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Abstract

Facioscapulohumeral dystrophy (FSHD) is a progressive muscular dystrophy caused by decreased epigenetic repression of
the D4Z4 macrosatellite repeats and ectopic expression of DUX4, a retrogene encoding a germline transcription factor
encoded in each repeat. Unaffected individuals generally have more than 10 repeats arrayed in the subtelomeric region of
chromosome 4, whereas the most common form of FSHD (FSHD1) is caused by a contraction of the array to fewer than 10
repeats, associated with decreased epigenetic repression and variegated expression of DUX4 in skeletal muscle. We have
generated transgenic mice carrying D4Z4 arrays from an FSHD1 allele and from a control allele. These mice recapitulate
important epigenetic and DUX4 expression attributes seen in patients and controls, respectively, including high DUX4
expression levels in the germline, (incomplete) epigenetic repression in somatic tissue, and FSHD–specific variegated DUX4
expression in sporadic muscle nuclei associated with D4Z4 chromatin relaxation. In addition we show that DUX4 is able to
activate similar functional gene groups in mouse muscle cells as it does in human muscle cells. These transgenic mice
therefore represent a valuable animal model for FSHD and will be a useful resource to study the molecular mechanisms
underlying FSHD and to test new therapeutic intervention strategies.
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Introduction

Each unit of the D4Z4 macrosatellite repeat contains a copy of

the DUX4 retrogene that encodes a double homeobox transcrip-

tion factor [1–4]. DUX4 is highly expressed in the germline and

epigenetically repressed in most somatic tissues, including skeletal

muscle [5,6]. Recently, we and others showed that facioscapulo-

humeral dystrophy (FSHD), a muscular dystrophy predominantly

affecting facial and upper extremity muscles [7], is caused by

D4Z4 repeat contraction-dependent (FSHD1) or –independent

(FSHD2) chromatin relaxation in somatic tissues and low levels of

DUX4 mRNA expression in skeletal muscle [5,8–10]. On normal

chromosomes 4, the D4Z4 repeat array varies between 11–

100 units, while in FSHD1 one of the chromosomes 4 has an array

of 1–10 units associated with a less repressive D4Z4 chromatin

structure [11–13]. In FSHD2, the D4Z4 repeats are not

contracted and D4Z4 chromatin relaxation can be observed on

all arrays [8]. The low abundance of DUX4 mRNA in FSHD

muscle tissue represents a variegated pattern of expression with

abundant DUX4 protein expressed in a small number of nuclei

[6,14], presumably due to an occasional escape from the inefficient

epigenetic repression. The polyadenylation (pA) site for DUX4

mRNA is in the DNA sequence immediately telomeric to the last

D4Z4 repeat unit and chromosome 4 haplotypes non-permissive

for FSHD contain inactivating polymorphisms at the pA site,

explaining the haplotype-specificity of this disease [2,15,16].

When expressed in skeletal muscle, the DUX4 transcription

factor activates genes normally expressed in the germline,

essentially inducing a stem cell program in the postmitotic muscle

cell. In addition, DUX4 binds and transcriptionally activates

endogenous retrotransposons and simultaneously blocks the innate

immune response, at least in part through the transcriptional

activation of a beta-defensin [5].

The parental gene to primate DUX4 was necessarily expressed in

the germline, since germline retro-transposition was necessary for it

to enter the primate lineage. As a retrogene, however, DUX4 was
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dissociated from its evolved enhancers, promoters, and pA site,

suggesting that the DUX4 retrogene adopted independently evolved

mechanisms to regulate its developmental expression [17]. One

hypothesis is that the repression of DUX4 transcription in most

somatic tissues relies on an independently evolved mechanism of

repeat-mediated silencing. If true, then it is to be expected that

somatic DUX4 silencing is an evolutionary conserved mechanism

that can be recapitulated in other species such as mouse.

No studies have yet addressed whether the D4Z4 repeat array

and its flanking sequence is sufficient to accurately reproduce the

developmental pattern of DUX4 expression, nor whether the

FSHD mutation can recapitulate the decreased epigenetic

repression and variegated DUX4 expression in a mouse model.

The latter question is particularly relevant as both primates and

rodents have lost the parental copy of the DUX4 retrogene [18],

but only primates have DUX4 integrated in the context of a D4Z4

macrosatellite repeat array and it is not known whether integration

of the human array in mice can – at least in part – recapitulate the

molecular characteristics of FSHD.

Here we report the generation and molecular characterization

of two transgenic mouse lines: one carrying a D4Z4 genomic

region from a contracted pathogenic FSHD1 allele and one

carrying a normal sized, non-pathogenic allele. Our data suggest

that somatic epigenetic silencing of DUX4 indeed is an evolution-

ary conserved mechanism and that contracted D4Z4 repeat arrays

are silenced less efficiently, leading to a variegated expression

pattern of DUX4 protein in skeletal muscle nuclei.

Results

Generation of transgenic mouse models
To determine whether the D4Z4 repeat with the DUX4 retrogene

contains the regulatory elements necessary for germline expression

and copy-number dependent somatic epigenetic repression, we

generated two transgenic mouse lines. One line carries an EcoRI

fragment derived from the lambda-42 (L42) clone of an FSHD1

allele (Figure 1A). This allele is of the FSHD-permissive 4A161

background, containing the DUX4 pA signal, but lacking the more

downstream exons 6 and 7 [6], and contains two-and-a-half copies

of the D4Z4 unit and flanking sequences (herein referred to as

D4Z4-2.5 mice) [11]. Integration of the L42 clone at mouse

chromosome 17 was confirmed by conventional and COBRA-

FISH analyses and in total 4 copies of the EcoRI fragment were

integrated as evidenced by MLPA analysis (Figure 1B–1D). The

second transgenic mouse line was generated using two overlapping

PAC clones, containing the upstream FRG1 and FRG2 genes, an

array of 12.5 D4Z4 repeat units and flanking sequences, also

harboring the FSHD-permissive 4A161 haplotype and lacking

exons 6 and 7 (herein referred to as D4Z4-12.5 mice) (Figure 1E)

[6]. Recombination and single integration of the two PAC clones at

chromosome 2 was confirmed by fiber-FISH, COBRA-FISH and

MLPA analyses (Figure 1D, 1E, 1F). Thus, D4Z4-2.5 mice have

D4Z4 repeat lengths that cause FSHD in humans, whereas D4Z4-

12.5 mice have an array length sufficient to maintain epigenetic

silencing of DUX4 in somatic tissue in humans.

DUX4 expression in transgenic mice
We have previously reported that human DUX4 is expressed in

stem cells of the male germline [6]. In both D4Z4-2.5 and D4Z4-

12.5 mice abundant levels of DUX4 mRNA were observed in

germ line tissues, most notably in testis (Figure 2). In D4Z4-2.5

mice, in situ hybridizations with specific 59 and 39 DUX4 probes

revealed DUX4 transcripts in cells near the periphery of the

seminiferous tubules (Figure S1) consistent with spermatogonia

and primary spermatocytes, as has been reported for normal

human testis [6]. In D4Z4-2.5 mice, abundant DUX4 mRNA

levels were also detected in ES cells and early developmental

stages, which were chosen based on timing of key myogenic

developmental waves, showing a gradual decline during develop-

ment (Figure 2) [19–22]. We also detected DUX4 mRNA in

D4Z4-12.5 embryos, albeit at lower abundance, and in ES cells

(Figure 2; Figure S3).

We selected a panel of somatic tissues, including several skeletal

muscles which are typically affected in FSHD [7,23]. Reproduc-

ible levels of DUX4 mRNA were detected in all analyzed skeletal

muscles of adult D4Z4-2.5 mice, including affected muscles of the

limbs, trunk and head (Figure 3A; Figure S2). These levels were

low and varied considerably between gender-matched littermates,

as judged from semiquantitative analysis. Expression of DUX4 in

non-muscle tissue could be expected as the candidate ortholog

Dux is found to be expressed in cerebellum tissue [1]. Indeed,

DUX4 transcripts were detected in non-muscle tissues, including

cerebellum but with the exception of liver, where only in one

mouse DUX4 could be detected once (Figure 3B; Figure S3). In

D4Z4-12.5 mice, DUX4 transcripts could only be reproducibly

detected in the tibialis anterior and pectoralis muscles, whereas all

other somatic tissues did not show reproducible DUX4 expression

(Figure 2A–2B; Figures S2 and S3). This suggests that, as seen in

humans [5,9], DUX4 is expressed variably in skeletal muscle of

our transgenic mice and that decreased D4Z4 copy number

contributes to inefficient DUX4 repression in somatic tissue,

leading to a higher probability of expression.

