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A predictive signature gene set for discriminating
active from latent tuberculosis in Warao
Amerindian children
Lilly M Verhagen1,2, Aldert Zomer1,3, Mailis Maes2, Julian A Villalba2,4, Berenice del Nogal5,6, Marc Eleveld1,
Sacha AFT van Hijum3,7, Jacobus H de Waard2,6 and Peter WM Hermans1*

Abstract

Background: Tuberculosis (TB) continues to cause a high toll of disease and death among children worldwide. The
diagnosis of childhood TB is challenged by the paucibacillary nature of the disease and the difficulties in obtaining
specimens. Whereas scientific and clinical research efforts to develop novel diagnostic tools have focused on TB in
adults, childhood TB has been relatively neglected. Blood transcriptional profiling has improved our understanding
of disease pathogenesis of adult TB and may offer future leads for diagnosis and treatment. No studies applying
gene expression profiling of children with TB have been published so far.

Results: We identified a 116-gene signature set that showed an average prediction error of 11% for TB vs. latent TB
infection (LTBI) and for TB vs. LTBI vs. healthy controls (HC) in our dataset. A minimal gene set of only 9 genes showed
the same prediction error of 11% for TB vs. LTBI in our dataset. Furthermore, this minimal set showed a significant
discriminatory value for TB vs. LTBI for all previously published adult studies using whole blood gene expression, with
average prediction errors between 17% and 23%. In order to identify a robust representative gene set that would
perform well in populations of different genetic backgrounds, we selected ten genes that were highly discriminative
between TB, LTBI and HC in all literature datasets as well as in our dataset. Functional annotation of these genes
highlights a possible role for genes involved in calcium signaling and calcium metabolism as biomarkers for active TB.
These ten genes were validated by quantitative real-time polymerase chain reaction in an additional cohort of 54 Warao
Amerindian children with LTBI, HC and non-TB pneumonia. Decision tree analysis indicated that five of the ten genes
were sufficient to classify 78% of the TB cases correctly with no LTBI subjects wrongly classified as TB (100% specificity).

Conclusions: Our data justify the further exploration of our signature set as biomarkers for potential childhood TB
diagnosis. We show that, as the identification of different biomarkers in ethnically distinct cohorts is apparent, it is
important to cross-validate newly identified markers in all available cohorts.

Keywords: Biomarker, Children, Mycobacterium tuberculosis, Transcriptomics

Background
It is estimated that one third of the world’s population is
infected with Mycobacterium tuberculosis and that each
year about nine million people develop tuberculosis
(TB), one million (11%) of whom are children under 15
years of age [1]. A unique aspect of TB in children is the
rapid progression to disease, typically within the first

year following infection, unlike in adults, where TB in-
fection can persist for decades without progression into
an active infection [2]. Bacteriological confirmation in
the diagnosis of childhood TB is the exception rather
than the rule with culture remaining negative in around
70% of cases with probable TB [3]. Using blood tran-
scriptional profiling, several signature gene sets have
been identified in adult cohorts from South Africa, The
Gambia and The United Kingdom [4-6]. However, a sig-
nificant overlap was shown with a biomarker set for sar-
coidosis, suggesting the need for more specific biomarker
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sets [7]. To statistically verify differential expression be-
tween active TB, latent TB infection (LTBI) and healthy
controls (HC) different methods have been used, varying
from statistical tests [4,6] to prediction models using the
k-nearest neighbours algorithm [4]. Correlation analysis, a
method selecting genes that are correlated with a single
differentially expressed gene, was used to identify a bio-
marker set in a Gambian cohort [5]. No studies applying
gene expression profiling of children with TB have been
published, and it is unknown whether the existing signa-
ture gene sets are applicable to childhood cohorts.
In Venezuela, a high TB incidence rate (3190 per

100,000) has been reported in Warao Amerindian children
living in the Orinoco Delta in northeastern Venezuela [8].
In this study, we identified new gene signatures in child-
hood TB by comparing gene expression profiles of Warao
Amerindian children with TB, LTBI and HC. We validated
the identified gene signatures from this study in an inde-
pendent cohort of children with LTBI, HC or non-TB
pneumonia. Furthermore, we estimated the predictive
value of our gene signatures in previously performed adult
studies and we compared the discriminatory power of the
literature signature gene sets with our gene set.

Results
Identification of signature genes
Genome-wide transcription profiles in whole blood from
9 TB patients, 9 LTBI and 9 HC were generated using
Affymetrix exon arrays comprising approximately one
million probes, which are mapped to 22011 unique fea-
tures (Affymetrix core gene set). General characteristics
of the study subjects are given in Table 1. Detailed infor-
mation of the study subjects is given in Additional file 1:
Table S1. Random forest analyses were performed to
find the signature gene sets used to interrogate whether
donors within this study could be divided into distinct
groups based on their gene expression profiles. Irrele-
vant genes were removed from the signature set using
the random forest-based local importance measure as
described in PhenoLink [9]. A total of 21798 genes were
removed in the initial step and the classification or out
of bag (OOB) error decreased substantially from 70% to

