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Abstract | In the past 8 years, there has been renewed interest in the role of iron in both acute kidney injury 
(AKI) and chronic kidney disease (CKD). In patients with kidney diseases, renal tubules are exposed to a high 
concentration of iron owing to increased glomerular filtration of iron and iron-containing proteins, including 
haemoglobin, transferrin and neutrophil gelatinase-associated lipocalin (NGAL). Levels of intracellular catalytic 
iron may increase when glomerular and renal tubular cells are injured. Reducing the excessive luminal or 
intracellular levels of iron in the kidney could be a promising approach to treat AKI and CKD. Understanding 
the role of iron in kidney injury and as a therapeutic target requires insight into the mechanisms of iron 
metabolism in the kidney, the role of endogenous proteins involved in iron chelation and transport, including 
hepcidin, NGAL, the NGAL receptor and divalent metal transporter 1, and iron-induced toxic effects. This 
Review summarizes emerging knowledge, which suggests that complex mechanisms of iron metabolism exist 
in the kidney, modulated directly or indirectly by cellular iron content, inflammation, ischaemia and oxidative 
stress. The potential exists for prevention and treatment of iron-induced kidney injury by customized iron 
removal or relocation, aided by detailed insight into the underlying pathological mechanisms.

Martines, A. M. F. et al. Nat. Rev. Nephrol. advance online publication 14 May 2013; doi:10.1038/nrneph.2013.98

Introduction
Iron is an indispensable component of haemoglobin and 
myoglobin,1,2 proteins that have key roles in the pres-
ervation of life. However, excessive levels of iron have 
toxic effects due to the ability of iron to catalyse the gen-
eration and propagation of reactive oxygen species.1,3 
Moreover, to the best of our knowledge, actively regu-
lated iron excretion has not been reported. Thus, iron 
deficiency, displacement and overload can all have 
serious consequences for an organism.4

Iron metabolism is regulated systemically by the 
hepatic hormone, hepcidin, and its interaction with 
the cellular iron exporter, ferroportin. Hepcidin is 
mostly produced and secreted by the liver, although it 
can also be produced in proximal and distal regions of 
the nephron (Table 1),5,6 and might have a role in iron 
metabolism in the kidney.7 Hepcidin regulates both 
the absorption of dietary iron and the distribution of 
iron throughout the body by binding to and inducing 
degradation of the iron exporter, ferroportin, on the 
basolateral membrane of enterocytes and plasma mem-
brane of macrophages. Hepcidin has also been reported 
to bind to free iron, and at high concentrations, this 
hormone has intrinsic antibacterial activity, causing bac-
terial cell lysis.5 This antibacterial activity could result 
in the sequestration of iron from pathogenic bacteria, 
thereby preventing bacterial proliferation. In addition, 
the synthesis of hepcidin is regulated by various stimuli, 

including inflammation and oxidative stress.5 The hep-
cidin peptide has been identified as a potential prognos-
tic marker in patients who develop acute kidney injury 
(AKI) after cardiopulmonary bypass surgery.8–10

Intracellular levels of iron are controlled by iron reg-
ulatory proteins (IRPs) that bind to iron-responsive- 
elements (IREs) in mRNA.2 The IRP–IRE system affects 
post-transcriptional regulation of iron storage capa
city. For example, in iron-deprived conditions, IRPs 
bind with high affinity to IREs in the 3' untranslated 
region (UTR) of transferrin receptor protein 1 (TFRC) 
and divalent metal transporter 1 (DMT‑1, also known 
as natural resistance-associated macrophage protein 2) 
mRNA, and to the 5' UTR of ferroportin, ferritin heavy 
chain and ferritin light chain mRNA. This binding 
increases the levels of cellular free iron and transferrin-
bound iron and at the same time inhibits iron storage 
in ferritin and iron export by inhibition of de novo fer-
ritin synthesis and ferroportin-mediated export. By 
contrast, in iron-rich conditions, IRP binding affinity 
with IREs is low, thereby favouring the opposite effects. 
In this way, IRPs induce iron uptake and promote 
cellular iron retention in iron-deprived conditions, 
and decrease iron uptake and stimulate the release of  
intracellular iron in iron-rich conditions.2 

The interest of nephrologists in iron disorders has his-
torically been limited, since no reports have described 
iron overload in the kidney in patients with HFE-
related hereditary haemochromatosis,11 a condition in 
which increased intestinal absorption of iron results 
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in systemic iron overload.12,13 However, a role for iron in 
kidney disease was proposed more than two decades 
ago3,14,15 and interest in iron-mediated kidney injury has 
increased with discovery that proteins such as hepcidin 
and neutrophil gelatinase-associated lipocalin (NGAL) 
have key roles in iron metabolism.3,5,16–20 Indeed, NGAL 
shares many features with hepcidin. NGAL is produced 
by macrophages, as well as in proximal and distal renal 
tubules and is present in serum. NGAL also has well-
known iron-binding and antimicrobial properties.5,21 
Expression of NGAL is recognized as an early marker 
of AKI,19–22 and experimental evidence suggests that 
this protein might protect the kidney against AKI, for 
example that caused by ischaemia–reperfusion injury.19 
By contrast, NGAL might contribute to the progres-
sion of chronic kidney disease (CKD),6,22 possibly as a 
result of proinflammatory properties or function in iron 
mobilization.21 The mostly incomplete evidence on the 
roles of hepcidin, NGAL and iron itself in kidney injury 
call for a review of data on this emerging topic.

In this Review, we summarize current knowledge 
about the physiology of iron metabolism in the kidney, 
delineate the potential role of iron in kidney injury and 
discuss possible underlying pathological mechanisms 
that contribute to altered iron metabolism in the kidney 
and catalytic iron-induced kidney injury. This knowl-
edge may pave the way for novel treatments for common 
progressive kidney diseases, including proteinuric and 
haematuric kidney injury. We hypothesize that treat-
ments for kidney injury will incorporate manipulation 
of iron metabolism in the kidney and predict that exten-
sive research efforts will be directed toward this goal in 
the near future.23–25

Iron metabolism in the kidney
Iron transport and regulation in the kidney involves an 
array of processes and proteins (Table 1, Figure 1), which 
underscores the complexity of these processes.

