to type information when verifying a document. This information
is written into a globalization file, which lists types and cross-references on a line/character-
offset basis. Coq’s HTML renderer, Coqdoc, processes this information to generate hyperlinks
between pages, and style parts of the document according to the given types. Coqdoc is
implemented as a single-pass scanner and lexer, which reads a Coq proof script and outputs
HTML (or LATEX) as part of the lexing process.

The resulting HTML page contains the information we defined in Section 4.4, but serves
this in an unstructured way: individual elements of the text get wrapped in span elements
corresponding to their syntactical class, and there is no further grouping of this sequence of
spans in a more logical entity (e.g. a <div id="poly_id" class="lemma">...</div>), which would be
addressable from our syntax. In particular, it puts the name anchor around a theorem’s label,
instead of around the entire group.

For example, the following Coq code:
Lemma poly_id: forall a, a→ a.

gets translated into the following HTML fragment (truncated for brevity and whitespace
added for legibility):

13MML version 4.178.1142 was used, see http://mizar.cs.ualberta.ca/~mptp/7.12.02_4.178.1142/html/
14http://mizar.cs.ualberta.ca/~mptp/7.12.02_4.178.1142/html/brouwer.html#T14
15T14 is a unique internal Mizar identifier denoting the theorem. Th14 is a (possibly non-unique) user-level

identifier (e.g., Brouwer or SK300 would result in T14 too).

http://mizar.cs.ualberta.ca/~mptp/7.12.02_4.178.1142/html/
http://mizar.cs.ualberta.ca/~mptp/7.12.02_4.178.1142/html/brouwer.html#T14
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<span class="id" type="keyword">Lemma</span>
<a name="poly_id"><span class="id" type="lemma">poly_id</span>
</a>...

Aside from the fact that the HTML is not valid (span elements do not allow @type at-
tributes), it has the main ingredients we are interested in extracting for annotation (type and
name), but no indication that the keyword Lemma, the identifier poly_id following it, and the state-
ment forall a, a→a. are related. The problem worsens for proofs: blocks of commands are not
indicated as a proof, and there is no explicit relation between a statement and its proof, except
for the fact that a proof always directly follows a statement. This makes the Coqdoc-generated
HTML not directly suitable for our purpose; we need three steps of post-processing:

1. Group objects: The first step we take is grouping the ‘forest’ of markup elements that
constitutes a command for Coq in a single element. This means parsing the text within
the markup, and gathering the elements containing a full command in a new element.

2. Export type information: We then export the type information from Coq to the new
element. We extract this information from the @type, derive the corresponding OMDoc
type from it, and put that into an RDFa @typeof attribute.

3. Explicit subject identification: The final step is extracting @name and putting it into
@about, thus reusing it as a subject URI.

After post-processing, we obtain the desired annotated tree, containing the HTML generated
by Coqdoc.

The approach introduced here does not yet allow us to indicate the proof blocks, for which
we do need to modify Coqdoc. The adaption is fairly straightforward: each time the tool
notices a keyword starting a proof, it outputs the start of a new span, <span typeof="oo:Proof">.
Similarly, the adapted tool outputs </span> when encountering a keyword signaling the end
of a proof. Coqdoc contains functionality that recognizes the beginning and end of a proof,
using it to hide a proof when an author wants to generate an HTML page containing only the
statements of theorems; we can use these code fragments to generate our desired output.

Isar texts. For Isar texts, we have experimented with the annotation process. We make
use of the Isabelle/Scala [97] library to generate HTML pages based on the proof structure,
already containing the annotation of a page. Because the process has access to the full proof
structure, it is easy to generate annotations: the main obstacle is that, at the time of these
experiments, the information about the identifiers at this level did not distinguish clearly
between declaration and use, so it is difficult to know what items to annotate with an @about.

4.6 Point-and-Write in Agora

We have implemented the mechanisms described in this chapter as part of the Agora proto-
type.16 A current snapshot of the source can be found in our code repository.17 Agora provides
the following functionality, grouped by the tasks in the main use case. Writing and rendering
the narrative is illustrated by the Agora page about the binomial coefficient.18

16http://mws.cs.ru.nl/agora
17https://bitbucket.org/Carst/agora
18http://mws.cs.ru.nl/agora/cicm_sandbox/BinomialCoefficient

http://mws.cs.ru.nl/agora
https://bitbucket.org/Carst/agora
http://mws.cs.ru.nl/agora/cicm_sandbox/BinomialCoefficient
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Formalization. Agora allows the author to write her own formalizations grouped in projects,
which resemble repositories of formal and informal documents. Agora has some support for
verifying Coq formalizations, with an editor for changing the files. Alternatively, it allows
an author to synchronize her working directory with the system (currently, write access to
the server is required for this). Proof scripts from this directory are picked up, and provided
as documents. Agora also scrapes Mizar’s MML for HTML pages representing theories, and
includes them in a separate project. Regardless of origin and editing methods, the proof scripts
are rendered as HTML, and annotated using the vocabulary specified in Section 4.4.

Narratives. To allow the author to write natural language narratives, we provide the Creole
Wiki syntax [76], which allows an author to use a lightweight markup syntax. Next to this
markup and the antiquotation described next, the author can write formulae in LATEX syntax,
supported by the MathJax19 library.

Reference. The author can include formal content from any annotated page by using the
reference syntax, just giving page names to refer to pages within Agora, or referring to other
projects or URLs by writing a reference of the form: @{type location#name}. For example,
the formalization of the binomial coefficient in Coq is included in the Wiki, so it can be
referred to by @{oo:Definition CoqBinomialCoefficient#C}. On the other hand, the Mizar
definition is given at an external Web page. Because the URL is rather long, the refer-
ence is @{oo:Definition mml:binom.html#D22}. In this reference, mml is a prefix, defined us-
ing the Agora-specific command @{prefix mml=http://mizar.cs.ualberta.ca/~mptp/7.12.02_

4.178.1142/html}. We do not consider prefixes a part of the “core” syntax, as another imple-
mentation could restrict the system to only work within a single Wiki, causing the links to be
(reasonably) short.

Rendering a page written in this way, Agora transforms the Wiki syntax into HTML us-
ing a modified Creole parser. The modification takes the reference and produces a placeholder
div containing the type, reference and repository of the reference as attributes. When the
page is loaded, the placeholders are replaced asynchronously, by the referred-to entities. This
step is necessary to prevent very long loading times on pages referring to many external pages.
When the content is included, it is pre-processed to rewrite relative links to become absolute
(with the source page used as the base URL), a matter of a simple library call.

An alternative to asynchronously fetching the referenced elements would be to cache them
when the page is written. This approach could be combined with the asynchronous approach
implemented, and would allow authors to refer to content that would, inevitably, disappear.

We currently have not implemented it, because it requires some consideration in the scope
of Agora’s storage model: the issue is whether Agora should store the included content as a
backup, and how it should verify that the cached content is still up-to-date. Should the cache
become invalidated, the system then needs a policy to decide whether and how to update the
cache.

Appearance of Included Content. The appearance of included snippets depends on sev-
eral things:

• Cascading Style Sheets (CSS) are used to apply styling to objects that have certain
attributes. When including the snippets, they can either be styled using the information

19http://www.mathjax.org

http://mizar.cs.ualberta.ca/~mptp/7.12.02_4.178.1142/html
http://mizar.cs.ualberta.ca/~mptp/7.12.02_4.178.1142/html
http://www.mathjax.org
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in the source document (because the syntax is marked up according to rules for a specific
system), or the styling can be specified in the including document (to make the rendered
document look more uniform).

In the implementation, we statically include the CSS files from the source text. This is
manageable due to the small number of included systems, with each system having its
own pre-defined CSS style, that can me edited after inclusion to better fit Agora’s style.
A different approach would be to obtain the CSS styling from the source document, but
this requires Agora to know about all styling directives that are applied to an included
element, and potentially an interface that allows the author to override the ‘default’
styling.

• The system could use the included snippets to present the data using an alternative
notation than the plain text that is typical for interactive theorem provers. This approach
would require some system-dependent analysis of the included snippets, maybe going
further than just HTML inclusion. The gathered data could then be used to render
the included format in a new way, either specified by the author of the source text, or
the author of the including text. This approach of “re-rendering” structured data was
taken as part of the MoWGLI project [5], where the author of an informal text writes
it as a view on a formal structure, including transformations from the formal text to
(mathematical) notation.

Because our approach intends to include a wide variety of HTML-based documents,
we do not consider this notational transformation viable in general: it requires specific
semantic information provided by the interactive theorem prover, which is not preserved
in the annotation process described in Section 4.5, possibly not even exposed by the
prover. However, where we have this information available, it would be good to use it to
make a better looking rendered result.

4.7 Conclusions and Future Work

This chapter describes a mechanism for documenting formal proofs in an informal narrative.
The narrative includes pointers to objects found in libraries of formalized mathematics, which
have been annotated with appropriate types and names. The mechanism has been implemented
as part of the Agora prototype. Our approach is Web-scalable in that the Agora system is
independent from a particular formalized library: It may be installed in a different place,
it references formal texts by URL, and it does not make any assumptions about the system
underlying the library, except requiring an HTML+RDFa export. As future work, we see
several opportunities for making the mechanisms more user friendly:

Include more systems. By including more systems, we increase the number of objects an
author can refer to when writing a Wiki page. Because we made our annotation framework
generic, this should not be a very difficult task, and single documents could be annotated by
authors on the fly, if necessary.

Provide other methods for reference. At the moment, the reference part of our an-
tiquotations is straightforward: the author should give a page and the identifier of the object
in this page. It would be interesting to allow the author to use an (existing) query language to
describe what item she is looking for, and use this to find objects in the annotated documents.
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Improve editing facilities. Agora currently has a simple text box for editing its informal
documents. We could provide some feedback to the author by showing a preview of the
marked up text, including resolved antiquotations. More elaborately, we could provide an
‘auto-completion’ option, which shows the possible objects an author can refer to, limited by
type and the partial path: if the author writes @{oo:Theorem Foo#A}, the system provides an
auto-completion box showing all the theorems in the “Foo” namespace, starting with “A”. This
lookup could be realized in a generic way, abstracting from the different formalizations, by
harvesting the RDFa annotations into an RDF database (“triple store”) and implementing a
query in SPARQL.

Consistency. The current design of the mechanisms already provides a better robustness
than just including objects by giving a location, but can still be improved to deal with objects
changing names. A solution would be to give objects an unchanging identifier and a human-
readable name, and storing the antiquotation as a reference to this identifier. When an author
edits a document containing an antiquotation, the name is looked up, and returned in the
editable text.

Despite these shortcomings, we believe we have made significant steps towards a system
in which authors can document formal mathematics by pointing and writing, without having
to commit prematurely to a specific workflow, such as literate proving, or even a tool chain,
because representations of (formalized) mathematics can be annotated after they have been
generated.



Chapter 5

Authoring

This chapter is based on the paper “Proof in Context — Web Editing with Rich, Modeless
Contextual Feedback” [81], with some minor expansions and references to other chapters in
this work added.

5.1 Introduction
The Agora1 system is a prototype for a “wiki for Formalized Mathematics” [28]: it provides
web-based access to repositories of formal documents, allowing authors to write informal de-
scriptions that include snippets of formal text [86].

Many formal documents are written in an iterative fashion: the author of a formal document
writes commands for an interactive theorem prover, which interprets them to manipulate a
“proof state”: a list of assumptions and a goal that should follow from them. Based on this
state, the author then writes new commands for the theorem prover, until the initial goal
is dismissed as proven. Taken together, these commands form a proof script, which can be
distributed to other users of the theorem prover. Because the script is meaningless without the
proof states, a system that wants to give readers stand-alone access to the proofs should provide
the proof states as well, a model which we have explored with the Proviola tool (Chapter 3).

For a wiki, it is not enough to just offer read-only access to the proofs: one of the main
design principles for the first wiki was that anyone can edit anything, even if just by a little bit
[95]. Additionally, reader understanding can be improved by allowing the reader to interact
with the material in a “sandbox”: an editor embedded in a document, that includes the material
of the document for the reader to play with, for example to redo steps of the proof in a different
way, or attempting to apply proven lemmas in different situations. For formal proof, there are
two issues barring the way to an accessible editing experience:

Verification The appeal of a wiki for formal mathematics is that its (formal) content is
verified by a proof assistant. Because a proof script rarely stands alone, but builds
on other documents in a collection, each change to a document should lead to a re-
verification of all the documents in the wiki, with respect to that change. This can take
up a lot of time, that the user may not want to spend.

Interaction Because proof scripts are written interactively, a web-based editor should provide
interaction. A standard wiki editor, on the other hand, is intended for writing simple

1http://mws.cs.ru.nl/agora_ui
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markup and hyperlinks, which are tasks done in batch mode: the HTML is rendered
after editing, instead of giving feedback to the author while editing. This is acceptable
for the wiki syntax, which is readable by itself, and does not depend on state, but not
enough for a programming language. In fact, the requirement for continuous feedback
for programmers has recently gained an increased interest in the programming language
community (see, for example, the language-oriented design by Burckhardt et al. [20]),
since Brett Victor’s “Inventing on Principle” talk [96].

