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Bardet-Biedl syndrome (BBS; OMIM: 209900) is invari-
antly characterized by rod-cone dystrophy, and at least three 
additional non-ocular features such as intellectual disability, 
obesity, polydactyly, hypogonadism, or renal anomalies as 
primary manifestations. In the absence of one of these four 
primary clinical features, the diagnosis of BBS is made 
when at least two secondary features are observed, including 
hepatic fibrosis, diabetes mellitus, reproductive and develop-
mental abnormalities, growth retardation, speech delays, or 
cardiovascular problems [1].

BBS has been classified as a ciliopathy [2] and is 
inherited mostly in an autosomal recessive pattern although 
digenic (triallelic) inheritance has also been reported [3-6]. 
Some studies have also demonstrated the epistatic effects of a 
third protective allele [7,8], while variants in RPGRIP1L have 

been reported as a modifier of the BBS phenotype [9]. In only 
two studies, a recessive mode of inheritance for BBS has been 
argued against [5,10]. Recently, a spectrum of phenotypes 
ranging from full-blown BBS to non-syndromic retinitis 
pigmentosa was found to be associated with the hypomorphic 
BBS1 missense mutation p.Met390Arg [11].

BBS is a severe disorder with the highest prevalence 
of 1/3,700 in the Faroe Islands [12]. Although in the rest of 
the world the prevalence of BBS varies from 1/13,000 in 
Newfoundland [13] to 1/17,000 in the Kuwaiti population [14] 
and 1/65,000 in other Arab countries [15], BBS is rare in the 
European population with a prevalence range of 1/125,000 in 
the UK [16] to 1/160,000 in Switzerland [17].

BBS is genetically heterogeneous, as mutations in 17 
different genes have been identified so far [18]. The BBS1 
gene (MIM: 209901) is located on the long arm of chro-
mosome 11 and consists of 17 coding exons. The gene is 
expressed in many tissues, including fetal, testicular, retinal, 
adipose, cardiac, skeletal, and pancreatic cells, with the 
highest expression in the kidney [19]. BBS1 is part of the 
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Purpose: To determine the genetic cause of Bardet-Biedl syndrome (BBS) in two consanguineous Pakistani families.
Methods: Clinical characterization of the affected individuals in both families was performed with ophthalmic examina-
tion, electroretinography, electrocardiography, and liver and renal profiling. Seventeen genes are known to be associated 
with BBS, so exome sequencing was preferred over candidate gene sequencing. One affected individual from both fami-
lies was selected for exome sequencing. Segregation of the identified variants was confirmed with Sanger sequencing.
Results: Retinitis pigmentosa, obesity, and learning difficulties were present in the affected individuals in both families. 
In family A, a sixth finger (polydactyly) of the proband’s sister was removed by a surgical operation leaving a scar on 
the little finger. Polydactyly was also present in both affected individuals from family B. All diagnostic symptoms were 
characteristic of BBS in both families. In both affected individuals from family A, exome sequencing identified a novel 
homozygous mutation (c.47+1G>T) in BBS1 that inactivates the splice donor site at the end of exon 1. In family B, a 
previously reported mutation, c.442G>A; p.(Asp148Asn), was detected.
Conclusions: Exome sequencing is an efficient and cost-effective technique for identifying mutations in genetically 
heterogeneous diseases. In addition, intrafamilial phenotypic variability in family A argues for the modifying effect of 
other still unknown modifier alleles.
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BBSome complex that includes BBS1, BBS2, BBS4, BBS5, 
BBS7, BBS8, and BBS9. Proteins in this complex are thought 
to be involved in ciliogenesis, because of their function in 
membrane trafficking in the primary cilium [20].

The current study was designed to find the molecular 
basis of BBS in two Pakistani families (families A and B) 
using exome sequencing. A novel splice donor site mutation 
c.47+1G>T in BBS1 was identified in family A, and a previ-
ously reported BBS1 mutation, c.442G>A; p.(Asp148Asn) 
[21], was identified in family B.

METHODS

Ethics committee/institutional review board approval: 
Approval for this study was granted by the ethics committee/
institutional review board of Shifa College of Medicine, Shifa 
International Hospital, Islamabad. Written informed consent 
was obtained from both families before the study began. In 
addition, the study conformed to the tenets of the Declaration 
of Helsinki.

Clinical examination: Clinical examination included 
ophthalmic examination, electroretinography, echocardiog-
raphy, liver function tests, and renal profiling. Blood glucose 

was also measured to determine the presence or absence of 
diabetes mellitus.

