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Abstract

Background: Gene-based vaccination using prime/boost regimens protects animals and humans against malaria, inducing
cell-mediated responses that in animal models target liver stage malaria parasites. We tested a DNA prime/adenovirus boost
malaria vaccine in a Phase 1 clinical trial with controlled human malaria infection.

Methodology/Principal Findings: The vaccine regimen was three monthly doses of two DNA plasmids (DNA) followed four
months later by a single boost with two non-replicating human serotype 5 adenovirus vectors (Ad). The constructs encoded
genes expressing P. falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1). The regimen was
safe and well-tolerated, with mostly mild adverse events that occurred at the site of injection. Only one AE (diarrhea),
possibly related to immunization, was severe (Grade 3), preventing daily activities. Four weeks after the Ad boost, 15 study
subjects were challenged with P. falciparum sporozoites by mosquito bite, and four (27%) were sterilely protected. Antibody
responses by ELISA rose after Ad boost but were low (CSP geometric mean titer 210, range 44–817; AMA1 geometric mean
micrograms/milliliter 11.9, range 1.5–102) and were not associated with protection. Ex vivo IFN-c ELISpot responses after Ad
boost were modest (CSP geometric mean spot forming cells/million peripheral blood mononuclear cells 86, range 13–408;
AMA1 348, range 88–1270) and were highest in three protected subjects. ELISpot responses to AMA1 were significantly
associated with protection (p = 0.019). Flow cytometry identified predominant IFN-c mono-secreting CD8+ T cell responses
in three protected subjects. No subjects with high pre-existing anti-Ad5 neutralizing antibodies were protected but the
association was not statistically significant.

Significance: The DNA/Ad regimen provided the highest sterile immunity achieved against malaria following immunization
with a gene-based subunit vaccine (27%). Protection was associated with cell-mediated immunity to AMA1, with CSP
probably contributing. Substituting a low seroprevalence vector for Ad5 and supplementing CSP/AMA1 with additional
antigens may improve protection.
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Introduction

According to the World Health Organization, malaria caused

an estimated 216 million clinical cases and 655,000 deaths in 2011

[1], underscoring the urgent need for an effective vaccine [2].

Developing a vaccine should be feasible, based on evidence of

durable sterile immunity induced in humans by the bites of

Plasmodium falciparum-infected mosquitoes. In these models, sporo-

zoites are injected into the human host but development is aborted

in the liver by prior irradiation of the infected mosquitoes [3] or in

the blood by co-administering a drug selectively active against

blood stage parasites such as chloroquine [4,5]. While the

immunological mechanisms underlying the high grade protection

induced by these whole parasite vaccines remain unclear, animal

studies demonstrate dependence on cell-mediated immunity

(CMI), in particular cytotoxic CD8+ T cells [6,7] which release

cytotoxins to lyse the malaria-infected hepatocyte or interferon

gamma (IFN-c) to trigger nitric oxide production [8,9]. Trials are

in progress to evaluate the feasibility of immunizing humans by

needle injection of purified, cryopreserved, irradiated sporozoites

[10]. At the same time, vaccine developers are striving to provide

equal protection via a cell-mediated mechanism using subunit

vaccines.

The most advanced subunit candidate vaccine is RTS,S,

containing the immunodominant sporozoite surface antigen

circumsporozoite protein (CSP) fused to hepatitis B surface

protein. RTS,S provides 50% protection against controlled human

malaria infection, mediated primarily by the induction of potent

antibody responses targeting sporozoites [11,12]. RTS,S does not

appear to induce CD8+ T cell responses, limiting its ability to

control the intracellular hepatic stages of Plasmodium. Gene-based

technologies are an attractive alternative to induce CD8+ T cell

responses targeting these stages [13]. Many gene-based vaccines

are licensed for use in veterinary medicine, but only the live-

attenuated yellow fever-Japanese encephalitis chimeric vaccine

(IMOJEV) has been licensed for human use (Australia) [14].

Microbial genes are inserted into a DNA plasmid with expression

controlled by a promoter sequence activated within the host cell.

Alternatively, the genes are inserted into a viral vector, which

efficiently transports the DNA into the host cell. With either

plasmids or viral vectors, parasite proteins are expressed within the

cytoplasm rather than supplied exogenously as in the case of

RTS,S. This leads to activation of MHC Class I (endogenous)

antigen presentation, generating CMI including cytotoxic CD8+ T

cells.

This trial was designed to test the gene-based approach to

subunit malaria vaccines, supported by encouraging results of

DNA- and virally-vectored constructs in mice, non-human

primates, and humans [15,16,17,18,19]. Based on improved

protection in animal models with heterologous prime-boost

regimens [20,21], subjects were primed three times with a mixture

of two DNA plasmids (DNA) and boosted once with a mixture of

two non-replicating recombinant human serotype 5 adenovirus

vectors (Ad). CSP was chosen as one antigen because of its

expression by sporozoites and early liver stage parasites coupled

with its protective role in animal models and in the RTS,S vaccine,

and apical membrane antigen-1 (AMA1) was chosen as the second

antigen because of expression by sporozoites and liver stage

parasites [22]. In addition, AMA1 carries the potential to induce a

second line of defense, as it is expressed by blood stage parasites,

can protect against blood stage malaria in animal studies [23] and

is associated with clinical immunity to malaria in humans in

endemic areas [24].

Two antigens were used on the premise that immune responses

effectively targeting multiple parasite antigens and stages could

induce complementary and potentially synergistic immune

responses. CSP is carried into hepatocytes following sporozoite

invasion [25] and this leads to the expression of peptides derived

from CSP on the surface of the infected hepatocytes in the context

of MHC Class I, allowing recognition by CSP-specific CD8+ T

cells [26]. AMA1, like CSP, is involved in hepatocyte invasion

[22], and peptides derived from this antigen may likewise be

expressed on the surface of infected hepatocytes. Having peptides

derived from both antigens expressed by infected hepatocytes may

facilitate their targeting by effector cells. The trial demonstrated

that DNA priming/Ad boosting (DNA/Ad) induced sterile

Figure 1. Trial design. Subjects were immunized week 0, 4, 8 and 24 and challenged week 28 (blue arrows). Samples for measuring cell-mediated
immunity (ELISpot assay and flow cytometry) were collected at six time points (black arrows), and for measuring antibody levels (ELISA, IFA and
growth inhibition assay) at similar time points plus after the DNA immunizations (gray arrows). See text for details.
doi:10.1371/journal.pone.0055571.g001
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immunity in 27% of volunteers, better protection than previously

reported for other prime-boost malaria vaccines [17,27] and with

evidence of a contribution from both antigens supporting this

contention. As predicted, protection was significantly associated

with CMI. There was no apparent contribution by antibodies.