Verification and External Consistency We leave the first issue for future work: Alama et
al. [4] have presented some solutions to this issue on the system-and-tool level: their solutions
focus on using build tools, such as GNUMake that allow a user to specify how a certain artefact
should be compiled from its sources; dependency analysis and version control to provide more
fine-grained control of theorem prover processes, so that the content that is verified is the
absolute minimum and preventing any ‘dirty’ content, –content that forms a correct proof
script, but removes certain lemmas that are necessary for other proofs–, from leaking into the
wiki.

We believe that their solutions are not enough, as it forces user contributions to be evaluated
in a strictly linear fashion, and always after the user committed to a single change. So the
user needs to wait for a, possibly long-lasting, computation to finish, and cannot make a set
of related changes, for example renaming a lemma at all places where it occurs. In addition
to improving the tools to be more efficient in (re)verifying a collection of formal proofs, user
interface support needs to be given that supports the authors in managing these tools: such
interfaces can provide direct feedback on the user’s changes with respect to the rest of the
wiki (or a part thereof). Heuristic impact analysis, for example, can be used to display that
a renamed lemma is used in several other pages of the wiki, or that it conflicts with another
lemma. Such solutions prevent the user from committing a change that is bound to fail,
and which the standard verification workflows would only detect when trying to apply the
renamed lemma. To make the interface more responsive, full verifications need to move to the
background, using advanced techniques such as those of Alama et al. Another improvement
to the interface can be made by providing a user with a ‘staging’ area for gathering a group
of related changes, that can be integrated at once into the wiki. Such a set of changes can
then be verified as a whole and asynchronously, allowing batch changes and preventing user
frustration. Both of the staging and the background tasks require an interface that give the
author insight in the status of a group of changes. This requires giving a higher level view
of interconnected theorems,2 and a more significant setup than just an editor, however, and
therefore is not addressed in this chapter.

This chapter describes a solution to the second issue: an editor that supports interaction
with the content of the wiki, an editor that is mature enough to allow authors to edit existing
documents, but accessible enough to be included as a sandbox for readers with little exposure
to a theorem prover. To lower the threshold, we do not reuse the existing ProofWeb editor
[49] or the Matita web editor [8]: these editors both use the “Proof General” [9] editing model
which requires an extra action by the user, clicking a “proceed” button, before the theorem
prover executes the commands written. This does not invite users to experiment, and can be,
as we show here, entirely avoided.

Instead of using a lock-stepped model, we subscribe to an editor supported by rich, modeless
feedback [25]: feedback to user changes that is given through a variety of means such as line

2Similar to the overviews given by modern programming language IDEs
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highlighting and state windows (the rich part) and which is given as soon as possible, without
forcing the user out of an editing “mode” (the modeless part). This model is similar to the
document-oriented Isabelle/jEdit model described by Wenzel [97], but in a Web-based setting.
The Clide interface [65] has a similar design, but inserts feedback inline, and focuses just on
information computed by the theorem prover (this interface was developed in parallel with the
interface described in this chapter). The Isabelle/jEdit model adds support for the Isabelle
proof assistant to the jEdit editor: jEdit is a generic editor for programming languages, that
can be expanded by writing plugins: pieces of (JVM-executable) code that react to changes in
the edited document and user focus (communicated by cursor movements) in order to provide
contextual information to the author. The Isabelle implementation uses these plugins to drive
the theorem prover, and return contextual information to the author of a proof, such as a proof
state and correctness information. The interaction is fully asynchronous and immediate: the
prover calculates proof states based on the changes a user makes, and reports them back to
the editor. In other words, the prover is ‘always on’, and does not require the author’s accord
to continue computation.

The model of Isabelle/jEdit is preferable, as it does not force an author to synchronize
prover and user focus: each time the user presses ‘proceed’, a new state is written, and used
by the author to write a new step of the proof. While this is reasonable for a single proof, it
does not allow the author to see the impact of changing the ‘design’ of a proof: changing a
lemma can invalidate proofs that make use of the lemma, but this is only found out by stepping
to the positions in which the lemma is used. In the asynchronous model, as much computation
is carried out as is possible, something that is only possible because of recent improvements in
processor speeds and amounts. Because computation is carried out on the entire proof text,
the author gets immediate feedback on changes, even if the feedback occurs at the end of a
document.

Introducing the asynchronous communication model to a web-based setting gives rise to a
challenge and two advantages, compared to a stand-alone editor.

• The challenge is that because the client is served on a web page, while the theorem
prover resides on a server, all communication is done through the HTTP protocol, which
does not support the server pushing data. More modern techniques, such as WebSockets
could be used to provide an easier model, but is not supported by all web servers and
in particular not by the server configuration that Agora is currently deployed on. The
solution is to have the editor continuously poll the server whether new data is available.
Designing this protocol, that mimics the server pushing data is one contribution of this
chapter. The major challenge is to design the protocol in such a way that the editor
does not lose its reactivity. Techniques for server-push are being integrated into newer
versions of web browsers, but the technique does not have a widespread library support:
solutions still need to be hand-crafted, which costs as much effort as the design of the
current protocol; .

• The first advantage is that because Agora’s editor is just a web page, displaying infor-
mation is reduced to adding fragments of HTML to the page. This means that arbitrary
server-side tools can work on the document, similar to the Isabelle/jEdit model, and that
they can communicate their results as HTML fragments. On the contrary, tools that
work in the Isabelle/jEdit model that want to report their results to the user would need
to implement this display as a part of the jEdit plugin framework, which requires ad-
ditional implementation work and a deeper knowledge of the jEdit environment. While
this may in part be a matter of taste, and the benefit is negligible for more complex tasks,
which might require server-side computation, adding new information to Agora’s editor
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view requires feedback as HTML (a markup language) instead of procedurally adding a
viewing area to the editor and then connecting that area to the correct events.

• The second advantage is that Agora is web-based, and tools working with proofs can as-
sume to have access to the Internet, and can use this fact to provide relevant information
to the user, for example by showing similar formalizations in different theorem provers.
An instance of Agora can be started offline, obviously disabling the Internet-based ad-
vantages, but still providing an editor for files in a repository.

In Section 5.2, we describe these advantages further, explaining what kind of tools can be
attached to the editor, and how they can work with a proof. This section also includes a more
in-depth look at what we intend the editor to support. In Sections 5.3 and 5.4, we describe how
we overcome the challenge, by describing the document model as it exists on the server, in the
client and in transit (Section 5.3) and how these incarnations are synchronized (Section 5.4) to
hold the same data after one of the representations gets updated. In Section 5.5, we describe
an important part of our implementation, a driver for the Coq [88] theorem prover. Because
Coq currently does not support asynchronous computation, it needs to be ‘faked’ until the
improvements by Wenzel, among others [99] become a stable part of Coq. This faking is done
by adding and using extra information in the data structure, making Section 5.5 an example
of how tools can enrich the data structure for their own purposes. Section 5.6 summarizes and
gives a perspective on improving and using the editor.

5.2 Proving in Agora: Managing Context
Agora is a prototype wiki built upon existing repositories of formal mathematics: users can
upload existing developments to the system and then collaborate on these documents in a
Web-based system. This collaboration can include further development on the formal content,
but the primary workflow of the system is based on writing informal pages describing the
development, that can contain dynamic and interactive elements. If a document contains
formal content, it is possible to bring up the theorem prover state on-demand for any line of
formal proof (the Proviola system described in Chapter 3), and readers should be able to do
exercises and experiments directly in the web interface.

Since content in Agora is imported from authors’ existing formal development, we assume
that there is an offline editor that supports more sophisticated workflows, and Agora’s editor
can focus on less involved, “one-off” editing tasks, in particular:

Edits during description An author describing a formal proof might discover improvements
to this content. Changing the code to address these issues should not require the author
to change back to the offline editor and resubmit the formal code: it should be possible
to do edit the formal text inside the wiki’s environment.

Exercises Several text books, most notably the Software Foundations text book [72], use a
theorem prover to teach formal techniques in computer science. These text books are
self-contained formal developments, that a student can run in a local theorem prover
installation. Exercises in this text books take the form of formal proofs, which students
need to complete. The benefit of a theorem prover is that a student gets direct feedback
to whether or not a proof is correct, and that a teacher has a lighter load in verifying
student assignments: because the theorem prover has verified the proofs, they will not
contain factual mistakes, and a teacher can focus on improving a student’s style. On
the other hand, the documentation tools accompanying a theorem prover can be used to

http://mws.cs.ru.nl/agora
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mark up a text book for online rendering, typically giving better results than the code
highlighting in a theorem prover’s offline editors. To combine the benefits of having an
online theorem prover verifying student exercises with those of a text book as a rendered
HTML page, it is necessary to supply students with an accessible editor that can be
embedded in HTML documents.

Demonstrations If an author wants to demonstrate a formalization at a location where no
theorem prover is available, having an editor at the same place as the formalization, which
can easily load this formalization from the wiki can be useful for showing applications
and alternatives.

These use cases are all covered by existing theorem prover environments on the web, such
as ProofWeb, but we can lower the threshold further by making the editor modeless and
generic. Having a generic editor is especially required in Agora, where we want to easily add
new theorem provers, and also want to provide contextual feedback to the user, drawn from
the wiki.

The advanced use cases concern proofs in the scope of a full-fledged formal development,
where multiple proofs depend on each other, and an author can look into the history of
a proof, and possibly use tools to analyse a proof while it is being edited. While Agora
in theory supports these use cases through tool support, the system’s architecture (and its
implementation) are not robust enough to support them in practice. This is left to future
work: the editor is a first step in providing authors with tools to write proofs in Agora, but we
currently only consider the text of a formalization. Extensions can be made towards supporting
the proof in the context of a larger formalization, or towards searching the wiki for appropriate
lemmas, as well as integrating version control support.

Proof Context When an author writes a proof in Agora, the proof gets translated into
a model, discussed in Section 5.3, that allows arbitrary tools to work on it: the tools add
extra information to the commands the author writes. Because Agora is a web-based system,
the tools reside on a server and can do intensive computations, possibly using the wiki or the
entire Web to provide information. Furthermore, because the editor is already in a client-server
model, the results are reported asynchronously, without disturbing the author. We call this
model of editing contextual as the information displayed depends on the location of the text
cursor: the information the author sees depends on the context in which it is being requested..
It is rich, using methods of communication beyond text-only dialogs, such as colouring and
hyperlinks, and modeless, computing and reporting information while the author writes: the
tools that provide the feedback add the information in the background, and the information
is retrieved when the author shifts focus.

Figure 5.1 is a screenshot of Agora’s editor in action. In this figure, the author has written
a small proof for the Coq theorem prover. The following contextual information is computed
by two server side tools:

State The state window shows an error, reporting that the command under the cursor is
incorrect. This response was computed by the theorem prover.

Correctness The first two lines of the proof are correct, the others incorrect: Coq cannot
recover from the error on line 3, as indicated by the colouring. The information for this
colouring is computed by a post-processing step on the theorem prover output, which
will be discussed in Section 5.5. The actual colouring is just a styling step using CSS on
the client side.
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Figure 5.1: Contexts in action

Rich type information In the declaration of the lemma, its name (poly_id) and the bound
variable (x) are coloured differently from the rest of the text. This information is obtained
from the so-called “globalization” step in Coq’s proof process: this step reports what
types of identifiers (lemma, variable, . . . ) occur at what locations. This information
is computed by the theorem prover during evaluation and the location is reported as a
character offset from the beginning of the file. Because the editor adds information to
separate commands, a second tool normalizes the information to be a character offset
from the beginning of the command.

Other tools can, for example, take the rich type information and evaluate references to
lemmas and report them as hyperlinks to the place where they are defined. These hyperlinks
can then be displayed as ‘cheat sheet’ window next to the editor.

The list above shows that the theorem prover process is just one of several processes working
on a single model. However, the theorem prover has an elevated status: when the author writes
a proof, the next command is typically determined by evaluating the state information the
theorem prover reports: if the theorem prover reports and error, the author corrects it, and
when the theorem prover reports a states in which an hypothesis has been simplified or a new
goal is introduced, the author continues by writing a command that manipulates this new
state. Traditional “Read-Eval-Print-Loop” models of theorem prover interaction are based on
this driving principle: the author explicitly tells the theorem prover when to proceed on the
proof, only proceeding as far as the focus of attention (the last command interpreted), even if
the proof goes on beyond this focus. If the proof is changed not by appending new commands,
but by changing existing commands, the changes might cause later steps to become invalidated,
which is not indicated by a read-eval-print-loop process.

When contextual information is computed based on the proof for the entire proof script,
the user no longer has to instruct the tools to start computing “on the next line”. Instead,
all tools that are available should start computing when new proof text becomes available,
reporting their results asynchronously. We give a description of a theorem prover tool that
fakes asynchronous updates in Section 5.5 as an example of a tool working on the server-side
proof, but we first describe how the editor and server represent a proof.
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5.3 Document representations

The client and the server share the proof’s state in a proof movie [83], but each represents
the model differently. This section describes the different models, including the model used to
communicate changes from the server to the client. We describe the server model first: this
serves as an introduction to proof movies.

