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Abstract

Recent advances in the identification of susceptibility genes and environmental exposures provide broad support for a
post-infectious autoimmune basis for narcolepsy/hypocretin (orexin) deficiency. We genotyped loci associated with
other autoimmune and inflammatory diseases in 1,886 individuals with hypocretin-deficient narcolepsy and 10,421
controls, all of European ancestry, using a custom genotyping array (ImmunoChip). Three loci located outside the Human
Leukocyte Antigen (HLA) region on chromosome 6 were significantly associated with disease risk. In addition to a strong
signal in the T cell receptor alpha (TRA@), variants in two additional narcolepsy loci, Cathepsin H (CTSH) and Tumor
necrosis factor (ligand) superfamily member 4 (TNFSF4, also called OX40L), attained genome-wide significance. These
findings underline the importance of antigen presentation by HLA Class II to T cells in the pathophysiology of this
autoimmune disease.
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Introduction

Narcolepsy is a life-long sleep disorder caused by the

autoimmune-mediated loss of 70,000–90,000 hypocretin (or-

exin)-producing neurons in the hypothalamus. Prevalence is

approximately 0.02–0.03% in Caucasian populations, and some-

what higher in Japanese (0.16%). Family and twin studies support

the importance of genetic (10–40 fold increased risk in first degree

relatives) as well as environmental factors (25% concordance in

identical twins) [1]. Onset is typically around puberty and displays

a seasonal pattern of incidence, with highest rates in spring and

summer. Likely triggering factors are influenza A, notably the

pandemic H1N1 2009 variant, and Streptococcus Pyogenes infections

[2–5]. Unique among autoimmune diseases, the condition is

almost completely associated with Human HLA DQ0602, a

heterodimeric protein encoded by the DQA1*01:02-DQB1*06:02

haplotype (90% versus 25% frequency in European ancestry cases

and controls, respectively). The overwhelming effect of this

haplotype on risk suggests the importance of antigen presentation

by DQ0602. As seen in other autoimmune diseases, additional

HLA alleles carried in trans of this haplotype also confer

modulatory effects [6,7]. Most notably, DQA1*01:02-

DQB1*06:02 homozygosity increases predisposition by 2–4 fold.

Further, DQA1 and DQB1 alleles known to heterodimerize with

DQA1*01:02 or DQB1*06:02 reduce susceptibility, likely through

allelic competition with DQ0602 [8]. However, non-HLA related

genes play important roles. In addition to these well-established

HLA class II effects, recent genome-wide association studies

(GWAS) have identified variants in the T Cell receptor alpha locus

(TRA@), on chromosome 14q11.2, and in the region containing

P2RY11-DNMT1 on chromosome 19p13.2, as additional suscep-

tibility loci. Finally, exome sequencing in families with a rare

autosomal dominant syndrome including cerebellar ataxia,

narcolepsy and deafness (ADCA-DN) also indicate an important

role for DNMT1 in survival of hypocretin neurons [9].

Based on the recognition that considerable overlap exists in risk

loci for various autoimmune diseases, the Immunochip consortium

was formed to create a single nucleotide polymorphism (SNP)

array for targeted finemapping of these loci [10,11]. The

ImmunoChip was designed for deep replication of signals from

large-scale meta-analyses in nine autoimmune diseases, and for

finemapping of loci reaching genome-wide significance (2009).

Approximately 200,000 rare and common variants were selected

to cover intervals with established genome-wide significant

association to autoimmune and seronegative diseases, and at

selected loci of known importance in major immune-related

diseases, including the major histocompatibility (MHC) and KIR/

LILR loci. Using this platform, we conducted a GWAS to identify

genetic risk factors for narcolepsy in addition to HLA DQ0602.

We analyzed 111,240 high quality SNP markers of minor allele

frequency $1%, located outside the extended HLA region on

chromosome 6, in 1,886 narcolepsy cases and 10,421 controls of

European ancestry sampled across global populations including

the European Union, Canada and North America (Table 1). To

test for potential confounding effects of population stratification in

our study cohort, we performed principal component analysis

(PCA) of cases and controls (Figure S1). Control samples showed

clear separation into distinct European countries in plots of the

first and second principal components, with good overlay of case

samples, and plots of observed versus expected association results

showed no inflation of signal (l= 1.004; Figure 1).