22%. Next, genes contributing to the correct classifica-
tion of at least three samples of the same class were
selected resulting in a removal of a total of 97 genes and
a decrease of the OOB error to approximately 11%. The
reduced dataset consisting of 116 genes allowed separ-
ation of the three classes with class errors of 11%, 22%,
and 0% for the respective classes of TB, LTBI and HC
(Table 2). Unsupervised hierarchical cluster analysis of
this 116 gene profile showed that all 27 individuals could
be successfully clustered into three groups, and each
group matched to the corresponding grouping of TB,
LTBI and HC (Figure 1). Functional annotation of the
116 genes revealed that genes in the categories of cell
proliferation, cell death, phosphorylation and calcium
binding were enriched. A full list of enriched gene sets
analyzed by the online DAVID tool [10] is provided as
supplemental information (Additional file 2: Table S2).

Validation of signature gene sets in independent
sample sets
In order to confirm the value of our identified gene set
in comparison with existing signature gene sets in all
available cohorts that used whole blood gene expression
[4-6], we performed random forest classification of the
datasets with all signature gene sets to distinguish TB
from LTBI and to distinguish TB, LTBI and HC. The
average prediction error for the classification of TB and
LTBI patients identified by Berry et al. [4] using our
116-gene signature set was 20.1% (Table 3). The average
error for the two sets of Maertzdorf et al. [5,6] was re-
spectively 26.5% and 19.1% (Table 3). Comparison of the
other literature sets with each other showed similar aver-
age prediction errors when one set was used to discrim-
inate individuals in the other set. However, while our
116-gene set showed a good predictive value for both
the childhood cohort described in this study as well as
for the adult cohorts identified in other studies, the gene
sets identified in those adult studies did not discriminate
the children included in our study adequately (average
prediction error for TB vs. LTBI 33-50% (Table 3)). As
Berry et al. provided demographic characteristics of the
subjects included in their study [4], we were able to
examine whether these demographic characteristics were
related to the chance that a subject with TB was wrongly
classified as LTBI using our 116 gene set. Multivariable
linear regression analysis showed that age and gender

Table 1 Characteristics of children with TB, LTBI and HC
in which microarray analyses were performed

TB LTBI HC

Number of donors 9 9 9

Characteristics

Age Mean (SD) 7.8 (5.0) 8.9 (4.5) 7.2 (3.5)

Range 1.1 – 14.5 2.2 – 14.6 1.3 – 11.5

Gender Female 7 3 7

Male 2 6 2

Table 2 Class errors of the 116 signature gene set

Active
TB

Latent
TB

Healthy
controls

Class error
(%)

OOB

Active 8 0 1 11.1 11.1

Latent 0 7 2 22.2 22.2

Healthy 0 0 9 0.0 0.0
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were not significantly associated with wrong classifica-
tion of TB subjects. In contrast, TB patients from South
Africa were significantly more often wrongly classified as
LTBI than TB patients from London (beta coefficient cor-
rected for age and gender = 0.339, 95% CI 0.213 – 0.465).

Identification of the minimal discriminatory signature
gene sets
A minimal discriminatory gene set to discriminate be-
tween TB and LTBI was identified by variable selection
random forest (VarSelRF) [11]. This procedure produced
four genes for the set described in this manuscript, three
genes for the dataset described by Berry et al. [4], three
genes for the dataset described by Maertzdorf et al. [5]

and two genes for the other dataset described by
Maertzdorf et al. [6] that are required to distinguish TB
from LTBI samples (Additional file 3: Table S3). After
removal of the overlaps, i.e. the genes that were se-
lected in more than one dataset, nine genes remained
(Additional file 3: Table S3). Similarly, a minimal gene set
to distinguish TB from LTBI and from HC was identified.
In this comparison, six genes were identified for the set
described in this manuscript and respectively 35, three,
and 25 genes were identified for the three other datasets
[4-6] (Additional file 3: Table S3). After removal of the
overlaps, 42 genes remained (Additional file 3: Table S3).
Performance of these minimal sets was comparable to
performance of the 116 gene set (Table 3). However, as
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Figure 1 Unsupervised hierarchical cluster analysis of the 116 gene profile.

Table 3 Performance of signature gene sets: cross prediction matrix showing prediction errors

Class comparison Signature gene set This study Berry et al. [4] Maertzdorf et al. [6]