Methods

The protocol for this trial and supporting CONSORT checklist

are available as supporting information; see Protocol S1 and

Checklist S1.

Objectives
The primary objective of this study was to assess the safety of a

heterologous prime-boost vaccine regimen (DNA/Ad) in healthy

malaria-naı̈ve adults. Secondary objectives were to assess protec-

tive efficacy against sporozoite challenge by P. falciparum-infected

mosquitoes and to look for an association between protection and

humoral responses measured by enzyme linked immunosorbent

assay (ELISA) and cellular responses measured by enzyme linked

immunospot assay (ELISpot) and flow cytometry/intracellular

cytokine staining (ICS). Exploratory objectives were to measure

humoral responses to sporozoites by immunofluorescence assay

(IFA) and, due to the inclusion of AMA1 in the vaccine, to blood

stages by growth inhibition assay (GIA), and to measure the effect

of pre-existing neutralizing antibodies to adenovirus serotype 5

(NAb) on immunogenicity and protection.

Ethics
The study protocol for the clinical trial was approved by the

Institutional Review Boards at the Walter Reed Army Institute of

Research (WRAIR) and the Naval Medical Research Center

(NMRC). The study was conducted at the WRAIR Clinical Trials

Center in accordance with: the principles described in the

Nuremberg Code and the Belmont Report; all federal regulations

regarding the protection of human participants as described in

Figure 2. Schematic of DNA and Adenovirus CSP and AMA1 vaccines. Each panel presents the native protein (top of each panel) and the
protein expressed by the DNA or Ad construct (middle and bottom of each panel) for the CSP (Panel A) and AMA1 (Panel B) vaccine antigens.
N = amino terminus; C = carboxy terminus; TPA = human tissue plasminogen activator signal sequence; TM = transmembrane domain. See text for
explanation. Identical colors indicate identical sequences. Not represented is a single amino acid substitution (G R R) in the AMA DNA construct at
position 143.
doi:10.1371/journal.pone.0055571.g002
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32 CFR 219 (The Common Rule) and instructions from the

Department of Defense, the Department of the Army, the

Department of the Navy and the Bureau of Medicine and Surgery

of the United States Navy; and the internal policies for human

subject protections and the standards for the responsible conduct

of research of the US Army Medical Research and Materiel

Command (USAMRMC) and the Naval Medical Research

Center (NMRC). WRAIR holds a Federal Wide Assurance from

the Office of Human Research Protections (OHRP) under the

Department of Health and Human Services as does NMRC.

NMRC also holds a Department of Defense/Department of the

Navy Federal Wide Assurance for human subject protections. All

key personnel were certified as having completed mandatory

human research ethics education curricula and training under the

direction of the WRAIR IRB or the NMRC Office of Research

Administration (ORA) and Human Subjects Protections Program

(HSPP). All potential study subjects provided written, informed

consent before screening and enrollment and had to pass an

assessment of understanding.

Study Design
This study was an open-label, Phase 1 trial, with controlled

human malaria infection (CHMI) to assess protection. Volunteers

received DNA at weeks 0, 4, and 8 and Ad at week 24 and were

monitored for adverse signs and symptoms, laboratory abnormal-

ities, and humoral and cellular immune responses (Figure 1).

Fifteen immunized volunteers, plus six unimmunized infectivity

controls, were challenged with P. falciparum (strain 3D7) via five

infectious mosquito bites at week 28. Blood was collected and

Giemsa-stained malaria smears read by certified microscopists on

days 6 through 21 post-challenge, then every other day through

day 28 in volunteers remaining smear negative. Positive volunteers

were treated with 1500 mg chloroquine base over three days and

followed daily until three consecutive negative smears had been

Figure 3. Flow diagram of immunized and control volunteers. Thirty-seven volunteers met all eligibility criteria and were allocated to the
immunization group (n = 20) and infectivity controls (n = 6), and 11 were either alternates (n = 6) or not used. WBC = white blood count; DVT = deep
venous thrombosis. See text for explanation.
doi:10.1371/journal.pone.0055571.g003
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documented. Quantitative polymerase chain reaction (qPCR) was

performed after the trial on blood samples collected twice daily

(morning and evening) from days 6 to 16 post challenge [28].

Study Subjects and Eligibility
Enrollment was limited to healthy adults age 18–50 years who

passed screening by medical history, physical examination,

electrocardiogram and laboratory testing (criteria in the supple-

ment). Cardiac risk screening was conducted to identify and

exclude individuals at moderate or high risk of developing

symptomatic coronary artery disease during the next 5 years,

based on gender, blood pressure, body mass index, smoking

history and presence or absence of diabetes [29]. This was done to

avoid the physiologic stress of malaria infection in individuals with

occult coronary artery disease. Pre-existing anti-adenovirus

serotype 5 neutralizing antibodies [30] (NAb) (90% neutralization

titer) were measured during screening and also prior to Ad

immunization to assess potential effects on vaccine potency.

Vaccines
The combined prime boost regimen, the NMRC-M3V-D/Ad-

PfCA Vaccine, contains a priming component, the NMRC-M3V-

D-PfCA Vaccine (Naval Medical Research Center, multi-antigen,

multi-stage malaria vaccine, DNA-vectored, P. falciparum CSP and

AMA1 antigens), and a boosting component, the NMRC-M3V-

Ad-PfCA Vaccine (Naval Medical Research Center, multi-

antigen, multi-stage malaria vaccine, adenovirus [serotype 5]-

vectored, P. falciparum CSP and AMA1 antigens). This study was

conducted under IND Number BB-IND 13977, allowed on April

07, 2009.