In human FSHD muscle cell cultures, inefficient DUX4

repression results in occasional nuclei expressing abundant amounts

of DUX4. Therefore, we tested the expression of human DUX4 in

D4Z4-2.5 and D4Z4-12.5 satellite-cell-derived myoblasts, both by

(quantitative) RT-PCR (Figure 3C–3D) and by immunofluorescent

labeling (Figure 4). In satellite-cell-derived myoblasts and differen-

tiated myotube cultures obtained from D4Z4-12.5 mice, DUX4

transcripts and DUX4 protein could not be detected (Figure 3C and

data not shown). In contrast, in satellite-cell-derived myoblasts of

D4Z4-2.5 mice, DUX4 transcripts and sporadic DUX4-positive

Author Summary

Facioscapulohumeral dystrophy (FSHD) is a progressive
muscle disorder that is associated with contraction and
chromatin relaxation of the D4Z4 macrosatellite repeat on
chromosome 4q. Each unit of the repeat contains a copy
of the primate-specific DUX4 retrogene, encoding a
germline transcription factor that is repressed in somatic
tissue. In FSHD, somatic repression of the DUX4 gene is
compromised, leading to a variegated expression pattern
of DUX4 in muscle cells. The complex (epi)genetic
etiology of FSHD has long hampered the generation of
a faithful animal model, and thus far the role of FSHD
candidate genes has only been studied in model
organisms by overexpression approaches. Here we pres-
ent two transgenic mouse models containing either
patient- or control-sized D4Z4 repeats. In our mice, the
regulation of the FSHD locus is preserved in both lines,
and only in the disease model somatic derepression and
variegated expression of DUX4 is observed. These mice
thus reflect many aspects of the complex regulation of
DUX4 expression in humans. These models may therefore
become valuable tools in understanding the in vivo
regulation and function of DUX4, its role in FSHD, and the
evaluation of therapeutic strategies.

FSHD Mouse: Conserved Epigenetic Regulation of D4Z4
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nuclei could be observed. Remarkably, all sporadic DUX4 positive

nuclei were Myog negative and did not fuse into myotubes, as

evidenced by co-staining with Myosin heavy chain (Figure 4A–4B).

These data suggest DUX4-mediated inhibition of myoblast

differentiation, as has been shown previously in zebrafish [24].

Total expression levels and frequency of DUX4-positive nuclei

increased by 2–4 fold upon differentiation into myotubes (Figure 3D

and Figure 4D). Satellite-cell-derived myoblasts obtained from fast-

twitch (EDL) and slow-twitch (soleus) fibers from D4Z4-2.5 mice

showed the same DUX4 protein expression pattern (data not

shown). Of interest, interstitial fibroblasts obtained from collagenase

digested D4Z4-2.5 EDL and soleus muscle did not express DUX4

transcripts (Figure 3C), indicating that the expression of DUX4 in

the D4Z4-2.5 EDL and soleus is muscle cell specific.

Altogether, these data show that both the RNA and protein

expression pattern of DUX4 in our D4Z4-2.5 mouse model

recapitulates several features of FSHD. DUX4 is more efficiently

silenced with increasing D4Z4 copy number in our two mouse

models, thereby forming a paradigm for the difference between

human FSHD1 patients and healthy controls.

Chromatin structure of D4Z4 in transgenic mice
Next, we studied the chromatin structure of the integrated

D4Z4 repeats in order to determine whether the observed DUX4

expression patterns correlate with epigenetic differences in the

FSHD and control transgenic loci. At control alleles in humans,

D4Z4 is characterized by high CpG methylation levels and the co-

occurrence of histone 3 lysine 9 trimethylation (H3K9me3) and

histone 3 lysine 4 dimethylation (H3K4me2). FSHD alleles are

epigenetically characterized by reduced D4Z4 CpG methylation

and a reduced H3K9me3:H3K4me2 ratio, referred to as the

chromatin compaction score (ChCS) [12,25–28]. We assessed

DNA methylation and the ChCS in the two mouse lines at

indicated sites within the transgenic loci (Figure 5A). DNA

methylation analysis using methylation-sensitive restriction en-

zymes followed by Southern blotting (representative blot shown in

Figure 5B) showed that both the proximal and internal D4Z4 units

of the array were highly methylated (60–90%) in gastrocnemius

muscle of D4Z4-12.5 mice (Figure 5C), similar to unaffected

individuals. In gastrocnemius muscle of D4Z4-2.5 mice, the D4Z4

units were relatively hypomethylated (10–20%; p,3.1025)

Figure 1. Integration site and copy number of D4Z4-2.5 and D4Z4-12.5 constructs in the mouse genome. A) Schematic draw of the L42
EcoRI fragment used to generate the D4Z4-2.5 mouse line B) Metaphase spread of D4Z4-2.5 fibroblasts co-stained with dapi and the CY3 labeled L42
probe shows integration at a single pair of chromosomes C) COBRA-FISH analysis on D4Z4-2.5 fibroblast metaphase spreads probed with
biotinylated-L42 fragments shows integration of L42 on chr17; D) Detection of copy number of the integrated fragments in both mouse models by
MLPA analysis. The probe mix contained three probes specific for wild type alleles, one probe designed against the human p13E-11 region and one
probe against D4Z4 E) Schematic draw of PAC clones used to generate the D4Z4-12.5 mouse; F) COBRA-FISH analysis on D4Z4-12.5 fibroblast
metaphase spreads probed with a biotinylated PAC clone shows integration of the PAC clone on chr2; G) Fiber-FISH analysis of D4Z4-12.5 fibroblasts.
Both PAC clones, labeled and hybridized to DNA fibers, were shown to be recombined during integration into the mouse genome.
doi:10.1371/journal.pgen.1003415.g001

Figure 2. Quantative expression analysis of DUX4 transcripts from the telomeric D4Z4 unit in D4Z4-12.5 and D4Z4-2.5 mice.
Quantitative RT-PCR data of DUX4 in D4Z4-2.5 embryonic stem cells (ES), in complete embryos of day E8.5, 9.5, 13,5 and 16.5, representing key
myogenic developmental stages, and in adult ton = tongue, testis and in complete embryo day 13,5 and testis tissue of D4Z4-12.5 mice. Expression is
normalized to the mouse reference gene Hprt and plotted in log10 scale. Error bars indicate SEM of the mean (n = 2–5).
doi:10.1371/journal.pgen.1003415.g002
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(Figure 5C), similar to FSHD patients and in concordance with the

observed difference in DUX4 expression between the two mouse

lines (Figure 3A). Similar results were obtained for quadriceps,

heart, brain and liver of both transgenic lines (data not shown).

Bisulphite DNA methylation analysis of different regions within

D4Z4 in embryonic and adult tissues showed that D4Z4

hypomethylation in D4Z4-2.5 mice is indeed stable and uniform

between tissues (Figure S4). Similar analysis in 10 month old mice

showed that this epigenetic signature is stable with age (data not

shown). Chromatin immunoprecipitation (ChIP) analyses in

mouse fibroblasts and myoblasts showed a relative decrease in

ChCS in D4Z4-2.5 compared to D4Z4-12.5 mice (Figure 5D and

Figure 3. Analysis of transcriptional activity of DUX4 in a panel of tissues of D4Z4-2.5 and D4Z4-12.5 mice. DUX4 transcripts measured
in 7 weeks old D4Z4-2.5 and D4Z4-12.5 mice (n = 3) in A) muscle tissue: Hea = Heart, Dia = Diaphragm, Pec = Pectoralis Mas = Masseter,
Orb = Orbicularis oris, Qua = Quadriceps, TA = Tibialis anterior, Gas = Gastrocnemius, Ton = Tongue; and B) somatic non-muscle and germline tissue:
Tes = Testis, Ute = Uterus, Ova = Ovarium, Eye, Cer = Cerebellum, Spl = Spleen, Kid = Kidney, Liv = Liver C) DUX4 transcripts measured in satellite-cell-
derived myoblasts, myotubes and interstitial fibroblast extracted from EDL muscle of D4Z4-12.5 and D4Z4-2.5 transgenic mice. D) Quantitative RT-
PCR data of DUX4 expression in D4Z4-2.5 myoblasts (n = 2) and myotubes (n = 2) 48 hours after induction of differentiation. Errors indicate SEM of the
plotted mean.
doi:10.1371/journal.pgen.1003415.g003
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data not shown), similar to what was seen in patient derived