Glomerular filtration of iron 
Under physiological conditions, circulating iron enters the 
renal tubular lumen via the glomerulus.11,26 Circulating 
iron is predominantly bound to transferrin and to a lesser 
extent, other filterable iron-binding proteins, including 
NGAL, lactoferrin, albumin, haemoglobin, myoglobin 
and hepcidin.5,11–13,20,27–29 The proportion of circulating 

iron filtered by the human kidney is unknown. If we 
assume that all iron in serum is bound to transferrin and 
that no reabsorption of transferrin occurs in the proxi-
mal tubules, the rate of iron filtration can be calculated 
as 0.009 mg per day.30 This value is probably an under
estimate, since the possibility of transferrin reabsorption 
via the NGAL receptor, (NGALR), in the distal con-
voluted tubules and collecting ducts is not taken into 
account. We calculate, using data on iron filtration in the 
rat, that the rate of iron filtration can be up to 15 mg per 
day.11,31 This value is probably an overestimate, however, 
because the renal micropuncture method11 used to collect 
the filtrate might result in contamination of the sample 
with blood. Moreover, the permeability of the glomerulus 
to iron-carrying proteins might be lower in humans than 
in rats.32 Additional studies designed specifically for this 
purpose are, therefore, needed to determine the actual 
rate of iron filtration in humans.

Renal tubular iron absorption and processing 
Once filtered by the glomerulus, iron is almost com-
pletely reabsorbed in the proximal tubules and distal 
tubules, where it is either stored in ferritin and utilized 
by the cells of the renal tubular epithelium, for example, 
incorporated into mitochondrial proteins, or exported 
via the basolateral membrane of tubular epithelial cells 
into the interstitium or circulation. The uptake and pro-
cessing of iron in renal tubules depends on whether the 
metal ion is bound to protein, haem, or present as free 
ions, Fe2+ or Fe3+ (Figure 1). Iron released from haem is 
either stored in ferritin33 or exported from the cell.

Transport of haem-bound iron
Once filtered through the glomerulus, haemoglobin 
and myoglobin are reabsorbed by the epithelial cells 
in the proximal tubules via binding to megalin and 
cubilin,34 and haem is then released intracellularly. 
Haem is also taken up from the lumen of tubules via 
the haem importer, proton-coupled folate transporter 
(HCP1).35 The anti-inflammatory enzyme haem oxy
genase 1 (HO1) then catalyses the partial degradation of 
intracellular haem,36 producing free iron and the tissue-
protective anti-oxidants and vasodilators, biliverdin and 
CO. HO1 can also upregulate the expression of ferritin36 
which is necessary for protection against AKI.37

Receptor-mediated transport of nonhaem-iron 
Luminal protein-bound iron is endocytosed in proxi-
mal tubules by transferrin-specific pathways, such 
as the TFRC pathway, or by nonspecific receptors 
such as cubilin and megalin. In the distal tubule, iron 
bound to transferrin or NGAL is endocytosed via the 
NGALR.5,11,27,34,38,39 In the endosome, iron is released 
from the carrier protein after acidification, then reduced 
and exported to the cytosol via iron transporters, includ-
ing DMT‑1, and potentially by the zinc transporter ZIP14 
(Zip14) or zinc transporter ZIP8 (Zip8), mucolipin‑1 
(MCOLN1) and mucolipin‑2 (MCOLN2).11,18,40,41 
To our knowledge it is not currently known how these  
transporters import iron into the cell.

Key points

■■ Iron content in the kidneys is increased in patients with chronic kidney disease 
or acute kidney injury, and is associated with proteinuria, haematuria or 
haemoglobinuria

■■ Increased local exposure to iron in the kidney may have a role in causing acute 
kidney injury, development and progression of kidney disease and in causing 
end-stage renal disease

■■ Decreasing the excessive iron in the kidneys may be a novel approach to treat 
acute kidney injury and chronic kidney disease

■■ The kidneys express many proteins that are involved in iron metabolism and 
transport

■■ The precise role and regulation of many proteins involved in renal iron 
metabolism and iron-induced kidney injury is poorly understood
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Table 1 | Proteins involved in iron metabolism in the kidney

Protein Molecular 
weight (kDa)* 

Location‡ Proposed function in the kidney Reference(s)

Iron acquisition

Transferrin receptor 
protein 1 

~56 Proximal tubule: apical and basolateral Uptake of transferrin 11 

Megalin ~600 Proximal tubule: apical Uptake of filtered NGAL, 
haemoglobin, myoglobin and 
lactoferrin for catabolism; 
facilitates endocytosis of cubilin

34

Cubilin ~460 Proximal tubule: apical Uptake of filtered transferrin, 
haemoglobin and myoglobin for 
catabolism

34

NGALR ~58 Medulla outer stripe, distal collecting duct and medullary 
collecting duct: apical 

Uptake of NGAL and transferrin 39

Lactoferrin receptor ~34 Proximal tubule and distal tubule Uptake of lactoferrin 28,120

Divalent metal 
transporter 1

~63 Proximal tubule (S2 and S3) and throughout the medulla: 
apical and endosomal; higher mRNA levels in kidney than 
in any other tissue

Fe2+ membrane transporter 6,11,18,42

Zinc transporters ZIP8 
and ZIP14

~59 and ~54 Proximal tubule: apical and endosomal Fe2+ membrane transporter 41,43

Proton-coupled folate 
transporter

~50 Distal tubule and collecting duct and proximal tubule: 
apical

Haem uptake 35,42,121

Haem oxygenase 1 ~33 Proximal tubule, distal tubule and collecting duct: 
intracellular; higher expression in distal tubule than in 
proximal tubule

Release of iron from haem and 
production of bilirubin and CO

18,36,38,55, 
122

Mucolipin 1 and 
mucopilin 2

~65 and ~66 Unknown Efflux of Fe2+ from endosomes  
and lysosomes

18,40

CD163 ~125 Expressed by interstitial macrophages Uptake of haem–haemopexin 
complex; expression is 
upregulated by haemoglobin

16,17,66,108

Pro-low density 
lipoprotein receptor-
related protein 1

~505 Interstitial and mesangial; expressed in kidney 
fibroblasts, glomerular mesangial cells, interstitial 
dendritic cells and possibly also interstitial macrophages

Uptake of haptoglobin–
haemopexin complex

38,47,48

Iron export

Ferroportin ~63 Proximal tubule: basolateral Basolateral export of Fe2+ 6,44

Hephaestin ~130 Probably basolateral (exact location in nephron not 
reported)