NMRC-M3V-D-PfCA (DNA) (Figure 2, Panel A): CSP and

AMA1 genes from 3D7 strain were codon-optimized for

expression in mammalian cells and inserted into plasmid

VR1020 (Vical, Inc., San Diego, CA). The CSP gene was

modified by deletion of 16 of the central repeat sequences (64

amino acids), by adding a human tissue plasminogen activator

(TPA) signal sequence to the native signal sequence at the N

terminus (to increase expression in mammalian cells) and a 23

amino acid segment from the transcriptional terminator of bovine

growth hormone at the C terminus (also appears to increase

expression), while the AMA1 gene expressed the AMA1

ectodomain and was modified by replacing the native signal

sequence with a TPA signal sequence. Expression was controlled

by the promoter/enhancer of the human cytomegalovirus

immediate early (CMV IE) gene. Each plasmid contained two

open reading frame sequences: one encoded the kanamycin

resistance protein which is expressed in bacterial cells and the

other encoded a human tissue plasminogen activator protein

(hTPA) leader/malaria fusion protein which is expressed in

mammalian cells. The plasmids were produced under cGMP

from bacterial cells in kanamycin selective media. The two DNA

plasmid constructs were manufactured, mixed and vialed by Vical,

Inc. (San Diego, CA). They were administered intramuscularly at

2 mg per dose (1 mg each construct) by needle-free jet injection

(Biojector 2000H, Bioject, Inc., Tualatin, OR) as two concurrent

1 mL injections, one to each deltoid muscle (concentration of

mixed plasmid DNA 1 mg/mL). The clinical testing of a similar

DNA-CSP vaccine (non-codon-optimized) has been previously

reported [18,31,32,33].

NMRC-M3V-Ad-PfCA (Ad) (Figure 2, Panel B): As with the

DNA, the CSP and AMA1 3D7 genes were codon-optimized for

expression in mammalian cells and were inserted into the E1

region of the adenovirus vector under the transcriptional control of

a modified human cytomegalovirus promoter (CMV-IE). The

CSP gene was identical to the DNA construct but lacked the TPA

signal sequence, while the AMA1 gene was full length, including

the transmembrane and cytoplasmic domains in addition to the

ectodomain, and also contained the native signal sequence rather

than the TPA signal sequence. The serotype 5 Ad vector was

derived from GV11D (GenVec, Inc., Gaithersburg, MD) and was

missing the E1 and E4 regions required for replication as well as

part of the E3 region. The two constructs were vialed separately

and were mixed prior to intramuscular administration by needle as

a single 1 mL deltoid injection at 261010 particle units (pu) per

dose (161010 pu each construct). The clinical testing of the

NMRC-M3V-Ad-PfCA Vaccine has been previously reported

[15,16].

Safety and Tolerability
Adverse events (AEs) were recorded after each immunization to

evaluate safety, tolerability and reactogenicity. Solicited AEs were

recorded on days 0, 1, 2 and 7, unsolicited AEs on days 0, 1, 2, 7,

14 and 28 and laboratory tests (complete blood count, aspartate

Table 1. Study subjects demographics.

Immunized Infectivity Controls

n = 20 n = 6

Male 6 (30%) 3 (50%)

Female 14 (70%) 3 (50%)

Age+standard deviation 35+11.2 28+9.2

African-American 11 (55%) 4 (67%)

Caucasian 6 (30%) 2 (33%)

Asian 3 (15%) 0 (0%)

n = 15 n = 6

Ad5 neutralizing antibody ,12, ,12, ,12, ,12, ,12, ,12

titers 45, 57, 169, 343

783, 1343, 1622, 1846, 2820

Twenty volunteers were enrolled into the immunization group; five dropped out prior to CHMI (see Figure 3). Infectivity controls were enrolled later, in time for CHMI on
week 28. NAb titers are provided for the 15 study subjects who were challenged (included in the immunogenicity analysis); these were measured just prior to Ad boost.
doi:10.1371/journal.pone.0055571.t001
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aminotransferase (AST), alanine aminotransferase (ALT), creati-

nine and total bilirubin) on days 0, 2, 7 and 28 following each

immunization. Monitoring for serious AEs (SAEs) was performed

until the week 40 termination of the study.

Immunological Endpoints
Samples for measuring cell-mediated immunity (ELISpot assay

and flow cytometry) were collected pre-immunization, 28 days

post the third DNA (post-DNA), 105 days post the third DNA/

seven days prior to Ad (pre-Ad), 22/23 days post Ad/five or six

days pre-challenge (post-Ad), 28 days post challenge (post-Ch) and

84 days post challenge (post-Ch final). Antibody levels (ELISA,

IFA and growth inhibition assay) were measured at similar time

points and also at 14 and 28 days after each DNA immunization

(Figure 1).

Antibody responses. Anti-CSP and AMA1 antibodies were

measured by enzyme-linked immunosorbent assay (ELISA) against

the CSP repeat region using a hexameric synthetic peptide

(NANP)6 and AMA1 using recombinant ectodomain protein [16],

and immunofluorescent antibody assay (IFA) using air-dried

sporozoites [34]. Neutralizing antibodies to Ad5 (Nab) were

measured as previously described [30].

Interferon-gamma Enzyme Linked Immunospot Assays

(IFN-c ELISpot Assays). T cell responses were measured by

IFN-c ELISpot assay [15] using fresh peripheral blood mononu-

clear cells (PBMC). Peptides used for ELISpot assays were

synthesized by Mimotopes, VIC, Australia (80% purity). The full

length P. falciparum 3D7 CSP sequence (GenBank no. X15363) and

P. falciparum 3D7 AMA1 sequence (GenBank no. XM1347979)

were covered by a series of 15 amino acid (aa) peptide sequences

overlapping by 11 aa. CSP 15mers were combined into 9 pools

(Cp1-Cp9) each containing three to 12 peptides, and AMA1

15mers were combined into 12 pools (Ap1-Ap12) each containing

10–13 peptides. PBMC were stimulated for 36 hours with the 9

Table 2. Numbers of volunteers experiencing local, systemic and laboratory adverse events (days 0–7 post each immunization).

