
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/117398

Please be advised that this information was generated on 2019-12-04 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/18466231?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/117398

Turing’s contributions to lambda calculus

Henk Barendregta, Giulio Manzonettoa,1

aRadboud University, Intelligent Systems, Nijmegen, The Netherlands

1. Fixed point combinators in untyped lambda calculus

The untyped lambda calculus was introduced in 1932 by Church as part of
an investigation in the formal foundations of mathematics and logic. The two
primitive notions of the lambda calculus are application and λ-abstraction.
Application, written MN , is the operation of applying the term M considered
as an algorithm to the term N considered as an input. Lambda abstraction,
written λx.M , is the process of forming a function from the expression M

(possibly) depending on x. We refer to Barendregt et al. (2012) (this volume)
for an intuitive account of the system.

An important feature of lambda calculus is that it has fixed point com-
binators, namely programs Y satisfying Y M = M(Y M) for all M ’s. These
constitute the main ingredient for writing recursive programs in functional
style. Turing contributed to this subject by providing a fixed point combi-
nator Θ having the additional property that the equality between ΘM and
M(ΘM) results simply by reducing the former to the latter (which is not
the case, in general). Finally we report how Böhm and van der Mey gave a
general receipt to generate many new fixed point combinators starting from
a fixed one. Turing’s fixed point operator can be obtained in this way.

Lambda terms, reduction and conversion

Formally, the set Λ of λ-terms is defined inductively as follows.
every variable x is in Λ;
if M,N ∈ Λ, then MN ∈ Λ;
if M ∈ Λ, then λx.M ∈ Λ, for every variable x.

Email addresses: henk@cs.ru.nl (Henk Barendregt), g.manzonetto@cs.ru.nl
(Giulio Manzonetto)

1Supported in part by NWO Project 612.000.936 CALMOC.

Preprint submitted to Alan Turing - His Work and Impact July 3, 2011

Lambda abstraction is a ‘binder’, therefore a variable x in M is called bound
if it occurs in the scope of a ‘λx’, and is called free otherwise. As usual we
consider λ-terms up to α-conversion, i.e. we consider equal those λ-terms only
differing for the names of their bound variables. For example λx.x = λy.y.

The β-reduction, which specifies how λ-terms compute, is defined as the
contextual closure of the following rule:

(λx.M)N →β M [x:=N]

where M [x:=N] denotes the result of substituting the term N for every
occurrence of x in M , subject to the usual proviso about renaming bound
variables in M to avoid capture of free variables in N . A term of the shape
(λx.M)N is called redex and M [x:=N] is its contractum.

Multistep β-reduction is denoted by ։β. This means that M ։β N iff
M = M0 →β · · · →β Mn = N for some n ≥ 0. The β-conversion, written
M =β N , is the equivalence relation generated by →β (i.e., its reflexive-
symmetric-transitive closure). The Church-Rosser theorem in lambda calcu-
lus states that

M =β N iff M and N have a common reduct.

Fixed points

Despite the fact that its syntax is very simple, the lambda calculus is a
Turing complete programming language. One aspect of the richness of its
expressive power is the presence of fixed points that allow to write recursive
programs.

Theorem 1.1 (Fixed Point Theorem). For all λ-terms F there is a λ-term
M such that FM =β M .

Proof. Take M , ωF ωF , where ωf , λx.f(xx). Then

M , ωF ωF =β F (ωF ωF) , FM.

In fact one can show that a fixed point for F can be found uniformly, that is
by a term that takes F as input. If a λ-term Y satisfies Y F =β F (Y F) for
all F ∈ Λ, then is called a fixed point combinator (fpc).

Corollary 1.2 (Curry). Let Y,λf.ωfωf . Then Y is a fixed point combinator.

2

The term Y also is called the paradoxical combinator, as it abstracts the
argument in Russell’s paradox.

An fpc Y is reducing if for all M ∈ Λ one has Y M ։β M(Y M). This
notion is useful as in many applications one needs for a fixed point M of F

that M ։β FM . It is easy to check that Y is not reducing. Therefore one
cannot take M , YF to get M ։β FM .

In Turing (1937) a more convenient fpc is constructed that is reducing.

Proposition 1.3 (Turing). There exists a reducing fpc.

Proof. Define Θ , AA, where A , λxy.y(xxy). Then one has

ΘF , AAF , (λxy.y(xxy))AF →β (λy.y(AAy))F →β F (ΘF).

The next lemma shows how Θ arises naturally.

Lemma 1.4 (Böhm, van der Mey). A term Y is an fpc if it is a fixed point
of the peculiar term δ = λxy.y(xy).

Proof. If Y = δY , then Y F = δY F = F (Y F).
For the converse, see Barendregt (1984), Lemma 6.5.3.