human skin fibroblasts and primary myoblasts when compared to

control subjects [28]. Taken together, ChIP and DNA methylation

analyses indicate a relative chromatin relaxation of the D4Z4

repeats in D4Z4-2.5 mice compared to D4Z4-12.5 mice,

concordant with the observed DUX4 expression pattern, thereby

Figure 4. Bursts of DUX4 protein expression in differentiating D4Z4-2.5 muscle cells. Satellite-cell-derived myoblasts extracted from single
EDL fibers of D4Z4-2.5 mice were differentiated for 12, 24 and 48 hrs and co-stained for DUX4 and Myog or for DUX4 and Myosin heavy chain. A)
Representative DUX4 and Myog IF staining images of D4Z4-2.5 myotubes, 24 hrs after induction of differentiation, indicate absence of Myog in DUX4
expressing cells. B) Representative DUX4 and Myosin HC IF staining images of D4Z4-2.5 myotubes, 24 hrs after induction of differentiation, indicate
exclusion of DUX4 positive cells from newly formed myotubes. Both DUX4 (panel C) and Myog (panel D) positive nuclei in relation to total amount of
nuclei (DAPI staining) were counted during the differentiation process. C) Approximately 2:1000 nuclei showed nuclear DUX4 staining. D) The
percentage of Myog positive nuclei revealed an increase in differentiation committed cells with time. After 48 hours of differentiation almost all
myoblasts are committed to differentiation. Error bars indicate stdev of the plotted mean (n = 7); *p,0,05 compared to t = 12 hrs; #p,0,05 compared
to t = 24 hrs.
doi:10.1371/journal.pgen.1003415.g004

Figure 5. Epigenetic structure of D4Z4 in D4Z4-2.5 and D4Z4-12.5 mice. A) Schematic draw of the regions within D4Z4 where CpG and
histone methylation were interrogated. B) Representative figure of a methylation sensitive Southern blot assay to quantify DNA methylation levels.
Upon BsaAI digestion, gel separation and blotting, two distinct bands representing the unmethylated and methylated fragment are visualized and
quantified; C) Southern Blot analysis was done using two different methylation sensitive restriction enzymes, BsaAI and FspI, in adult gastrocnemius
muscle tissue of D4Z4-12.5 and D4Z4-2.5 mice. Both probes p13E-11 and D4Z4 were used to measure CpG methylation levels in the most proximal
unit and all units, respectively. The methylation percentages of the two different CpG sites are plotted. Error bars indicate stdev of the plotted mean
(n = 4 D4Z4-12.5 vs n = 5 D4Z4-2.5, *p,0.001). D) Histone methylation levels of D4Z4 in transgenic D4Z4-12.5 and D4Z4-2.5 embryonic (MEFs) and
adult fibroblasts. Chromatin was precipitated with H3K4me2, H3K9me3 and control IgG antibodies. Precipitated DNA was amplified with qPCR
primers amplifying the transcription start site of DUX4. Levels of H3K9me3 in relation to H3K4me2 have been plotted as the chromatin compaction
score (ChCS).
doi:10.1371/journal.pgen.1003415.g005
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accurately modeling the difference between FSHD patients and

control individuals.

Genic consequence of DUX4 expression in mouse muscle
cells

In human muscle cells, DUX4 activates germline and early stem

cell programs while suppressing several genes involved in the

innate immune response [5]. To assess the consequence of ectopic

DUX4 expression on global gene expression in mouse muscle

cells, proliferating C2C12 cells were transiently transfected with a

DUX4 expression vector (pCS2-DUX4) or, as a control, the

empty pCS2 control vector [5]. After 24 hours, DUX4 expressing

cells were enriched by FACS sorting and global gene expression

changes were mapped by performing array analysis. We identified

183 significantly deregulated genes (2-fold change and

FDR,0.05), of which 142 genes showed up-regulation and 41

genes showed down-regulation (Table S1). GO pathway analysis

was hampered by the small number of deregulated genes, but

manual inspection of the gene list revealed a considerable overlap

with the deregulated genes in human myoblasts expressing DUX4

[5]. Out of the 183 genes regulated by DUX4 in mouse C2C12

cells, 43 (23%) were previously determined to be regulated by

DUX4 in human muscle cells, of which 39 changed in the same

direction (Table S2).

As in human cells, DUX4 regulated a number of germline-

specific, early stem cell and innate immune response genes in the

mouse C2C12 cells (Table 1). Mouse orthologs of human genes

regulated by DUX4, such as Zscan4c and at least three orthologs of

the PRAMEF gene family (although poorly annotated in mice)

showed transcriptional activation in the presence of DUX4

(Table 1; Table S1; Figure S5). Immune modulation by DUX4

in human muscle involves a number of innate immunity related

genes. Also in C2C12 cells, DUX4 regulates at least eight genes

related to the innate immune response, for example Wfdc3,

encoding a secreted peptide proposed to have antimicrobial

activity [5,29]. Using quantitative RT-PCR, we validated expres-

sion levels of DUX4 and a selection DUX4 regulated genes in

DUX4 transfected C2C12 muscle cells (Figure 6A–6D). We

confirmed deregulation of genes which were switched on by

DUX4 (panel A), genes which are deregulated in both human and

mouse (panel B) and genes implicated in germ cell biology and

early development (panel C). Deregulated genes linked to innate

immunity (panel D) showed activation upon transfection, which

was dampened in the presence of DUX4, as was shown in similar

experiments with human myoblasts [5]. Altogether, ectopic

expression of DUX4 in C2C12 cells results in deregulation of a

gene set which shows overlap with DUX4 responsive genes and

gene sets in human myoblasts.

DUX4 can act as a transcriptional activator in C2C12
To identify genes in the mouse genome that are directly

regulated by DUX4, C2C12 myoblasts were transiently transfect-

ed with pCS2-DUX4 and subjected to ChIP-seq analysis. We

identified a total of 2784 peaks (P-value,1025, FDR 0.02) and

identified a DUX4 consensus binding sequence, highly similar to

what was found in human muscle cells (Figure S5A and previously

Table 1. Deregulated genes in response to DUX4 expression in C2C12, linked to functional groups shown to be deregulated in
human myoblasts upon DUX4 expression.

Germline and early development logFc FDR

Gm397 (Zscan4c) 1,74 1,07E-12

Trim36 1,75 1,44E-13

Pvrl3 1,15 2,01E-10

Psme4 1,08 1,65E-06

Lmo4 1,96 5,88E-12

Id1 21,21 1,08E-09

Id3 21,17 2,33E-09

Immune response logFc FDR

Wfdc3 4,44 1,00E-19

Ankrd1 22,06 1,53E-11

Ccl7 21,86 1,61E-11

Sema7a 21,61 5,11E-10

Sema4b 21,22 1,03E-08

Cxcl1 21,56 3,55E-13

Irf1 21,47 1,67E-10

Socs3 21,14 3,37E-08

PRAMEF orthologues logFc FDR

Gm13040* 2,33 1,54E-14

Gm13043* 2,31 3,55E-13

BC080695* 2,03 5,87E-13

Gm16367 1,12 3,06E-09

Gm13119 2,21 7,84E-17

*Genes in cluster, possible duplications: .97% sequence homology.
doi:10.1371/journal.pgen.1003415.t001
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described [5]), with a strong conservation of the core TAA-

YYYAATCA double homeobox binding motif (Figure S6A).

The genomic distribution of the identified peaks showed a slight

bias for promoter sequences, as is seen for transcription factors,

but not for DUX4 in human myoblasts (Figure S7) [5]. Next we

identified DUX4 regulated genes (log2FC.[.58], FDR,0.05)

that have a DUX4 binding site within a CTCF insulator

domain surrounding their transcriptional start site (TSS). In

this way, 91 potential direct DUX4 target genes were

identified, of which 10 genes showed DUX4 enrichment within

a 22 to +2 kb window from their TSS (Table S3). To validate

the direct effect of DUX4, we selected 4 of these 10 direct

target genes and validated their expression levels by qRT-PCR

(Figure 6E). Nhlrc3 and 2810046L04Rik are adjacent and

transcribed in opposite direction, indicating DUX4 might

enhance expression from both promoters. To confirm that

DUX4 indeed functions as a transcriptional activator at these

sites, the DUX4 consensus binding site found at

2810046L04Rik and Nhlrc3 was cloned in both orientations

upstream of a luciferase reporter gene and it significantly

induced expression of the reporter construct when co-

transfected with DUX4 (Figure S8). Taken together, we find

evidence that DUX4 can act as a transcriptional activator in

mouse muscle cells as it does in human muscle cells. In

addition, we identify direct DUX4 targets that might serve as

suitable biomarkers in our D4Z4-2.5 mouse model of FSHD.