5.3.1 Server model

The server stores the proof as a simplified proof movie: a list of frames. These frames contain
cells that contain the information of the proof: each cell is a piece of information calculated by
a tool based on other cells in the frame and, possibly, in previous frames. Each frame should
contain at least a command cell. This cell holds theorem prover commands and comments,
calculated by a light-weight parser.

Because we want to link the movie to the client’s line-and-character-based model described
below, we store the frames not in a list, but in a map from a line-character range to the
frame containing the command occurring at that range. We assume that lookup occurs more
often than modification, and store the map as a binary tree, indexed by line-character ranges.
Because the ranges are contiguous, it is possible to look up a frame by a single text position:
given a text position and a key, the position occurs either in the key, letting us return the
frame, or it occurs before the key, leading to a descent in the left subtree, or it occurs after
the key, leading to a descent in the right subtree.

Given a changed portion of text, we can find the nodes that are affected by this change,
and recompute a new tree from this change by taking the affected frames and recomputing new
frames from the changed text. After inserting the changed frames, the tree looks like “preceding
frames + changed + following frames”, where the “preceding” and “following” frames are the old
frames that surround the changed portion. Keeping the old frames, especially the preceding
ones, is an advantage when feeding the frames to a theorem prover, as we describe in Section
5.5. In short, the data used for driving the proof assistant is kept in the old frames, and can
be used to prevent unnecessarily computing with these frames.

5.3.2 Client model

The client model is restricted by the representation of the data structure in HTML: while it
is possible to manipulate a data structure as rich as the original movie in JavaScript, it will
eventually need to be shown to, and interacted with by, the author in an HTML document.
Because of this, and to minimize redundancy of the implementation over several languages,
we keep a minimal model in JavaScript, containing only the information we want to show in
the client.

In the client, the author needs to have at least the text of the proof, and feedback on how
the proof is processed: in terms of the movie, the client needs the commands and proof states
for each frame. The commands are placed in some editable text area, the states are requested
in response to text cursor movements: following the Isabelle/jEdit model, we take the text
cursor position to be indicative of the author’s focus of attention, and therefore guiding in
what state to show. This heuristic is not completely correct, as is shown by an e-mail thread
started by Nipkow in the Isabelle users’ mailing list3: when extending the proof based on
the current state, the text cursor moves while typing, causing the system to request the new,
possibly non-existing and most likely erroneous, state. On the other hand, when the author

3https://lists.cam.ac.uk/pipermail/cl-isabelle-users/2012-July/msg00182.html

https://lists.cam.ac.uk/pipermail/cl-isabelle-users/2012-July/msg00182.html
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has finished typing a command and it is still erroneous, the state of the last correct command
can be useful in debugging. More experiments and prototyping is necessary to see how to
properly deal with this scenario.

We have a choice in how to represent the text in HTML: we can use a textarea element,
a standard HTML DOM element with the contenteditable4 attribute enabled, or an “off-the-
shelf” editor that is programmable to work with our data.

Textarea Textarea elements hold plain text and respond to different user editing actions:
typing, copying and pasting. Its content cannot be marked up, which makes it not suitable for
rich modeless feedback. On the positive side, it does not apply formatting to the text being
written, allowing it to be gathered as plain text, which is what the theorem prover expects.

Contenteditable Using contenteditable on the other hand, causes HTML markup elements
to be inserted in non-standard ways, requiring a cleanup of the text before it is processed
further. As described by others [43, 49], this cleanup is non-trivial to implement, and would
require effort to be kept synchronized with the models different browsers use. Elements with
contenteditable do have the advantage of being just HTML elements, exposed to JavaScript
manipulation and CSS styling.

Off-the-shelf editor A third option is to use a third-party editor component, which allows
text to be obtained as plain text, while also providing markup facilities through a programming
interface. A feature-rich and easy-to-use representative of this family is CodeMirror5, which is
also used for several high-profile projects. We have chosen this editor in order to combine the
ease-of-use of a textarea element, while also being able to markup the code the author writes
to provide feedback.

An additional benefit of CodeMirror is that it allows a mark to be set for a region of text.
While the intention of these marks is to apply custom styling to arbitrary regions of text,
the fact that each mark is a JavaScript object, and that a JavaScript object can have new
attributes added at runtime, allows us to store arbitrary data to regions of text, corresponding
to the information found in each frame. This gives us a way to represent the movie in the
editor: a frame can be represented by creating a mark on the text in its command cell, and
other cells can be added as attributes to this mark. When the text cursor is moved, the mark
under the cursor can be retrieved, and its data can be used to render the context.

5.3.3 Communication

For communication, the movie is represented as a list of frames in the “JavaScript Object
Notation”, a textual representation of JavaScript objects, including lists and strings. Instead
of sending over the entire frame, a frame is represented by an object, containing the text range
its command covers, split in a start_line and a start_char, and an end_line and an end_char.
This suffices, because the client already knows the text content. The rest of the data per frame
depends on the computations carried out on the movie, such as those described in Section 5.5:
each cell is provided by some tool, with tools providing one or more cells.

4http://www.w3.org/TR/2008/WD-html5-20080610/editing.html#contenteditable0
5http://codemirror.net

http://www.w3.org/TR/2008/WD-html5-20080610/editing.html#contenteditable0
http://codemirror.net
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5.4 Synchronizing the document
When the author updates the text in the editor, this should update the document’s movie. In
turn, this triggers the server-side processes that compute on the new movie. The results of these
computations need to be communicated back to the server. Because the editor should remain
reactive when this computation is in progress, and computation takes time, the computation
is executed asynchronously and the results are reported separately. During computation,
the author is free to edit the text, restarting the process. This leads us to distribute the
synchronization over two protocols:

1. An Update_server protocol which takes an update of the client text and updates the
server model, triggering the start of computation.

2. An Update_client protocol which obtains the tool updates to the server model and
communicates them to the client.

These two protocols execute asynchronously: Update_server is executed every time the
user updates the client model, and Update_client runs while there is new information to
provide to the client, its effect is that the server pushes new information to the client.

From the perspective of the server, there is not much difference between the client’s updates
to the movie and the updates from other processes, so both protocols might be merged in
a single protocol that takes an arbitrary change to a movie and broadcasts it to all other
processes. We prioritize the Update_client protocol for two reasons: first, all computation
on the movie is based on the commands from the client, so the other processes are started when
new commands come in; second, because the client’s only way of communication is through
HTTP, which does not support server-side pushes on all browsers, its update protocol requires
some extra care.

The figures in the next two sections represent all processes working on the movie as a
single, anonymous process i. Messages sent to this process should be seen as being sent to all
processes.

5.4.1 Update_server: updating the server-side from the client
Update_server, depicted in Figure 5.2, is a straightforward protocol: it is initiated whenever
the client’s content is updated with new text. It starts by the client sending this text to the
server. In reaction to receiving this text, the server acknowledges this reception, allowing the
client to remain responsive. This information, including what commands are scheduled for
computation, is updated by the Update_client protocol, which should execute as soon as
possible after Update_server.

The server then creates a movie based on the old movie, m, and new text, t′, using a camera
function. This function takes the following steps:

1. Get the commands from m as a single text t.

2. Compute the difference δ(t, t′). This difference is a list of “patch” operations and should
mention at which locations in t changes occur.

3. Using the locations, find the frames in m that need to be changed, fc, as well as the
frames following them: fn. Get the text fragments from the frames fc and apply the
patch to this text, obtaining a new fragment f ′.

4. Parse f ′ into a list of frames.
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Client Server Process

i

update(t′)

ACK

m′ := camera(t′,m)

start(m′)

donei := false

compute(m′)

donei := true

msc Update server

Figure 5.2: The Update_server protocol

5. Insert the new frames and reinsert the frames from fn to make sure all frames are indexed
by their new textual location, clear all tool information in fn, this invalidates all fn, so
they will be re-processed.

The parsing in step 4 transforms the text into a list of commands and comments, based
on the theorem prover’s syntax. This is a naive scanner for command terminators described
previously for the Proviola tool (Chapter 3), and similar to the read phase described by Wenzel
[98].

Regarding step 5: one could only update the keys of the frames from fn instead of rein-
serting the frames. In our implementation, we currently do not follow this model for ease of
implementation: it would require determining what keys have been replaced and using this to
compute an offset to be applied to all the keys for fn.

After the new tree is computed, all tools subscribed to it are notified, and given a pointer
to the new document. These processes can then compute with the new information. After
a process has finished computing, it sets a done flag, allowing the server to poll for finished
computation in the data retrieval protocol Update_client, which is described in the next
section.

5.4.2 Update_client: getting frame data from the server
At the end of the Update_server protocol, the server started a number of processes, which
work on the content in the movie. During the computation, a process can update frames in
the movie with their own data. The goal of the Update_client protocol is to send this data
to the client.
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In a normal client-server situation, the server would just push the information to the client,
but the client and server communicate over HTTP, which only allows a server to respond to
client request. This means we need to mimic server push using JavaScript, using a technique
inspired by the Comet protocol [39].

Comet is a technique that emulates server push through a long-standing, asynchronous
request: the client requests data from the server, which then waits until it has data to send to
the client. The server then responds to the request with this data. This response is delivered
through a callback function to the client, meaning the client can continue after requesting data.
In the callback function, the client processes the data, and immediately starts a new request. If
there is no data to send, the request is held indefinitely, as long as the implementation allows.
Should the request time out, the client can request it again.

A normal Comet implementation assumes that the data on the server side comes in con-
tinuously, from a fixed data source. A typical example would be a ‘ping’ command executed
by the server, with the results sent to the client. This means that each time the client posts a
new request, the server can just read the output from the command, and send it on.

In our case, the information in the movie comes in in bursts: the process, such as a theorem
prover, can take quite a long while before it has finished computing the information for a single
frame, but then quickly fill the next three frames. When this information comes in, the server
needs to push it as soon as possible. Another difference from the traditional Comet setup is
the fact that the results of the computations are stored directly in a shared data structure
between the server and the processes (the movie), instead of being streamed directly, using
some sort of callback function. In the case of a callback, the server can reply to the client
as part of responding to the callback function, but in the case of a shared data structure,
the server retrieves the data structure and sends it to the client, after determining if it has
changed. A final piece of the protocol is the fact that processes can be finished; afterwards,
they do not produce new data, meaning the server can use the data it gathered most recently.
To allow the server to query tools for new data, we equip each tool with a “get_data” function:
a function that, given a frame, reports the data it has computed for that frame. The server
can use this function for each frame until the process has stopped.

We design the Update_client protocol using the following constraints:

• The client initiates the protocol.

• The server sends as much data from the processes as is available.

• The data is sent as soon as possible.

• The server only sends if there is data.

The data is sent as soon as possible to allow the client to respond to the author’s editing
as soon as possible, giving feedback when it is available, instead of waiting for a potentially
long-running computation to finish.This allows the author to react to early problems, without
waiting for a failing computation that might be caused by this earlier error.

The last item is meant to minimize the number of transactions between client and server, to
improve the responsiveness of the client. We do not worry that some data might be duplicated
among messages, because we expect these messages to be reasonably small.

The full protocol is shown in Figure 5.3.
This protocol starts the moment the client asks for the movie through the ‘update_client’

message. If all processes are finished, the server will hold this request, until at least one of
the processes starts again, as a result of the Update_server protocol. When there exist
processes which are not finished, the server obtains data from these processes for each frame
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Client Server Process

i

update client

∃i,¬donei

get data(f)

(cell : data)

f.cell := data

For each frame f in m′

m′

process m′

msc Update client

Figure 5.3: The Update_client protocol
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f in the movie m′. The processes return this data, indexed by the cell in which this data
belongs. The server then stores the data in the corresponding cell of f . After a full pass over
the movie in this manner, the new movie is converted to JSON and sent to the client. The
client will immediately restart the protocol and process the data.

This protocol satisfies our constraints:

• The client initiates the protocol through the update_client message.

• By getting data from all processes for each frame, the server sends as much data as is
available, assuming the processes report all information computed thus far.

• The server updates the movie it sends to client immediately after a request is made: it
does not wait for computations to finish.

• The server holds the last request of the client, if there are no processes running.

During the process step, the client uses the data in the movie to add contextual information
to the editor text and arrange the information to appear when the text cursor moves, as
described in Section 5.2.

5.5 Computing with the documents
We have now described the data structures used by client and server and the protocol to
synchronize changes in these data structures, but have not yet described the implementation
of the processes. There are no requirements on these implementations, apart from reporting
data to the server as described in Section 5.4.2. In this section, we describe an implementation
of a theorem prover process as an example of the processes that start when the server-side
movie is changed.

Processes are connected to changes in the movie following the Observer pattern [33]: each
time the movie updates, the processes are started with the new set of frames. These frames
are the only data the processes share with each other and the server. To cache data, the
processes are allowed to write to specific cells of each frames. This prevents individual threads
of conflicting over the frames and overwriting each other’s data, provided the assigned cells
are disjoint.

Having processes produce data in pre-specified cells allows the system to schedule processes
that depend on data produced by other processes: each process declares what cells they depend
on and what cells they will fill and the scheduler will make sure that once a cell is filled, the
interested parties get notified to start their computation. We will give a concrete example
later in this section.