From Lemma 1.4 it follows that, starting from a given fpc Y , one can
derive an infinite sequence of fpc’s.

Y0 , Y, Yn+1 , Ynδ.

A natural question is whether all these fpc’s are different. In Endrullis et al.
(2010) it is proved, using ‘clocked Böhm-trees’, that starting from Curry’s
fpc Y there are no duplicates in the sequence Y0, Y1, Y2, · · · (the Böhm
sequence). The problem is open for sequences starting from an arbitrary fpc
Y . Note that Turing’s fpc occurs in the Böhm sequence: Θ =β Y1, as

Y1 , Yδ →β (λx.δ(xx))(λx.δ(xx)) →β (λxy.y(xxy))(λxy.y(xxy)) , Θ.

2. Weak Normalization of simply typed lambda calculus

Both for programming and theory the property of normalization is crucial.
Termination can be seen as an issue of program correctness. The problem of
finding all possible inhabitants of a given type in the simply typed lambda
calculus relies on the fact that all typable terms have a normal form. An
early proof of this weak normalization result for the simply typed lambda

3

calculus is due to Turing and is published posthumously in Gandy (1980).
The idea of the proof, is to find a reduction strategy and a measure function
mapping terms into some well-founded set, such that the measure is strictly
decreasing throughout steps in the computation.

One can see nicely from the notes how Turing wrote them informally,
for his own use (as we all start doing). He states that he well-orders the
terms, but uses a map f to multisets with the multiset order (which indeed
is a well-ordering of type ωω), but as the map is not injective, there is no
ordering on terms. Then he states—like thinking aloud—that if M →β N

by reducing a redex of highest order, then f(M) > f(N), which is not quite
correct. Turing then adds “this at any [rate] will be the case, if we choose
the unreduced part of highest order whose λ lies furthest to the right.” This
indeed yields weak normalization.

The rest of this section is devoted to give a sketch of the technical proof;
the reader not interested in technicalities can skip it until Theorem 2.4.

Simply typed lambda terms and reduction

Simply typed λ-calculus, introduced by Church in 1940, is a refinement
of λ-calculus where λ-terms are decorated with suitable simple types. Such
types are called ‘simple’ since they are built up from atomic types A using
only the arrow constructor →. We will write T for the set of all simple types.

In the process of building a λ-term M of type σ, written Mσ, we need
to check that all types of his subterms are compatible with each other. For
a variable x there are no constraints, therefore we have xσ for all simple
types σ. The λ-term λx.M represents a function, therefore it will have an
arrow type σ → τ , which is possible only if M τ and xσ; we will then write
(λxσ.M τ)σ→τ . The λ-term MN represents the application of M seen as a
function to N seen as an argument; therefore we need that the type of M is
an arrow σ → τ and the type of N is σ; this will be written (Mσ→τNσ)τ .

We denote the set of all simply typed λ-terms by Λst. For instance we
have (λxα.xα)α→α ∈ Λst and (λxα.λyτ .xα)α→τ→α ∈ Λst. When no confusion
can arise, we will omit some type annotations and write, e.g., λxα.x.

It is clear that not all λ-terms can be typed in this system. For example
λx.xx cannot be typed. Suppose indeed that λxσ.xτxρ is a valid typing for
some σ, τ, ρ. Then τ must be an arrow type τ1 → τ2, since the corresponding x

is in functional position, then ρ = τ1 since the corresponding x is in argument
position and σ should be equal both to τ1 → τ2 and to τ1, which is impossible.

4

In the simply typed λ-calculus the β-reduction has the same shape as in
the untyped case

(λxσ.M)N →β M [x:=N],

but it can only be applied to well-typed terms. We say that a term M ∈ Λst

is in β-normal form, if there is no N ∈ Λst such that M →β N .

The proof of weak normalization

We will now prove that starting from an arbitrary M ∈ Λst there is a
reduction strategy, specifying at every step what redex should be contracted,
so that M reaches a normal form. This is called weak normalization.

Following Turing in Gandy (1980) we define a measure | · | : Λst → ω2

mapping every simply typed λ-term into an element of ω2, which can be seen
as the well-founded set N × N lexicographically ordered.

The idea is that the length ℓ(R) of a redex R = (λxσ.M τ)σ→τNσ, which
is an estimate of its ‘complexity’, is given by the length of its arrow type
σ → τ . This is calculated summing 1 for each atom and each ‘→’ in σ → τ .

Definition 2.1. With each λ-term M ∈ Λst we associate an element of the
ordinal ω2 by setting |M | = (k, n) where k is the maximal length of a redex
in M and n is the number of redexes of length k occurring in M .