Figure 6. Validation of expression levels of DUX4 deregulated genes in C2C12 myoblasts. A set of deregulated genes obtained from
expression array analysis was confirmed by qRT-PCR. Expression analysis of A) DUX4 and genes that are switched on by DUX4 in C2C12 cells, B) genes
that respond to DUX4 in humans and mice, C) germ line and early development associated genes, D) innate immunity genes, untr = untransfected
control, transfection activates innate immunity which is dampened by DUX4 expression, E) genes directly regulated by DUX4 which were identified
by ChIP-seq and F) activated L1 and MaLR retrotransposons. For panel A and Mte2b in panel F, DUX4- values refer to the DUX4 depleted FACS sorted
fraction, enabling proper normalization of genes switched on upon DUX4 expression. In all other panels DUX4- refers to pCS2 transfected cells. All
expression levels are relative to Cyclophillin-B and normalized to DUX4- or wt conditions. Error bars indicate SEM of at least triplicate measurements,
asterisks indicate p-values,0.05 based on a student’s t-test (panels A, B, C, E & F) or one way ANOVA (panel D) analysis.
doi:10.1371/journal.pgen.1003415.g006
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Non-genic consequence of DUX4 expression in mouse
muscle cells

In human cells, DUX4 has been shown to bind and activate

retrotransposons, mainly of the MaLR type [5]. Our ChIP-seq

analysis showed that DUX4 binds to several different types of

retrotransposons also in the mouse genome. Both uniquely

mappable (Table S4) and non-unique sequence reads (Table S5)

show enrichment for DUX4 binding at LTR, LINE and, to a

lesser extent, SINE retroelements. Quantitative RT-PCR analysis

supports an upregulation of transcripts emanating from LINE-L1

and MalR (Mte2b) retrotransposons in the presence of DUX4

(Figure 6F). Like in humans, the DUX4 core TAAYYYAATCA

binding motif is present in each repetitive element, although

flanking nucleotides show repeat specific differences (Figure S6B–

S6C) [5]. We conclude that under these experimental conditions

DUX4 binds and transcriptionally activates repetitive elements in

the murine genome, similar to its activity in the human genome.

DUX4 responsive genes in D4Z4-2.5–derived muscle cell
cultures, adult skeletal muscle, and embryos

Since DUX4 expression levels in adult D4Z4-2.5 skeletal muscle

are low and only a subset of myonuclei show DUX4 protein

immunoreactivity in the D4Z4-2.5 satellite-cell-derived myoblast

cultures, we examined whether we could observe changes in the

expression levels of DUX4 responsive genes identified by ectopic

expression of DUX4 in C2C12 cells. In a set of five D4Z4-12.5

and six D4Z4-2.5 muscle cell cultures we found significant

deregulation of Wfdc3 (Figure 7). In tongue muscle of D4Z4-2.5

mice, where we observed relative robust DUX4 transcript levels,

again Wfdc3 levels were found to be significantly increased in

D4Z4-2.5 adult mice as compared to D4Z4-12.5 adult mice

(Figure 7). Since we observed relatively robust levels of DUX4

during embryogenesis, we also investigated whether we could

observe the activation of Wfdc3 during this stage. In D4Z4-2.5

embryos at day E9.5 we observed robust expression of DUX4

(Figure 3) and concordantly, Wfdc3 mRNA levels increased by 2-

fold compared to wildtype (WT) controls (p = 0,002) (Figure S9).

Together these data showed that despite the low and variable

levels of DUX4 itself, Wfdc3 showed reproducible upregulation in

D4Z4-2.5 cells and tissues, which makes it a suitable candidate for

serving as a biomarker of DUX4 activity.

Phenotype of D4Z4-2.5 mice
The phenotype of FSHD patients shows high inter- and

intrafamilial variation. Next to the progressive muscle weakening,

hearing loss and retinopathy are frequently observed extramus-

cular features [30]. The most obvious phenotype in our D4Z4-2.5

mice is the development of eye abnormalities in approximately

54% of the D4Z4-2.5 mice with an onset of around 8–12 weeks of

age (Figure S10). Although variable, the mice develop a

progressive keratitis of unknown etiology, possibly reflecting

incomplete eyelid closure or another yet to be determined cause.

The overall morphology and histology of the limb and some

head muscles appeared normal. Inducing mild muscle damage by

down-hill running (eccentric activation) did not induce measurable

muscle weakness and damage in D4Z4-2.5 mice. Grip strength,

creatine kinase levels, Evan’s blue dye uptake and proportion of

central nuclei were all similar between WT and D4Z4-2.5 mice

(Table S6). In addition, expression of myogenic and immunogenic

markers shown to be deregulated in many mouse models for

muscular dystrophies [31], were not changed in muscle of the

D4Z4-2.5 mice (Table S6). Inducing muscle regeneration by

cardiotoxin injection, also did not cause significant differences with

respect to regeneration capacity between WT and D4Z4-2.5 mice.

At 10 and 28 days after treatment, we examined the percentage of

central nuclei, distribution of fiber sizes and fibrotic tissue

formation. Only in the formation of fibrotic tissue, a trend

towards delayed regeneration was observed as in D4Z4-2.5 a slight

increase was observed at day 28 (Table S6 and data not shown).

Figure 7. Expression of the DUX4 induced Wfdc3 gene in myoblasts and tongue muscle of D4Z4-2.5 mice. Relative expression of Wfdc3
in satellite-cell-derived myoblast cultures from single EDL fibers (D4Z4-2.5: n = 6 and D4Z4-12.5: n = 5) and tongue tissue isolated from 7–8 weeks old
mice (D4Z4-2.5: n = 6 and D4Z4-12.5: n = 6). Expression levels are relative to Cyclophilin-B and Hprt and normalized to levels in D4Z4-12.5 mice,
plotted as the mean 6 SEM. Asterisks indicate p,0.05 according to a independent two-tailed student’s t-test.
doi:10.1371/journal.pgen.1003415.g007
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Discussion

DUX4 has been implicated in FSHD pathology based on its

inappropriate expression in skeletal muscle of patients with FSHD

[6,16,17]. DUX4 encodes a double homeobox transcription factor

which activates germline, early stem cell and other programs in

FSHD muscle, eventually leading to cell death [5,32,33]. FSHD

has a complex etiology: insufficient epigenetic silencing caused by

D4Z4 contraction in FSHD1 or heterozygous mutations in the

chromatin modifier SMCHD1 in FSHD2 patients results in the

inappropriate expression of the retrotransposed DUX4 gene in

skeletal muscle [8,9,14,25,27,34].

In this study, we have established mouse models that

recapitulate several important aspects of FSHD and control

individuals with respect to the aforementioned genetic and

epigenetic features of the D4Z4 macrosatellite repeat array,

encoding the DUX4 gene. Like in FSHD and control individuals,

DUX4 is expressed in the germline of D4Z4-2.5 and D4Z4-12.5

mice and, like in FSHD, D4Z4-2.5 mice show low and variable

DUX4 expression levels in somatic tissue. In FSHD patients, there

is little information about somatic expression of DUX4 in non-

muscle tissue, but our studies in mice suggest that derepression of

DUX4 is not limited to skeletal muscle, consistent with the

observed body-wide hypomethylation of D4Z4. In our D4Z4-12.5

mouse model we observe more efficient somatic repression of the

DUX4 locus, where DUX4 can only be reproducibly detected in

pectoralis and tibialis anterior muscle, typically affected in FSHD.

Excitingly, the D4Z4-2.5 mouse model also reproduces the

characteristic variegated expression pattern of DUX4 protein in

FSHD muscle cell cultures: only a small sub-population of

myonuclei express abundant levels of the DUX4 protein.

Thus far, several animal models over-expressing FSHD

candidate genes have been produced. Some of them focused on

the proximally located FSHD candidate gene FRG1 [35].