Sign or Symptom DNA 1 (n = 20) DNA 2 (n = 19) DNA 3 (n = 19) Ad (n = 16) Total AE’s

(% of vol’s) (% of vol’s) (% of vol’s) (% of vol’s) (% of all AE’s)

Gr1 Gr2/3 Gr1 Gr2/3 Gr1 Gr2/3 Gr1 Gr2/3

LOCAL

Pain/Tenderness 13(65)%) 0 7 (37%) 0 8 (42%) 0 5 (32%) 0 33(21%)

Erythema 14(70)%) 0 15(79%) 0 16(84%) 0 11(69%) 0 56(36%)

Induration/Swelling 9 (45%) 0 7 (37%) 0 17(89%) 0 10(63%) 0 43(28%)

Total Local AEs 36 0 29 0 41 0 26 0 132(85%)

SYSTEMIC

Headache 1(5%) 0 1(5%) 0 1(5%) 0 1(6%) 1(6%)1 5(3%)

Fever 0 0 0 0 0 0 0 0 0

Chills/Rigor 0 0 0 0 0 0 2(13%) 0 2(1%)

Myalgia 0 0 1(5%) 0 0 0 0 1(6%)1 2(1%)

Arthralgia 0 0 0 0 0 0 0 0 0

Nausea 0 0 1(5%) 0 1(5%) 0 0 0 2(1%)

Vomiting 0 0 0 0 0 0 0 0

Fatigue 4(20%) 1(5%)1 1(5%) 0 0 0 1(6%) 0 7(5%)

Diarrhea 1(5%) 1(5%)2 0 0 0 0 1(6%) 0 3(2%)

Abdominal pain 1 (5%) 1 (5%)1 0 0 0 0 0 0 2 (1%)

Total Systemic AEs 7 3 4 0 2 0 5 2 23 (15%)

Total All AEs 43 3 33 0 43 0 31 2 155 (100%)

LABORATORY

Decreased platelets 1 (5%)

Decreased WBC 1 (5%) 1 (5%)

Elevated WBC 1 (5%) 1 (5%) 1 (5%)

Elevated ALT 1 (5%) 1 (5%)

Decreased Hb 1 (5%)

Total 3 3 2 1 9

All local AE’s were considered definitely related to immunization, all systemic AE’s were considered probably related to immunization, except for diarrhea that was
possibly related, and all laboratory AE’s were considered possibly related to immunization, Solicited local and systemic adverse events were recorded on days 0, 1, 2 and
7 and laboratory tests were recorded on days 0, 2, 7 and 28 after each immunization. Severity classification for signs and symptoms: Gr1 = adverse event does not
interfere with daily activities; Gr2 = interferes with but does not prevent daily activities; Gr3 = prevents daily activities. Severity classification for decreased platelets:
Gr1 = ,lower limit of normal, .75,000/ul; decreased WBC: Gr1 = ,lower limit of normal, .3,000/ul; elevated WBC: Gr1 = .upper limit of normal, ,15,000/ul; elevated
ALT: Gr1 = .upper limit of normal, ,3 times upper limit of normal; decreased Hb: Gr1 = ,lower limit of normal, .10.0 g/dL. All adverse events in the table are Gr1
(mild) unless noted otherwise.
1 = Gr2 (moderate);
2 = Gr3 (severe). All local adverse events occurred in the arm ipsilateral to the injection site.
doi:10.1371/journal.pone.0055571.t002
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individual CSP or the 12 individual AMA1 peptide pools using

previously described methods [15]. A positive response was

defined as a significant difference (p = ,0.05) between the average

of the number of spot forming cells (sfc) in test wells and the

average of negative control wells (Student’s two tailed t-test), plus

at least a doubling of sfc in test wells relative to negative control

wells, plus a difference of at least ten sfc between test and negative

control wells.

Characterization of IFN-c -producing cells by cell

depletion or enrichment studies. ELISpot assays were

carried out with PBMC after depletion of T cell subsets using

anti-human CD4+- or anti-CD8+-coated Dynabeads M-450

(Dynal, Great Neck, NY) following the manufacturer’s instructions

and as previously reported [15]. Mock depletion was done by

using Dynabeads coated with sheep anti-mouse IgG. Flow

cytometry confirmed that T-cell subset depletions were .99% in

all experiments. The data are presented as the percent change in

activity after T cell subset depletion.

Flow cytometry with Intracellular Cytokine Staining

(ICS). Frozen PBMC taken at the same time points were

stimulated with a single CSP or AMA1 megapool (rather than

individual pools as in the ELISpot assay), each consisting of all the

peptides contained within the peptide pools (Cp1-Cp9; Ap1-Ap12)

for each antigen, using previously described methods [15]. Control

stimulants were medium alone and the CEF peptide pool

(Anaspec, San Jose, CA). Cells were phenotyped as CD4+ and

CD8+ T cells and stained for IFN-c, TNF and IL-2. Data for

peptide pools were corrected for media response at each time

point. A positive response was defined as a frequency of cytokine-

stained CD4+ or CD8+ cells exceeding the geometric mean +3

standard deviations of the medium stimulated controls (0.03%).

Statistical Analyses
A mixed linear model with compound covariance structure was

used to compare geometric means between baseline and post-

immunization antibody, ELISpot and ICS responses, adjusting

comparisons between baseline and post-immunization using

Dunnette’s method. All antibody responses were log10 trans-

formed. Box plots [35] were used to display antibody and T cell

responses. The lower quartile (25th percentile), median and upper

quartile (75th percentile) are the base, transecting line and top of

each box (defining the interquartile range or ‘‘likely range of

variation’’), and the upper and lower bars represent the maximum

and minimum values unless outliers or suspected outliers are

present (see figures). Suspected outliers and outliers are defined as

exceeding 1.5 times and 3.0 times the interquartile range,

respectively, above or below the box. When outliers are present,

the bar is set at 1.5 times the interquartile range, leaving the

outliers or suspected outliers beyond the bar. For the non-

protected volunteers, suspected outliers and outliers are represent-

ed as open and filled dots, respectively. Vaccine efficacy was

represented by a Kaplan-Meier plot and evaluated using log rank

test. The Accelerated Failure Time model was used to determine

the relationship between immune measures and time to parasit-

emia (delay in onset of parasitemia indicating partial protection),

censoring the four fully protected volunteers on day 28. Tests for

the relationship between immune measures and time to parasit-

emia were corrected for the 12 comparisons performed (Bonfer-

roni correction). Rank correlations (Pearson Moment Correlations

using log10 transformed values) determined the relationship

between NAb and immunogenicity. Two-sided p,0.05 was

considered significant in all tests.

Table 3. Number of volunteers experiencing unsolicited adverse events during 28 days following each immunization.