Results/Discussion

One previously reported, and two novel non-HLA loci

surpassed genome wide significance (gws) P,561028 in this study

(Figure 1 and Table 2). The strongest association was with

rs1154155 (MAF = 0.15, P = 8.87610230 OR = 1.72) in the T cell

receptor (TCR) alpha (TRA@) locus, on chromosome 14,

replicating signal previously reported using smaller samples

[7,12,13]. The TCR protein is comprised of alpha and beta

chains. As for immunoglobulin loci, TCR loci undergo somatic

DNA recombination during T cell development, generating a

large number of possible proteins specific to individual T-cell

clones. T cells bearing specific recombinants are then negatively or

positively selected, allowing adaptation of the immune system to

past environmental history.

The T cell receptor binds foreign or self-peptides presented by

Class II MHC proteins (such as the DQ alpha/beta heterodimer),

allowing initiation and regulation of immune responses. It is thus

the natural receptor of DQB0602. The TRA@ locus was sparsely

covered on the ImmunoChip (15 SNPs within a 1 Mb window of

rs1154155, none with r2 above 0.5) precluding fine mapping or

haplotype analysis, although providing robust replication of the

previously reported findings. SNP rs1154155 is located close to the

J10 segment region of the locus, with linkage disequilibrium (LD)

data suggesting the involvement of a specific J segment in the

narcolepsy pathophysiology. The association with TRA@ is

unique to narcolepsy, as no other autoimmune diseases have

been associated with this locus.

Two SNPs rs34593439, and rs34843303, located in intron 1 of

Cathepsin H (CTSH), a papain-like cysteine protease, reached gws

(MAF = 0.11, P = 1.7861028 OR = 1.34 and MAF = 0.11,

P, = 2.7961028 OR = 1.35, respectively). Another SNP located

in intron 1, rs3825932T has been previously reported to be

associated with type 1 diabetes [14,15]. Although in close proximity,
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this marker is in weak LD with rs34593439 and rs34843303

(r2 = 0.23 and 0.23 respectively) and shows no significant associa-

tion in the present sample (P = 0.01). The local region of LD

surrounding these markers encompasses exon 1, where 4 potentially

functional polymorphisms have been identified. One of which, SNP

rs2289702T (p.Gly11Arg, MAF = 0.11), is in tight LD with our

markers (pairwise r2 = 0.96 and 0.98 respectively, 1000genomes

data, phase 1 release V3), and could be the culprit behind this

association. Following imputation in a 1 Mb window surrounding

CTSH, SNPs rs2289702 and rs34593439 were the two most highly

associated variants (respectively) (Figure 2). The Arg allele of

rs2289702 also underlies a minor histocompatability antigen

restricted by HLA-A*3101 and HLA-A*3303, causing selective

lysis of hematopoetic cells by cytotoxic lymphocytes [16].

p.Gly11Arg is located within the signal peptide sequence of CTSH,

where the introduction of a highly charged arginine could affect

trafficking or cleavage, as predicted by some but not all signal

peptide predicting programs (see Methods).

Cathepsins are primarily located within the lysosomal/endoso-

mal compartment and typically activated by low pH. These

enzymes play diverse and important roles including cellular

recycling of proteins, activation of selected preprohormones,

antigen processing, and loading of peptides onto MHC class II

proteins. Eleven family members are known. Cystatins and other

endogenous inhibitors are known to regulate cathepsin activity,

and the balance of these activities has been proposed to be the

major selector for the repertoire of surface peptide –MHC II

complexes [17]. Deficiencies in selected cathepsins impair immune

cell development (NKT cells in Cathepsin S or L deficient mice,

thymocytes and T cell repertoire in cathepsin L deficient mice),

and produce defects in immune cell effector functions (cytotoxic T

cell, neutrophil and mast cell defects in cathepsin C deficient mice;

see [18]). Cathepsin H is somewhat unique in that it can have both

exopeptidase and endopeptidase activities, depending on the

presence of a bound mini-chain (a remnant of the pro-enzyme)

within the active cleft. Although ubiquitously expressed, CTSH

expression is especially high in type II pneumocytes, where it plays

a key role in the maturation of lung surfactant protein B [17,19].