Transgenic mice and Xenopus laevis, over-expressing FRG1 either

muscle-specifically or systemically, both demonstrated an abnor-

mal musculature [36–38]. Nevertheless high over-expression of

FRG1 does not reflect the human FSHD expression profile and

FRG1 upregulation in FSHD muscle remains controversial [39–

42]. DUX4 over-expressing models have revealed the robust

toxicity of DUX4 in somatic tissue, as demonstrated by massive

cellular loss and abnormal development [32,33,37,43–45]. In

muscle cells, DUX4 has been shown to cause cell death and

renders myoblasts hypersensitive to oxidative stress [32,33,43].

While these models provide insight into the potential harmful

effect of DUX4 in muscle or organismal development, none of

them take into account the specific endogenous expression pattern

of DUX4 and its related effect.

The mouse models presented here, both carry human genomic

constructs with the FSHD permissive subtelomeric region

necessary for somatic DUX4 expression. Our data strongly

suggests that the transcriptional profile of the DUX4 retrogene

seems to be maintained and follows the pattern observed in

patients and controls. While we can find reproducible evidence of

somatic derepression of DUX4 in adult D4Z4-2.5 mice, including

the variegated pattern of DUX4 positive myonuclei in cell culture,

D4Z4-12.5 mice show more efficient repression of DUX4 in their

somatic tissues. This pattern of DUX4 expression suggests a locus-

intrinsic property of the D4Z4 repeat array, of which the

regulation is conserved between mouse and human muscle.

However, we cannot rule out that some differences between the

two transgenic mouse lines in the expression of DUX4 are the

consequence of different chromatin regulation at the sites of

integration. We should exert some extra caution, since we only

were able to generate one founder line for D4Z4-2.5 after over 450

attempts. Nonetheless, the D4Z4-2.5 mouse model is the first

organismal model that can provide more insights in DUX4

regulation in vivo during development; e.g., why, how and when

are sudden bursts of DUX4 expression in skeletal muscle

regulated. This is particularly relevant since primates have lost

the parental gene that retrotransposed to create the DUX4

retrogene [18]. As it was recently demonstrated that the

detrimental effects of DUX4 expression in mouse muscle can be

reversed by RNA interference [46], our model may also serve well

therapeutic intervention studies targeting DUX4 expression in

skeletal muscle.

The FSHD specific somatic derepression of DUX4 has been

associated with changes in D4Z4 chromatin structure, character-

ized by decreased DNA methylation and a lower ChCS

[12,27,28]. D4Z4-12.5 mice, containing a normal sized D4Z4

repeat array of 12.5 units, show a heterochromatic D4Z4 repeat

structure comparable to human control subjects. D4Z4-2.5 mice,

containing an FSHD1 sized D4Z4 array of two-and-a-half units,

show a more open D4Z4 chromatin structure similar to FSHD

patients. Although we cannot rule out integration-site specific

effects, the CpG methylation and histone marker data of the D4Z4

arrays in both mouse lines support the model that the chromatin

status of this locus is determined by a repeat length-dependent

mechanism and that somatic DUX4 repression is enforced through

an evolutionary conserved mechanism of repeat-mediated silenc-

ing. The most proximal D4Z4 unit displayed lower CpG

methylated than the internal units (Figure 2B and 2D–2E versus

2F–2G), a phenomenon also observed for the D4Z4 array in

humans [25,47]. In addition, we clearly demonstrated differences

in DNA methylation between different CpG dinucleotides within

D4Z4. Thus, even though D4Z4 is integrated at different sites

within a mouse genomic background, its ‘‘human’’ epigenetic

profile seems to be preserved. It will be of interest to study the

conservation of the recently described involvement of the

Polycomb/Trithorax complex in the regulation of D4Z4 and the

transcripts emanating from it [48]. Our mouse model could serve

as a suitable model to further study the specific epigenetic

regulation as analyses are not hampered by the presence of other

homologous repeat arrays or degenerate copies as is the case in

human samples.

DUX4 can act as a transcription factor causing the deregulation

of specific gene programs when ectopically expressed in human

cells [2,5,14]. To better understand if the DUX4 protein can exert

similar functions in the context of the mouse genome, we analyzed

its effects in C2C12 cells by combining ChIP-seq with trancrip-

tome data sets. Our ChIP-seq data showed that the core motif

bound by DUX4 in human was highly conserved in the mouse,

although the relative abundance of binding sites was relatively

enriched for promoters in the mouse dataset [5]. In addition to

regulating specific gene sets, DUX4 also binds and activates

several classes of retrotransposons in the mouse genome, including

Line-1 and Mte-2b, the latter one closely related to human MaLR

LTRs which are specific DUX4 targets in the human genome [5].

This indicates that the primate specific retrogene DUX4 can – at

least in part – elicit a similar transcriptional response at

retrotransposons in mice and raises the question whether DUX-

related transcription factors in the germline are involved in

retrogene biology.

Our data also showed that ectopic DUX4 expression has some

similar genic consequences in mouse cells as it has in human cells.

However, in contrast to humans, where DUX4 alters the

expression of a large number of genes, in mice DUX4 only affects

the expression levels of 183 genes, possibly reflecting the primate
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specificity of DUX4. This limited number of genes precluded

pathway analysis, but we observed that ,25% of genes

deregulated in the mouse genome are also deregulated by

DUX4 in humans, including genes involved in early development,

germline biology and innate immunity. In addition, we identified a

number of genes which are not shared between the mouse and

human dataset, but fall in one of the aforementioned categories.

Over 40% of the genes we identified to be regulated by DUX4

were also identified in the inducible DUX4 overexpression study

done by Bosnakovski et al [32]. Combining our ChIP-seq analysis

with the transcriptome analysis allowed direct DUX4 target

identification and revealed that DUX4 can act as a transcriptional

activator in mouse as it does in human cells.

We observed that some genes, including the early development

and germline genes, become activated in mouse C2C12 muscle

cells where normally these genes are not expressed. These genes

may serve as good biomarkers in our mouse models for future

studies tailored towards therapeutic effects of DUX4 downregu-

lation. When studied in tissues and cell cultures isolated from our

mouse models, indeed Wfdc3 was shown to be significantly

increased in D4Z4-2.5 mice compared to the D4Z4-12.5 mice.

Although only a limited number of nuclei show expression of

DUX4, we see robust upregulation of Wfdc3 transcription, which

is also seen for the activation of target genes in human FSHD

samples. The nature of this observation remains elusive, however

the structure of the DUX4 transcript makes it a likely target for

nonsense mediated decay, whereas its target genes are generally

not.

Although we were not able to document an obvious skeletal

muscle phenotype in D4Z4-2.5 mice expressing low and variable

levels of DUX4 in their muscles, we did notice a trend towards

muscle weakness. The EDL muscle consists of somewhat smaller

fibers and after induction of severe muscle damage by cardiotoxin

injection, D4Z4-2.5 mice show a small delay in muscle regener-

ation. To improve therapeutic readout in our D4Z4-2.5 mouse, it

will be interesting to assess DUX4 expression and muscle

regeneration after multiple rounds of muscle damage, for example

by crossbreeding D4Z4-2.5 with mdx mice.

Interestingly, over time more than half of the D4Z4-2.5 mice

develop an abnormal eye phenotype eventually leading to

blindness. Weakness of the eyelid muscles (orbicularis oculis) and

thereby the difficulty in closing eyes is characteristic for FSHD.

Moreover, 60% of FSHD patients also develop retinal telangiec-

tasis, which can even lead to retinal detachment, known as Coat’s

syndrome [49]. Therefore it will be imperative to assess the eye

pathology in our D4Z4-2.5 mouse in more detail.

In conclusion, we here report on the first transgenic mouse

models which accurately model the epigenetic regulation of

normal-sized and FSHD-sized D4Z4 macrosatellite repeats. While

D4Z4-2.5 mice show strong overlap with the molecular phenotype

of FSHD, D4Z4-12.5 mice more reflect D4Z4 regulation observed

in control individuals. These mouse models will facilitate studies

focusing on the in vivo regulation of DUX4 and the consequences of

somatic derepression of this germline transcription factor. These

mouse models can also be utilized to evaluate and optimize future

therapeutic strategies for FSHD.

Materials and Methods

Ethics statement
All animal experiments were approved by the local animal

experimental committee of the Leiden University Medical Center

and by the Commission Biotechnology in Animals of the Dutch

Ministry of Agriculture.