Post DNA1 Post DNA2 Post DNA3 Post Ad Total

(n = 20) (n = 19) (n = 19) (n = 16)

Unsolicited local adverse event

Bruise left arm injection site Definite, Gr1 1

Bruise left arm injection site Definite, Gr1 1

Bruise left arm injection site Definite, Gr1 1

Right axillary pain Probable, Gr1 1

Radiating pain down right arm Definite, Gr1* Definite, Gr1* 2

Bruise right arm injection site Definite, Gr1 1

Right axillary furuncle Possible, Gr1 1

Total 5 2 1 0 8

Unsolicited systemic adverse event

Intermittent headaches Possible, Gr1 1

Abdominal cramps Possible, Gr1 1

Wheezing Possible, Gr1 1

Subjective fever Definite, Gr1 1

Total 1 1 0 2 4

Total all AE’s 6 3 1 2 12

Unsolicited adverse events were recorded on days 0, 1, 2, 7, 14 and 28 after each immunization. Severity classification: (a) bruising at the injection site: Gr1 = ,5 cm in
diameter; (b) all other signs and symptoms: Gr1 = adverse event does not interfere with daily activities; Gr2 = interferes with but does not prevent daily activities;
Gr3 = prevents daily activities. All local adverse events occurred in the arm ipsilateral to the injection site. In addition to the AEs recorded in this table, there was one SAE
recorded after the 3rd DNA immunization – see text.
*The same volunteer experienced radicular pain immediately post jet injection for DNA1 and DNA2 but not DNA3.
doi:10.1371/journal.pone.0055571.t003
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Figure 4. Development of parasitemia in the immunized and infectivity control subjects. Panel A: Parasitemia-free survival curves
(Kaplan-Meier) for immunized volunteers and infectivity controls based on microscopic examination of peripheral blood smears. Panel B:
Quantitative(q)-PCR measurements of parasitemia in immunized and challenge controls (error bars show standard deviation) (see reference 28).
doi:10.1371/journal.pone.0055571.g004

Figure 5. Pre-existing NAb to Ad5 may interfere with protection. Pre-existing NAb titers to Ad5 were measured prior to Ad immunization
and are compared with days to patency by microscopy after CHMI. Three of six volunteers who were seronegative (NAb titer ,12) (50%), and one of
four subjects who were weakly positive (NAb titer 12–500) (25%) were protected (red box). All subjects with NAb titer .500 (above horizontal red
line) became patent at a rate similar to subjects with NAb titer ,500 (below horizontal red line).
doi:10.1371/journal.pone.0055571.g005
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Results

Study Flow
Participant flow is shown in Figure 3. Recruitment for vaccine

recipients took place at the WRAIR Clinical Trials Center

between April – June 2009 and for infectivity controls between

October – November 2009. Eighty-two healthy, malaria-naı̈ve,

civilian and military adult men and women, aged 18–50 years,

were assessed for eligibility and 45 were excluded. The remaining

37 volunteers who met all screening criteria were assigned to the

vaccine group (n = 20) and the infectivity controls (n = 6) (with

eleven available as alternates or not used). The demographics of

both groups were approximately balanced in gender, age and

ethnic background (Table 1). Of the 15 volunteers in the

immunized group who were challenged and whose immunoge-

nicity data are presented here, six were negative for NAb (titer

,12), four had low activity (12–500) and five had high activity

(.500). Twenty volunteers received the first DNA immunization

(Figure 3). One was excluded after the first DNA immunization

due to a low neutrophil count (684/microliter) identified in a blood

sample drawn immediately prior to the first DNA immunization

(screening white blood counts having been normal), leading

subsequently to a diagnosis of benign ethnic leukopenia; three

were excluded after the third DNA immunization, two due to

relocation unrelated to the trial and one for deep venous

thrombosis (see Safety and Tolerability below); one was excluded

after Ad administration due to migraine headache developing

within a few hours of immunization and described as typical for

this volunteer’s previously undisclosed migraine history. The low

leukocyte count and history of migraines led to withdrawal of these

two volunteers in order to adhere to the exclusion criteria,

although both remained healthy. The volunteer with venous

thrombosis was excluded due to the risks associated with

anticoagulation during the period of recovery. Fifteen fully

immunized volunteers and six infectivity controls underwent

standardized controlled human malaria infection (CHMI) by bites

of five P. falciparum (3D7) infected mosquitoes [36].

Safety and Tolerability
All 58 DNA immunizations and 16 Ad immunizations in 20

volunteers were included in the safety analysis. During the seven

days following each immunization, 155 solicited local and systemic

adverse events (AE) were recorded as definitely, probably or

possibly related to immunization (Table 2). Of these, 150 (96.8%)

were mild (Grade 1) and four were moderate (Grade 2) and

volunteers were able to perform daily activities). These AEs were

erythema (36% of all AEs), induration (28%) and pain (21%) at the

injection site, and fatigue (5%), headache (3%), diarrhea (2%),

chills/rigors (1%), myalgia (1%), abdominal pain (1%) and nausea

(1%). Only one AE (0.6%) was severe (Grade 3), preventing daily

activities. This consisted of diarrhea starting a few hours after the

first DNA immunization and ending within 48 hours, and was

recorded as possibly related to immunization. No volunteer

experienced the three other solicited AEs: objective fever,

Figure 6. Antibody responses by ELISA to CSP and AMA1. The box plots (see Statistical Analysis section for description) represent anti-CSP
titers and anti-AMA1 antibody concentration in mg/mL by ELISA for all 15 challenged volunteers. The time points on the x-axis are described in
Figure 1. Four protected volunteers are shown as larger, color-coded dots. For the protected volunteers, the antibody titer to CSP of v11 post-DNA
and the antibody concentration to AMA1 of v11 post-Ad are box plot outliers. Group geomean CSP and AMA1 ELISA activities for the fifteen
recipients were significantly higher than baseline (*) post-DNA, post-Ad, post-Ch and post-Ch final relative to pre-immunization levels (p = ,0.0001,
mixed linear model).
doi:10.1371/journal.pone.0055571.g006
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arthralgia or vomiting. There were nine transient laboratory test

abnormalities deemed possibly related to immunization; these

were asymptomatic and resolved spontaneously (Table 2).

Twelve unsolicited AEs (eight at the site of injection, four

systemic) were recorded during the 28 days after each immuni-

zation and classified as definitely, probably or possibly related

(Table 3). All resolved rapidly without sequelae.