5.5.1 A theorem prover driver
As an example of a more involved process, we describe how we can drive the Coq theorem
prover, based on changes in the movie, by storing enough data in frame cells to make the
theorem prover ‘fake’ the behaviour of Isabelle’s asynchronous processing [98]: while work is
underway in making Coq’s interaction model asynchronous [15], Coq does not yet support this
model, and we build a driver around the existing, lock-step, model that allows the server to
update the entire movie, and gets states back as efficiently as possible. We do not implement
this as a modification for Coq, because this requires working with the internal (programmer’s)
interfaces of the system, which are more likely to change than the external (user) interfaces.
Even if the internal interfaces were stable, the state management lies deeply embedded in
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Coq’s source code, requiring many changes to get the model we now obtain by a fairly simple
protocol.

Before we can describe the driver, we need to explore what frame cells we will have it fill.
To do this, we look at how Coq processes a proof script.

State management and interpretation order

As described before, an interactive theorem prover takes commands and returns responses.
This is the first cell our process will fill. Responses cannot be calculated directly from a single
command: instead, a response is computed from a context, consisting of at least a proof state,
but which could also including automation hints, notational conventions and other side effects.
This means that there is an interpretation order of the frames in a movie: in order to interpret
frame f2, the theorem prover first needs to have processed frame f1. In modern models of the
theorem prover, the dependencies between commands are not seen as a list, but as a directed,
acyclic graph, the nodes of which can be interpreted asynchronously (or lazily), provided all
previous nodes have been evaluated. In theory, we support both models: a frame f holds
a list of ‘dependencies’: the frames that need to be evaluated before f gets evaluated. In
our implementation, the server assigns these dependencies in a linear fashion, so each frame
depends on exactly one other frame, the one immediately preceding it in the proof, but this
function can be replaced by a process doing DAG analysis. This would require our driver to
depend on a cell holding the dependencies, and to have some way of scheduling frames for
computation. This scheduling can be done, depending on the theorem prover implementation,
either by linearizing the graph, or by submitting frames in parallel.

When the command of a frame changes, the driver can use the dependencies of the frame
to determine which frames it needs to send to the theorem prover. Naively, it can send all
the dependencies from scratch. Less naively, the driver can keep a theorem prover online, and
use certain, system-specific commands to ’undo’ previous commands, in order to get to the
required context.

Coq’s state management For Coq, we can obtain some state management by keeping
extra administration: for each command, we document which “state number” the theorem
prover emitted after executing it. The state number reflects the number of commands Coq has
executed successfully since it has been started and is reported through the program’s prompt,
provided it is given the -emacs switch. This state number, n can be provided to the BackTo

command, causing the system to backtrack to a state m, such that m ≤ n. The caveat for this
method is that it is possible to ‘overshoot’ the correct state number: the system is unable to
jump back into the proof of a lemma, and will instead skip to the state before the lemma was
stated. This process is illustrated in Figures 5.4 and 5.5, both figures are obtained using Coq
8.4’s coqtop tool, started with coqtop -emacs. The responses are replaced by ellipses for the
sake of brevity. Additionally, the warning in Figure 5.5 contains non-printing ASCII characters
that have been removed before typesetting.

In Figure 5.4, the BackTo is given while within the proof of the lemma. This brings the proof
state exactly back to the requested number, as evidenced by the last prompt. In Figure 5.5,
on the other hand, the BackTo command is given when the proof is closed. Instead of jumping
back into the proof and reverting to state 2, the theorem prover returns to the state before
the lemma was state, warning the user that the system is not in the exact state requested.
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Welcome to Coq 8.4 (October 2012)

<prompt>Coq < 1 || 0 < </prompt>Lemma foo: forall x, x→x.

...

<prompt>foo < 2 |foo| 1 < </prompt>intros.

...

<prompt>foo < 3 |foo| 2 < </prompt>BackTo 2.

...

<prompt>foo < 2 |foo| 1 < </prompt>

Figure 5.4: BackTo within a proof

Welcome to Coq 8.4 (October 2012)

<prompt>Coq < 1 || 0 < </prompt>Lemma foo: forall x, x→x.

...

<prompt>foo < 2 |foo| 1 < </prompt>intros.

...

<prompt>foo < 3 |foo| 2 < </prompt>Admitted.

...

<prompt>foo < 4 |foo| 2 < </prompt>BackTo 2.

Warning: Actually back to state 1.

<prompt>Coq < 1 || 0 < </prompt>

Figure 5.5: BackTo outside of proof

Driving Coq

To make use of the state mechanism in Coq, we use the following system. In this description,
we assume that frames contain extra data in cells. This data is used to determine what
commands to send to the Coq process a summary of the cells is described after the system
description:

Initialization Initially, all frames contain a “reached state” cell. This cell is initialized to the
value “undefined”. Following the order recorded in the “dependencies” cell, the commands
of the frames are submitted to the theorem prover. After each frame, the response and
the reached state are recorded in the appropriate cells.

On change When a frame f changes:

1. Update its reached state cell to contain the undefined value. Also set the reached
state for all following frames, with respect to the order, to undefined: because f
sets up a context that the following frames make use of, it is necessary to recompute
these frames in the new context.
It is possible that the dependency DAG changes as a result of f changing, causing
some of the frames following f to be “dangling” (no longer dependent on any frame).
Dealing with this situation is beyond the scope of this chapter; a solution would
include quickly determining the changes in the DAG that were caused by the change
in f , and only scheduling those frames that occur in the new DAG.

2. For all dependencies of f , find the dependency with the highest reached state, n.
3. Send BackTo n. to Coq, record the actually reached state, m: as described in the

previous paragraph, Coq might go to a state number that is less than n.
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4. For all frames f ′ such that the reached state of f ′ is between m and n, send the
command of f ′ to Coq. Coq is now in state n.

5. For each frame that still has an undefined reached state, send that frame’s command
(with respect to the DAG), and record the reached state after each command.

This protocol stores extra information in the frames: the cell “reached state” contains the
state number that the theorem prover reported after executing the frame’s command. It is
used to revert to a relevant state before executing a changed command, as illustrated above.
This state can be used for a different purpose, namely giving feedback about the correctness of
a command: whenever a command gets executed successfully, the state counter will increase
by one. When a command results in an error, the state is no longer increased. We record this
correctness information in its own cell.

In summary, the Coq process only requires command cells, and optionally dependency cells.
It fills response, state and correctness cells. The response and correctness cells are used by the
client, while the state cell is reused by the process itself, to manage the state of the theorem
prover.

Expanding to different tools

We can also use the Coq process to generate globalization information, as described in Section
5.2. We will not detail this process here, as the data format Coq uses to report the globalization
is rather technical. The information contained in the globalization gives the exact (global)
location of any formal elements within a group of files, as well as the full syntactical type of
these elements. When this globalization information is available, a second tool can require the
globalization, and generate hyperlinks from this information, in a similar way as Coq’s HTML
generator, coqdoc. In our framework, this is a process that requires a globalization cell and
produces a hyperlink cell. This cell can be used by the client to display the hyperlinks next
to the editor, or update the editable text to contain the hyperlink. The latter does pose a
usability question, as clicking on an editable hyperlink can either be taken as a navigational
action (following the link) or as a focussing action (placing the cursor to change the hyperlinked
text): it should be clear to the user what the result of clicking in the editor is, and how she
can change the intended meaning of her click. For example, typical feedback for “you are going
to follow a link” is changing the cursor to a ‘pointing finger’, and the author can modify this
behaviour by holding a key while clicking: this changes the cursor to a text selection cursor, an
allows the user to select the hyper-linked text. For an editor, the converse might be a better
default, where holding a key when clicking allows the author to follow a link.

5.6 Conclusions and Further Work
This chapter has presented a method of using a generic web editor component to communicate
with a theorem prover, by using a shared data structure, without making assumptions about
the theorem prover. In fact, the theorem prover is seen as a generic process working on the
data structure, whose results get reported to the client. A prototype implementation can be
found at http://mws.cs.ru.nl/agora_ui/.

Having this editor available, we can consider the following expansions:

Expand to other theorem provers In this chapter, we have only implemented communi-
cation with the Coq theorem prover, but it should be possible to adapt other systems
to work with the same protocol. In particular, the Isabelle theorem prover, through its

http://mws.cs.ru.nl/agora_ui/
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Scala interface, already has a model similar to our movies, so it should be easy to convert
between the two models. In Chapter 6, we give an implementation for the HOL Light
theorem prover for this model.

More secondary processes There are more processes that take a representation of a proof
and provide some information about that proof. One example is the proof adviser service
for the Mizar theorem prover [92], which provides references to lemmas that will help to
prove the current subgoal.

Embed in documents We have not yet embedded our editor in documents in the wiki,
but it would be interesting to post-process, for example, the Software Foundations
notes [72] to include editors for the example. We imagine these documents to look
similar to the interactive tutorial for the CoffeeScript language that can be found online
at http://autotelicum.github.com/Smooth-CoffeeScript/.

Use in wiki workflow Finally, the proof editor has a place in the writing process of Agora:
for this, we need to investigate how to best store documents in a wiki for formal math-
ematics, and gear the editor to fit in this workflow. In particular, we might want to
include tools that provide version control information about the proof documents in the
wiki, as well as information on the impact that changing (part of) a proof has on other
documents in the wiki.

Embedding the editor in actual workflows will undoubtedly reveal problems both in im-
plementation and design, but the current prototype shows that it is viable to have a rich,
modeless editor for formal proof, that works in a web based setting, lowering the threshold
considerably for non-specialists to enter the field.

http://autotelicum.github.com/Smooth-CoffeeScript/interactive/interactive-coffeescript.html
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Chapter 6

Case Study

This chapter describes the use of Agora in publishing the description of a real formal de-
velopment, supplemented by the formalization. The formalization chosen is (a chapter of)
the Flyspeck project [40], which formalizes the proof the Kepler conjecture. This chapter is
based on the paper “Communicating Formal Proof: The Case of Flyspeck” [84] by Tankink,
Urban, Kaliszyk and Geuvers, and the extended version of that paper, “Formal Mathematics
on Display: A Wiki for Flyspeck” [85], by the same authors.

6.1 Introduction

The formal development of (large) mathematical theories is gradually becoming a mature field
of mathematics and computer science. In various proof assistants, large repositories of formal
proof have been created, e.g. in Mizar [38], Coq [16], Isabelle [55] and HOL Light [42]. This has
led to fully formalized proofs of some impressive results, for example the odd order theorem
in Coq [37], the proof of the four colour theorem in Coq [36] and a significant portion of the
proof of the Kepler conjecture [41] in HOL Light.

Even though these results are impressive, it is still quite hard to get a considerable speed-up
in the formalization process. If we look at Wikipedia, we observe that due to its distributed
nature everyone can and wants to contribute, thus generating a gigantic increase of volume. If
we look at the large formalization projects, we see that they are very hierarchically structured.
This holds despite the fact that proof assistants support a distributed way of working without
a strict hierarchy of who can change what, and that version control systems make it easy to
back out of an unwanted change. An important reason is that the precise definitions do matter
in a computer formalised mathematical theory: some definitions work better than others and
the structure of the library impacts the way you work with it.

There are other reasons why formalization is progressing at a much slower rate than,
e.g. Wikipedia. One important reason is that it is very hard to get access to a library of
formalised mathematics and to reuse it: specific features and notational choices matter a
lot and the library consists of such an enormous amount of detailed formal code that it is
hard to understand the purpose and use of its ingredients. A formal repository consists of
computer code (in the proof assistant’s language), and has the same challenges as source code in
mainstream programming languages regarding understanding, modularity and documentation.
Also, if you want to make a contribution to a library of formalized mathematics, it has to be
completely verified until the final proof step. And finally, giving formal proofs in a proof
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assistant is very laborious, requiring a significant amount of training and experience to do
effectively.

To remedy this situation we have been developing the Agora platform: a wiki-baed system
that supports the development of large coherent repositories of formalised mathematics. We
illustrate our work by focusing on the case of a wiki for the Flyspeck project, but the aims of
Agora are wider. In short we want to provide proof assistant users with the tools to

1. document and display their developments for others to be read and studied,

2. cooperate on formalizations,

3. speed up the proving by giving them special proof support via AI/ATP tools.

All this is integrated in one web-based framework, which aims at being a “Wiki for Formal
Mathematics”. In the present chapter we highlight and advocate our framework by showing
the prototype Flyspeck Wiki. We first elaborate on the three points mentioned above and
indicate how we support these in Agora.

Documenting formal proofs An important challenge is the communication of large for-
malizations to the various different communities interested in such formalizations: PA users
who want to cooperate or want to build further on the development, interested readers who
want to understand the precise choices made in the formalization and mathematicians who
want to convince themselves that it is really the proper theorem that has been proven. All
these communities have their own views on a formalization and the process of creating formal-
ization, giving a diverse input that benefits the field. Nonetheless, communicating a formal
proof is hard, just as hard as communicating a computer program.