Study 116 gene
set

Minimal TB-
LTBI set

Minimal TB-
LTBI-HC set

Robust 10 gene
q-PCR set

86 gene
set

393 gene
set

11 gene
set

5 gene
set

TB vs. LTBI Berry et al. [4] 20.1 19.4 nda nd 12.5 11.1 13.0 16.3

Maertzdorf et al. [5] 26.5 22.5 nd nd 19.4 24.5 22.5 21.4

Maertzdorf et al. [6] 19.1 16.9 nd nd 11.3 10.1 10.2 10.1

This study 11.1 11.1 nd nd 50.0 50.0 33.0 50.0

average prediction error 19.2 17.5 nd nd 23.3 23.9 19.7 24.5

TB vs. LTBI vs. HC Berry et al. [4] 27.6 nd 23.9 34.9 20.1 14.1 27.3 30.4

Maertzdorf et al. [5] 48.6 nd 50.3 52.5 47.4 48.6 50.0 41.8

Maertzdorf et al. [6] 25.6 nd 25.6 48.9 17.8 21.3 26.2 32.8

This study 11.1 nd 14.8 14.8 66.7 74.1 74.1 70.4

average prediction error 28.2 nd 28.7 37.8 38.0 39.5 44.4 43.8

TB vs. LTBI vs. HC vs.
other disease

Berry et al. [4] 37.4 nd nd nd 27.6 18.7 28.5 37.2

Columns represent selected gene biomarker sets in the literature sets as well as in our dataset. Rows represent the studies on which the gene biomarker sets
displayed in the columns were tested.
a = not determined.
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only a few genes included in the minimal sets were
present in more than one of the datasets, the selected
minimal sets seem to be a summary of four small sets that
perform well on each of the included datasets rather than
a robust representative set that would perform well in eth-
nically different populations.

Identification and validation of the optimal signature
gene set
Because of potential problems with the extrapolation of
the minimal gene signature datasets to other populations
due to overfitting of these gene sets on the source data-
sets, we selected ten genes from the random forest sig-
nature 116-gene set that were highly discriminative
between the three groups of TB, LTBI and HC in our set
of Warao Amerindian children. Furthermore, the ten
selected genes were consistently selected in the boot-
strapping procedure implemented in VarSelfRF from the
set of Berry et al. (individuals from The United Kingdom

and South Africa, including the individuals suffering
from other inflammatory diseases [4]) and from the two
sets of Maertzdorf et al. (individuals from The Gambia
[5] and South Africa [6]). Additional file 3: Table S3
shows the variable frequencies estimated by the boot-
strapping procedure per probe per dataset. The selection
of ten genes out of these 116 genes consisted of CHRM2,
AMPH, SNX17, PIGC, TAS2R46 (downregulated in TB
vs. LTBI) and HBD, GLDC, ACOT7, S100P and STYXL1
(upregulated in TB vs. LTBI). These ten selected genes
had the highest variable frequency in .632+ bootstrapped
runs of the 116 discriminatory gene set in all cohorts,
meaning that they were most frequently present in the
trees of the random forest analyses performed (Additional
file 3: Table S3). Their possible role in TB, lung disease or
inflammatory processes is displayed in Table 4. While the
minimal set was a mere combination of genes that had a
good predictive value for active TB in each of the source
databases, the robust ten gene set represents a set of genes

Table 4 Set of 10 signature genes with their role in TB, lung disease or inflammatory processes

Gene
symbol

Gene name Function Possible role in TB, lung disease or inflammatory processes

CHRM2 Cholinergic muscarine
2 receptor

cAMP regulation on airway smooth muscle. • Loss of muscarine receptor function is associated with airway
hyperreactivity [12].

AMPH Amphiphysin Phagocytosis, clathrin-mediated endocytosis in
alveolar macrophages [13].

• Clathrin-mediated endocytosis in the lungs plays an important
role in mediating the internalization of human rhinovirus and
influenza A virus [14,15].

• Inhibition of clathrin-mediated endocytosis led to inhibition of
lipopolysaccharide (LPS) internalization and cytokine/chemokine
release from macrophages stimulated by LPS [16].

SNX17 Sorting nexin 17 Intracellular binding protein for the adhesion
molecule P-selectin [17].

• P-selectin is important in the early phase of cell migration in TB
infection and increased P-selectin serum levels are found in TB
patients [18].

PIGC Phosphatidylinositol
glycan anchor
biosynthesis class C

Biosynthesis of glycosylphosphatidylinositol [19]. • Incorporation of the mycobacterial cell wall component
lipoarabinomannan (LAM) into the macrophage cell membrane, a
process that is dependent on successful insertion of a
glycosylphosphatidylinositol anchor, is one of the key virulence
factors for M. tuberculosis [20].

S100P S100 calcium binding
protein P

Calcium-binding protein involved in
intracellular and extracellular calcium
sensing and signal transduction [21].

• M. tuberculosis-mediated inhibition of a cytosolic rise in calcium
is one of the essential steps in phagosome maturation [22].

TAS2R46 Taste receptor type 2
member 46

Regulation of ciliary beat frequency through
modulation of intracellular calcium
concentration [23].

• M. tuberculosis-mediated inhibition of a cytosolic rise in calcium
is one of the essential steps in phagosome maturation [22].
Decreased expression of TAS2R receptors has been shown to
lead to a decrease in intracellular calcium concentration [23].

• TAS2Rs are expressed on human airway smooth muscle where
they cause bronchodilation through a localized calcium response [24].

STYXL1 Serine/threonine/
tyrosine interacting-
like1

Inhibition of formation of stress granules. • Stress granules are host RNA cytoplasmic granules formed in
response to infections by a pathway involving phosphorylation of
the translation initiation factor eIF2α [25].

HBD Hemoglobin delta Encodes for the delta globin chain of HbA2. • Involved in oxygen transport from the lung to the peripheral tissues.