In addition to the unsolicited AEs listed in Table 3, one serious

and unexpected AE was reported six days after the third DNA

immunization, a saphenous venous thrombosis leading to pulmo-

nary embolism. This volunteer had been in good health with no

significant past medical history. He experienced (but did not

report) right calf tenderness starting six days after the third DNA

immunization and two days after back-to-back round trips from

Maryland to Maine (by car) and Florida (by plane). Six weeks later,

Figure 7. Ex vivo T cell IFN-c activities by ELISpot Assay for CSP and AMA1. The box plots (see Statistical Analysis section for description)
represent CSP and AMA1 IFN-c ELISpot responses (summed peptide pool-specific responses) in spot forming cells per million PBMCs for all 15
challenged volunteers. The time points on the x-axis are described in Figure 1. For the protected volunteers, the IFN-c ELISpot responses to CSP of
v11 and v18 post-Ad are box plot suspected outliers. Group geomean CSP and AMA1 IFN-c ELISpot activities for the fifteen recipients were not
significantly higher than baseline post-DNA, pre-Ad, post-Ad, post-Ch or post-Ch final relative to pre-immunization levels (CSP p = 0.057, AMA1
p = 0.16, mixed linear model).
doi:10.1371/journal.pone.0055571.g007

Table 4. IFN-c ELISpot Assay: Depletion of CD4+ and CD8+ T cells.

Protected Volunteers Non-protected Volunteers

v06 v10 v11 v18 v03 v12 v15

CD4 CD8 CD4 CD8 CD4 CD8 CD4 CD8 CD4 CD8 CD4 CD8 CD4 CD8

CSP 2100 280 217 276 274 299 297 215

AMA1 291 +76 294 283 299 290 +2 294 2100 +247 2100 251 281 263

294 212 282 266 259 249

278 270

Protected volunteers v06, v10, v11 and v18, and non-protected volunteers v03, v12 and v15 were tested for ELISpot activity to CSP and AMA1 peptides after depletion
of CD4+ or CD8+ T cells. Percent reduction in the number of spot forming cells per 1,000,000 PBMC following depletion of CD4+ T cells or CD8+ T cells is shown for each
volunteer tested. A positive effect was defined as .20% reduction (See Reference 15). v06 and v10 were tested twice with AMA1, and v11 was tested three times with
AMA1.
doi:10.1371/journal.pone.0055571.t004

Prime-Boost Malaria Vaccine Induces Protection

PLOS ONE | www.plosone.org 10 February 2013 | Volume 8 | Issue 2 | e55571



he reported to the research team that he had been hospitalized due

to a pulmonary embolism associated with leg swelling. He was

withdrawn from further participation by the principal investigator,

to assure the study subject’s safety.

Efficacy
All six infectivity controls developed parasitemia detected by

qPCR between days 7 and 8 (mean 7.1) and by blood smear

between days 11 to 16 (mean 12.3), indicating the mosquitoes were

infective (Figure 4). Four of 15 immunized volunteers (v6, v10, v11

and v18) were fully protected, demonstrated by absence of

Figure 8. IFN-c activities by flow cytometry for CSP and AMA1. The box plots (see Statistical Analysis section for description) represent IFN-c -
producing CD4+ or CD8+ T cell frequencies as percentage of gated CD4+ or CD8+ T cells, measured by flow cytometry assays after stimulation with a
single CSP or AMA1 megapool containing all individual peptide pools for each antigen, for all 15 challenged volunteers. The time points on the x-axis
are described in Figure 1. The four protected volunteers are shown as larger, color-coded dots. For the protected volunteers, the CD4+ T cell AMA1
response of v06 at pre-Ad is a box plot outlier, and the CD8+ T cell CSP responses of v11 and v18 post-Ad, and the CD8+ T cell AMA1 responses of v18
post-Ad and post-Ch are box plot suspected outliers. The dotted lines represent positive cutoff (0.03% as described in Methods). IFN-c -producing
CD4+ T cell frequencies were significantly higher than baseline (*) post-DNA (p = 0.047), post-Ad (p = 0.0097) and post-Ch (p = 0.004) for AMA1 (mixed
linear model). IFN-c -producing CD8+ T cell frequencies were significantly higher than baseline (*) post-Ad for CSP (p = 0.007) and post-Ad for AMA1
(0.002) (mixed linear model).
doi:10.1371/journal.pone.0055571.g008
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parasitemia by qPCR [28] and by microscopic examination of

Giemsa-stained thick smears (Figure 4). The remaining 11

immunized volunteers became parasitemic by qPCR between

days 7 and 9 (mean 7.6) and by blood smear between days 10.5 to

14 (mean 12.1). The multiplication rate in non-protected

immunized volunteers was similar to the multiplication rate in

infectivity controls [28]. Likewise, non-protected immunized

volunteers showed no evidence of delay in diagnosis by microscopy

relative to infectivity controls. NAb titers were ,1:12 prior to

immunization in protected volunteers v10, v11 and v18 and 1:169

in protected volunteer v6; none of five volunteers with NAb titer

.1:500 was protected (Figure 5). Fisher’s exact test to investigate a

potential inverse relationship between pre-existing NAb titer

.1:500 and protection was not statistically significant (p = 0.23).

Immunogenicity
Antibody responses. Antibody responses (Figure 6) mea-

sured by ELISA to CSP and AMA1 rose significantly but were still

negligible 28 days after DNA immunization (geometric mean CSP

titer 28, range ,10–253; AMA1 0.24 mg/mL, range 0.04–

2.42 mg/mL). Antibody responses increased further following Ad

immunization but were still relatively low (CSP 210, range 44–

817; AMA1 11.9 mg/mL, range 1.5–102 mg/mL). Sporozoite IFA

responses were also low post-DNA (data not shown) and post-Ad

(geomean titer 160, range 10–1280). No growth inhibition was

seen when purified immunoglobulin from volunteer sera was

added to P. falciparum blood stages in culture (,15% inhibition,

data not shown). There was no statistical association between

antibody levels and protection for CSP and AMA1 (Bonferroni

corrected), although the volunteer with the highest anti-AMA1

antibody concentration at the time of challenge (v11, 102 mg/mL)

was protected (Figure 6, blue dot).