Agora provides a wiki based approach: Formal proofs are basically program code in a
high-level programming language, which needs to be documented to be understandable and
maintainable. A proof development of mathematics is special, because there typically is doc-
umentation in the form of a mathematical text (a book or an article) that describes the
mathematics informally. This is what we call the informal mathematics as opposed to the
formal mathematics which is the mathematics as it lives inside a proof assistant. For software
verification efforts, there is no pre-existing documentation, but Agora can be used to provide
documentation of the verification as well. These days, informal mathematics consists of LATEX
files and formal mathematics usually consist of a set of text files that are given as input to
a proof assistant to be checked for correctness. In some cases, the formal mathematics also
contains informal descriptions in some markup language, but this is tied to a particular way
of working.

In Agora, one can automatically generate HTML files from formal proof developments,
where we maintain all linking that is inherently available in the formal development. Also,
one can automatically generate files in wiki syntax from a set of LATEX files. These wiki
files can also be rendered as HTML, maintaining the linking inside the LATEX files, but more
importantly, also the linking with the formal proof development. Starting from the other end,
one can write a wiki document about mathematics and include snippets of formal proof text
via an inclusion mechanism. This allows the dynamic insertion of pieces of formal proof, by
referencing the formal object in a repository.

Cooperation on formal proofs With Agora, we also want to lower the threshold for
participating in formalization projects by providing an easy-to-use web interface to a proof
assistant [81]. This allows people to cooperate on a project, the files of which are stored on
the server.
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Proof Support We provide additional tools for users of proof assistants, like automated
proof advice [51]. The proof states resulting from editing HOL Light code in Agora are
continuously sent to an online AI/ATP service which is trained in a number of ways on the
whole Flyspeck corpus. The service automatically tries to discharge the proof states by using
(currently 28) different proof search methods in parallel, and if successful, it attempts to create
the corresponding code reconstructing such proofs in the user’s HOL Light session.

To summarize, the Agora system now provides the following tooling for HOL Light and
Flyspeck:

• a rendering of the informal proof texts, written originaly in LATEX,

• a hyperlinked, marked up version of the HOL Light and Flyspeck source code, augmented
with the information about the proof state after each proof step

• transclusion of snippets of the hyperlinked formal code into the informal text whenever
useful

• cross-linking between the informal and formal text based on custom Flyspeck annotations

• an editor to experiment with the sources of the proof by dropping down to HOL Light
and doing a formal proof,

• integrated access to a proof advisor for HOL Light that helps (particularly novices)
to finish their code while they are writing it, or provide options for improvement, by
suggesting lemmas that will solve smaller steps in one go.

Most of these tools are prototypical and occasionally behave in unexpected ways. The wiki
pages for Flyspeck can be found at http://mws.cs.ru.nl/agora_cicm/flyspeck. These pages
also list the current status of the tooling.

The rest of the chapter is structured as follows. Section 6.2 shows the presentation side
of Agora, as experienced by readers. The internal document model of Agora is described
in Section 6.3, Section 6.4 explains the interaction with the formal HOL Light code, and
Section 6.5.1 describes the inclusion of the informal Flyspeck texts in Agora. Section 6.6
concludes and discusses future work.

6.1.1 Similar Systems
There are some systems that support combining informal documentation with computed infor-
mation. In particular, Agora shares some similarities with tools using the OMDoc [59] format,
as well as the IPython [71] architecture (and Sage [80], which uses IPython as an interface to
computer algebra functionality).

OMDoc is mainly a mechanization format, but supports workflows that are similar to
Agora’s. However, it differs in execution: OMDoc is a stricter format, requiring documents to
be more structured and detailed. In particular, this requires its input languages, such as sTEX,
to be more structured. This structuring forces the author to manually point out how concepts
used in the informal narrative map to semantic concepts. On the other hand, Agora does not
define much structure on the files its includes, rather extracting as much information as possible
and fitting it in a generic tree structure. Because Agora is less strict in its assumptions, it
becomes easier to write informal text, freeing the authors of having to write semantic macros.
Agora could output documents that are structured in OMDoc based on the informal input,
but because our implementation has not yet stabilized, we have not committed to any external

http://mws.cs.ru.nl/agora_cicm/flyspeck
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data format: it is easier to adapt our own formats than try and work within the restrictions
of an existing framework.

The IPython architecture has the concept of a notebook which is similar to a page in Agora:
it is a web page that allows an author to specify ’islands’ of Python that are executed on the
server, with the results displayed in the notebook. Agora is based on similar principles, but
extends upon them by having a collection of documents referring to each other, instead of only
allowing the author of a document to define new islands.

6.2 Presenting Formal and Informal Mathematics
in Agora

Agora has two kinds of pages: fully formal pages, generated from the sources of the develop-
ment, and informal pages, which include both markup and snippets of formal text. To give
readers, in particular readers not used to reading the syntax of a proof assistant, insight in a
formal development, we believe that it is not enough to mark up the formal text prettily:

• there is little to no context for an inexperienced reader to quickly understand what is
being formalized and how: items might be named differently, and in a proof script, all
used lemmas are presented with equal weight. This makes it difficult for a reader to
single out what is used for what purpose;

• typically, the level of detail that is used to guide the proof assistant in its verification of
a proof is too high for a reader to understand the essence of that proof: it is typically
decorated with commands that are administrative in nature, proof steps such as applying
a transitivity rule. A reader makes these steps implicitly when reading an informal proof,
but they must be spelled out for a formal system. In the extreme, this means that a
proof that is ‘trivial’ in an informal text still requires a few lines of formal code;

• because most proof assistants are programmable, a proof in proof assistant syntax can
have a different structure than its informal counterpart: proofs can be ‘packed’ by ap-
plying proof rules conditionally, or applying a proof rule to multiple similar (but not
identical) cases.

On the other hand, it is not enough to just give informal text presenting a formalization:
without pointers to the location of a proof in the formal development, it is easy for a reader to
get lost in the large amount of code. To allow easier navigation by a reader, the informal text
should provide references to the formal text at the least, and preferably include the portions
of formal text that are related to important parts of the informal discussion.

By providing the informal documentation and formal code on a single web platform, we
simplify the task of cross-linking informal description to formal text. The formal text is
automatically cross-linked, and annotated with proper anchors that can also be referenced
from an informal text. Moreover, our system uses this mechanism to provide a second type
of cross-reference, which includes a formal entity in an informal text ([86], Chapter 4 of this
thesis): these references are written like hyperlinks, using a slightly different syntax indicating
that an inclusion will be generated. Normal hyperlinks can refer to concepts on the same page,
the same repository, or on external pages.

These mechanisms allow an author of an informal text to provide an overview of a formal
development that, at the highest level, can give the reader insight in the development and
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the choices made. Should the reader be interested in more details of the formalization, cross-
linking allows further investigation: clicking on links opens the either informal concepts or
shows the definition of a formal concept.

The formalization of the Kepler conjecture in the Flyspeck project provides us with an
opportunity to display these techniques: it is a significant non-trivial formalization, and its
informal description in LATEX [40] contains explicit connections between the informal mathe-
matics and the related formal concepts in the development. We have transformed these sources
into the wiki pages available on our Agora system1. Parts of one page are shown in Figures 6.1
and 6.2.

6.2.1 Informal Descriptions

The informal text on the page is displayed similarly to the source (Flyspeck) document, from
which it is actually generated (see Section 6.5.2), keeping the formulae intact to be rendered
by the MathJax2 JavaScript library. The difference to the Flyspeck source document is that
the source document contains references to formal items (see also Section 6.5.1), while the
Agora version includes the actual text of these formal entities. To prevent the reader from
being confused by the formal text, which can be quite long, the formal text is hidden behind
a clearly-labeled link (for example the FAN and XOHLED links in Figure 6.1 which link to the
formal definition of fan and the formal statement of lemma fan_cyclic).

The informal page may additionally embed editable pieces of formal code (instead of just
including addressable formal entities from other files as done in the demo page). In that case
(see Section 6.4) clicking the ’edit’ on these blocks opens up an editor on the page itself, which
gives direct feedback by calling HOL Light in the background, and displaying the resulting
proof assistant state, together with a proof advice which uses automated reasoning tools to try
to find a solution to the current goal.

6.2.2 Formal Texts

The formal text of the development, in the proof assistant syntax, is included in Agora as
a set of hyperlinked HTML pages that provide dynamic access to the proof state, using the
Proviola ([87], Chapter 3 of this thesis) technology we have previously developed: pointing at
the commands in the formal text calls the proof assistant and provides the state on the page.
The results of this computation are memoized for future requests: this makes it possible for
future visitors to obtain these states quickly, while not taking up space unnecessarily.

The pages are hyperlinked (see Section 6.4.2) to allow a reader to explore the presented
formalization. The formalization could be large and, in projects like Flyspeck, produced by a
number of collaborators. The current alternatives to hyperlinking are unsatisfactory in such
circumstances: it amounts to either memorization by the reader of large parts of the libraries,
or mandatory access to a search facility. In HOL Light, there is no external search facility,
searching is done by typing in the name of a lemma to print out its statement.

6.3 Document Structure: Frames and Scenes

The pages in Agora are generated from in-memory documents: (Python) objects equipped with
methods for rendering and storing the internal files. To cater for multiple proof assistants and

1http://mws.cs.ru.nl/agora_cicm/flyspeck/doc/fly_demo/
2http://mathjax.org

http://mws.cs.ru.nl/agora_cicm/flyspeck/doc/fly_demo/
http://mathjax.org
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Document:

Informal Formal

Definition of [fan, blade] DSKAGVP (fan) [fan FAN]

Let  be a pair consisting of a set  and a set  of unordered pairs of distinct elements
of . The pair is said to be a fan if the following properties hold.

(CARDINALITY)  is finite and nonempty. [cardinality fan1]1.
(ORIGIN) . [origin fan2]2.
(NONPARALLEL) If , then  and  are not parallel. [nonparallel fan6]3.
(INTERSECTION) For all , [intersection fan7]4.

When , call  or  a blade of the fan.

basic properties

The rest of the chapter develops the properties of fans. We begin with a completely trivial
consequence of the definition.

Informal Formal

Lemma [] CTVTAQA (subset-fan)

If  is a fan, then for every ,  is also a fan.

Proof

This proof is elementary.

Informal Formal

Lemma [fan cyclic] XOHLED

[ set_of_edge] Let  be a fan. For each , the set

is cyclic with respect to .

Proof

If , then  and  are not parallel. Also, if , then

Article Raw Log in

↔

(V , E) V ⊂ R3 E
V

V ↔
0 ∉ V ↔

{v, w} ∈ E v w ↔
ε, ∈ E ∪ {{v} : v ∈ V }ε′ ↔

C(ε) ∩ C( ) = C(ε ∩ ).ε′ ε′

ε ∈ E (ε)C0 C(ε)

(V , E) ⊂ EE ′ (V , )E ′

E(v) ↔ (V , E) v ∈ V

E(v) = {w ∈ V : {v, w} ∈ E}

(0, v)

w ∈ E(v) v w w ≠ ∈ E(v)w′

Figure 6.1: Screenshot of the Agora wiki page presenting a part of the “Fan” chapter of the
informal description of the Kepler conjecture formalization. For each formalized section, the
user can choose between the informal presentation (shown here) and its formal counterpart
(shown on the next screenshot). The complete wikified chapter is available at: http://mws.

cs.ru.nl/agora_cicm/flyspeck/doc/fly_demo/.

http://mws.cs.ru.nl/agora_cicm/flyspeck/doc/fly_demo/
http://mws.cs.ru.nl/agora_cicm/flyspeck/doc/fly_demo/
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Document:

Informal Formal

#DSKAGVP?

let FAN=new_definition`FAN(x,V,E) <=> ((UNIONS E) SUBSET V) /\ graph(E) /\ fan1(x,V,E) /\ fan2(x,V,E)/\
fan6(x,V,E)/\ fan7(x,V,E)`;;

basic properties

The rest of the chapter develops the properties of fans. We begin with a completely trivial consequence of
the definition.

Informal Formal

let CTVTAQA=prove(`!(x:real^3) (V:real^3->bool) (E:(real^3->bool)->bool) (E1:(real^3->bool)->bool).
FAN(x,V,E) /\ E1 SUBSET E
==>
FAN(x,V,E1)`,

REPEAT GEN_TAC
THEN REWRITE_TAC[FAN;fan1;fan2;fan6;fan7;graph]
THEN ASM_SET_TAC[]);;

Informal Formal

let XOHLED=prove(`!(x:real^3) (V:real^3->bool) (E:(real^3->bool)->bool) (v:real^3).
FAN(x,V,E) /\ v IN V
==> cyclic_set (set_of_edge v V E) x v`,

MESON_TAC[CYCLIC_SET_EDGE_FAN]);;

Informal Formal

Remark [easy consequences of the definition] WCXASPV (fan)

Let  be a fan.

The pair  is a graph with nodes  and edges . The set

is the set of edges at node . There is an evident symmetry:  if and only if .

1.

[ sigma_fan] [ inverse1_sigma_fan] Since  is cyclic, each  has an azimuth
cycle . The set  can reduce to a

2.

singleton. If so,  is the identity map on . To make the notation less cumbersome, 
denotes the value of the map  at .