Blood sampling and DNA preparation: Both families (Figure 
1A,B) were recruited from the central part of Punjab. Venous 
blood of affected and normal individuals of both families was 
drawn by venipuncture and collected in acid citrate dextrose 
vacutainers (Becton Dickinson, Franklin Lakes, NJ). DNA 
was extracted with a standard phenol-chloroform extraction 
procedure [22]. Briefly, it consisted of the lysis of white 
blood cells, followed by protein digestion, extraction of the 
DNA with phenol-chloroform, and precipitation of DNA with 
isopropanol.

Exome sequencing: Probands of each family were selected 
for exome sequencing, which was performed on a 5500XL 
sequencing platform from Life Technologies (Carlsbad, 
CA). The exomes of the probands were enriched according 
to the manufacturer’s protocol using the SureSelect Human 
All Exon v2 Kit (50 Mb), containing the exonic sequences 
of approximately 21,000 genes from Agilent Technologies, 
Inc. (Santa Clara, CA). LifeScope software v2.1 from Life 
Technologies (Carlsbad, CA) was used to map color space 
reads along the hg19 reference genome assembly. The 
DiBayes algorithm, with high-stringency calling, was used 

Figure 1. Pedigrees of families A 
and B and sequence electrophero-
grams. A: Segregation of the identi-
fied mutation in family A. B: Segre-
gation of the identified mutation in 
family B. C: Sequence electrophe-
rograms of an affected individual 
(upper panel), a heterozygous 
mutation carrier (middle panel), and 
a homozygous wild-type healthy 
individual (lower panel) of family 
A. D: Sequence electropherograms 
of an affected person (upper panel), 
a heterozygous mutation carrier 
(middle panel), and a homozy-
gous wild-type healthy individual 
(lower panel) of family B. In 
family pedigrees, roman numerals 
indicate generation number, arrows 
indicate probands, M stands for 
mutation identified, + is wild-type 
allele, M/M indicates genotypes of 

affected individuals, +/M indicates genotypes of unaffected individuals carrying a mutant allele, and +/+ indicates genotypes of healthy 
individuals.
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for single-nucleotide variant calling. The small Indel Tool 
was used to detect small insertions and deletions. Exome 
sequencing data were filtered as described previously [23,24]. 
Briefly, the variants in known BBS genes were selected and 
analyzed for segregation in the families.

Sequence analysis: Variants identif ied with exome 
sequencing were confirmed with Sanger sequencing using an 
automated DNA sequencing machine (3730 DNA analyzer; 
Applied Biosystems, Inc., Foster City, CA). PCR primers 
were designed with the help of the online tool Primer3 [25].

Splice site prediction: NetGene2 World Wide Web Server 
[26,27], an online splice site prediction program, was used 
to predict the effect of sequence variants located in or near 
the splice sites.

In silico pathogenicity assessment of missense variant: Patho-
genicity of the missense variant was assessed using the online 
prediction tools polymorphism phenotyping v-2 (PolyPhen-2) 
and sorting intolerant from tolerant (SIFT). In addition, the 
HOPE server was used to predict structural consequences in 
the mutant protein using normal protein structure with acces-
sion number Q8NFJ9 [28].

RESULTS

Clinical findings: Affected individuals underwent extensive 
clinical examination, including fundus examination, which 
revealed the presence of bone spicules and attenuation of 
blood vessels (Figure 2). Electroretinography measurements 
were recorded for affected individual IV:5 of family A 
only, which showed reduced scotopic and photopic electro-
physiological responses in the patient compared to a normal 
individual (Table 1). All other primary and secondary BBS 
features were also investigated (Table 2). Retinitis pigmen-
tosa, obesity, and learning difficulties were present in all 
affected individuals while polydactyly was present in the 
affected woman (IV:4) of family A and affected individuals 
IV:3 and IV:5 of family B. Developmental delay, a secondary 
feature of BBS, was also observed in both families. Echocar-
diography was normal in both affected individuals of family 
A whereas in family B echocardiography was not performed, 
but affected individuals of family B were hypertensive. Liver 
function was also normal, and no renal defects were observed 
in either family. Affected individuals of family B also had 
intellectual disability and dental crowding. All patients 
fulfilled the diagnostic criteria of BBS having at least four 
primary or three primary and two secondary BBS features.