GLDC Glycine dehydrogenase
(decarboxylating)

Metabolic enzyme promoting cellular
transformation.

• Altered GLDC expression has been correlated with survival time
in lung cancer patients [26].

ACOT7 Acyl-CoA thioesterase 7 Expressed in macrophages, plays a role in
inflammation through production of
arachidonic acid.

• The molecular and cellular functions of ACOT7 have identified
the enzyme as a candidate drug target in inflammatory diseases [27].
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that perform well in the discrimination of active TB from
LTBI and HC in all datasets used for its composition and
probably also as in future cohorts from other study sites.
The overlap between the minimal nine gene set for TB vs.
LTBI and the robust ten gene set consisted of three genes
(HBD, CHRM2 and GLDC) and the overlap between
the minimal 42 gene set for TB vs. LTBI vs. HC and the
robust ten gene set consisted of seven genes (HBD,
CHRM2, GLDC, ACOT7, SNX17, TAS2R46 and PIGC).
For validation of the ten genes included in the robust

ten gene set, we carried out quantitative real-time poly-
merase chain reaction (qRT-PCR) studies using the same
samples as used for the microarray experiment. Add-
itionally, we tested our identified set of ten genes in 54
additional samples (20 LTBI, 16 HC, 18 non-TB pneu-
monia) from Warao Amerindian children aged 1 to 15
years. Furthermore, from three children with TB a re-
covery sample taken five months after initiation of anti-
TB treatment was tested with qRT-PCR. Analysis of
the qRT-PCR data showed that S100P (p = 0.004), GLDC
(p = 0.016) and HBD (p = 0.027) significantly discriminated
TB from LTBI while PIGC (p = 0.007), SNX17 (p = 0.019),
TAS2R46 (p = 0.017) and HBD (p = 0.007) significantly
discriminated TB cases from HC. TB cases were sepa-
rated from non-TB pneumonia cases based on expression
of SNX17 (p = 0.027) and HBD (p = 0.006). Active TB
cases were separated from all other groups (i.e. LTBI,
HC and non-TB pneumonia) based on expression of
PIGC (p = 0.045), GLDC (p = 0.044) and HBD (p = 0.025).
The values of area under receiver operating characteristic
(ROC) curve (AUC) of these genes are shown in Table 5.
The quantitative results of qRT-PCR analyses are shown in
Additional file 4: Figure S1 and Additional file 5: Table S4.
Decision tree analysis indicated that five genes (S100P,
HBD, PIGC, CHRM2 and ACOT7) were sufficient to clas-
sify 78% of the TB cases correctly with no false-positives
among the children with LTBI (100% specificity). Among

the HC and non-TB pneumonia cases, false positive rates
were 4% and 11% respectively (Figure 2). Interestingly, fol-
lowing this decision tree, the follow-up samples that were
taken from three of the nine TB patients when they had
received five months of anti-TB treatment were no longer
classified as TB while the samples taken on inclusion of
these patients were correctly classified as TB.

Discussion
Although peripheral blood transcriptional signatures dis-
criminating between TB, LTBI and HC subjects have
been identified in adult studies [4-6], concerns about the
specificity of these signature sets have been raised [7].
Furthermore, the performance of these signature sets in
children, that show high rates of progressive tuberculosis
due to immaturity of the immune response, has not been
investigated so far. In this study, we identified a 116 sig-
nature gene set that discriminated TB from LTBI and
HC with class errors of 11%, 22%, and 0% for the re-
spective classes of TB, LTBI and HC (Table 2). While
this 116 gene signature set also showed a good discrim-
inative value between TB and LTBI in adults from South
Africa, The Gambia and The United Kingdom, signature
sets that were identified in those adult cohorts were un-
able to discriminate TB from LTBI in our childhood co-
hort (Table 3).
Gene clusters that were enriched in our signature set

included genes in the categories of (programmed) cell
death and calcium binding (Additional file 2: Table S2).
Both the Gambian as well as the South-African study of
Maertzdorf et al. [5,6] also described enrichment of
genes involved in cell death. Other similarities between
the functional annotations in the South African study [6]
and our study are the enrichment of genes involved in
regulation of cell proliferation, regulation of caspase ac-
tivity and protein kinase activity. Specifically, CD64 was
identified as the most powerful discriminating gene

Table 5 Receiver operating characteristic analysis of selected genes

Gene Down- or
upregulation in TB

TB (n = 9) vs. LTBI (n = 29) TB (n = 9) vs. HC (n = 25) TB (n = 9) vs. pneumonia (n = 18)