Ex vivo T cell IFN-c Activities by ELISpot for CSP and
AMA1

Group geomeans of the summed ELISpot responses to

individual peptide pools to CSP (Figure 7) at pre-immunization

(63 sfc/m, range 13–209 sfc/m), post-DNA (70 sfc/m, range 3–

197 sfc/m), pre-Ad (100 sfc/m, range 6–279 sfc/m) and post-Ad

(86 sfc/m, range 13–408 sfc/m) were similar and not significantly

higher than pre-immunization levels, indicating that many

volunteers did not respond to the vaccine regimen. Four of the

15 volunteers met ELISpot positivity criteria for CSP at the post-

Ad time-point (six days prior to challenge), with the two highest

responses in protected v11 (408 sfc/m) and v18 (398 sfc/m),

whereas protected v6 (80 sfc/m) and v10 (55 sfc/m) were negative

(Figure 7). When ELISpot responses to AMA1 were measured,

one volunteer (v03) had very high activity at pre-immunization

(4110 sfc/m) that declined after DNA and Ad immunizations to

within the ranges of other volunteers; the reason for this activity is

not known. Geomeans of ELISpot responses to AMA1 (Figure 7)

pre-immunization (154 sfc/m, range 18–421 sfc/m, excluding

v03), post-DNA 295 sfc/m, range 6–1009 sfc/m), pre-Ad

(243 sfc/m, range 13–733 sfc/m) and post-Ad (348 sfc/m, range

88–1270 sfc/m) were similar, as shown for CSP (Figure 7).

However, geomean ELISpot activities to AMA1 were higher than

to CSP at pre-Ad (243 sfc/m vs. 100 sfc/m) and post-Ad (348 sfc/

m vs. 86 sfc/m) (Figure 7). Twelve of 15 individual volunteers met

positivity criteria at the post-Ad time-point for AMA1, with the

three highest responses in protected v10 (810 sfc/m), v11

(1046 sfc/m) and v18 (1270 sfc/m); protected v6 was also positive

(312 sfc/m). ELISpot responses to AMA1 were significantly

associated with protection (p = 0.019), while responses to CSP

were not (p = 0.23) (Bonferroni corrected).

ELISpot Depletion Studies
ELISpot depletions were performed at post-Ad with the four

protected and three of the non-protected volunteers (Table 4).

CSP responses were reduced after depletion of CD4+ and CD8+
T cells (v11 protected and v03 non-protected), CD4+ T cells only

(v12 non-protected) and CD8+ T cells only (v18 protected). AMA1

responses were reduced after depletion with CD4+ and CD8+ T

cells (v10 and v11 protected, v12 and v15 non-protected), CD4+ T

cells only (v06 protected) and CD8+ T cells only (v18 protected).

Therefore protected volunteers v10 and v11 developed a CD4+
and CD8+ T cell dependent response to AMA1 (v10) or to both

CSP and AMA1 (v11), v18 developed a CD8+ dependent response

to CSP and AMA1, and v06 developed a CD4+ dependent

response to AMA1. The frequencies of CD4+ and CD8+ T cell

responses were more fully quantified using flow cytometry.

Total IFN-c T cell Responses by Flow Cytometry/
intracellular Cytokine Staining (ICS) for CSP and AMA1

Total CD4+ or CD8+ T cell IFN-c responses were measured.

This included IFN-c +IL2+TNF+, IFN-c +IL2-TNF+, IFN-c
+IL2+TNF-, and IFN-c +IL2-TNF- containing cells (Figure 8). As

in previous studies of Ad vaccines [15,37,38] both CD4+ and

CD8+ T cell IFN-c responses were induced. CD4+ T cell

responses to CSP were positive with only one non-protected

volunteer at the post-Ad time point. CD8+ T cell responses to CSP

were positive with 3 volunteers at the post-Ad time point with

protected v11 and v18 showing the highest responses (0.10% and

0.09% of gated CD8+ T cells, respectively), similar to ELISpot

responses.

Positive responses to AMAI were more frequent than to CSP.

Positive CD4+ T cell responses developed in six volunteers pre-Ad

Table 5. Rank correlations between pre-existing anti-Ad5 NAb titers and ELISpot, CD4+ T cell and CD8+ T cell IFN-c activities,
ELISA and Sporozoite IFA titers.

Immune Measure Correlations

ELISpot CD4 CD8 ELISA IFA

CSP AMA1 CSP AMA1 CSP AMA1 CSP AMA1 SPZ

r 20.51 20.44 0.194 20.22 20.24 20.058 0.013 20.54 20.468

p 0.053 0.102 0.489 0.428 0.395 0.837 0.962 0.038 0.078

Pre-existing Ad5 NAb titers measured just prior to Ad immunization were tested for negative correlations with CSP and AMA1 activities by IFN-c ELISpot, total IFN-c
CD4+ T cell ICS, total IFN-c CD8+ T cell ICS, ELISA and sporozoite IFA for all volunteers (n = 15). r = rank correlation coefficient, and p = p value for the null hypothesis that
the correlation is zero (two-tailed). Significant correlations are shown in bold.
doi:10.1371/journal.pone.0055571.t005
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and eight volunteers post-Ad, where the highest response was with

a non-protected volunteer. Positive CD8+ T cell responses

developed in five volunteers post-DNA, eight volunteers pre-Ad,

and 12 volunteers post-Ad where CD8+ T cell responses, like

ELISpot responses, were highest in protected v10, v11 and v18

(0.18%, 0.32% and 0.38%, respectively) (Figure 8). The largest

component of the CD8+ T cell IFN-c response was single IFN-c -

secreting cells (IFN-c+IL2- TNF-a-) for both CSP (v11 and v18,

100% and 96% respectively) and AMA1 (v10, v11 and v18, 66%,

70% and 95% respectively).

CD8+ T cell responses to AMA1 were associated with

protection (p = 0.0492 Bonferroni corrected), while no association

was seen for CSP (p = 0.23 Bonferroni corrected). In contrast,

IFN-c production by CD4+ T cells showed no statistical

association with protection for either antigen (p = 0.99 for

AMA1, p = 0.99 for CSP, Bonferroni corrected). However, v6,

the only protected volunteer not showing strongly elevated CD8+
T cell IFN-c responses to CSP or AMA1 at post-Ad, exhibited the

highest CD4+ IFN-c and IL2 T cell responses to AMA1 found in

the trial, at the pre-Ad time point (0.14% for IFN-c Figure 8;

0.23% for IL2, data not shown).