CTSH is also highly expressed in MHC class II positive immune

cells such as B cells, monocytes and dendritic cells, but not T cells,

notably in the presence of inflammation. For example, CTSH

enzyme activity increases in parallel with proinflammatory

cytokines during the development of autoimmune inflammation

in a NOD mouse model of Sjögren’s syndrome [20]. One

hypothesis may be that decreased CTSH activity reduces antigen

processing resulting in an altered repertoire presented by

DQB0602 and resulting in increased risk of narcolepsy.

SNPs located in the Tumor Necrosis Factor (ligand) Superfam-

ily member 4 (TNFSF4; also called OX40L or CD252) are strongly

associated with narcolepsy. SNP rs7553711 reached gws (MAF

0.29, P = 4.0861028 and OR = 1.33). No other SNP was more

strongly associated with narcolepsy following imputation in a

1 Mb window around this locus, although additional strongly

associated variants were identified (Figure 2). TNFSF4 is known to

be strongly associated with systemic lupus erythematosis (SLE)

[21] and systemic sclerosis [22,23] and SNPs in this region were

densely represented on the ImmunoChip. Two distinct haplotypes

composed of SNPs upstream of the gene confer susceptibility or

resistance to SLE, whereas our most significantly associated SNP

markers in narcolepsy are downstream of the gene in a separate

haplotype block. The SNPs associated with SLE and narcolepsy

are in weak LD, and rs844648, an established marker of SLE, is

not strongly associated with narcolepsy (p = 0.016). Interestingly,

rs7553711 maps to a potential enhancer site (H3K4Me1 site,

UCSC browser, Layered H3K27 Track).

The association of narcolepsy with SNPs in TNFSF4 is

consistent with a primary role of antigen presentation to T cells

in narcolepsy. Like CTSH, OX40L is primarily expressed in MHC

Class II-positive antigen presenting cells (e.g. dendritic and B cells).

Optimal activation of T cells following the binding of T cell

receptor- MHC class II/antigen complex requires the action of

additional costimulatory factors, notably involving receptor/ligand

pairs from the tumor necrosis superfamily. The interaction of two

of these, OX40 receptor (encoded by TNFRSF4) and OX40L

ligand (encoded by TNFSF4), provides an important costimulatory

signal supporting Th1 and Th2 responses, promoting expansion

and survival of effector T cells and the generation of T memory

cells. Although less understood, OX40/OX40L interactions also

play a role in the activity and homeostasis of T regulatory cells.

Signaling of this pair is tightly controlled, as OX40 is not

Table 1. Sample collections.

Case Cohort Number Region of Origin

Virginia 1,030 North America, Europe*

Germany 801 North America, Europe*

Stanford VA 55 North America, Europe*

Total 1,886

Control Cohort

1958 UK Birth Cohort 4,289 UK

IT.NL.PL.SP 3,609 Italy, Netherlands, Poland,
Spain

KORA 980 Germany

CCHMC 794 North America

Fr1 347 France

Fr2 402 France

Total 10,421

*Numbers of samples by country of origin are listed in the Methods section.
Case cohort names represent location of genotyping, and do not reflect country
of origin of samples.
doi:10.1371/journal.pgen.1003270.t001

Author Summary

While there is now broad consensus that narcolepsy-
hypocretin deficiency results from a highly specific
autoimmune attack on hypocretin cells, little is understood
regarding the initiation and progression of the underlying
autoimmune process. We have taken advantage of a
unique high-density genotyping platform (the Immuno-
Chip) designed to study variants in genes known to be
important to autoimmune and inflammatory diseases. Our
study of nearly 2000 narcolepsy cases compared to 10,000
controls underscored important roles for HLA DQB1*06:02
and the T cell receptor alpha genes and implicated two
additional genes, Cathepsin H and TNFSF4/OX40L, in
disease pathogenesis. These findings are particularly
important, as these encoded proteins have key roles in
antigen processing, presentation, and T cell response, and
they suggest that specific interactions at the immunolog-
ical synapse constitute the pathway to the disease. Further
studies of these genes and encoded proteins may
therefore reveal the mechanism leading to this highly
selective and unique autoimmune disease.