The property (NONPARALLEL) implies that the graph has no loops: .1.

The property (INTERSECTION) implies that distinct sets  do not meet. This property of fans
is eventually related to the planarity of hypermaps.

2.

Article Raw Log in

(V , E)

(V , E) V E

{{v, w} : w ∈ E(v)}

v w ∈ E(v) v ∈ E(w)
σ ↔ σ(v)−1 ↔ E(v) v ∈ V

σ(v) : E(v) → E(v) E(v)

σ(v) E(v) σ(v, w)
σ(v) w

{v, v} ∉ E

(ε)C0

Figure 6.2: Formal links clicked at http://mws.cs.ru.nl/agora_cicm/flyspeck/doc/fly_

demo/

http://mws.cs.ru.nl/agora_cicm/flyspeck/doc/fly_demo/
http://mws.cs.ru.nl/agora_cicm/flyspeck/doc/fly_demo/
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document-preparation tools, such as a renderer for wiki syntax, we use the object-inheritance
to instantiate documents for different systems, while providing a common interface. This
interface consists of a tree-like structure of frames, grouped into scenes.

Documents in Agora are structured according to our earlier work on a system called Provi-
ola ([83] and Chapter 3), for replaying formal proof: this tool takes a “proof script” and uses
a light-weight parser to transform it into a list of separate commands. This list can then be
submitted to a proof assistant, storing the responses in the process. This memoization of the
proof assistant’s responses is stored together with the command, into a data structure we call
a frame. Frames can store more than just a response and a command, in particular, we assume
that all frames in Agora documents store a markup element that contains the HTML markup
of the frame’s command.

To display a document as a page, it would be enough to display the list of frames in order,
rendering the markup of each frame, and this is how the purely formal pages in Agora are
rendered. However, we want our tools to be able to display not only flat lists of text, but also
combine them in meaningful ways: for example by grouping a lemma with its proof, but also
combining multiple lemmas into a self-contained section. For this, we introduced a scene: a
scene is a grouping of (references to) frames and other scenes, that can combine them in any
order. The system will render such a tree structure recursively, displaying the markup of each
frame referenced to. The benefit of grouping files into scenes is that it becomes easier to re-mix
parts of a document into a new document, such as including formal text into an informal page.

Inclusion

To allow remixing scenes from documents into new content, it is necessary to provide an
interface that allows including scenes into pages. In previous work ([86] and Chapter 4 of
this thesis), we introduced an interface in the form of syntax: Agora allows users to write
narratives in a markup language similar to Wikipedia’s, which is extended with the notion of
a reference. This reference is similar to Isabelle’s antiquotation: it is syntax for pointing to
formally defined entities on the Web which carry some metadata, which can be automatically
provided by a theorem prover. When rendered, the references are resolved into marked up
‘islands’ of formal text. The rest of the syntax is a markup language allowing mathematical
notation and hyperlinks.

These islands are included in the scene structure as references to the marked up scenes. At
the moment, we only allow referring to formal scenes from informal text, which is enough to
render the Flyspeck text. Having an inclusion syntax fits the Agora philosophy: the documen-
tation workflow can use the formal code, but it should not change it. Instead, writing informal
documentation about a development should be similar to writing a LATEX article, only in a
different markup language. However, it is occasionally necessary to add code directly to an
informal page, for example to write an illustrative example or a failed attempt; such a code
block is not part of the formal development, but benefits from the markup techniques applied
to the development.

In the document structure, such code blocks are just scenes, that are marked to be written
in a particular language. From the rendered page, it is possible to open an editor for each
scene, which requires special functionality to support writing formal proofs.

6.4 Interaction with Formal HOL Light Code
To support the formal parts of the Flyspeck project, it is necessary to add support for the
language these parts are written in, HOL Light, to Agora. In particular, this means translating
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from HOL Light sources to the Proviola’s data structure, so that previously defined operation
become available for HOL Light; and adding interactive features that are only available for
HOL Light. For now, the latter is restricted to proof advising.

6.4.1 Parsing and Proving

For HOL Light, adding Proviola support implies adding a parser that can transform a proof
script into a list of commands, and adding a layer to communicate with the prover’s read-eval-
print loop (REPL). This is sufficient, but so far does not create a very illustrative Proviola
display: most HOL Light proofs are packaged into a single REPL-invocation that introduces
and discharges a theorem. Making this into a useful Proviola display is left for future work,
but we will sketch how a better display can be implemented using the scene structure of a
Proviola document and using the Tactician tool for HOL Light [3].

To illustrate the workings of the parser and the prover, we use the following example code,
that can be obtained by unpacking a ‘packaged’ proof using Tactician:

(* Example code fragment. *)

g ‘x=x‘;;

e REFL_TAC;;

let t = (* Use top_thm to verify the proof. *)

top_thm();;

Parser Because HOL Light proofs are written as syntactically correct scripts that are inter-
preted by the OCaml read-eval-print loop (REPL), the parser separates a proof script into the
single commands that can be interpreted by this REPL. These commands are, in the Flyspeck
sources, terminated by ‘;;’3 and followed by a newline, so our parser splits a proof script
into commands by looking for this terminator. Additionally, the proof can contain comments,
surrounded by ‘(*’ and ‘*)’: we let the parser only emit a command if the terminator does not
occur as part of a comment. Finally, comment blocks that are not within other commands are
treated as separate commands. This last decision differs from traditional source-code parsers,
which regard comments as white space, because Agora reconstructs the proof script’s appear-
ance from the frames in the movie, in order to show the complete proof script if a reader
desires it.

The parser does not group the frames into a scene structure: a HOL Light proof is rep-
resented as a single scene containing all frames. For our example, the following frames are
generated:

• (* Example code fragment. *)

• g ‘x=x‘;;

• e REFL_TAC;;

• let t = (* Use top_thm to verify the proof. *)

top_thm ();;

The first comment does not occur within a command, so it is parsed as a separate command,
and the second comment occurs inside a command.

3According to the OCaml reference manual, http://caml.inria.fr/pub/docs/manual-ocaml-4.00/manual003.

html#toc4

http://caml.inria.fr/pub/docs/manual-ocaml-4.00/manual003.html#toc4
http://caml.inria.fr/pub/docs/manual-ocaml-4.00/manual003.html#toc4
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Command State
(* Example code fragment. *) 0
g ‘x=x‘;; 1
e REFL_TAC;; 2
let t = ... 2

Table 6.1: Frames with state numbers

Prover HOL Light is not implemented as a stand-alone program with its own REPL. Instead,
it is implemented as a collection OCaml scripts and some parsing functions. This means that
the ‘prover’ instance is actually a regular OCaml REPL instance, which loads the appropriate
bootstrap script. The problem of this approach is that these scripts take several minutes
to load, a heavy penalty for wanting to edit a proof on the Web. To offset the load time,
one can checkpoint the OCaml instance after it has bootstrapped HOL Light. Checkpointing
software allows the state of a process to be written to disk, and restore this state from the
stored image later. We use DMTCP4 as our checkpointing software: it does not require kernel
modifications, and because of that is one of the few checkpointing solutions that works on
recent Linux versions.

Communication with the provers is encapsulated by a Python class: creating an instance
of the class loads the checkpoint and connects to its standard input and output. The resulting
object has a send method which writes a provided command to standard input and returns the
REPL’s response. Beyond this low-level communication mechanism, the object also provides
a send_frame method. This method takes an entire frame and sends the command stored in
it. This method does not only send the text, but also records the number of tactics that the
prover has executed so far, by examining the length of the current goalstack. This gives an
indication of how far a list of frames is processed, and allows the prover to use HOL Light’s
undo function to provide some basic state management, within a single proof.

After sending the frames generated from our example code, the frames have stack numbers
as shown in Table 6.1.

When the frame with the REFL_TAC invocation is changed, the send_frame method will send
the HOL Light undo function, b ();; as many times as is necessary to return to state 1.
Afterwards, it will send the command of the changed frame.

The HOL Light glue does not send all commands equally: the Flyspeck formalization
packs its proofs within an OCaml module, which causes the REPL not to give output until the
module is closed. Because we want to give state information per command, the gluing code
ignores the module and end commands that signal the opening and closing of modules.

Packaged Proofs To allow Proviola to record a packaged proof, it needs to break the proof
down to its individual commands. To do this, we propose to use the Tactician tool [3]: this
is an extension to HOL Light that records a packaged proof as it is executed, and allows the
user to retrieve the actual tactics executed, which exposes the tree-like structure of such a
proof: some of the tactics in the packaged proof might be applied multiple times, to different
subgoals generated during the proof.

We can use the sequential tactic script generated by Tactician to generate a list of frames,
that are alternatives to the commands occurring in the packaged proof. The packaged proof
would render on the web interface, but when a user points at a command, the underlying

4http://dmtcp.sourceforge.net

http://dmtcp.sourceforge.net
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Packaged Tactician-unpacked
let REAL_MUL_LINV_UNIQ = prove\n
(
‘!x y. (x * y = &1) =⇒(inv(y) = x)‘ g ‘!x y. (x * y = &1) =⇒(inv(y) = x)‘;;
,\n
REPEAT GEN_TAC e (REPEAT GEN_TAC);;
THEN\n
ASM_CASES_TAC ‘y = &0‘ e (ASM_CASES_TAC ‘y = &0‘);;
THEN\n
ASM_REWRITE. . . e (ASM_REWRITE. . . (on Subgoal 1)

e (ASM_REWRITE. . . (on Subgoal 2)
FIRST_ASSUM(. . . e (FIRST_ASSUM. . . (on Subgoal 2)
. . . . . .

Table 6.2: Packaged proof matched to Tactician-generated tactics

Tactician-based frame would be used to display the response. To implement this, we would
need to match parts of the packaged proof to the commands generated by Tactician, and store
the obtained relation in the scene. For example, consider the following packaged proof:

let REAL_MUL_LINV_UNIQ = prove

(‘!x y. (x * y = &1) =⇒ (inv(y) = x)‘,

REPEAT GEN_TAC THEN

ASM_CASES_TAC ‘y = &0‘ THEN

ASM_REWRITE_TAC[REAL_MUL_RZERO; REAL_OF_NUM_EQ; ARITH_EQ] THEN

FIRST_ASSUM(SUBST1_TAC o SYM o MATCH_MP REAL_MUL_LINV) THEN

ASM_REWRITE_TAC[REAL_EQ_MUL_RCANCEL] THEN

DISCH_THEN(ACCEPT_TAC o SYM));;

Invoking Tactician generates the following tactic-based script:

g ‘!x y. (x * y = &1) =⇒ (inv(y) = x)‘;;

e (REPEAT GEN_TAC);;

e (ASM_CASES_TAC ‘y = &0‘);;

(* *** Subgoal 1 *** *)

e (ASM_REWRITE_TAC [REAL_MUL_RZERO;REAL_OF_NUM_EQ;ARITH_EQ]);;

(* *** Subgoal 2 *** *)

e (ASM_REWRITE_TAC [REAL_MUL_RZERO;REAL_OF_NUM_EQ;ARITH_EQ]);;

e (FIRST_ASSUM (SUBST1_TAC o SYM o (MATCH_MP REAL_MUL_LINV)));;

e (ASM_REWRITE_TAC [REAL_EQ_MUL_RCANCEL]);;

e (DISCH_THEN (ACCEPT_TAC o SYM));;

Each individual tactic in this script, with the exception of the comments, relates to a
single substring of the original proof. This means that we can match the tactics to these text
positions, and obtain Table 6.4.1, which is shortened for typesetting.

When the user points at a part of the proof in the packaged proof, the goals obtained by
executing the corresponding tactic in the ‘unpacked’ column are shown to the user. The table
hints at several features of the relation between the scripts, that will need to be addressed in
a Proviola display of a packaged proof:

• Some packed steps are matched to multiple unpacked proof steps. Because the unpacked
steps are applied to different subgoals, we need to be able to show the results of these
tactics on all the goals.

• Some packed steps do not match up to a single goal. These parts should either not
display any dynamic behaviour, or they could display the result of executing the packed
proof.
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• There are tactics that are only applied to a single subgoal instead of all of the subgoals,
so the matching algorithm should take care of this.

While the matching (carried out manually here) is correct, it is unclear to us if there are
occasions in which the unpacked proof contains tactics that cannot be matched to a part of
the packaged proof. This requires additional investigation in the workings of HOL Light and
the Tactician tool.

6.4.2 Hyperlinking
To make the display of HOL Light code in Agora better suited for reader navigation, it is
necessary to add markup to the code, with hyperlinks between items being the minimal required
feature. To our knowledge, there is no proper hyperlinking facility for HOL-based systems so
far. Such a facility should plug in to the parsing layer of the systems (as done, e.g., for Coq and
Mizar), and either export the information about symbols’ definitions relative to the original
formal text, or directly produce a hyperlinked version of the text: this hyperlinking pass should
be fast, so it can be run when a page is loaded in the browser.