Oxidation of Fe2+ to Fe3+ 11

Feline leukaemia virus 
subgroup C receptor

60 Probably basolateral; specific location in the nephron is 
unknown

Basolateral export of haem 38,47

Iron carriers

Transferrin§ 78 Lumen Fe3+ transfer 11

Ferritin 480 Proximal tubule: apical, basolateral or intracellular; 
exported basolaterally

Storage of iron (as Fe3+) 11,33,37,123

NGAL 24 Mesangial cells, proximal tubule, TAL, distal tubule, 
medullary collecting duct and collecting ducts; secreted 
by proximal and distal tubules

Delivery of iron, role in AKI, 
antimicrobial properties 

19–21,39,55, 
83,124

Haemoglobin§ 68 Mesangial cells Haem carrier in erythrocytes 34,125

Myoglobin§ 17 Lumen Haem carrier in myocytes 34,126

Hepcidin 2.8 Proximal tubule (S1 and S2): basolateral
TAL and medullary collecting duct: apical
Collecting tubule and cortical collecting duct: cytosolic
Distal tubule and collecting ducts 

Regulation of basolateral 
ferroportin expression, binds Fe2+, 
has antibacterial properties and 
protects against AKI

5,6,9,127

Lactoferrin 80 Distal tubule and collecting ducts Binds Fe2+ and is antibacterial 27–29,34,120

Haemopexin§ 60 Mesangium and cortex Binds haem 38,47,62,93, 
128

Haptoglobin|| 88 Cortex, including the proximal tubule Binds haemoglobin and cannot  
be filtered

49

*Approximate molecular weights based on the entries for human protein in the online Universal Protein Resource database. ‡Suggested localization does not exclude expression elsewhere in 
the kidney. §Filtered. ||Not filtered. Abbreviations: AKI, acute kidney injury; NGAL, neutrophil gelatinase-associated lipocalin; NGALR, NGAL receptor; S2, a segment of the proximal convoluted 
tubule; S3, the straight segment of the proximal tubule; TAL, thick ascending limb of the loop of Henle. 
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Transporter-mediated uptake of free iron
Filtered free iron, and iron released from proteins as a 
result of acidification of the filtrate as it passes along 
the nephron, enters the tubular epithelial cells after 
reduction by cytochrome b reductase 1 (DCYTB), 
via the apical ion transporters DMT‑1 (in both 

proximal and distal tubules), Zip8 and Zip14 (cur-
rently only identified in proximal tubules).6,11,18,41–43 
Interestingly, some evidence suggests that increased 
iron uptake via Zip8 and Zip14 could be responsible 
for the lack of increased urinary iron excretion in  
DMT‑1-deficient rodents.18

Glomerulus

Blood

Proximal
tubule

Distal
tubule

Utilization

Transcription and translation

?

?

HO1 HO1

H+ H+

Fe2+/Fe3+

 Ferrireductase
Haem
Transferrin
Hepcidin
Lactoferrin
Haemopeoxin
Catecholate siderophore
NGAL
TFRC
Cubilin
Megalin
NGALR 
DMT-1, MCOLN1,
MCOLN2, Zip8 or Zip14
DMT-1, Zip8 or Zip14
Ferroportin
Hypothetical ferritin
exporter
HCP1
FLVCR
Hephaestin

Transcription
and translation

Utilization

?

?

HO1 HO1

H+ H+

Iron
pool

Iron
pool

Ferritin

Ferritin

Figure 1 | Kidney iron transport. Circulating iron enters the renal tubular lumen after glomerular filtration.11,26 Iron bound to 
transferrin, NGAL and other proteins and peptides, including lactoferrin and hepcidin, is reabsorbed in the proximal tubule 
after binding to the transferrin-specific TFRC or the nonspecific receptors cubilin and megalin, respectively. Transferrin-
bound and NGAL-bound iron is also reabsorbed in the distal tubule via NGALR.5,11,20,27–29,34,39 Free iron is reabsorbed via the 
transporters DMT‑1, Zip8 and Zip14, and haem is reabsorbed via HCP1.35,38,42 Intracellular free iron may be stored in 
ferritin, utilized, for instance incorporated into functional proteins, or exported basolaterally via ferroportin.11,44 Intratubular 
iron can also be exported bound to ferritin.33 Hepcidin and NGAL can be secreted from the apical surfaces of renal tubular 
cells, where these proteins can bind to and possibly detoxify iron. Abbreviations: DMT‑1, divalent metal transporter 1; 
FLVCR, feline leukaemia virus subgroup C receptor; HCP1, proton-coupled folate transporter; HO1, haem oxygenase 1; 
MCOLN1, mucopilin 1; MCOLN2, mucopilin 2; NGAL, neutrophil gelatinase-associated lipocalin; NGALR, NGAL receptor; 
TFRC, transferrin receptor protein 1; Zip8, zinc transporter ZIP8; Zip14, zinc transporter ZIP14.
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Iron export from tubular epithelial cells 
Iron can be exported into the interstitial fluid and circu-
lation through the basolateral membrane of renal tubular 
epithelial cells by ferroportin11,44 or exported bound 
to haem via the haem exporter feline leukaemia virus 
subgroup C receptor (FLVCR).2,39 FLVCR is essential to 
haem export, as shown in FLVCR-knockout mice, which 
spontaneously accumulate iron in the kidney,45 and also 
requires the extracellular presence of a suitable haem-
binding protein (albumin or preferably haemopexin), 
to enable substantial haem export.38,45 Macrophages can 
produce haemopexin46 and express the haemopexin 
receptor low-density lipoprotein receptor-related 
protein 1 (LRP‑1).47,48 On the basis of these observations, 
we speculate that export of haem and its subsequent deg-
radation might be facilitated by interstitial macrophages 
through production of haemopexin, as well as binding of 
haeme-carrying haemopexin to LRP‑1.