Antigen Presentation in Narcolepsy Susceptibility
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expressed in resting T cells, only appearing approximately one day

following initial activation. Similarly, OX40L is found only at sites

of inflammation, first on the surface of antigen presenting cells, but

later on diverse cell types including mast cells, suggesting a role

distinct from T cell priming or memory cell generation. OX40-

OX40L interactions are known to be involved in autoimmune

disease, (e.g. SLE) likely acting through a disruption of tolerance.

OX40 signaling within responding T cells renders them resistant

to Treg- mediated suppression, and acts within the Treg cells to

inhibit suppressive functions. In addition, sustained inflammatory

response may result from excessive OX40-OX40L signaling and

consequent increased survival of effector T-cells (see [24,25]).

Two other regions showed suggestive associations, including

SNPs between MIR-552 and GJB5 on Chromosome 1p34.3

(rs10915020 MAF = 0.84, P = 5.40610207, OR = 1.32), and near

ZNF365 on chromosome 10q21.2 (rs10995245 MAF = 0.35,

P = 3.24610207 OR = 1.20). ZNF365 is highly expressed in the

brain and has been implicated in susceptibility to breast cancer,

Crohn’s Disease, and more recently, atopic dermatitis [26–28].

None of these reached genome-wide significance levels after

correcting with the EMMAX [29] procedure in the current study,

although nearly reaching or surpassing Bonferroni significance

(P = 4.5610207)(Table S1). Increased sample size and replication

will be needed to confirm these loci.

Our study, analyzing 1886 narcolepsy-cataplexy cases of

European ancestry, is the largest collaborative cohort study of

narcolepsy to date, including samples from across the United States,

Canada and Europe, and representing the majority of available case

samples of European ancestry. To preserve the statistical power

afforded by this sample size, we elected not to split our cases into

discovery and replication cohorts, and thus our study is limited by

the lack of replication in an ethnically similar population. We

identified two novel narcolepsy susceptibility genes, CTSH and

TNFSF4 (OX40L), and confirmed strong associations with HLA and

TRA@. The two new loci identified outline with striking clarity that

the key pathology underlying narcolepsy likely resides in the

interaction between T cells and antigen presenting cells.

Although a role of antigen presentation to CD4 T cells is likely

the primary susceptibility pathway for the disorder, narcolepsy was

not associated with all components of this pathway as represented

on the array. For example, we found no association at the p,1024

threshold with the class II invariant chain, AEP and cathepsin B

(CTSB) genes or, more surprisingly, with genes encoding other co-

stimulatory molecules such as CD28, cytotoxic T-lymphocyte

antigen-4 (CTLA4) and their cognate ligands, CD80 and CD86

(these have been involved in many other autoimmune disorders)

(see Table S1). The present results also show limited overlap in

susceptibility loci between narcolepsy and loci associated with

classical autoimmune disorders, a fact that may be unsurprising

based on the lack of readily identifiable autoantibodies, or other

clear signs of inflammatory damage in the disease. To date, the

TCR locus has only been observed in narcolepsy. Notably, we

Table 2. Non-HLA narcolepsy risk variant loci reaching genome-wide significance.

Variant Chr BP MAF_N MAF_C P OR CI Locus Risk allele

rs1154155 14 22072524 0.2292 0.1478 8.87610230 1.715 1.543–1.905 TCRA G

rs34593439 15 77022012 0.1359 0.1053 1.78610208 1.337 1.212–1.455 CTSH A

rs7553711 1 171398531 0.3462 0.2851 4.08610208 1.328 1.176–1.519 TNFSF4 C

Chr.: Chromosome; BP: position according to NCBI build 36 (Hg18) coordinates; MAF_N: minor allele frequency in narcolepsy (_N) and controls (_C); P: P value according
to variance component model (EMMAX). EMMAX does not provide OR (Odds Ratio) or adjusted allele frequencies, therefore MAF, OR, and 95% confidence intervals (CI)
were calculated with Plink on subset of 8,474 samples with the greatest PCA homogeneity (see Figure S2; EV 11.21,0.004, EV 4.12,0.01).
doi:10.1371/journal.pgen.1003270.t002