Effect of Pre-existing NAb on ELISA, ELISpot and ICS
Activity

Rank correlations were used to examine the relationship of NAb

titers measured prior to Ad immunization and immunogenicity

(IFN-c ELISpot, total IFN-c CD4+ T cell ICS, total IFN-c CD8+
T cell ICS, ELISA, sporozoite IFA) (Table 5). The statistical power

to identify associations was limited in this small study. NAb did not

show significant correlations with any immune measures except for

showing a negative association with AMA1 ELISA (p = 0.038).

Trends were observed for negative associations with CSP and

AMA1 ELISpot responses (p = 0.053, 0.102, respectively) and for

IFA (p = 0.078).

Discussion

Interpretation
Gene-based vaccines have been used for years in veterinary

medicine to protect multiple animal species against a variety of

pathogens [39,40,41]. In contrast, with one exception, no gene-

based vaccines have been licensed for human use, despite their

potential for inducing strong CMI against diseases lacking effective

vaccines, such as HIV/AIDS, tuberculosis and malaria. Adeno-

vectors have proven especially effective at inducing robust CD8+
T cell responses [37,42,43]. In this first clinical assessment of a

DNA/Ad prime boost regimen for malaria, we induced sterile

immunity in four of 15 research subjects that was significantly

associated with IFN-c ELISpot responses to one of the vaccine

antigens, AMA1 (p = 0.019, Bonferroni corrected). The second

antigen (CSP) likely contributed to protection in two of the

volunteers but did not show a significant association in the group

as a whole (p = 0.23, Bonferroni corrected). The association

between IFN-c responses to AMA1 was also found when CD8+ T

cells were examined (p = 0.0492, Bonferroni corrected), but not

CD4+ T cells. In contrast, antibody responses showed no

association with protection.

To our knowledge, there are no examples of licensed human

vaccines thought to protect solely on the basis of CMI [44]; thus

our trial may be the first to demonstrates the feasibility of targeting

human pathogens solely by this mechanism. It also provides

support for a subunit approach to reproduce the high grade

immunity induced by irradiated sporozoites, genetically-attenuat-

ed sporozoites or intact sporozoites co-administered with chloro-

quine, all of which appear to rely primarily on CMI as the

mechanism of protection.

While all four protected volunteers developed high levels of cell-

mediated immunity (CD8+ T cells in three, CD4+ T cells in one),

responses were lower in the eleven non-protected volunteers. This

may explain why there was no delay to parasitemia in the

immunized, non-protected volunteers, contrasting to what has

been seen in other malaria vaccine trials [45]. This may reflect

differences in protective mechanisms, or it could be that in this

small trial, due to genetic restriction, no volunteers developed

responses of intermediate magnitude to the protective epitopes and

for this reason no delays in the onset of parasitemia were seen.

However, all non-protected volunteers shared at least one HLA A

or B supertype allele with protected volunteers (data not shown).

Supplementing the vaccine with additional antigens could address

this potential limitation, by increasing the likelihood of HLA-

malaria peptide matches. Alternatively, protective immunity may

have been suppressed in non-protected volunteers by regulatory T

cell responses [46], which were not measured in this trial.

Five of the non-protected volunteers had high pre-existing NAb

(titer .1:500). While this association was not statistically

significant, and pre-existing immunity only marginally adversely

affected AMA1 ELISA responses (p = 0.04), the trend is concern-

ing for adults since prior exposure to wild type adenovirus 5 is

common in the USA and developing countries [47]. However,

NAb titers are low in six-to-twelve month-old infants including in

sub-Saharan Africa [48], providing a vaccination window early in

life when neutralizing antibodies should have minimal impact.

Importantly, both DNA and Ad components of the vaccine

appeared safe and well tolerated, with primarily mild adverse

events observed. The one serious adverse event (a saphenous

venous thrombosis after extended travel) appeared unlikely related

to immunization. A migraine headache in another subject,

possibly precipitated by Ad administration, was consistent with

prior history of migraines (unreported at the time of screening).

While most clinical trials of gene-based vaccines have concluded

that they are safe, in one trial of an Ad5-vectored HIV vaccine,

there was an increased risk of HIV infection in Ad5-seropositive,

uncircumcised men engaging in HIV risk behaviors [49]. Such

observations underscore the importance of ongoing safety

monitoring.

Generalizability
This study supports the potential value of the DNA/Ad prime-

boost strategy to induce protective cell mediated responses,

particularly CD8+ T cells critical for killing intracellular patho-

gens, and thus its application to other infectious diseases

particularly tuberculosis [50] and HIV [51,52,53] where CMI is

likely important.

Limitations
The main finding of this study that CD8+ T cell responses to

AMA1 and potentially CSP are associated with protective efficacy,

may not apply to other malaria antigens. A second limitation is the

generally poor antibody responses, confirming earlier studies by

our laboratory when the Ad vaccines were used alone [15,16] and

suggesting that although priming with DNA induced protection it

did not improve antibody responses. As previously discussed [15],

it may be difficult to induce both humoral and cellular responses

using this prime-boost combination. In addition, CD8+ T cell

responses were low in the majority of vaccinees. Finally, pre-

existing NAb were associated with reduced antibody responses to

AMA1 and cellular ELISpot responses to both antigens, but not

CD8+ T cell responses detected by flow cytometry, and this was
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consistent with protection only being achieved when NAb titers

were ,500. Whether Ad5 vectors could achieve protection in

infants and young children who are largely seronegative, or

whether alternative Ad vectors will be required, remains to be

investigated.

Overall Evidence
In summary, our trial demonstrated the sterile protection of

27% of volunteers against P. falciparum malaria, the highest

protection achieved in humans against a parasite using a gene-

based vaccine. Protection was associated with IFN-c ELISpot and

CD8+ T cell responses to AMA1, with possible contribution by

CD4+ T cell responses to AMA1 and CD8+ T cell responses to

CSP. Approaches to strengthen the vaccine include adding

antigens to broaden HLA coverage, electroporating the DNA to

improve cellular uptake, substituting highly immunogenic adeno-

vectors derived from non-prevalent serotypes to avoid NAb,

formulating DNA and/or Ad in adjuvants, including plasmids or

adenovectors encoding immunomodulatory cytokines, or using

prime-boost combinations with other vaccine platforms such as

recombinant proteins to strengthen antibody responses. We have

prioritized adding a third antigen and testing alternative rare-

serotype adenovectors as the next steps in development.
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