Genetic findings: To identify the pathogenic mutation, the 
exome data sequence variants were filtered to reduce the 
number of potentially pathogenic variants. First, we searched 

for variants present in known BBS genes. In both families, 
variants were found in six BBS genes, including BBS1, BBS2, 
BBS4, BBS7, BBS9, and BBS12 (Table 3). The frequency of 
the variants identified in known BBS genes, except the BBS1 
variants described below, ranged from 13% to 99% in an 
in-house database.

In family A, a novel splice donor site mutation 
(c.47+1G>T) in BBS1 was identified (Table 3). This mutation 
was present homozygously in the exome data with only two 
reads, which was further confirmed as a homozygous change 
with Sanger sequencing (Figure 1C). Segregation analysis 
(Figure 1A) revealed that the mutation was homozygous 
in both affected siblings, heterozygous in the parents and 
normal siblings, and absent in other unaffected members of 
the family. The c.47+1G>T variant is predicted to affect one 
of the canonical splice site nucleotides, which might therefore 
completely inactivate splice donor site. Splice site prediction 
software predicted inactivation of the wild-type splice donor 
site at the 3′ end of exon 1 and did not predict an alternative 
splice donor site in intron 1. The mutant messenger RNA is 
likely to have a premature stop codon at position 17 (Figure 
3).

Similarly in family B, exome data were analyzed for vari-
ants in known BBS genes that resulted in identifying a previ-
ously reported missense mutation c.442G>A; p.Asp148Asn in 
BBS1 (Figure 1D; Table 3). Segregation analysis (Figure 1B) 
revealed that this mutation was homozygously present in the 
affected individuals (IV:3 and IV:5), heterozygously carried 
by the healthy siblings (IV:1 and IV:2) and their mother (III:2) 
and absent in one healthy sister (IV:4).

Polyphen-2 predicted missense mutation p.(Asp148Asn) 
was “probably damaging” whereas SIFT predicted this 
mutation was “tolerated.” HOPE predicted that the mutation 
is present in the core of a domain; a difference in the proper-
ties of the wild-type and mutant amino acid residues might 
disturb the core structure of this domain.

DISCUSSION

In the current study, we report on two consanguineous fami-
lies from Pakistan, with affected individuals presenting BBS, 
a rare, clinically and genetically heterogeneous disorder. 
In approximately 75% of families with BBS, mutations 
are detected in known BBS genes [21]. BBS1 is the most 
frequently mutated BBS gene and accounts for the disease 
in nearly 24% of European patients with BBS [4,29,30]. The 
BBS1 mutation p.(Met390Arg) is a frequent founder muta-
tion [5,7,19] found in 78.3% of families with BBS1 mutations 
[5,21].

http://www.molvis.org/molvis/v19/644
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Figure 2. Fundus photographs of 
affected and healthy individuals. 
A, B: Fundus photographs of 
family A, proband IV:5, show bone 
spicules, retinal vessel attenua-
tion, and macular degeneration. 
C, D: Fundus photographs of the 
proband’s sister (IV:4) show the 
salt-and-pepper appearance of both 
fundi, the presence of bone spicules 
in the midperiphery, and bull’s eye 
macular atrophy (indicated by the 
arrows). E, F: Fundus photograph 
of family B proband IV:5 reveals 
pigmentary deposits and retinal 
vessel attenuation. G, H: Fundus 
photographs of a healthy individual 
from family A (IV:6).
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Including our families, more than 25 different Pakistani 
families have been described with variable BBS phenotypes 
and different mutations in BBS2, BBS3, BBS4, BBS5, BBS8, 
BBS10, and BBS12 [31-36]. BBS1 mutations have not been 
reported previously in Pakistani individuals with BBS.

The exact function of BBS1 in the pathology of BBS 
is still unclear but as a part of the BBSome complex, BBS1 
is thought to play a crucial role by interacting with other 
proteins through its beta-propeller domain [37]. A detailed 
model of the assembly of the BBSome complex was proposed 
recently [38], which describes crucial steps required for 
the proper assembly of BBS proteins to form a functional 

BBSome complex. BBS1 joins the BBSome complex by 
interacting with BBS9 and BBS2, and the last component 
(BBS4) completes the BBSome complex assembly [38]. In the 
presence of the BBS1M390R/M390R mutant protein, BBS4 fails to 
join the BBSome complex, which shows that protein–protein 
interactions between mutant BBS1 and wild-type BBS4 are 
lost [38]. The p.(Met390Arg) variant is a frequently occur-
ring missense mutation in BBS1 in individuals with BBS that 
severely affects these normal protein–protein interactions.