Figure 1. Manhattan Plot of association statistics. The significance threshold used (blue line) was P = 561028; The insets depict plots of 1)
association results in a broad region encompassing the HLA locus (chr 6:24,067–35,474 kb) that were excluded from the present analysis (see
Methods) and 2) QQ plot of results for 109,777 markers after excluding a 1 Mb window surrounding the associated loci (l= 1.004). The inflation
statistic for all 111,240 tested markers is 1.04.
doi:10.1371/journal.pgen.1003270.g001
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found no associations with loci widely shared among other

autoimmune diseases such as interleukin genes and receptors (IL2,

IL21, IL12, IL2RA, IL23R) acting in differentiation; PTPN2 and

22, SH2B3 and TAGAP involved in immune-cell activation and

signaling; and IRF5, TNFAIP3 involved in TNF signaling and

innate immunity (Table S1). Together with findings implicating

pandemic H1N1 influenza as a trigger, narcolepsy may offer a

unique opportunity, furthering our understanding of how HLA

class II presentation of foreign and self-antigens predispose to

autoimmunity.

Methods

Ethics statement
Informed consent in accordance with governing institutions was

obtained from all subjects. The research protocol at Stanford was

approved by the IRB Panel on Medical Human Subjects.

Samples
Cases included in this study all met criteria for narcolepsy/

hypocretin deficiency (clear-cut cataplexy and DQB1*06:02

positive, or low cerebrospinal fluid hypocretin-1). Samples

included 1301 patients sourced from the Stanford Center for

Narcolepsy database (North America, and worldwide collabora-

tors), and 585 samples contributed by the European narcolepsy

network (EU-NN). ImmunoChip typing was performed at centers

in the US and in Germany. Informed consent in accordance with

governing institutions was obtained. Countries of origin included:

United States (657), France (296), Italy (157), Germany (157), the

Netherlands (111), Czech Republic (104), Canada (101), Austria

(83), Denmark (74), Spain (51) and Norway (32). A further 63 cases

came from Argentina, Australia, Finland, Israel, Poland, Portugal,

Slovakia, Switzerland and Turkey, each with fewer than 20

samples. Control genotypes were contributed through multiple

immunochip consortium collaborators including 4289 samples

Figure 2. Association signal at the mapping intervals flanking rs34593439 and rs7553711. Association scores at 15q25.1 (panel A) and
1q25.1 (panel B). Genotyped (diamonds) and imputed (circles) SNPs are indicated and the top genotyped SNP in the interval is outlined in orange. A
SNP in 15q25.1 previously associated with Diabetes is outlined in blue. The degree of red color in each diamond or circle indicates the strength of LD
with the top SNP (on a scale shown in the legend at the upper left hand corner of the plot). The X-axis shows the chromosome and physical distance
(kb) from the human genome reference sequence (hg19), the left Y-axis shows the negative base ten logarithm of the p-value and the right Y-axis
shows recombination rate (cM/Mb) as a navy line. The genome-wide significance threshold (P,561028) is given by the dashed grey line. Genes in
the regions are annotated at the bottom as green arrows. Also indicated in 1q25.1 is a ,130 kb region with no SNPs on the ImmunoChip.
doi:10.1371/journal.pgen.1003270.g002
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from the United Kingdom 1958 Birth Cohort, 3609 samples from

selected European countries including Italy (1251), Netherlands

(1173), Poland (529) and Spain (656), 980 samples from the

German KORA cohort; 794 Samples from Cincinnati through

CCHMC [30]; and 749 French samples (2 collaborators).