For HOL Light (and Flyspeck), we so far did not try to hook into the parsing layer of
the system, because this requires an intimate knowledge of the system’s architecture and
implementation, and only provide a heuristic hyperlinking system. Still, such a hyperlinker
can be useful, because relatively few concepts are overloaded in the formalization, and most
of the definitions and theorems are introduced using a regular syntax: this means that the
hyperlinker can generate an index for file definitions with only a small chance of ambiguity.
The hyperlinking proceeds broadly in two steps, an indexing step and a rendering step. The
indexing is done by a Perl script that generates a symbol index by:

1. collecting the globally defined symbols and theorem names from the formal texts by
heuristically matching the most common patterns that introduce them,5 and

2. optionally adding and removing some symbols based on a predefined list.

The page renderer of Agora then processes the texts again by heuristically tokenizing
the text, looking up tokens and their linking in the generated index. Additionally, the page
rendering also uses the index to generate metadata that can be used by the referencing mech-
anism [86].

The complete hyperlinking of the whole library now takes less than ten seconds, and while
obviously imperfect, it seems to be already quite useful tool that allowed us to browse and
study the library. The generated index of 15,780 Flyspeck entities together with their URLs
can be loaded into arbitrary external application, and used for separate heuristic hyperlinking
of other texts. This function is used by the script that translates the LATEX sources of the
informal text describing Flyspeck into wiki syntax (Section 6.5.2), to link the formally defined
concepts to their HOL Light definitions.

6.4.3 Editing and Proof Advising
Editing We can directly use the tools that turn text into frames for building the server back-
end of the web-based editor described in Chapter 5: the front end of this editor just gathers
the entered text and sends it to the server, the server processes it into a list of frames and
post-processes it: both by generating proof assistant (HOL Light) responses and by sending

5To help this, we also use the theorem names stored by the HOL Light processing in the "theorems" file,
using the mechanisms from the file update_database_**.ml in the Flyspeck development.
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[edit]
[edit]

[edit]

[edit]

[edit]

Store

Document:

Sum of Reciprocals of Triangular Numbers

Definition of triangular numbers.

let triangle = new_definition
`triangle n = (n * (n + 1)) DIV 2`;;

Mapping them into the reals: division is exact.

State

val it : goalstack = 2 subgoals (2 total)

`EVEN (n * (n + 1)) ==>
   2 * (n * (n + 1)) DIV 2 = n * (n + 1)`

`EVEN (n * (n + 1))`

Advise

* Result (34.37s): ARITH_EVEN_conjunct3 EQ_CLAUSES 
   EVEN_ADD EVEN_MULT F_DEF NOT_CLAUSES_WEAK_conjunct2
 * Minimized: ARITH_EVEN_conjunct3 EQ_CLAUSES EVEN_ADD  
   EVEN_MULT
 * Replaying: SUCCESS (0.71s):
   MESON_TAC[EVEN_MULT;EVEN_ADD;EQ_CLAUSES;ARITH_EVEN]

Article Raw Edit cek

g `&(triangle n) = (&n * (&n + &1)) / &2`;;
e (MATCH_MP_TAC(REAL_ARITH `&2 * x = y ==> x = y / &2`));;
e (REWRITE_TAC[triangle; REAL_OF_NUM_MUL; REAL_OF_NUM_ADD;
    REAL_OF_NUM_EQ]);;
e (SUBGOAL_THEN `EVEN(n * (n + 1))` MP_TAC);;
e (REWRITE_TAC[EVEN_MULT; EVEN_ADD; ARITH] THEN CONV_TAC TAUT);;
e (REWRITE_TAC[EVEN_EXISTS]);;
e STRIP_TAC;;
e (ASM_REWRITE_TAC[]);;
e AP_TERM_TAC;;
e (MATCH_MP_TAC DIV_MULT);;

1
2
3
4
5
6
7
8
9

10
11

Figure 6.3: The interactive editor built in the Wiki with the proof state for the line with the
cursor. The screenshot features a section of Harrison’s triangular numbers formalization. In
line 5 the advisor automatically finds a proof that n(n+ 1) is even, slightly different from the
one used in the edited formalization.

markup information based on the correctness of a part of the text. Because this processing
is incremental, information can be returned on demand: after the text has been parsed into
frames, the server can give the editor information as it is produced, using the protocols de-
scribed in Chapter 5). As also described in that chapter, it remains an open question on
how to properly deal with the impact of the formal text written in the editor, as this might
invalidate the entire repository. An example of the editor interaction is shown in Figure 6.3.
It also shows the proof advising facility described in the next paragraph.

Proof Advising In order to further facilitate the online Wiki authoring using HOL Light,
we have added a post-processing step to the editor. For each goal interactively computed
by the proof assistant, the editor automatically submits this goal to the AI/ATP proof ad-
visor (HOL(y)Hammer) service [52]. The advisor uses a number of differently parametrized
premise-selection methods (based on various machine-learning algorithms) to find the most
relevant theorems from the Flyspeck library for a given goal, and passes them (after transla-
tion to first-order logic) to automated theorem provers (ATPs) such as Vampire [75], E [78],
and Z3 [31]. If an ATP proof is found, it is minimized and reconstructed by a number of
reconstruction strategies described in [53]. In parallel to such AI/ATP methods, a number of
decision procedures are tried on the goal. The currently used decision procedures are able to
solve boolean goals (tautologies), goals that involve naturals (arithmetic), integers, rationals,
reals and complex numbers including Gröbner bases. Whenever any of the strategies finds
a tactic that solves the goal, all other strategies are stopped and the result of the successful
one is transmitted to the Agora users through a window. The users can immediately use the
successful results in their proof.

The protocol to communicate with the advisor has been designed to be as simple as possible,
in order to enable using it not only as a part of Agora but also via an experimental Emacs
interface [52] and from the command line tool in the spirit of old style LCF. A request for
advice consists of a single line which is a text representation of a goal to prove. To encode
a goalstate as text the goal assumptions need to be separated from the goal conclusion and
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from each other. We use the ‘ character as such separator, since the character never appears
in normal HOL Light terms as it is used to denote start and end of terms by the Camlp5
preprocessor. When a request for advice is received the server parses the goal assumptions
and conclusion together, to allow matching the free variables present in more than one of them
and ensure proper typing. The response is also textual and the connection is closed when
no more advice for the goalstate is available. Server-side caching is used to handle repeated
queries, typically produced by refactoring an existing proof script in the Wiki.

6.5 Inclusion of the Informal Flyspeck Texts
We include the informal Flyspeck texts by transforming the LATEX sources of the text into
Agora’s Creole syntax. Section 6.5.1 describes the structure of the source text and the links
to the formal definitions. Section 6.5.2 describes the actual translation.

6.5.1 Structure of the source text
The informal Flyspeck LATEX text has 309 pages, but we use a smaller part of it for the
experiments, namely the fifth chapter, on fans. The source file of this chapter, fan.tex has
1981 lines. There are 15 definitions (but some of them define several concepts) and 36 lemmas.
The definitions have the following annotated form (developed by Hales), which already cross-
links to some of the formal counterparts (formally defined theorem names like QSRHLXB and
MUGGQUF and symbols like azim_fan and is_Moebius_contour). The annotations were added
manually by the authors of the Flyspeck text:

\begin{definition}[polyhedron]\guid{QSRHLXB}

A \newterm{polyhedron} is the

intersection of a finite number of closed half-spaces in

$\ring{R}^n$.

\end{definition}

The lemmas are written in a similar style:

\begin{lemma}[Krein--Milman]\guid{MUGGQUF}

Every compact convex set $P\subset\ring{R}^n$ is the convex hull

of its set of extreme points.

\end{lemma}

The text contains many mappings between informal and formal concepts, e.g.:

\formaldef{$\op{azim}(x)$}{azim\_fan}

\formaldef{M\"obius contour}{is\_Moebius\_contour}

\formaldef{half space}{closed\_half\_space, open\_half\_space}

6.5.2 Transformation to Creole
There are several systems that can (to various extent) transform LATEX texts to (X)HTML
and similar formats. Examples include LaTeXML6, PlasTeX7, xhtmlatex8, and TeX4ht.9
Often they are customizable, and some of them can be equipped with custom non-HTML
(e.g., wiki) renderers. For the first experiments we have however relied only on MathJaX for

6http://dlmf.nist.gov/LaTeXML/
7http://plastex.sourceforge.net/
8http://www.matapp.unimib.it/~ferrario/var/x.html
9http://tug.org/tex4ht/

http://dlmf.nist.gov/LaTeXML/
http://plastex.sourceforge.net/
http://www.matapp.unimib.it/~ferrario/var/x.html
http://tug.org/tex4ht/
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rendering mathematics, and custom transformations from LATEX to wiki syntax that allow us to
easily experiment with specific functions for cross-linking and formalization without involving
the bigger systems. The price for this is that the resulting wiki pages are more similar to
presentations in ProofWiki and Wikipedia than to full-fledged HTML book presentations. We
might switch to the larger extendable systems when it is clear what extensions are needed for
our use-case.

The transformations are now implemented in about 200 lines of a Perl script that translates
the Flyspeck LATEX sources into the enhanced Creole wiki syntax used by Agora. The script
is easily extendable, and it now consists mainly of about 30 regular-expression replacements
and related functions taking care of the non-mathematical LATEX syntax and macros. The
mathematical text is handled by the (slightly modified) macros taken from Flyspeck (kep-
macros.tex) that are prepended to any Agora Flyspeck text and used automatically by the
JavaScript LATEXrenderer MathJax. Producing and tuning the transformations took about one
to two days of work, and should not be a large time investment for (formal) mathematicians
interested in experimenting with Agora. The particular transformations that are now used for
Flyspeck include:

• Transformations that handle wiki-specific syntax that is (intentionally or accidentally)
used in LATEX, such as comments, white space, fonts and section markup.

• Transformations that create wiki subsections for various LATEX blocks, sections, and
environments. Each definition, lemma, remark, corollary, and proof environment gets its
own wiki subsection, similarly, e.g., to ProofWiki and Wikipedia.

• The transformation that add linking and cross-linking, based on the LATEX annotations.
Each LATEX label produces a corresponding anchor, and each LATEX reference produces
a link to the anchor. Newly defined terms (introduced with the newterm macro) also
produce anchors. Formal annotations (introduced with the guid and formaldef macros)
are first looked up in the index of all formal concepts produced by hyperlinking of the
formalization (Section 6.4.2), and if they are found there, such annotations are linked to
the corresponding formal definition.

6.6 Conclusion and Future Work

The platform is still in development, and a number of functions can be improved and added.
For example, whole-library editing, guarded by global consistency checking of the formal code
that has been already verified (as done for Mizar [91]), is future work. On the other hand,
the platform already allows the dual presentation of mathematical texts as both informal
and formal, and the interaction between these two aspects. In particular, the platform takes
both LATEX and formal input, cross-links both of them based on simple user-defined macros
and on the formal syntax, and allows one to easily browse the formal counterparts of an
informal text. It is already possible to add further formal links to the informal concepts,
and thus make the informal text more and more explicit. A particular interesting use made
possible by the platform is thus an exhaustive collaborative formal annotation of the Flyspeck
book. The platform also already includes interactive editing and verification, which allows
at any point of the informal text to switch to formal mode, and to add the corresponding
formal definitions, theorems, and proofs, which are immediatelly hyperlinked and equipped
with detailed proof status information for every step. The editing is complemented by a
relatively strong proof advice system for HOL Light. This is especially useful in a Wiki
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environment, where redundancies and deviations can be discovered automatically. The requests
for advice can become grounds for further experiments on strengthening the advice system.

One future direction is to allow even the non-mathematical parts of the wiki pages to be
written directly with (extended) LATEX, as it is done for example in PlanetMath. This could
facilitate the presentation of the projects developed in the wiki as standalone LATEX papers.
On the other hand, it is straightforward to provide a simple script that translates the wiki
syntax to LATEX, analogously to the existing script that translates from LATEX to wiki.



Chapter 7

Conclusions

In this thesis, we have investigated the combination of web technology and proof assistant
technology to support users in communicating formal mathematics. We have made a number
of observations, and based on these, we have improved on the situation with tools that are
part of the Agora system. We have already concluded each chapter with individual conclusions
about the technologies and their futures, so we summarize in this chapter.

A proof script is not a proof Typically, a proof script for some proof assistant is dis-
tributed as the formal proof. For interactive theorem provers, this is not the case, as a proof
script is developed in an interactive dialogue with the proof assistant, and the proof assistant
output (the state) for each line of script is just as important for a reader to understand the
proof. Proviola is a web display technique for formal proofs that supports this distribution
model by storing input and output in a single file, and using minimal interaction to unveil
output on the reader’s demand.

The language of interactive theorem provers is not fit for human understanding
The main goal of writing a proof in a proof assistant’s language is to have that proof assistant
verify the goal. To be able to, the proof assistant requires the author to write a proof down
in a stricter fashion and in more detail than is required to explain a proof to a human. These
extra explanatory steps are noise to a human reader. Previous approaches to this problem
have focused on removing noise, either by improving the theorem provers themselves, or by
creating a higher-level language that can be compiled down to a proof assistant’s language.