AUC p-value % Sens % Spec AUC p-value % Spec AUC p-value % Spec

ACOT7 Upregulation 0.70 0.073 67 86 0.63 0.24 76 0.67 0.15 72

AMPH Downregulation 0.55 0.86 56 52 0.60 0.91 76 0.56 1.00 61

CHRM2 Downregulation 0.63 0.17 56 62 0.62 0.33 46 0.52 0.87 44

GLDC Upregulation 0.78 0.016 67 79 0.64 0.19 73 0.66 0.13 72

HBD Upregulation 0.79 0.027 67 93 0.77 <0.01 78 0.79 <0.01 83

PIGC Downregulation 0.62 0.29 55 76 0.80 <0.01 89 0.73 0.076 94

S100P Upregulation 0.80 <0.01 89 76 0.58 0.77 35 0.64 0.24 39

SNX17 Downregulation 0.54 0.67 56 65 0.74 0.019 86 0.71 0.027 83

STYXL1 Upregulation 0.58 0.67 56 65 0.60 0.34 30 0.62 0.27 61

TAS2R46 Downregulation 0.65 0.31 67 72 0.76 0.017 84 0.73 0.071 78
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seperating TB from LTBI cases in the South African
study [6]. As CD64 has also been identified as a marker
for general innate immune response activity and sepsis,
this marker may not be specific to TB [28]. Berry et al.
observed that genes downstream of type I interferon-αβ
receptor signaling were over-respresented in patients
with active TB [4]. However, type I inferferon signaling
is also induced in response to respiratory viruses [29]
and Streptococcus pneumoniae [30], questioning the spe-
cificity of genes involved in type I interferon receptor
signaling as biomarkers for active TB.
The enrichment of genes involved in calcium signaling

in our TB biomarker set has not been described before
in adult studies using whole-blood gene expression [4-6],
nor in studies based on transcriptional profiling of periph-
eral blood mononuclear cells (PBMCs) [31,32]. A close
relation between abnormal calcium metabolism and radio-
logical extent of disease has been described in pulmonary
TB patients [33,34]. Alterations in serum calcium, particu-
larly cases of hypercalcemia, have been observed in adult
TB patients [33-35]. Hypercalcemia in pediatric TB pa-
tients is an infrequently recognized and poorly understood
phenomenon [36]. In lung tissue, several processes related
to calcium homeostasis are thought to contribute to
M. tuberculosis persistence and the aggregation of macro-
phages in granulomas. Over-production of 1,2-dihydroxy-
vitamin D3, which plays a traditional role in calcium

metabolism, in alveolar macrophages in granulomas has a
protective effect against oxidative injuries from the nitric
oxide burst from granulomatous macrophages [37-39].
Furthermore, M. tuberculosis inhibits a calcium-dependent
phagolysosome formation pathway which leads to the pre-
vention of maturation of M. tuberculosis-containing pha-
gosomes into phagolysosomes. This process, referred to as
the M. tuberculosis phagosome maturation arrest, is crit-
ical for M. tuberculosis persistence in the human host [22].
S100P, which significantly discriminated TB from LTBI
in our study children, and TAS2R46, which significantly
distinguished TB cases from HC, are genes involved in
calcium signaling [21,23,24]. Possibly, altered expression
of these genes in TB patients reflects M. tuberculosis-
mediated changes in calcium metabolism in lung tissue
that can be measured in peripheral whole blood.
Although the groups of TB, LTBI and HC were rea-

sonably well age-matched (Table 1), we cannot exclude
the possibility that age-dependent differences in immune
responses have influenced gene expression profiles. Age-
related differences in both innate as well as antigen-
specific responses to M. tuberculosis are well recognised
[40,41]. Alveolar macrophage antimicrobial activity and
recruitment of monocytes as well as the production of
cytokines and certain aspects of antigen presentation ap-
pear to be less efficient in young children. This is par-
ticularly true in children younger than one year of age

S100P<6.946 S100P>6.946

HBD>6.136

PIGC>10.302 PIGC<10.302

N = 42
TB = 8, LTBI = 7, HC = 16, pneumonia= 11

N = 81
TB = 9, LTBI = 29, HC = 25, pneumonia= 18

HBD<6.136

N = 27
TB = 8, LTBI = 5, HC = 8, pneumonia= 6

N = 39
TB = 1, LTBI = 22 HC = 9, pneumonia= 7

N = 15
TB = 0, LTBI = 2 HC = 8, pneumonia= 5

N = 13
TB = 1, LTBI = 3 HC = 6, pneumonia= 3

N = 14
TB = 7, LTBI = 2, HC = 2, pneumonia= 3

N = 11
TB = 7, LTBI = 1, HC = 1, pneumonia= 2

N = 3
TB = 0, LTBI = 1 HC = 1, pneumonia= 1

CHRM2>18.150 CHRM2<18.150

N = 1
TB = 0, LTBI = 1 HC = 0, pneumonia= 0

N = 10
TB = 7, LTBI = 0, HC = 1, pneumonia= 2

ACOT7<7.358 ACOT7>7.358

Figure 2 Decision tree analysis to differentiate TB from LTBI, HC and non-TB pneumonia. The combination of S100P, HBD, PIGC, CHRM2
and ACOT7 provides the best discrimination between TB, LTBI, HC and non-TB pneumonia. The sensitivity and specificity of this five-gene panel
was 78% and 96% respectively. 94% of the children were correctly classified. Rectangle: internal nodes; Oval and hexagon: terminal nodes
showing the number finally determined as TB and non-TB (LTBI, HC or non-TB pneumonia).
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[41]. Therefore, the exclusion of children less than one
year of age in our study is likely to have prevented a sig-
nificant influence of age-related immune differences on
gene expression results. Furthermore, the signature set
that we identified showed a good discriminative value
between TB and LTBI in adults from several regions [4-6].
This is an indication that the genes that were selected in
our analysis make up a signature set that performs well in
individuals of all ages.
We identified a minimal gene set of 42 genes that was