The splice site mutation c.47+1G>T identified in the 
current study abolishes the splice site and theoretically 
could result in the synthesis of a truncated mutant protein 

Table 1. Electrophysiological measurements recorded for individual IV:5 of family A.

Measured parameters using monopolar 
electrodes Adaptation

Flash 
strength (cd.s/

m2)
Proband* Control

Standard 
Values (Age=30 

years)
Scotopic 25 dB b-wave amplitude (µV) Dark 0.01 9.5 177.5 >163
Scotopic 0 dB b-wave amplitude (µV) Dark 3.0 7.1 434.4 >403
Oscillatory potential amplitude (µV) Dark 3.0 30.2 193.1 >89
Photopic 0 dB b-wave amplitude (µV) Light 3.0 7.6 123.6 >92
Photopic 30 Hz flicker amplitude (µV) Light 3.0 3.2 53.3 >63

*Proband’s age was 26 at the time of the measurements.

Table 2. BBS features in affected individuals of both families.

BBS features Present
Primary features Family A IV:5 Family A IV:4 Family B IV:5
     1. Rod-cone dystrophy Yes Yes Yes
     2. Polydactyly No Yes Yes
     3. Obesity Yes Yes Yes
     4. Learning problems Yes Yes Yes
     5. Hypogonadism No No No
     6. Renal malfunction No No No
Secondary features
     1. Speech problems No No Yes
     2. Strabismus, cataract, astigmatism Strabismus Astigmatism No
     3. Brachydactyly, syndactyly No No No
     4. Developmental delay Yes Yes No
     5. Polyuria, polydipsia No No No
     6. Diabetes mellitus No No No
     7. Ataxia, imbalance No No No
     8. Mild spasticity No No No
     9. Dental crowding No No Yes
     10. Heart problems No No Yes
     11. Liver disease No No No
     12. Family members with BBS Yes Yes Yes

http://www.molvis.org/molvis/v19/644
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as a consequence of intron inclusion. Truncation most 
likely, however, results in nonsense-mediated decay of the 
messenger RNA because of the possible creation of a prema-
ture stop codon at position 17 (Figure 3); alternatively, use 
of an alternate downstream translation initiation codon ATG 
might result in 5′ truncation causing synthesis of a misfolded/
non-functional protein. Misfolded proteins are mostly likely 
triggered toward the degradation pathways, which safeguards 
the cells from toxicity of the accumulating intermediary 
molecules [39-41].

In family A, the main intrafamilial phenotypic differ-
ence was the presence of polydactyly. In addition, bull’s eye 
macular atrophy was observed only in the affected woman, 
which also highlights the phenotype variability. Polydactyly 
is a common clinical feature of BBS [18]; the absence of 
polydactyly in the proband of family A could be the effect of 
a still unknown modifier allele. A known modifier of ciliopa-
thies (RPGRIP1L) has been functionally tested in zebrafish to 
observe the modifying effects of different alleles [9]. In our 

family, variants were not identified in RPGRIP1L. Moreover, 
although we did not test the functional effect of other identi-
fied variants on phenotype, their effect on phenotypic vari-
ability cannot be ruled out. Ophthalmological examinations 
revealed severely reduced electrophysiological responses of 
rods and cones (Table 1), and the visual acuity was restricted 
to hand movements only, illustrating the severity of the 
disease. The proband of family B had intellectual disability 
and did not cooperate during the electrophysiological 
measurements.

Contrary to our findings, in a recent study, BBS1 muta-
tions were reported to be associated with milder ocular 
phenotypes compared to phenotypes associated with muta-
tions in other BBS genes [42]. Moreover, in another study, 
milder non-ocular BBS phenotypes were reported in patients 
with mutations in BBS12 [35]. In addition, mutations in BBS1 
[11], BBS3 [43], and BBS8 [44] have also been implicated in 
non-syndromic retinitis pigmentosa.