Data analysis and statistics
Genotyping of cases was performed following Illumina’s

recommendation at U Virginia, USA, U of Munich, Germany,

and Stanford University, Palo Alto, CA USA. NCBI build 36

(hg18) mapping was used as reference. Illumina manifest file

Immuno_BeadChip_1149691_B.bpm was used in the majority of

cases. In cases where file Immuno_BeadChip_11419691_A was

used, map positions were converted to be consistent with

1149691_B, or omitted from the analysis. Genotypes were called

using Illumina GeneExpress (Illumina GenomeStudio Gen-

Train2.0 algorithm), with extensive additional curation. Individ-

uals with call rate under 98% (123 controls, 147 cases), and

samples which were related (pi hat.0.2) were excluded from

further analysis. Data from all sources were merged in forward-

strand format. We identified 142,054 high quality SNPs with call

rate above 99% (in both cases and controls separately), and passing

HWE filtering in controls (P.161025) using the Plink suite of

software [31]. We excluded a broad region around the HLA

complex (7,893 markers at Chr 6:24,067–35,474 kb) due to the

strong LD effects with DQB1*06:02. This region contained nearly

3000 SNPs associated with narcolepsy at GWA significant levels.

We additionally excluded SNPs with minor allele frequency below

1% (22,921 SNPs). Finally 111,240 high quality SNPs of

MAF$0.01 (including 91,804 MAF$0.05) were selected for the

analysis presented here. Principal components analysis (PCA) was

performed to identify 162 outliers (133 controls, 29 cases; Golden

Helix SVS, v7), and those were removed. Genome wide

association analysis was performed using a variance component

model implemented in EMMAX [29]. The EMMAX software

does not return odds ratio or adjusted allele frequency data after

correction for stratification. We therefore calculated OR and MAF

(using Plink) for our tables based on a more homogeneous

subsample of 8474 cases/controls based on principal components

(EV 11.21,0.004, EV 4.12,0.01, see Figure S1). Linkage

disequilibrium (as r2) values and haplotype analysis were calculated

using Plink and Haploview [32] using data from our sample and/

or from the 1000 genomes dataset [33]. QQ plots were generated

using estlambda (http://www.genabel.org/GenABEL/estlambda.

html), and Manhattan and PCA plots were made using SVS

software.

Imputation
Imputation and phasing of ImmunoChip genotypes were

performed using Beagle v3.3 [34] against 4 European populations

(286 individuals from CEU, TSI, GBR, IBS) in the 1000 genomes

integrated data set (phase 1 release v3) within a 1 Mb window of

the top hit at the CTSH and TNFSF4 loci. SNPs with an

imputation R2 value$0.8 (representing reliability of imputation)

were considered in the analysis. Pairwise LD was calculated in

Plink. Association P values in Figure 2 were calculated with Plink,

as EMMAX would be inappropriate in this context, and therefore

P values are slightly different than those presented in Table 2.

http://faculty.washington.edu/browning/beagle/beagle.html

http://bochet.gcc.biostat.washington.edu/beagle/1000_Genomes.

phase1_release_v3/

Cleavage prediction
Sequence used: MWATLPLLCAGAWLL[G/R]VPVCGAAELCVN-

SLEKFHFKSWTSKHRKTYSTEEYHHRLQTFAS

SignalIP: http://www.cbs.dtu.dk/services/SignalP/ Both alleles

are predicted to have normal cleavage

SigPred: http://bmbpcu36.leeds.ac.uk/prot_analysis/Signal.

html Predicts cleavage unlikely for Arg variant.

Supporting Information

Figure S1 Principal components analysis of the study popula-

tion. Eigenvectors 1 versus 2 in cases and controls are displayed

(a–c). Dashed lines in panel a indicate boundaries of a subset of

8474 samples used to calculate OR and allele frequencies (see

Methods).

(TIF)

Table S1 Top ranking non-HLA narcolepsy risk variant signals

to P = 161024. All non-HLA variants (MAF.1% passing QC

measures), and with P values,161024. are displayed. Chr.:

Chromosome; BP: position according to NCBI build 36 (Hg18)

coordinates; MAF_N: minor allele frequency in narcolepsy (_N)

and controls (_C); P: P value according to variance component

model (EMMAX). EMMAX does not provide OR (Odds Ratio)

or adjusted allele frequencies, therefore MAF, OR, and 95%

confidence intervals (CI) were calculated with Plink on subset of

8474 samples with the greatest homogeneity (see Figure S1 ; EV

11.21,0.004, EV 4.12,0.01). Threshold for significance using

Bonferroni correction: 4.561027.

(DOCX)
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