Generation and maintaining transgenic mice
D4Z4-2.5 mice were generated by microinjection of the l42

(L42) phage into pronuclei of fertilized oocytes of B6CBAF1/J

mice (Charles River Laboratories, Wilmington MA, USA). The

l42 phage contains a 13.5 kb EcoRI fragment encompassing the

partially deleted D4Z4 locus of a patient with FSHD [50]. D4Z4-

12.5 mice were generated by co-injection of the 226K22 (accession

number AF146191) and 202J3 PAC clones into pronuclei of

fertilized oocytes of B6CBAF1/J mice (Charles River Laborato-

ries). PAC clone 226K22 was derived from chromosome 4A161

and isolated as described before [51]. The 202J3 PAC contained a

genomic fragment extending from the D4S2463 into the D4Z4

repeat, including the permissive 4A161 poly-adenlyation site, but

not including exon 6 and 7, and has been isolated from the RPCI-

6 library (detailed on Roswell park cancer institute, Buffalo NY,

USA). The transgenic mice were genotyped by PCR analysis on

tail DNA. Presence of permissive haplotype containing intact

polyA site distal to last D4Z4 units has been assessed by PCR

followed by Sanger sequencing of the pLAM region (LGTC,

Leiden, Netherlands). Primers are listed in Table S7. The

transgenic mice used in these experiments were all back-crossed

with C57bl6Jico mice for at least 20 generations and were bred at

the animal facility of the LUMC. Mice were housed in individually

ventilated cages with 12-h light–dark cycles. Standard mouse chow

and water was given ad libitum.

COBRA and Fiber FISH
Metaphase spread FISH analysis was done as described before

[16]. COBRA-FISH was performed on D4Z4-2.5 and D4Z4-12.5

fibroblasts essentially according to the method of Szuhai et al. [52]

In short, whole chromosomal painting probes (Cytocell, Adder-

bury, Banbury, UK) for COBRA were labeled with diethylami-

nocoumarin (DEAC)-, Cy3- and Cy5-ULS [reagents included in

the Universal Linkage System (Kreatech Biotechnology, Amster-

dam, The Netherlands), used as ratio-fluorochromes], and

dGreen-ULS (used as binary fluorochrome) and combined with

either biotin-16-dUTP labeled D4Z4-2.5 or 226K22 or digox-

igenin-11-dUTP (Dig) labeled 202J3 (Roche Applied Science,

Mannheim, Germany) by nick translation. Streptavidin-LaserPro

and mouse-anti digoxigenin were applied to detect biotin and

digoxigenin labeled probes, respectively. Recorded images were

further processed and analyzed with an in house developed

software tool (ColourProc) [52].

Fiber-FISH was done on both cultured spleen and fibroblast

cells isolated from the D4Z4-2.5 and D4Z4-12.5 transgenic mice.

The cells were first attached to aminosilane-coated microscope

slides and then lysed to produce linear DNA fibers, which were

fixed to the slide with methanol-acetic acid (3:1). The PAC clones

226K22 and 202J3 were labeled with biotin and digoxigenin

respectively. Both were hybridized simultaneously to the fiber

preparations and immunocytochemically detected using Alexa

Fluor 594 and fluorescein isothiocyanate (FITC), respectively. The

hybridizations were analyzed using a fluorescence microscope. At

least 40 fibers were assessed to obtain the order and the number of

the red and green signals.

MLPA
Probes were designed against the transgene and wild type alleles

(Table S7), containing all the criteria as described in White et al

[53]. Reagents for the MLPA reaction and subsequent PCR

amplification were purchased from MRC-Holland (Amsterdam,

The Netherlands). The MLPA reactions were performed essentially

as described in Schouten et al [54]. Briefly, 200 ng of genomic DNA

(concentration determined using a UV spectrophotometer) in a final
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volume of 5 ml was heated at 98uC for 5 minutes. After cooling to

room temperature, 1.5 ml probe mix and 1.5 ml SALSA hybridiza-

tion buffer was added to each sample. Next, the samples were

denatured at 95uC for 1 minute and hybridized for 18 hrs at 60uC.

Ligation was performed at 54uC for 15 minutes by adding 25 ml

water, 3 ml buffer A, 3 ml buffer B and 1 ml ligase. The reaction was

stopped by heat inactivation at 98uC for 5 minutes. PCR

amplification was carried out for 30–33 cycles in a final volume of

25 ml. The MLPA primers were labeled with FAM and added with

a final concentration of 200 nM. From each PCR reaction, 1,5 ml of

product was mixed with 10 ml (Hi Di) formamide and 0,05 ul

ROX500 size standard in a 96 well plate. Product separation was

performed using capillary electrophoresis on the ABI 3700 (Applied

Biosystems/Life technologies, Bleiswijk, The Netherlands). To

obtain a ratio for each product, the peak height was divided by

the sum of the peak heights of the wild type probes.

Isolation of single muscle fibers and culturing of the
mouse myoblasts

Mice were sacrificed by cervical dislocation and the EDL and

soleus muscles were carefully dissected from tendon to tendon and

digested in 0,2% collagenase (Sigma C0130)/DMEM (31966

Gibco/Life technologies) supplemented with 1% penstrep (P0781,

Sigma, Zwijndrecht, The Netherlands) at 37uC for 1.45 hrs and

2 hrs respectively. The individual myofibres were dissociated by

gently passing them through Pasteur pipettes with different sized

apertures and then abundantly washed, as described in detail

elsewhere [55]. To extract and expand the satellite cell pool,

muscle fibers were cultured on matrigel (354230, BD biosciences,

Breda, The Netherlands) coated 6-wells plate in DMEM 31966

supplemented with 30%FBS, 10%HS, 1%CEE and 2.5 ng/ml

FGF, 1% pen-strep (all Gibco/Life technologies), 150 fibers per

well. After 3 days, the fibers were detached and removed. The

attached myoblasts were trypsinized, counted and plated for

further analysis. To induce differentiation into myotubes, serum-

rich medium was replaced with serum-poor medium (DMEM

31966), supplemented with 2% HS and 1% pen-strep, 48 hrs after

plating. After 48 hours of differentiation cells were either fixed for

immunofluorescence or lysed to isolate RNA.

Generation MEFs and adult skin fibroblasts
Mouse embryonic fibroblasts were generated from at embryonic

stage E13.5. First, embryos were dissected out of the uterine horns,

rinsed with 70% EtOH and washed in PBS (14190-169 Gibco/

Life technologies). Next, the embryos were separated from the

placenta and surrounding membranes. Tails of embryos were cut

and used for genotyping. Next, the dark red organs were removed

and embryos were finely minced and suspended in 1,5 ml of

trypsin-EDTA (25300-096, Gibco/Life technologies) for 15 min-

utes at 37uC with gentle shaking. Trypsin was inactivated by the

addition of 2 ml MEF medium: DMEM high glucose (41966-052,

Gibco/Life technologies) supplemented with 10% FCS, 1% L-

glutamine (25030-024, Gibco/Life technologies) and 1% pen/

strep. Upon centrifugation (5 minutes, 1200 rpm), the minced and

trypsinized cell pellet was suspended in MEF medium and plated

on gelatin coated culture dishes.

Adult skin fibroblasts were generated by dissecting skin tissue

from the belly of 5 months old mice. The skin of each mice was

dissociated overnight at RT in 2 ml dispase/collagenase mix,

containing 2 mg dispase (17105-041, Invitrogen/Life Technolo-

gies), 2 mg collagenase (C-9891, sigma), 0,04 ml pen/strep,

0,04 ml glutamine, 0,25 mg fungizone and 0,2 mg gentamicine

(all Gibco/Life technologies). Next day, cells were centrifuged

(5 minutes, 1200 rpm) and resuspended in 6 ml MEF medium

and plated in T25 culture flasks.

Immunofluorescence
For co-IF staining of DUX4, myogenin (Myog) and myosin

heavy chain, cells were fixed in 2% paraformaldehyde for

7 minutes at room temperature and then washed twice with

PBS. Cells were permeabilized with 1% Triton X-100 (Sigma) in

PBS for 10 minutes at room temperature with gentle rocking.