Interstitial macrophages also express the haemoglobin– 
haptoglobin complex receptor, CD163.16 Although no 
firm evidence yet exists, interstitial macrophages could 
conceivably also produce the haemoglobin-binding 
protein, haptoglobin (which binds to, takes up and 
degrades haemoglobin).49,50 In fact, elevated hapto
globin production has been detected in the renal cortex 
in several animal models of AKI, which could be inter-
preted as AKI-associated haptoglobin production by 
interstitial macrophages.49 Furthermore, in patients 
with AKI, an increase in urinary haptoglobin:creatinine 
ratio was observed, which almost exactly paralleled 
NGAL excretion in these patients haptoglobin occurs in 
these patients. This observation suggests that a kidney- 
injury-induced increase in haptoglobin occurs in these 
patients.49 Interestingly, in vitro and ex vivo studies 
indicate that uptake of the haptoglobin–haemoglobin 
complex by macrophages may protect against iron-
induced tissue injury by upregulation of CD163 expres-
sion, secretion of the anti-inflammatory cytokine IL‑10 
and upregulation of HO1 expression.50

Intracellular iron trafficking 
The nature of intracellular iron trafficking in renal tubular 
epithelial cells is unclear. Conventionally, iron was thought 
to enter the cytosol via export from endosomes, release 
from degraded haem or import via apical ion transport-
ers, and was then thought to be utilized, stored in ferri-
tin or exported into the interstitial fluid and circulation. 
However, this simplified view of intracellular iron traffick-
ing might not explain all reported observations. Firstly, the 
manner in which iron is taken up seems to be a determi-
nant for its mode of intracellular trafficking and metabo-
lism. For example, micromolar concentrations of ferric 
citrate but not ferrous citrate injure kidney cells in vitro, 
and this deleterious effect of ferric citrate is enhanced by 
the presence of transferrin.51 By contrast, engulfment and 
degradation of intact red blood cells (which contain sub-
stantial amounts of iron) by renal tubular epithelial cells 
does not seem to be toxic to the epithelial cells in vitro.17,52 
Furthermore, studies in human erythroleukaemia cells 
showed that only some iron chelators seem to affect 

mitochondrial iron uptake, and that the various forms of 
cytosolic iron contribute differentially to mitochondrial 
iron delivery in vitro.53 Finally, studies in yeast and mam-
malian cells suggest that mitochondrial and cytosolic iron 
transport pathways utilize separate delivery routes and 
corresponding chaperone proteins.54

Regulation of renal iron transport
The regulation of renal iron transport might serve several 
possible purposes. One might be to protect the kidney 
against effects of iron toxicity. Intracellular iron content 
controls the expression of ferritin and TFRC,26 and prob-
ably also the expression of ferroportin and DMT‑1,2 in the 
kidney via the IRE–IRP post-transcriptional regulatory 
system. Furthermore, an iron-enriched diet or parenteral 
administration of iron to mice increased the expression of 
HO1,55 NGAL55 and ferritin,56 and decreased the expres-
sion of TFRC56 in the kidney, as well as increasing urinary 
iron excretion.11 Another function might be the preven-
tion of urinary iron loss, either to conserve the availabi
lity of this scarce ion or to protect against urinary tract 
infections.20 This suggestion is supported by the fact that 
the kidney harbours an array of apical ion receptors and 
transporters that mediate cellular iron uptake, includ-
ing megalin, cubilin, NGALR, DMT‑1, Zip8 and Zip14 
(Table 1). In addition, an iron-deficient diet or haemolytic 
anaemia increased the mRNA and/or protein expression 
of DMT‑1 in the kidneys of mice and rats6,11,56 and ferro
portin expression in the kidneys of mice.6 These data 
suggest that regulation of renal iron transport is biased 
toward the minimization of urinary iron loss, to ensure 
adequate iron bioavailability for erythropoesis, regardless 
of the systemic iron content.

Iron-induced kidney injury
Inflammation and/or oxidative stress can upregulate the 
expression of DMT‑1,18 Zip8, Zip14,41 lactoferrin,28 hepci-
din5 and NGAL,57–59 possibly enabling increased uptake of 
iron in the renal tubules. Under physiological conditions, 
minor (or initial) inflammation or stress might modu-
late the expression of these proteins to enable increased 
sequestration of iron into kidney cells or to minimize 
extracellular iron-induced injury. However, under patho-
logical conditions, in which extensive inflammation and/
or oxidative stress may occur, these and other mecha-
nisms might cause excessive iron retention in the kidney 
tubules and consequent iron-induced kidney injury.

The kidney can be exposed to toxic levels of bound 
iron (for example, in transferrin), and free iron, as a 
result of systemic iron overload (which may be diet or 
disease-related), increased delivery of iron into the kidney 
tubules, or alterations in cellular iron localization or 
compartmentalization in the kidney. A role for iron in 
kidney injury is suggested by evidence that iron and iron- 
containing molecules can cause direct injury to renal 
tubular cells in vitro36,51,52,60,61 and in vivo.36,62 In addi-
tion, kidney and urinary iron content is increased 
in patients3,17,63–71 and animal models of AKI and  
CKD.3,6,14,71–80 Finally, the severity of kidney injury 
can be reduced by iron-deficient diets, the use of iron 
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chelators or treatment directed at reducing iron-related 
oxidative stress in animal models.3,15,19,71,79,81–83Direct evi-
dence of renal toxic effects of iron is, however, limited in 
humans.3,24,25,63,84–87 On the basis of current evidence, we 
propose four pathways for iron-induced kidney injury 
(Figures 2–5).

Haem-related diseases 
Severe haemolysis and rhabdomyolysis can result 
in iron-induced kidney injury by causing a massive 

increase in circulating levels of haemoglobin, myoglobin 
and haem47 (Figure 2b). This increase overwhelms the 
capacity of circulating haemopexin and haptoglobin to 
bind haem, haemoglobin and myoglobin, as shown by 
decreased concentrations of circulating haemopexin 
and haptoglobin.47,66 Consequently, glomerular filtra-
tion of haem increases, and the increased concentra-
tion of haem in the renal tubules lumen upregulates 
reabsorption of haem until the reabsorptive capacity of 
the tubules becomes saturated.

Several lines of evidence support this mechanism. 
Urinary iron levels are elevated in patients with haemo-
lytic diseases or red cell aplasia64,68 and in animal models of 
haem-induced injury.72 Decreased intracellular expression 
of prohepcidin (the prohormone form of hepcidin) in the 
proximal tubule basal membrane6 and increased expres-
sion of DMT‑1 and ferroportin in the proximal tubule 
have been detected in an animal model of haemolytic 
anaemia.6 In addition, iron reabsorption in the tubules 
is increased beyond the capacity of the epithelial cells to 
safely store iron in ferritin or to export it via the baso-
lateral membrane. Despite the elevated renal expression 
of HO1, ferritin, ferroportin, haptoglobin, CD163, and 
haemopexin (the latter presumably in interstitial macro
phages) 46,62 that occurs in both patients66,67,88 and animal 
models of haem-related disease,6,49,62,88 tissue damage 
occurs (Table 2 and Supplementary Table 1 online).