Table 3. Exome sequencing variants in previously implicated BBS genes

Family A

Chr Reads
Var 

reads % var SNP id Freq Gene AA changes
mRNA 
changes phyloP GS

11 2 2 100 - - BBS1 - c.47+1G>T 3.03 -
16 109 106 97 rs4784677 97.09 BBS2 p.(Ser70Asn) c.209C>T 2.50 46
16 119 46 39 rs11373 28.48 BBS2 p.(Ile123Val) c.367T>C 0.23 29
15 45 44 98 rs8033604 76.70 BBS4 - c.77–6 G>A −3.73 -
15 103 103 100 rs12914333 99.35 BBS4 p.(Phe302Phe) c.906T>C −0.58 -
15 20 20 100 rs2277598 78.64 BBS4 p.(Ile354Thr) c.1061T>C −0.39 89
4 68 22 32 rs1507994 12.94 BBS7 - c.1890+16G>A −0.92 -
7 87 27 31 rs11773504 35.92 BBS9 p.(Ala455Thr) c.1363G>A 0.31 58
4 41 23 56 rs309370 51.46 BBS12 p.(Arg386Gln) c.1157G>A −0.34 43
4 99 62 63 rs13102440 36.57 BBS12 p.(Gln624Gln) c.1872A>G −0.05 -

Family B

Chr Reads
Var 

reads % var SNP id Freq Gene AA changes
mRNA 
changes phyloP GS

chr11 51 51 100 - - BBS1 p.(Asp148Asn) c.442G>A 3.54 23
chr16 92 92 100 rs4784677 97.02 BBS2 p.(Ser70Asn) c.209C>T 2.50 46
chr15 73 72 99 rs12914333 99.19 BBS4 p.(Phe302Phe) c.906T>C −0.51 -
chr15 31 13 42 rs2277598 76.42 BBS4 p.(Ile354Thr) c.1061T>C −0.32 89
chr4 49 47 96 rs309370 52.85 BBS12 p.(Arg386Gln) c.1157G>A −0.32 43
chr4 50 15 30 rs13135766 29.27 BBS12 p.(Val460Val) c.1380G>C 1.66 -
chr4 62 28 45 rs13135445 34.96 BBS12 p.(Cys470Cys) c.1410C>T −0.39 -
chr4 84 36 43 rs13102440 36.86 BBS12 p.(Gln624Gln) c.1872A>G 0.01 -

AA, amino acid; Chr, chromosome; Freq, frequency; GS, Grantham score; phyloP, phylogenetic p values; SNP id, single nucleotide 
polymorphism identification; Var, variation
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In a pharmacogenomic study aberrant splicing caused by 
a splice donor site mutation in BBS1 (c.479G>A) was corrected 
in the patient’s fibroblasts by using mutated U1 small nuclear 
RNA (snRNA) [45]. U1 snRNA is involved in the recogni-
tion of exons during splicing. The investigators generated 
mutant U1 snRNAs with increased complementarity for a 
mutated splice donor site, which were subsequently used to 
redirect correct splicing. Using a similar strategy, the splice 
donor site mutation (c.47+1G>T) identified in our study could 
first be assessed in in vitro studies and then in model organ-
isms, which might then lead to the development of treatment 
options for individuals with this particular mutation in the 
future.

The missense mutation p.(Asp148Asn) was previously 
identified in an American and a British patient [21]; thus, this 
is the second report of this mutation. Although this mutation 
is distributed worldwide, it is rare, being a genetic cause of 
the disease in only four patients.

In the absence of a solved three-dimensional structure 
or modeling template for the wild-type BBS1 protein, the 
program HOPE did not predict a three-dimensional model 
for the mutant protein, but based on the differences in the 
amino acid properties, it was predicted that wild-type interac-
tions of the protein might be disturbed due to the introduc-
tion of a mutant residue. Although in silico analysis is a good 
analytical tool for assessing the pathogenicity of missense 
variants, functional validation is mandatory.

The use of exome sequencing to identify genetic muta-
tions in BBS families was justified in our study when we 
compared the expenses of Sanger sequencing and exome 
sequencing. Expenditure for the Sanger sequencing (€2,140) 
of the coding exons (228 exons; 214 amplicons) of 17 BBS 
genes in both directions is comparable with the exome 
sequencing costs (€1,500–2,000). In addition, Sanger 
sequencing requires longer hands-on time and more effort 
compared to exome sequencing.

In conclusion, in Pakistani families with BBS, exome 
sequencing proved to be a successful and fast method for 
identifying a novel mutation and a recurrent mutation in 
BBS1. To our knowledge, this is the first report describing 
BBS1 mutations in the Pakistani population. In the future, 
some of the clinical features might be addressed using gene 
therapy, but currently, only genetic counseling is warranted 
for carriers of mutations.
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