In this thesis, we focus on supporting a language that is suitable for human understanding,
but can include part of formal proofs, in any order the narrator wants to. The information
used for including the intended parts of a proof is exported by knowledge the proof assistants
themselves have, not making use of the verification machinery, but rather the type information
that proof assistants provide. That such a hybrid model works in practice is evidenced by the
case study in Chapter 6.

Web technology is mature enough to support new editing models With higher speed
internet connections, the web has become an interactive playground, and software libraries,
both for the browser and for the server, have grown to make use of these improvements. What
we have shown in this thesis is that it is possible to connect a browser-based editor to a
server-side proof assistant. The main advantage of the web editor is that it can show more
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contextual information than proof assistant output, and that this information can be shown
as direct feedback to user edits, rather than expecting a user to ‘execute’ a proof step by step.

Going forwards, we see the following avenues that can improve the technology explored in
this thesis, and make it more usable.

User studies The current research is based on casual observation and prototypical com-
binations of systems. While this is a good start for creating new ideas and seeing how well
they work, it is not clear that the resulting tools are actually useful. To find this out, it is
necessary to carry out user studies: research in the current behaviour of (potential) users of
proof assistants, and their wishes for the systems.

Better designed system Agora as described in this thesis is ‘PhD-ware’:1 an iteratively
implemented prototype system for demonstrating the feasibility of the ideas in the thesis. This
makes the system less appropriate for everyday use. To go forwards, it is advisable to redesign
the system with the workflows and users in mind, and use that system for further research.

What would Agora look like in the future, if it were an ideal system? This is difficult to
predict without looking in what users want, either consciously or subconsciously. What I can
do here, is look at how Agora can be influenced by existing development environments for
software engineering, in particular the Light Table2 system.

Light Table is an offline integrated development environment (IDE), still in development,
that provides the following ideas:

• Code can be evaluated at any point in the environment, and results are directly tied to
the code that was executed to produce the result. These results are not just restricted
to text, but can be anything such as web applications and games.

• When evaluating code, such as evaluating a function, the details of the evaluation are
threaded through the definitions: it becomes possible to see where the given arguments
of a function are used. Together with the previous idea, this is becoming known as live
programming.

• Editing code is not constrained to editing text files. Instead, the programmer chooses
parts of the code based on structure (classes, functions, methods. . . ) and edits these
parts of the code. Storing the text will eventually serialize the code into a file or more
files.

These ideas can be combined in a web-based system for interactive theorem proving, the
next iteration of Agora. In this system, users edit code on a per-lemma (or definition) basis,
hiding lemmas and proofs that are not interesting for the proof currently being edited. To
view related lemmas, the author can click on hyperlinks to these lemmas, either already on
the screen or provided in a search dialog. These links would not take the user away from the
editing session, but would show the lemma requested close to the editing area. Additional
information, such as proof assistance output or the results of advice services, would similarly
be shown in the user’s work space.

This dynamic exploration and creation of a formal work is not restricted to authors of
formal works, but can also be used by narrators, who write an informal text and include the

1This term was mentioned to the author by Alexander Serebrenik
2http://www.lighttable.com

http://www.lighttable.com
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formal text not just by writing the references from Chapter 4, but also by searching or by
writing new proofs. Moreover, narrators can ‘pin’ results to highlight them for a reader or
provide visualizations of certain pieces of formal code.

The reader, finally, can explore a proof much better this way, by obtaining the background
knowledge needed and placing it directly in the document on screen. Moreover, a sandbox can
be available at all time, to allow readers to evaluate new ideas or alternatives.

All these workflows can be supported in Agora, by taking the scenes as the elements the
users manipulate: they obtain scenes through hyperlinks, modify and add scenes, and instruct
the system to show certain parts of a scene, but hide others by default. To get the functionality
in Agora, we need to build an interface that makes use of scenes and the tools that work on
them, and presents the actions on scenes in a sensible way to the user.

The ideas described above are centered around Agora as an environment for writing and
exploring formal proofs from a technical point of view. On the other hand, in recent years we
have seen an increase in the use of social platforms for both mathematics and computer science:
these systems are web pages where users can ask and answer questions about a field such as
programming or group theory. This question-and-answer format leads to discussions on the
best solution to a given problem. For interactive theorem proving, these discussions currently
take place on mailing lists or in classrooms, but they could move to Agora: instead of having
an isolated discussion on a mailing list, based on a simplified example, people could ask for help
with the scenes they are writing or studying, and the resulting document can retain discussions
on the formal work for future users: current mathematical discussions mainly take place near
a blackboard, but future mathematical discussions can take place in Agora, centered around
a living document that everyone can contribute to, and that is verified and supplemented by
theorem prover computations.
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Samenvatting

Wiskundige bewijzen zijn niet alleen van belang in de wiskunde, maar ook in de informatica,
waar zij gebruikt worden om aan te tonen dat een programma voldoet aan bepaalde speci-
ficaties. Aangezien zulke bewijzen, zowel in de informatica als in de wiskunde, steeds vaker
van een hoge complexiteit zijn, wordt het steeds moeilijker om te controleren of het bewijs zelf
correct is. Het meest sprekende voorbeeld uit de wiskunde is het bewijs van het vermoeden
van Kepler, dat stelt dat het opstapelen van sinaasappels (of kanonskogels) in een piramide-
vorm de minste ruimte inneemt. Het bewijs van dit vermoeden werd in 1998 geleverd door
de wiskundige Thomas Hales, met behulp van een aantal computerprogramma’s. Dit bewijs
werd echter niet volledig geaccepteerd door het wiskundige tijdschrift Annals of Mathematics,
omdat de recensenten de computerprogramma’s niet konden controleren.

Om een hogere mate van zekerheid te krijgen in de correctheid van een bewijs, is het
mogelijk deze te laten controleren door een computerprogramma, een “proof checker”. Om
het bewijs leesbaar te maken voor zulke programma’s, is echter meer detail en een andere
taal nodig dan wanneer het bewijs wordt uitgelegd aan een menselijke lezer. Deze drempels
maken het moeilijk om door een computer gecontroleerde bewijzen (formele bewijzen) aan
wiskundigen te laten lezen, en om samen te werken aan een bewijs. Om deze drempel te
overkomen, zijn nieuwe technieken en gereedschappen nodig. In dit proefschrift wordt een
aantal van zulke technieken en de bijbehorende programmatuur ontwikkeld, gebaseerd op de
volgende observaties:

• Proof checkers geven (extra) inhoudelijke informatie over de bewijzen die zij verwerken.
Deze informatie geeft extra inzicht aan de lezers van deze bewijzen.

• Moderne internettechnologie maakt het mogelijk informatie op een dynamische manier
aan lezers te presenteren: lezers kunnen om extra informatie vragen waar zij dit nodig
hebben, en bewijzen aanpassen of zelf proberen zonder dat zij andere programma’s dan
een webbrowser nodig hebben.

De ontwikkelde technieken komen samen in een systeem, dat via het internet te gebruiken is:
Agora. Hoofdstuk 2 van dit proefschrift beschrijft het globale ontwerp van Agora en beschrijft
profielen van typische gebruikers. Daarnaast schetst het een aantal methoden die gebruikt kun-
nen worden om deze profielen te valideren en om nieuwe mogelijkheden te ontdekken waarvoor
Agora (na eventuele aanpassingen) ingezet kan worden.

Hoofdstuk 3 beschrijft de techniek waarmee Agora gecontroleerde bewijzen aan de lezer
toont: de Proviola. Deze techniek geeft van een bewijs de berekening van elke stap weer
wanneer de gebruiker daar om vraagt. Indien noodzakelijk wordt deze berekening op het
moment van opvragen uitgevoerd, en opgeslagen voor later gebruik: er wordt een ‘film’ gemaakt
van het bewijs. Een film kan zeer snel geïnspecteerd worden, zonder dat de lezer een proof
checker hoeft te installeren of enige specialistische kennis nodig heeft. In dit hoofdstuk wordt
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ook de basis gelegd voor de rest van het proefschrift, waar de films gebruikt worden voor
uitgebreidere scenario’s: het maken van een beschrijvende tekst over een gecontroleerd bewijs
en het schrijven van een controleerbaar bewijs via een internetpagina.

Hoofdstuk 4 toont hoe een schrijver van een formeel bewijs een beschrijving in natuurlijke
taal kan maken, die verwijst naar gedefinieerde onderdelen van het formele bewijs. Deze
verwijzingen worden, als de pagina aan een lezer getoond word, omgezet naar de formele tekst.
De methode om deze verwijzingen te verwerken, maakt gebruik van de interne ‘kennis’ van
de proof checker: deze weet tijdens het controleren waar een bepaalde stelling gedefinieerd is.
Verder wordt gebruik gemaakt van de structuur van de films uit Hoofdstuk 3: hierin wordt
het bewijs verdeeld in scènes die, bijvoorbeeld, een stelling bevatten. Door de informatie uit
de proof checker te koppelen aan de corresponderende scène, kan Agora de stellingen op een
makkelijke manier terug vinden.

In Hoofdstuk 5 ontwikkelen we een gebruikersinterface voor het schrijven van formele be-
wijzen. Deze interface maakt gebruik van de film als model tussen de gebruiker en de proof
checker. De fim wordt automatisch gemaakt op basis van de tekst die de gebruiker intypt en
verschillende gereedschappen, waaronder de proof checker, kunnen de film aanvullen met hun
eigen informatie. De film wordt vervolgens gebruikt om de gebruiker te informeren over het
bewijs, zonder te storen.

Hoofdstuk 6 zet Agora in voor een scenario uit de praktijk: de technieken die in dit proef-
schrift beschreven zijn, worden ingezet om het formele bewijs van Hales te tonen als onderdeel
van zijn beschrijving in natuurlijke taal. De resulterende pagina’s lijken op de oorspronkelijke
beschrijving, maar bevatten de formele definities waar in het origineel alleen naar verwezen
wordt. Naast het combineren van technieken uit de overige hoofdstukken, voegt dit hoofdstuk
ook een integratie met een andere proof checker en een adviesdienst voor formele bewijzen toe.



Summary

Mathematical proofs are not just important in mathematics, but also in computer science,
where they are used to show that a program conforms to a specification. Since these proofs,
both in computer science and in mathematics, are becoming more complex, it is becoming
correspondingly complex to verify if the proof itself is correct. One of the most telling examples
from mathematics is the proof of the Kepler conjecture, which states that stacking oranges
(or cannon balls) in a tetrahedral shape takes up the least space. The proof of this conjecture
was given in 1998 by the mathematician Thomas Hales, who proved it aided by a number of
computer programs. However, this proof was not fully accepted by the mathematical journal
Annals of Mathematics, because the referees could not verify the programs.

To obtain a higher degree of certainty in the correctness of a proof, one can verify this with
a computer program, a “proof checker”. To make a proof understandable for such programs
however, it requires more details and a different language than when explaining a proof to a
human reader. These barriers make it difficult for outsiders to read computer-verified proofs
(formal proof) and to collaborate on formal proofs. To surmount this barrier, new techniques
and tools are required. This thesis develops some of these techniques and the accompanying
software, based on the following observations:

• Proof checkers give (additional) information on the proofs they process. This information
is insightful to the readers of these proofs.

• Modern Web technology enables readers to discover information in a dynamic manner:
readers can request additional information when needed, and adapt proofs or try to write
proofs themselves, without requiring any software other than a web browser.

The developed techniques are gathered in an internet-based system: Agora. Chapter 2 of
this thesis describes the global design of Agora and profiles the most likely users. Additionally,
it sketches some methods for validating these profiles and discover new capabilities in which
Agora may serve, possibly after some modifications.

Chapter 3 describes the technique through which Agora displays verified proofs to the
reader: a Proviola. This technique displays the results of each step of a proof, when the user
requests this. When necessary, the results are computed the moment the user demands these,
and stored for later use: a ‘movie’ is made of the full proof, that can be inspected quickly,
without the reader having to install a proof checker or obtaining specialized knowledge. This
chapter also lays the foundation for the rest of the thesis, in which movies are used for more
involved scenarios: the writing of a narrative about a verified proof and writing a new proof,
or editing a proof, directly on a web page.

Chapter 4 shows how an author of a formal proof can write a narrative in natural language,
that refers to well-defined parts of a formal proof. These references are transformed into formal
text when the page is displayed to a reader. The method to resolve these references uses internal
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knowledge of the proof checker which, during verification, knows where a certain theorem is
formalized. Additionally, it uses the structure of the movies of Chapter 3, in which the proof
is structured into scenes that for example contain a theorem. By combining the proof checker
knowledge with a corresponding scene, Agora can easily retrieve the theorems.

In Chapter 5, we develop a user interface for writing formal proofs. This interface uses
the movie as a model between the user and the proofo checker. The movie is automatically
generated based from the text the user writes and several tools, including the proof checker,
can augment with their own information. The movie is then used to inform the user about
the proof without interruptions.

Chapter 6 uses Agora for a scenario drawn from the practice of formal proof: we use
the techniques of this thesis to display Hales’s formal proof as part of his natural language
description. The resulting pages are similar to the original description, but contain formal
definitions that are only textual references in the original text. Beyond combining techniques
from previous chapters, this chapter also integrates a new proof checker and a proof advice
service for formal proofs.
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