Under conditions of iron excess, interstitial macro
phages in the kidney probably modulate the expres-
sion of iron-related and anti-inflammatory proteins, 
including haemopexin, haptoglobin, CD163 and IL‑10 
to stimulate iron export out of the renal tubular epi-
thelial cells and thereby minimize epithelial damage, 
and to detoxify interstitial iron by means of storage 
in ferritin or export into the circulation. However, in 
patients with severe or persistent haemolytic or rhabdo
myolytic disease, which causes massive iron delivery to 
the kidney, interstitial macrophages might not be able 
to effectively store or export iron at the same rate as it 
is delivered and taken up by iron importers and recep-
tors that mediate iron uptake, thereby leading to further  

Megalin

Glomerulus

Urine

Blood

Proximal
tubule

Distal
tubule

Free iron Bound iron

Haemoglobin
Myoglobin
Haem

Glomerulus

Urine

Blood

Proximal
tubule

Distal
tubule

HO1, ferritin and ferroportin

HO1, ferritin and ferroportin

Poorly
bound ironInjury

Poorly
bound ironInjury

Haemoglobin
Myoglobin
Haem

a

b

Figure 2 | Iron filtration under physiological or disease 
conditions. a | A limited quantity of iron in serum is filtered 
through the glomerulus. This iron is predominantly 
reabsorbed by the epithelial cells in the proximal tubules 
via receptors or metal ion importers. Absorbed iron is 
stored in ferritin, incorporated into functional proteins or 
exported as haem or Fe2+. b | Iron metabolism in 
haemolysis and rhabdomyolysis. The massive increase in 
circulating haem results in its excessive filtration.64,68,72,90,91 
Despite the upregulation of HO1, ferritin, ferroportin, 
haemopexin, haptoglobin and CD163 expression in the 
kidney, more iron is reabsorbed by renal tubular epithelial 
cells than is exported and stored in ferritin, resulting in iron 
accumulation in the renal epithelium, tubular damage and 
cell death.1,3,17,36,62,65–67,72,74,88–92 Interstitial macrophages 
may be overwhelmed by excess iron released into the 
interstitium, resulting in interstitial iron accumulation and 
damage. The thickness of the arrows indicates the 
relative amounts of iron exposure. Abbreviation: HO1, 
haem oxygenase 1.
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interstitial and tissue damage. Indeed, iron-induced 
damage to the tubules and/or interstitia is implicated 
by reports of haemosiderin deposits in the proximal 
tubule and distal tubule, haem-cast formation, tubular 
necrosis, cortical atrophy, interstitial fibrosis and distal 
tubule DNA damage in patients with haemolysis and 
rhabdomyolysis1,17,65–67,74,89–92 as well as in animal models 
of myohaemoglobin-induced AKI.3,36,62,72,74,88,89,92

A link between haem or haem-containing proteins, 
for example haemoglobin and myoglobin, and AKI 
has been established.93 In this study, AKI induced an 
increase in circulating free haem, regardless of the aeti-
ology of AKI. In addition, AKI increased the expres-
sion of haemopexin in the liver. Haemopexin was 
secreted into the circulation, filtered and reabsorbed 
by the kidney.93 Furthermore, exogenous haemopexin 
attenuated free-iron-mediated cell death in a human 
kidney proximal tubule cell line (HK‑2), and lipopoly
saccharide, but not iron, induced haemopexin expres-
sion in HK‑2 cells in vitro.93 The researchers suggested 
that the increase in circulating haemopexin results in 
removal of circulating free haeme, which probably has 
cytoprotective effects in the kidney.93 These results 
suggest that proper handling of haem probably has an 
important role in attenuating AKI in general. These 
results also suggest that iron metabolism in the kidney 
is the result of a multiorgan effort against the potential 
toxic effects of this metal.

Systemic iron overload
Systemic iron overload can be hereditary, for example in 
HFE-related hereditary haemochromatosis, or acquired, 
for example by an excessive number of blood trans
fusions. An overload of iron is associated with increased 

iron saturation of transferrin12,13 and an increase in the 
amount of circulating nontransferrin-bound iron.12,13 
This iron might be filtered,20 and could cause iron 
overload in the kidney, as shown in patients and 
animal models of systemic iron overload (Table 1 
and Supplementary Table 2 online).63,65,68,69,73,75,94 Filtered 
iron can cause renal tubular epithelial cell damage due 
to iron uptake that exceeds the cells’ capacity for iron 
storage in ferritin and iron export (Figure 3).

Currently, the mechanisms through which systemic 
iron overload induces kidney injury are unclear. For 
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Figure 3 | The effects of systemic iron overload. a | In 
patients with hereditary haemochromatosis, increased 
transferrin saturation and increased non-transferrin-bound 
iron levels in serum result in increased iron filtration.12,13 
In the forms of hereditary haemochromatosis caused by 
hepcidin and haemojuvelin gene mutations, the rate of 
iron export from renal tubular cells is lower than that of 
iron absorption, despite upregulated expression of ferritin 
and ferroportin, resulting in iron accumulation and tissue 
damage in the kidney.73 In a mouse model of Hfe-related 
hereditary haemochromatosis, the mRNA expression of 
ferroportin, hephaestin, cytochrome b reductase 1 and 
divalent metal transporter 1 is decreased, possibly limiting 
transepithelial iron transport, but not sufficiently to 
prevent iron accumulation in the kidney.73,75,94,95 b | Dietary 
or transfusion-related systemic iron overload (in patients 
with no or minimal haemolysis) can cause increased iron 
filtration and increased iron uptake in renal tubular cells. 
The expression of HO1,55 NGAL55 and ferritin56 is 
increased and the expression of TFRC is decreased;56 
however, these modulations could still result in excessive 
iron uptake, insufficient protection against the toxic 
effects of iron and consequent tubular damage. The 
thickness of the arrows indicates the relative amounts of 
iron exposure. Abbreviations: HO1, haem oxygenase 1; 
NGAL, neutrophil gelatinase-associated lipocalin; TFRC, 
transferrin receptor protein 1.
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example, HFE-knockout (Hfe–/–) mice show decreased 
mRNA expression of the ferritin light chain (a subunit 
of ferritin), hephaestin and DCYTB. When fed an iron-
enriched diet, these mice showed lower expression of 
DMT‑1 and ferroportin than did wild-type mice.56 These 
differences might indicate compensatory mechanisms 
that attempt to minimize transepithelial iron transport 
and improve the effectiveness of iron storage in renal 
tubular epithelial cells in a safe manner, possibly by 
increasing the proportion of the ferritin heavy chain in 
the ferritin protein, which might increase the amount of 
iron that can be bound by this protein.33 This hypothesis 
is supported by observations of parallel upregulation of 
ferroportin and DMT‑1 in anaemic mice,6 probably to 
minimize iron losses during states of increased demand 
for use in erythropoiesis. Notably, Hfe gene knockout 
resulted in iron accumulation in the kidney in some,75,94 
but not all animal studies.73,95