Primary rabbit-DUX4 antibody directed against the C-terminal

region of DUX4 (E5-5; 1:100) [56], Myog (1:100, Dako North

America, Carpinteria CA, USA) and MF-20 anti myosin heavy

chain (1:100, Developmental studies hybridoma bank, Univ. of

Iowa, Iowa city, IA USA) were diluted in PBS and cells were

incubated overnight at 4uC with the first antibody. After washing

three times in PBS, followed an incubation with diluted Alexa 488

conjugated donkey anti-rabbit and Alexa 594 conjugated donkey

anti-mouse (A21206, A21206, 1:500, Invitrogen/Life technologies)

for one hour, gently rocking in the dark. Next, cells were washed

three times with PBS-0,025% TWEEN before they were mounted

on microscope slides using Aqua Poly/Mount (PolySciences,

Warrington PA, U.S.A.) containing 500 ng/ml DAPI. Stained

cells were analyzed on a Leica DMRA2 microscope (Leica

microsystems, Wetzlar, Germany).

gDNA, RNA isolation, and cDNA synthesis
gDNA isolation from different tissues of both D4Z4-2.5 and

D4Z4-12.5 mice was carried out using the Genomic DNA from

tissue kit (740952, Machery-Nagel, Düren, Germany) following

manufacturers instruction. Total RNA was isolated from tissue

using miRNeasy kit (217004, Qiagen, Venlo, The Netherlands),

including a DNase treatment, according to the instructions of the

manufacturer. For C2C12 expression analysis, RNA was isolated

using the RNeasy microkit (74004, Qiagen). Both DNA and RNA

concentrations were determined using a Nanodrop ND-1000

spectrophotometer (Thermo Scientific, Wilmington DE, USA).

The quality of the RNA was assessed by using a RNA 6000

nanochip on an Agilent 2100 BioAnalyzer (Agilent Technologies

Netherlands BV, Amstelveen, The Netherlands) and RIN

scores.9 were obtained. cDNA was synthesized using 1–3 mg

total RNA using the Revert Aid H Minus first strand cDNA

synthesis kit using oligo dT primed primers (Fermentas/Thermo

scientific, St. Leon-Rot, Germany) according to the manufactur-

er’s instructions. The cDNA was subsequently treated with 0.5 U

RNaseH for 20 min at 37uC and total cDNA was diluted in 50 ul

water. For all C2C12 expression studies, polydT primed cDNA

was synthesized using 300 ng of RNA using the Omniscript RT kit

(205111, Qiagen) according to manufacturer’s instructions. RT

was done at 50uC and cDNA was diluted to a total volume of

100 ml.

DNA methylation analysis by Southern blotting
Methylation levels of individual CpGs was determined by

Southern blot analysis using the methylation-sensitive restriction

enzymes BsaAI and FspI as described before [12]. In short, 5 mg of

genomic DNA was digested with the restriction enzymes EcoRI

and BglII and either BsaAI (NEB, Ipswich MA, USA) or FspI

(NEB). All digestions were performed according to the manufac-

turer’s instructions. After digestion, DNA was separated by

standard linear gel electrophoresis (0.8%) followed by Southern

blotting of the DNA on a hybond-XL membrane (GE Healthcare)

and hybridization with the radioactive labeled probe p13E-11

(D4F104S1) or D4Z4 to determine the methylation in the

proximal D4Z4 repeat unit and all internal units respectively.
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Hybridizations were performed for a minimum of 16 hours at

65uC in 0.125 M Na2HPO4 (pH 7.2), 0.25 M NaCl, 1 mM

EDTA, 7% SDS and 100 mg/ml denatured fish sperm DNA

(Roche). After hybridization, membranes were consecutively

washed with 2xSSC/0.1%SDS, 1xSSC/0.1%SDS and

0.3xSSC/0.1%SDS. Finally, the membranes were exposed to a

phospho-imager screen and signal intensities were quantified with

ImageQuant software (Amersham/GE healthcare).

Quantitative methylation analysis by bisulphate
converted DNA

Bisulphite treatment was performed with the EZ DNA

Methylation kit (Zymo Research, Irvine CA, USA) and bisulphite

primers were designed with MethPrimer software [57]. Primer

sequences are listed in Table S7. PCR was performed in a final

volume of 25 ml containing 250 mM dNTPs, 1X Supertaq PCR

Buffer (HT Biotechnology Ltd, Cambridge UK), 10 pM of each

primer and 1 U Silverstar DNA polymerase (Eurogentec, Maas-

tricht, The Netherlands). Cycling conditions: 94uC for 15 min

followed by 40 cycles of 94uC for 40 s, 58uC for 40 s, and 72uC for

40 s, and a final extension step of 15 min at 72uC. PCR products

were purified directly or by gel extraction using the NucleoSpin

Gel and PCR Clean-up kit (Machery-Nagel) and subjected to

Sanger sequencing (LGTC). Quantitative methylation ratios were

calculated from sequence traces using the ESME software,

including appropriate sequence quality control, normalization of

signals, correction for incomplete bisulphite conversion, and

mapping of positions in the trace file to CpGs in reference

sequences [58].

Histone chromatin immunoprecipitation
ChIP experiments were based on the protocol described by

Nelson et al. with some modifications [59]. In brief, subconfluent

cell cultures were crosslinked in 1% formaldehyde for 10 minutes

and the reaction was quenched for 5 minutes with glycine at a

final concentration of 125 mM. Crosslinked cells were lysed and

chromatin was sheared in a sonicator bath (Bioruptor UCD-20,

Diagenode, Liège, Belgium) for 4–6 consecutive rounds of

10 minutes at maximum output and 15 seconds on/off cycles.

Shearing was analyzed by phenol-chloroform extraction of DNA

and agarose gel electrophoresis. All chromatin samples had a DNA

size range between 200–2000 bp with a peak around 200 bp. Per

reaction 3 mg (DNA content) of chromatin was precleared with

blocked sepharose A beads (GE healthcare, Diegem, Belgium) and

incubated overnight at 4u with antibodies: raH3K9me3 (17–625,

Millipore, Billerica MA, USA; 5 ml/rxn) raH3K4me2 (07–030,

Millipore; 5 ul/reaction) and total IgG (Millipore; 5 ml/rxn). IP

was done with 20 ml sepharose A beads/reaction and washing was

according to the online available Millipore ChIP protocol. DNA

was isolated using Chelex resin and diluted 1:1 for qPCR analysis

[59]. Relative abundance, IgG corrected and input normalized, at

D4Z4 was determined with previously published primers [27].

Quantitative PCR
All quantative RT-PCR analysis were performed in duplicate

using SYBR green mastermix on the MyIQ or CFX96 system

(Bio-Rad, Veenendaal, The Netherlands) using 0.5–0.75 pM of

each primer in a final volume of 10–15 ml per reaction. For gene

expression analysis 2–5 ml of diluted cDNA and for ChIP analysis

5 ml of 1:1 diluted ChIP DNA was used per reaction. Cycling

conditions: initial denaturation step at 95uC for 3 min, followed by

35–40 cycles of 10–15 s at 95uC and 45 s at primer Tm (Table

S7). Specificity of all reactions was monitored by standard gel

electrophoresis and/or melting curve analysis: initial denaturation

step at 95uC, followed by 1 min incubation at 65uC and sequential

temperature increments of 0.5uC every 10 s up to 95uC. All

primer sets were designed using Primer3 software and, for cDNA

analysis, spanned at least one intron. Results were analyzed using

iQ5/Bio-Rad CFX manager version 2.0 (Bio-Rad). For cDNA,

relative expression was calculated, using Cyclophilin, Hprt or

Gapdh as a reference gene (indicated) for cDNA input, using the

CFX manager software. For ChIP, relative quantification was

done by background subtraction based on the signal in the normal

IgG ChIP. Normalization was done using the relative abundance

of the product in DNA isolated from ChIP input samples.

C2C12 culture, transfection, and cell sorting
For C2C12 cultures, plates and dishes were coated with

collagen (Purecol, Advanced Biomatrix, San Diego CA, USA)

1:30 diluted in MiliQ, for 1 hr at 37uC and then dried for at least

30 minutes. Before plating the cells, plates and dishes were washed

with 1xPBS. C2C12 cells were maintained subconfluent in

DMEM (11880, Gibco/Life technologies) supplemented with

20% FCS, 1% pen/strep, 1% glucose and 1% glutamax (all

Gibco/Life technologies). Transfections were performed using

lipofectamine reagent, combined with plus reagent (both Invitro-

gen/Life Technologies) according to manufacturer’s instructions

in 12/6 well plates, 9 or 20 cm dishes with 0.6/1.5, 5 or 12 mg

total plasmid DNA, respectively. To enrich for DUX4 expressing

cells used for gene expression analysis, pCS2-DUX4 [5] or the

empty pCS2 backbone were equimolarly co-transfected with

pEGFP-C1 (Life technologies) and then sorted on a FACS aria cell

sorter II (BD biosciences). In short, the living single cells were first

gated based on forward and side scatter and then sorted by gating

for GFP. Both the GFP enriched and depleted fractions were

collected in PBS supplemented with 1% FCS, spun down and

stored at 280uC.