able to separate TB cases from LTBI and HC in all previ-
ously described (adult) cohorts [4-6] as well as in our
childhood cohort. However, as this minimal set was pos-
sibly over-optimized to fit exactly those sets that were
used for its composition, this set might not perform well
in a newly identified cohort from a different geographic
region. As the datasets used for the composition of the
minimal set were based on European, African and South
American populations the minimal set may not be ap-
plicable to individuals from Asia, while this region car-
ries almost two-third of the global TB burden [42].
Furthermore, this signature set could be only indicative
of damage to the lung epithelium, similar to what has
been described for the overlap of the gene set determined
by Berry et al. [4] and the biosignature characteristic for
sarcoidosis [7]. Therefore, we used bootstrapping proce-
dures to select a robust set of ten genes that had a high
discriminative value in our population, in the two popula-
tions described by Maertzdorf et al. [5,6] and in the com-
parison between TB, LTBI, HC and other inflammatory
and infectious diseases in the dataset of Berry et al. [4].
Although this approach probably leads to less overfitting
of the selected set towards the source databases used and
less overlap with other infectious diseases in comparison
with the minimal gene set we identified, the discrimin-
atory power of this ten gene set is less than that of the
minimal set (Table 3). Future cohorts can be of help in the
reduction of the 116 gene set to a dataset with similar per-
formance in discriminating TB from LTBI, HC and other
inflammatory diseases as the minimal gene set without
overfitting the dataset to the source datasets.
From the ten gene set, a combination of five (S100P,

HBD, PIGC, CHRM2 and ACOT7) could be used in deci-
sion tree analysis to differentiate TB from LTBI, HC and
non-TB pneumonia with 78% sensitivity and 96% specifi-
city in our dataset (Figure 2). Additionally, the expression
profile of children that were treated for TB shifted from
an active TB classification (oval in Figure 2) towards a
classification as not suffering from active TB (hexagon in
Figure 2) at five months post treatment initiation. This
indicates that these biomarkers reflect a dynamic response
that changes as mycobactericidal activity diminishes.
The discriminatory value of the 116 gene signature set

for the classification of cases in the cohort described by

Berry and colleagues [4] was significantly better in people
from London compared to people from South Africa. An
explanation for the greater similarity between our study
population with people from London than with people
from South Africa comes from population-genetic studies
in which a decrease in the level of genetic variation be-
tween populations is observed with increasing geographic
distance from Africa, consistent with the out-of-Africa
spread of human populations [43]. The finding that previ-
ously published signature sets based on individuals from
South Africa [4,6] do not provide a good discriminatory
value between TB, LTBI and HC in The Gambia [5] points
towards a high heterozygosity in TB immune response
between different African countries. A high-resolution
survey of genotype variation based on single-nucleotide
polymorphisms, copy-number variants and haplotype
analysis of a worldwide sample of 29 populations revealed
that the genetic distance between individuals from Asia
and Native American or Colombian individuals is signifi-
cantly less than the genetic distance between Asian and
South African populations [44]. Bayesian cluster analysis
clustered individuals from East Asia together with Native
American or Colombian individuals, indicating their
close phylogenetic relationship [44]. Clustering of Native
American individuals with Asian individuals based on
their genetic similarities was also observed in a recently
published quantitative assessment of human genetic vari-
ation worldwide [45]. Therefore, we speculate that the ap-
plicability of our signature set in Asian populations might
be better than the applicability of sets identified in African
or European populations.

Conclusions
This study provides a signature gene set that was de-
monstrated to be instrumental for the diagnosis of child-
hood TB. As the identification of different biomarkers in
ethnically distinct cohorts is apparent, it is important to
cross-validate newly identified markers in all available
cohorts. Especially, more childhood cohorts should be
investigated as TB diagnosis based on traditional meth-
ods is less sensitive and specific in children compared
to adults.