The mechanisms proposed here do not fully explain the 
renal complications of HFE-related hereditary haemo
chromatosis. To complicate matters further, in two other 

models of hereditary haemochromatosis (hepcidin-
knockout and haemojuvelin-knockout mice) expres-
sion of ferroportin in the kidney increased73 (in contrast 
to the decreased expression of ferroportin observed in 
mice with HFE-related hereditary haemochromatosis).73 
Nevertheless, these mice accumulate iron in the kidney 
and exhibit increased urinary iron excretion.73 Of note, 
all three genetic abnormalities (HFE-knockout, hepcidin-
knockout and haemojuvelin-knockout) result in decreased 
systemic hepcidin levels. We can only speculate that in the 
latter two models, for currently unknown reasons, the rate 
of apical iron uptake exceeds the rate of basolateral iron 
export. Unfortunately, data on iron content in the kidney 
in patients with hereditary haemochromatosis are limited 
to a single case report, published in 1918.69

Iron overload in the kidney was also reported in 
mice fed an iron-enriched diet56 and in patients with 
transfusion-related iron overload63,65,68 in whom the 
increased iron load was associated with renal tubule 
dysfunction.63,84,86,87 These findings demonstrate a link 
between iron accumulation and renal tubular damage. 
We speculate that the processes leading to iron over-
load and injury in the kidney after blood transfusion 
might be more easily explained than those underlying 
hereditary haemochromatosis. Firstly, blood transfusions 
often cause mild haemolysis, which may contribute to 
iron loading and injury in the proximal tubules, as dis-
cussed previously.65,91,96 Secondly, patients with sickle 
cell disease and β‑thalassaemia, who need repeated 
blood transfusions,5,97–100 often have chronic inflamma-
tion, which may be accompanied by increased oxidative 
stress.97–100 Inflammation and oxidative stress probably 
induce the expression of hepcidin in both the liver and 
kidney, increasing both serum and local levels of this 
hormone,5 and thereby causing iron trapping along the 
entire nephron.44

Glomerulopathies
Proteinuria and haematuria16 are common manifesta-
tions of glomerular disease, and the best predictors for 
progression of CKD.16,101 These symptoms have been 
linked with iron accumulation in the kidney,3,14,17,70,71,77 
renal tubular cell damage3,11,17 and elevated urinary iron 
levels102–105 in both patients with glomerulopathies3,17,70 
and animal models of glomerular disease (Table 2 and 
Supplementary Table 3 online).14,17,71,77 Interestingly, 
lysosomal iron accumulation in the proximal tubule 
was the only independent predictor of both functional 
and structural damage to the proximal tubule in rats 
with proteinuria induced by puromycin (an inhibitor of 
serine peptidase and metallopeptidase).77 This finding 
suggests that iron is an important contributor to AKI 
under conditions of proteinuria. In addition, administra-
tion of iron chelators ameliorated proteinuria and end-
stage renal disease (ESRD) in animal models of CKD and 
minimal change nephrotic syndrome.3,71 Furthermore, 
an iron-deficient diet prevented progression of kidney 
dysfunction and was associated with a trend toward 
reduced hypertension in mouse models of glomerular 
disease.3,81 Importantly, a study in a rat model of CKD 
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showed that dietary iron restriction significantly sup-
pressed the development of hypertension, confirming 
previous results in mice.81,106 Clinical data are limited, 
although urinary levels of catalytic iron are elevated in 
patients with diabetic nephropathy before the onset of 
microalbuminuria,3 which argues for a possible role 
of excessive tubular iron delivery in the pathogenesis of 
diabetic nephropathy and in the development of CKD, as 
diabetes is the major cause of CKD in developed coun-
tries.107 In addition, preliminary findings suggest that the 
use of iron chelators improved renal function in patients 
with glomerular disease.24

Sources of iron that are likely to be involved in 
glomerulopathy-associated renal tubular cell damage 
include catalytic iron originating from damaged glo-
merular cells,3 transferrin-bound iron originating from 
serum51 and haemoglobin derived from intratubular lysis 
of erythrocytes.16,17,52 Surprisingly, however, haemoglobin 
derived from (apical) phagocytosis and intracellular deg-
radation of erythrocytes is not likely to be involved in 
glomerulopathy-associated renal tubular cell damage, 
as phagocytosis and degradation of erythrocytes in 
proximal tubular epithelial cells (thereby potentially 
releasing substantial amounts of intracellular haemo-
globin) is not cytotoxic in vitro.17,52 Results from animal 
and human studies suggest that in the initial stages of 
proteinuric glomerular disease, excessive luminal iron 
levels predominantly affect the proximal tubule.3 As the 
disease progresses, the continued excess of iron may 
overwhelm the iron-handling mechanisms of the distal 
tubule, resulting in haemosiderin deposits in proximal 
and distal tubule cells, as shown in a mouse model of 
nephrotic syndrome.14 In patients with haematuric glo-
merular disease, excessive luminal haemoglobin could 
cause tubular damage similar to that observed in patients 
with intravascular-haemolysis-induced kidney injury 
(Figure 4). This hypothesis is supported by the results 
of a study showing that CD163 expression, HO1 expres-
sion and oxidative stress correlated positively with renal 
tubular erythrocyte casts and necrosis in patients with 
AKI.108 Moreover, CD163-expressing macrophages sur-
rounding the renal tubules were filled with erythrocytes 
and loaded with haemosiderin deposits.108