Expression array analysis
Global gene expression changes upon DUX4 expression were

obtained with illumina MouseWG-6 v2.0 expression arrays

(Illumina, San Diego CA, USA). RNA from FACS sorted

C2C12 transfected with pCS2-DUX4 were compared with

pCS2 backbone transfected cells in triplicate. Labeling of RNA,

hybridization of the arrays and primary data analysis were carried

out by ServiceXS (Leiden, The Netherlands) according to

manufacturer’s instructions. Probe intensities were corrected and

normalized using the lumiExpresso function from the lumi

Bioconductor package [60] with default options. If a probe was

not present in any of the 6 arrays according to lumi’s ‘‘detection-

Call’’ function, we removed it from further consideration.

Differentially expressed probes were then identified using the

limma Bioconductor package [61] and p-values were adjusted to

account for multiple testing using Benjamini and Hochberg’s

method [62].

DUX4 ChIP–seq analysis
Crosslinking, generation of chromatin and ChIP were per-

formed as indicated above. In brief, chromatin of wt and DUX4

transfected C2C12s containing 12 mg DNA was precleared with IP

beads and incubated o/n at 4uC with the rabbit polyclonal

MO489 antibody directed against the C-terminus of DUX4 [5].

After washing 6 times in ChIP buffer, immunoprecipitated ChIP

DNA was isolated and purified with a standard phenol extraction.

Sequencing and sample preparation were done with the Illumina

genome analyzer following manufacturer’s instructions. Data

analysis was performed as previously described [5]. Briefly,
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sequences were extracted by GApipeline-0.3.0. Reads mapping

to the X and Y-chromosomes were excluded from our analysis.

Duplicate sequences were discarded to minimize effects of PCR

amplification and each read was extended in the sequencing

orientation to a total of 200 bases to infer the coverage at each

genomic position. Peak calling was performed by an in-house

developed R package, which models background reads by a

negative binomial distribution as previously described [63]. To

identify the DUX4 consensus binding sequence, we applied an

in-house developed Bioconductor package motifRG for dis-

criminative de novo motif discovery as previously described

[64,65].

For supporting materials and methods concerning supplemental

data, please refer to Text S1.

Supporting Information

Figure S1 In situ hybridization to detect DUX4 mRNA in

D4Z4-2.5 mouse testis. Frozen sections of control mouse testes

(A,D) and D4Z4-2.5 mouse testes (B–C, E–F) hybridized with

antisense RNA probes for the 59 (A–C) or 39 (D–F) regions of

human DUX4. C and F show magnifications of indicated regions

in B and E respectively. Control testes show no staining, whereas

D4Z4-2.5 testes show staining for DUX4 in large round cells near

the periphery of the tubules (arrows), likely in spermatogonia and

spermatocytes.

(TIF)

Figure S2 DUX4 Expression analysis in muscles of D4Z4-2.5

and D4Z4-12.5 mice. DUX4 RT-PCR analysis in duplicate of

muscle tissues of adult A) D4Z4-2.5 (n = 3) and B) D4Z4-12.5

(n = 3) mice in Hea = Heart, Dia = Diaphragm, Pec = Pectoralis

Mas = Masseter, Orb = Orbicularis oris, Qua = Quadriceps,

TA = Tibialis anterior, Gas = Gastrocnemius, Ton = Tongue.

Hprt was used as control for RNA integrity.

(TIF)

Figure S3 DUX4 Expression analysis in non-muscle tissue of

D4Z4-2.5 and D4Z4-12.5 mice. DUX4 RT-PCR analysis in

duplicate of non-muscle tissues of adult A) D4Z4-2.5 (n = 3) and B)

D4Z4-12.5 (n = 3) mice in Tes = Testis, Ute = Uterus, Ova = O-

varium, Eye, Cer = Cerebellum, Spl = Spleen, Kid = Kidney,

Liv = Liver. Hprt was used as control for RNA integrity. C)

analysis of D4Z4-2.5 testis cDNA generated without reverse

transcriptase. D) Expression of DUX4 in D4Z4-12.5 derived ES

cell clones. Gapdh was used as a control for RNA integrity.

(TIF)

Figure S4 CpG methylation analysis of D4Z4 in D4Z4-2.5 and

D4Z4-12.5 mice. Upper panel: Schematic draw of the regions

within D4Z4 where CpG and histone methylation were interro-

gated. A–D) Methylation levels of individual CpGs in the first

partial D4Z4 unit (A,B) or upstream of the DUX4 ORF (C,D) were

analyzed in whole D4Z4-12.5 and D4Z4-2.5 embryos (E13,5)

(A,C) and gastrocnemius muscle tissue of 2 month old D4Z4-12.5

and D4Z4-2.5 mice (B,D). Plotted as mean 6stdev. of n = 8 D4Z4-

12 vs n = 5 D4Z4-2.5 mice, *p,5.10210.

(TIF)

Figure S5 Intensity plot of array probes of C2C12+pCS2-

DUX4 versus C2C12+pCS2. Normalized, log transformed mean

intensities (triplicates) of C2C12+pCS2 are plotted against

C2C12+pCS2-DUX4 per probe. Black dots indicate significantly

deregulated probes. Circled probes indicate DUX4 activated

genes, with very low intensities (#7.5) in pCS2 transfected cells.

(TIF)

Figure S6 Consensus binding site sequence sequences of DUX4

at different genetic contexts. Position weight matrices of the

DUX4 consensus binding sequence at A) unique binding sites, B)

MaLR retrotransposons and C) L1 retrotransposons. The core

double homeobox is conserved at all regions, flanking nucleotides

show context specific variation.

(TIF)

Figure S7 Distribution of DUX4 binding sites in the mouse

genome. Relative distribution of ChIP peaks is displayed as the

number of peaks per kb of total genomic sequence for each

context. DUX4 shows a slight promoter bias as seen for

transcription factors, but not for DUX4 in human myoblasts.

(TIF)

Figure S8 Luciferase reporter assays using a direct DUX4 target

site. Normalized relative luciferase activity of the Nhlcr3 and

2810046L04Rik bidirectional DUX4 binding site in forward (Fw)

and reverse (Rev) orientation in the absence (pCS2) or presence

(pCS2-DUX4) of DUX4. Below a schematic overview of the

DUX4 binding site is shown. All values are first normalized to

pGL3 basic expression levels with or without DUX4. Next, the

levels in DUX4 negative cells were set to 1. Error bars indicate

SEM of quadruple measurements. Asterisks indicate p,0.05

according to a student’s t-test.

(TIF)

Figure S9 Expression analysis of the DUX4 target Wfdc3 in E9,5

embryos. Wfdc3 shows significant upregulation in D4Z4-2.5

embryos compared to wt controls (n = 6). Expression levels are

normalized to the mouse reference gene Hprt and are plotted as

the mean 6 SEM. Asterisks indicate p,0.05 according to a

student’s t-test.

(TIF)

Figure S10 Keratitis in D4Z4-2.5 mice at different ages.

Representative pictures of eyes of WT (A,C,E,G) and D4Z4-2.5

(B,D,F,H) mice at 11 weeks (A&B), 17 weeks (C&D), 27 weeks

(E&F) and 1,5 years (G&H) of age.

(TIF)

Table S1 Deregulated genes in response to ectopic DUX4

expression in C2C12 myoblasts.

(XLS)

Table S2 DUX4 induced deregulated genes overlapping

between C2C12 and human myoblasts.

(XLS)

Table S3 Identified direct targets of DUX4 in C2C12

myoblasts.

(PDF)

Table S4 Unique DUX4 binding sites in transposable elements

in C2C12 myoblasts.

(XLS)

Table S5 DUX4 binding sites in transposable elements in

C2C12 myoblasts.

(XLS)

Table S6 Overview of the histological and functional tests

performed to investigate muscle integrity and performance in

D4Z4-2.5 mice.

(XLS)

Table S7 List of primers and corresponding sequences.

(PDF)

Text S1 Supporting Materials and Methods and References.

(PDF)
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