Methods
Study population
The Warao Amerindians are an indigenous population
living in wooden houses raised on stilts along the Ori-
noco river banks. With a population of approximately
30,000, the Warao people are the second most important
Native American group in Venezuela. In this study, 27
HIV-negative children 1 to 15 years of age with TB (n = 9),
LTBI (n = 9) and HC (n = 9) were recruited between May
2010 and December 2010. General characteristics of the
study subjects are given in Table 1. Detailed information
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of the study subjects that was recorded on inclusion is
given in Additional file 1: Table S1. Tuberculin skin test
(TST) and QuantiFERON-TB Gold In-Tube assay (QFT-
GIT) were performed in all children. Sputum samples
were collected from all children with expectoration and
gastric aspirates were taken from all children under 6
years of age. Children with active TB were diagnosed
based on culture of M. tuberculosis (n = 2) or on the basis
of clinical, epidemiological and radiological features (n = 7).
The latter group were children with a TST ≥ 10 mm or a
positive QFT-GIT result who presented all of: persistent
fever > 38°C recorded daily for at least two weeks, persist-
ent cough for more than three weeks, weight loss (> 5%
reduction in weight compared with the highest weight
recorded in last three months) or failure to thrive (docu-
mented crossing of percentile lines in the preceding three
months), persistent lethargy or decrease in playfulness/
activity reported by the parent and absence of clinical re-
sponse on broad-spectrum antibiotics. Standard antero-
posterior and lateral chest radiographs (CXRs) were taken
from all children. Two independent experts, blinded to all
clinical information, evaluated the CXRs and documented
their findings on a standard report form. Where the two
objective experts disagreed, a third expert was consulted
and final consensus was achieved. A diagnosis of TB was
only made when the CXR was consistent with TB [46] and
the child showed a positive clinical response to anti-TB
treatment. Children were followed up clinically, radiologic-
ally and, in case of a negative TST at inclusion, by means of
TSTat six and 12 months after inclusion. LTBI was defined
as a TST ≥ 10mm and a positive QFT-GIT with a negative
culture result on inclusion in the absence of radiological
and clinical evidence of TB disease on inclusion as well as
on six and 12 months after inclusion. HC were children
with a TST = 0 mm on inclusion and on six and 12 months
after inclusion. The HC had a negative QFT-GIT and a
negative culture result on inclusion in the absence of radio-
logical and clinical evidence of TB disease on inclusion as
well as on six and 12 months after inclusion. TB patients
were sampled before initiation of anti-TB treatment. Of
three of the nine TB patients, a follow-up sample was
taken when the patient had taken anti-TB treatment for
five months.

RNA isolation and microarray procedures
From every child, 2.5 ml of peripheral whole blood
was collected in PAXgene RNA tubes (PreAnalytix,
Hombrechtikon, Switzerland) and stored at −80°C prior to
processing. RNA was isolated using the PAXgene Blood
RNA kit (PreAnalytix) following the manufacturer’s
protocol. RNA quality was checked using the RNA 6000
Nano Kit on a Bioanalyzer 2100 (Agilent Technologies,
Santa Clara, CA). Gene expression data were obtained
using GeneChip Human Exon 1.0 ST Arrays (Affymetrix,

Santa Clara, CA). The probe preparation and hybridization
was done following Affymetrix protocol. Arrays were
washed and stained according to the protocol on a Gene-
Chip Fluidics Station 450 (Affymetrix) and scanned on a
Genechip Scanner 3000 + autoloader (Affymetrix). Scan
results were converted to CEL with the Affymetric scan-
ning software. Spot intensity data were processed with
Affymetrix Power Tools (version 1.14-4.1.1) using robust
multi-array average (RMA) and plier-gcbg normalization
on the core gene set (version HuEx-1 0-st-v2.r2.dt1.hg18).
Gene expression values were log2-transformed and differ-
entially expressed genes were identified based on log2
fold changes (M-values). P-values were calculated with a
Bayes-regularized one-way ANOVA [47] followed by mul-
tiple testing correction of the p-values (q-values) according
to the method of Storey and Tibshirani [48]. Microarray
data have been deposited in the GEO database under acces-
sion GSE41055 (http://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?token=ltmhxwsmskeyyte&acc=GSE41055).

Random forest based identification of TB
biomarker genes
A random forest classification was performed to identify
signature genes for discrimination of TB, LTBI and HC.
This classification model, consisting of 5000 decision
trees trained on random subsets of samples and variables
was trained based on log2 gene expression data as a
function of individuals belonging to either TB, LTBI or
HC classes. Irrelevant genes were removed using the
random forest-based local importance measure as
described in PhenoLink [9] where genes with a negative
or neutral contribution of correctly classifying the sam-
ples were removed. This process was repeated until
fewer than three genes could be removed per iteration.
Next, genes were selected provided that they had a contri-
bution to the correct classification of at least three sam-
ples of the same class. Again, this process was repeated
until fewer than three genes were removed. The resulting
set was used for classification and determination of the
classification error, both as OOB error and as average
error, on all gene expression sets.