Interestingly, expression of NGAL is increased in the 
kidney in animal models of both nephrotoxic serum 
nephritis (although the location in the nephron where 
this increased expression occurs has not been deter-
mined) and CKD (in which expression is increased in 
the proximal and distal tubules). A decrease in NGAL 
expression (for example in NGAL-knockout mice) 
resulted in attenuation of glomerular and tubulo
interstitial damage in the kidney and proteinuria, as 
well as slow progression of kidney failure.19,21,22,80 This 
finding might be related to the proinflammatory proper-
ties of NGAL, but excessive local or intracellular NGAL-
mediated iron mobilization cannot be excluded. By 
contrast, in another study, NGAL-knockout mice exhib-
ited more pronounced glomerular damage and increased 
proteinuria, which was attributed to a lack of inhibition 
of inflammation by NGAL.109

Ischaemia–reperfusion injury to the kidney
Ischaemia and reperfusion cause kidney injury through 
iron-mediated mechanisms.15,19,61,82 During ischaemia, 
a decrease in pH or superoxide-induced reduction of 
Fe3+ causes dissociation of protein-bound intracellular 
iron, thereby increasing the levels of catalytic iron. The 
increase in catalytic iron could contribute to oxidative 
stress and cellular damage, resulting in tubular necro-
sis.15,19,61,82,110 Furthermore, reperfusion (which both 
brings in additional iron to the kidney and carries the 
iron released from necrotic kidney cells further down the 
nephron), exacerbates the tissue damage (Figure 5).15,61 
The important role of iron in ischaemia–reperfusion 
injury is underlined by studies showing that infusion of 
the iron-chelating agents deferoxamine and apotrans
ferrin improved kidney function after induction of 
kidney ischaemia–reperfusion injury in rats and mice, 
respectively.15,82 In addition, pretreatment of cultured 
proximal tubular epithelial cells with either deferoxamine 
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or hydroxyethyl starch-conjugated deferoxamine con-
ferred protection against ischaemia-induced lethal 
cell injury.15,61,82 Administration of NGAL also attenu-
ated kidney injury in animal models of ischaemia– 
reperfusion injury (Table 2 and Supplementary Table 4 
online).19,83,111 By contrast, infusion of iron-saturated 
transferrin, which thus cannot bind more iron, did not 
improve kidney function in a mouse model of ischaemia– 
reperfusion kidney injury.82 The beneficial effect of 
iron-chelating agents and NGAL against ischaemia– 
reperfusion injury to the kidney may be a result of binding 
(and, thereby removal) of catalytic iron from the extra
cellular space, and in the case of apotransferrin and NGAL, 
the delivery of iron to viable cells to limit cell death, 
promote proliferation and enhance recovery.15,19,61,82,83 
Luminal iron may also reach interstitial macrophages and 
induce protective mechanisms.49 A study of ischaemia– 
reperfusion injury in rats showed that bone-marrow-
derived macrophages, engineered to overexpress the  
anti-inflammatory cytokine IL‑10, accumulated in 
damaged kidney tissue.112 The infused cells accumulated 
intracellular iron, which led to iron-dependent upregula-
tion of the expression of NGAL and its receptors NGALR 
and megalin.112 In fact, ischaemia–reperfusion injury in 
the kidney markedly increased serum, proximal tubule, 
distal tubule, and urinary levels of NGAL in mice19–21 
and in humans,19,21 and NGAL, in turn, upregulated the 
expression of HO1.19 Moreover, a high urinary NGAL 
concentration was associated with an increased risk of 
post-surgical AKI after cardiopulmonary bypass, an 
intervention associated with ischaemia in the kidney. 
This increased risk of post-surgical AKI associated with 

high urinary NGAL levels is in contrast with the protective 
effect of intravascular haemolysis in this setting.9 However, 
urinary NGAL levels probably do not reflect the level of 
local tissue NGAL expression. Another possible expla-
nation for these disparate findings is that the protective 
effects of NGAL may be counterbalanced by damaging 
proinflammatory events after cardiopulmonary bypass.

Patients who excrete increased amounts of hepcidin 
in urine seem to have a low risk of developing AKI after 
cardiopulmonary bypass.5,8–10 This protective effect of hep-
cidin could be exerted either through increased binding 
of luminal iron (leading to its urinary excretion) or by 
increased sequestration of iron within renal tubular epithe-
lial cells (by downregulating the expression of ferroportin 
on the basolateral membrane) and also in other tissues.8–10 
Both mechanisms would reduce serum and luminal iron 
levels, as well as the propagation of tissue damage in the 
kidney.8–10 The source of hepcidin in urine, however, is not 
completely clear. Increased urinary hepcidin levels might 
be the result of decreased tubular reabsorption of filtered 
hepcidin and/or increased local production and secre-
tion of this protein from the kidney tubules.5,6 Moreover, 
increased levels of hepcidin and NGAL in urine could also 
be innocent bystanders, reflecting other as yet unknown 
protective mechanisms against kidney injury.

Treatment of iron-related kidney injury 
Iron-induced kidney injury can be prevented or treated 
by minimizing the reactivity of iron, by removing iron 
from the kidney or by reducing iron-related oxidative 
stress. The reactivity of iron can be limited by inducing 
its incorporation into ferritin. In addition, alkalinization 

Table 2 | Findings indicative of iron-related kidney injury in humans and animal models 

Disease Iron level 
in kidney 

Urinary iron 
excretion

Iron-associated 
kidney injury

Effective intervention for iron-induced 
kidney injury

Reference(s)

Animal studies 

Haem-related 
disease

 Yes Deferoxamine infusion attenuated kidney 
dysfunction and oxidative stress

1,36,62,72,74,89

Systemic iron 
overload

  Yes Iron-deficient diet decreased nonhaem iron 
and bleomycin-detectable iron in the 
kidney

11,73,75,94,95, 
129

Glomerulopathy   Yes Iron-deficient diet prevented an increase in 
urinary iron excretion and in tubular 
nonhaem iron content in a mouse model 
of passive Heymann nephritis

3,14,71,77,81, 
106

Ischaemia–
reperfusion injury

 Yes Administration of deferoxamine decreased, 
and infusion of iron increased damage and 
oxidative stress in a model of ischaemia–
reperfusion injury to the kidney

15,19,61,82,83, 
110

Human studies 

Haem-related 
disease

  Yes Urine alkalinization not effective 1,17,53,64–68

Systemic iron 
overload

 Yes Iron chelators (in thalassaemia) 63,65,68,69,84, 
86,87,94,95

Glomerulopathy  Yes Iron chelators and urine alkalinization 3,17,24,25,70, 
102–105,108

Ischaemia–
reperfusion injury

NA NA Indirect NA 9

More detailed findings (including the methods used) are given in Supplementary Tables 1–4 online. Abbreviations: , increased; NA, not available.
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of the glomerular filtrate can potentially decrease the 
rate of iron dissociation from proteins and, therefore, 
decrease the reactivity of ferryl (Fe4+-containing) haem 
proteins; however, a clear benefit from alkalinization in 
preventing kidney injury has yet to be demonstrated.1 
Macroscopic haematuria associated with IgA nephro
pathy can be ameliorated by steroids, owing to their anti-
inflammatory properties, and these agents are, therefore, 
a potential treatment for patients with AKI; however, their 
efficacy needs to be validated in robust clinical trials.16,17 
Alternatively, iron could be removed from the kidney 
by blocking its reabsorption in renal tubules. Dogs with 
decreased expression of cubilin at the apical surface of 
epithelial cells in the proximal tubules and megalin- 
knockout mice show increased urinary transferrin excre-
tion.113 Furthermore, megalin-knockout mice exhibited 
increased urinary NGAL19 and hepcidin114 excretion. 
This increased urinary excretion of transferrin, NGAL and 
hepcidin suggests increased urinary iron excretion.102,104

The calcium channel blocker, nifedipine, increases 
urinary iron excretion in mice by an unknown mecha-
nism115 and decreases iron loading in the kidney in mice 
and rats fed an iron-enriched diet.115,116 Nevertheless, 
increased urinary iron excretion, which was first shown in 
mice, has to date not been reproduced either in humans, 
or animal models of iron overload.116 Furthermore, a role 
for intracellular calcium in mediating these beneficial 
effects on kidney iron overload has not been reported. 
To prevent iron reuptake in the renal tubules, conven-
tional iron chelators could potentially be used; however, 
these agents often cause tubular dysfunction in patients, 
probably by dramatically decreasing or increasing iron 
levels in the kidney.117–119 Filterable, nonabsorbable iron 
chelators based on endogenous iron carrier proteins are 
potentially more suitable for this purpose than chemical iron- 
chelating agents. For example, a patent has been granted 
for the use of mutant NGAL proteins as novel urinary 
iron chelators.23 Furthermore, basolateral iron export 
from renal tubular cells could be promoted by inducing 
upregulation of the expression of basolateral iron exporters 
ferroportin and FLVCR. Upregulation of the basolateral 
secretion of ferritin or treatment with a haemopexin- 
based protein, which could compensate for the dimin-
ished circulating haemopexin levels in patients with severe 
haemolysis, could also decrease iron levels. Iron export via 
ferroportin and FLVCR may also be induced in interstitial 
macrophages. Administration of agents that mimic endo
genous proteins might enable the kidney to regulate its 
iron-handling functions and avoid excessive iron mobili-
zation. Finally, treatment with antioxidants might decrease 
iron-induced tissue injury resulting from oxidative stress.

In practice, successful treatment of iron-induced kidney 
injury and systemic iron overload depends on a number 
of factors. The diseases and mechanisms discussed in this 
Review highlight the variety of causes and complexity of 
iron-induced kidney injury. In addition, progression of 
the primary disease that is causing kidney injury might 
contribute to the observed range of iron-induced injury 
phenotypes.14 Furthermore, multiple independent routes 
of iron uptake and utilization are thought to exist, the 

disruption of which might induce various disease pheno-
types.53 Some treatments, therefore, might not be suitable 
for specific disease phenotypes, since a change in the supply 
of iron via a given route might induce unwanted iron over-
load or depletion via another pathway (for instance, altered 
cellular iron handling could result in mitochondrial iron 
overload). Consequently, prevention and treatment of 
iron-induced kidney injury might require customized iron 
removal or relocation methods. Detailed knowledge of iron  
metabolism in the kidney is, therefore, necessary.

Although this Review underlines the potential role of 
iron in kidney injury, it remains to be proven whether 
targeting iron levels will offer clinically relevant ben-
efits. Some findings, however, suggest that iron chelation 
may indeed have clinically relevant effects. Treatment 
with the divalent metal chelator ethylenediaminetetra
acetic acid (EDTA) improved the estimated glo-
merular filtration rate in patients with chronic renal 
insufficiency (treated patients experienced an increase of  
2.1 ml/min/1.73 m2 versus a decline of 6.1 ml/min/1.73 m2 
in nontreated patients),85 an effect other researchers attrib-
uted to iron chelation.3 In another study, administration of 
the iron chelator, deferiprone, was associated with a 47% 
reduction in proteinuria (a decrease from 4.0 to 2.2 g per 
day in patients with nondiabetic glomerular nephropathy), 
and an even more striking reduction in albuminuria (from 
187 mg/g creatinine to 25 mg/g creatinine) in patients with 
diabetic nephropathy.24 Since proteinuria is the major pre-
dictor of progression of kidney disease and any reduction 
in proteinuria occurs in parallel with a reduction in the 
rate of decline in glomerular filtration rate, the results of 
these studies provide an argument for a beneficial effect 
of iron as a target for therapy.

Conclusions
In this Review, we have shown that iron has an important 
role in kidney injury and in the progression of kidney 
disease. We therefore hypothesize that reducing excessive 
iron levels in the kidney might contribute to the preven-
tion of ESRD. Improved insights into iron metabolism 
in the kidney are needed, which requires research to 
provide leads for the development of novel diagnostic 
markers, as well as specific, localized and effective thera-
peutic approaches for the prevention and treatment of 
iron-induced kidney injury.

Review criteria 

This Review was based on a search of the PubMed, 
Web of Science, Scopus and European patent office 
databases, as well as abstracts presented at key 
conferences. Search terms included “chronic kidney 
disease”, “CKD”, “acute kidney injury”, “AKI”, “iron-
induced kidney injury”, “haemolysis”, “rhabdomyolysis”, 
“haeme”, “ischaemia”, “iron overload”, “kidney iron 
handling”, “renal iron handling”, “iron transport”, “urinary 
marker”, “haemoglobinuria”, “haematuria”, “urinary iron”, 
“hepcidin”, “neutrophil gelatinase-associated lipocalin”, 
and “iron chelation”. The reference lists of relevant 
publications and related articles were searched for further 
articles. No date restrictions were placed on the searches.
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