Literature datasets
Literature datasets describing gene expression studies of
TB, LTBI, HC and other infectious diseases were obtained
from GEO (http://nar.oxfordjournals.org/content/39/suppl_
1/D1005.full), accession numbers GSE19491 [4], GSE19492
[4], GSE28623 [5] and GSE25534 [6]. For GSE19491, GSE
19492 and GSE28623 available normalized data were used,
while for GSE25534 the 2 dye array data was normalized
using RMA in Arraystar (DNAStar, Madison, WI) to allow
inter-slide comparison of gene expression data. First, the
TB biomarker set identified in this manuscript was ap-
plied to the literature cohorts [4-6] and the biomarker sets
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identified in the literature cohorts were applied to each
other for estimation of the predictive value of each identi-
fied set in the other populations. Next, to determine the
minimal discriminatory gene sets based on the dataset
described in this study as well as on the three previously
published datasets [4-6], expression data from probes corre-
sponding with the TB biomarker set determined in this
manuscript were subjected to VarSelRF, as described by
Diaz-Uriarte et al. [11], which progressively eliminates
genes with the lowest random forest-based local import-
ance measure until no further improvements in the OOB
error rate are reported. This procedure is designed to iden-
tify small, non-redundant sets of genes that have good pre-
dictive performance. However, over fitting of the selected
minimum discriminatory gene sets on the source databases
used could lead to a poor performance of these minimal
sets when applying them to classify other patient popula-
tions. Therefore, .632+ bootstrapping procedures were per-
formed to select genes with a high discriminative power in
all datasets. Bootstrapping repeatedly analyzes subsamples
rather than subsets of the data. As each subsample is a ran-
dom sample with replacement from the full sample, this
procedure performs well in the selection of classifiers even
when there is over fitting [49].
To test possible associations between the class prob-

ability of being wrongly classified as LTBI (dependent
variable) and age, gender and geographical region (inde-
pendent variables) of TB cases included in the GSE19491/
GSE19492 dataset, multivariable linear regression analysis
was performed.

Functional analysis
Enrichment analysis of signature genes was performed
using the web-based DAVID bioinformatics tool (http://
david.abcc.ncifcrf.gov) [10]. Q-values for enriched annno-
tations were determined by a modified Fisher’s exact test
(EASE Score [10]) and corrected for multiple testing by
the Benjamini-Hochberg approach.

Quantitative RT-PCR on microarray and additional samples
Differential expression of several genes was validated by
qRT-PCR. cDNA was generated by reverse transcription
using Superscript III Reverse Transcriptase and Random
Primers (Invitrogen) following manufacturer’s protocol
after DNAse treatment of the RNA using TURBO DNA-
free (Ambion). GAPDH was chosen as reference gene.
qRT-PCR was performed on the 27 microarray samples
as well as on a validation cohort (n = 54). These were
RNA samples collected from an additional 54 children
during the same period and in the same manner as the
microarray samples. Of the 54 children of which RNA
was collected for qRT-PCR, 20 were diagnosed with
LTBI, 16 were HC and 18 children were diagnosed with

a radiologically confirmed pneumonia [50], of which six
were LTBI and 12 were HC.
ROC methodology was applied to evaluate the dis-

criminatory ability of signature genes. All expression
values were normally distributed (Kolmogorov-Smirnov’s
test, p > 0.05). One-way analysis of variance and un-
paired Student’s t tests were performed to compare ex-
pression values of these genes in children with TB, LTBI,
HC and non-TB pneumonia. When the variances across
groups were not equal (Levene’s test p < 0.05), Welch
correction for nonhomogeneity of variance was applied.

Ethical considerations
The nature and objectives of the study were explained to
the parents of children in Spanish or were simultaneously
translated to their native language by Spanish-Warao bilin-
gual native interpreters. The study was approved by the
ethical committee of the Instituto de Biomedicina, the Re-
gional Health Services, and the Delta Amacuro Indigenous
Health Office (Servicio de Atención y Orientación al
Indígena). Children were enrolled if their parents or pri-
mary caregivers provided written informed consent. Illiter-
ate parents or caregivers signed by means of a thumb print.

Additional files

Additional file 1: Table S1. Detailed characteristics of 27 children with
TB, LTBI and HC in which microarray analyses were performed.

Additional file 2: Table S2. Enriched gene sets in the 116 gene set.

Additional file 3: Table S3. Sheet 1. Minimal discriminatory gene set to
discriminate between TB and LTBI. Sheet 2. Minimal discriminatory gene
set to discriminate between TB, LTBI and HC. Sheet 3. Variable
frequencies estimated by the bootstrapping procedure implemented in
VarSelRF (1). Sheet 4. Variable frequencies estimated by the bootstrapping
procedure implemented in VarSelRF (2).

Additional file 4: Figure S1. qRT-PCR cycle threshold (delta Ct) values
in TB, LTBI, HC and non-TB pneumonia subjects for each of the ten
signature genes. The delta Ct was calculated as Ct value (number of
cycles required for the fluorescent signal to exceed the background level)
of the target gene – Ct value of the reference gene (GAPDH). The
boxplots show the median delta Ct values and the interquartile ranges.
The whiskers represent the highest and lowest values that are not
outliers. Dots represent outliers and squares in the boxes indicate mean
delta Ct values. The p-values for each gene (in parentheses) are the
outcomes of the one-way analyses of variance comparing TB, LTBI, HC
and non-TB pneumonia. The asterisks indicate statistically significant
differences (p < 0.05) between TB and other groups as found by an
unpaired Student’s t test.

Additional file 5: Table S4. qRT-PCR cycle threshold (delta Ct) values in
TB, LTBI, HC and non-TB pneumonia subjects for each of the ten
signature genes. The delta Ct was calculated as Ct value (number of
cycles required for the fluorescent signal to exceed the background level,
a lower Delta Ct value indicates a higher expression) of the target gene –
Ct value of the reference gene (GAPDH).
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