In order to associate a suitable reduction strategy →s guaranteeing that
M →s N entails |M | > |N | we have to study how the contraction of a redex
can duplicate other redexes or create new redexes. Duplication of a redex R

happens when contracting redexes of the form

(λxσ.M [x, x]τ)σ→τRσ →β M [R,R]τ ,

where M [P,Q] is a notation to display subterm occurrences of M .
The duplication of R is not very dangerous, while the creation of new

redexes might be more problematic: a priori new redexes of higher length
might be created indefinitely. The main instrument to check that this is not
possible is given by the following lemma.

Lemma 2.2 (Creation of redexes, Lévy (1978)). Contraction of a β-redex
can only create a new redex in one of the following ways:

(i) (λxσ→τ .M [xP])(λyσ.Q) →β M [(λyσ.Q)P];

(ii) (λxσ.(λyτ .M [x, y]))PQ →β (λyτ .M [P, y])Q;

5

(iii) (λxσ→τ .x)(λyσ.P)Q →β (λyσ.P)Q.

As proved by Lévy in his PhD thesis (§1.8.4, Lemme 3), the above
lemma holds more generally for the untyped lambda calculus. See also Ex-
ercise 14.5.3 in Barendregt (1984).

Lemma 2.3. Suppose M
R

−→β N , i.e. N is obtained from M by contracting
R, and let R′ be a created redex in N . Then ℓ(R) > ℓ(R′).

Proof. Check that in each case of Lemma 2.2 the property holds.

This lemma is not explicitly mentioned in Turing’s proof, but it is stated
that when reducing a redex of highest length, no other redex of highest length
is created.

The reduction strategy S taken by Turing for proving the weak normal-
ization property is as follows. If M is in β-normal form, then do nothing;
otherwise S(M) = N by contracting the rightmost redex of maximal length
in M .

Theorem 2.4 (Weak Normalization). The simply typed lambda calculus is
weakly normalizing, i.e., every M∈Λst has a β-normal form found by S.

Proof. Contracting a redex R can only duplicate redexes R′ to the right of
R. Since the redex R chosen by S is the rightmost of maximal length, it only
duplicates redexes R′ such that ℓ(R′) < ℓ(R). By Lemma 2.3 also the new
redexes created by the reduction are of smaller length. Therefore S(M) = N

entails |M | > |N |. As ω2 is well-founded, we are done.

A recent discovery is that Gentzen already had a normalization proof
for derivations in natural deduction, see von Plato (2008). This implies the
normalization of typed lambda terms. However, the proof worked out for
lambda calculus is more clear and understandable, thanks to the simple syn-
tax of λ-terms.

Strong Normalization

Actually the simply typed lambda calculus enjoys strong normalization,
which means that all β-reductions are terminating regardless of the strat-
egy that is chosen. The classic proof of strong normalization by using the
reducibility technique is due to Tait (1967), already obtained in 1963 and
used by many authors. The proof of strong normalization by Tait does not

6

use a complexity measure assigned to terms. In de Vrijer (1987) it is shown
that it is possible to do this, assigning to a term M an ordinal |M | (in fact a
natural number), in such a way that M →β N entails |M | > |N |, regardless
what redex is reduced. It is an open problem whether such ordinals can be
assigned in a natural and simple way.

3. Postscript

Lambda calculus was more often on Turing’s mind. The logician Robin
Gandy, who had been a student and associate of Turing, mentioned in 1986
at a conference for his retirement, that in the early 1950s Turing had told
him ideas to implement lambda reduction using graphs. This is now com-
monly done when designing compilers for functional programming languages.
Thereby Turing was not careful about the distinction between free and bound
variables and Gandy could correct him. Then Turing said: “That remark is
worth 10 pounds a week!”, in those days enough for a decent living.

References

Barendregt, H. P., 1984. The lambda calculus, its syntax and semantics, 2nd
Edition. No. 103 in Studies in Logic and the Foundations of Mathematics.
North-Holland.

Barendregt, H. P., Manzonetto, G., Plasmeijer, M. J., 2012. The imperative
and functional programming paradigm. In: Cooper, B., van Leeuwen, J.
(Eds.), This volume. Elsevier, pp. xxx–xxx.

Endrullis, J., Hendriks, D., Klop, J. W., 2010. Modular construction of fixed
point combinators and clocked Böhm trees. In: Proceedings of the 25th
Annual IEEE Symposium on Logic in Computer Science, LICS 2010, 11-
14 July 2010, Edinburgh, United Kingdom. IEEE Computer Society, pp.
111–119.

Gandy, R. O., 1980. An early proof of normalization by A. M. Turing. In:
Seldin, J. P., Hindley, J. R. (Eds.), To H. B. Curry: Essays on Combinatory
Logic, Lambda Calculus and Formalism. Academic Press Limited, pp. 453–
455.

Lévy, J.-J., 1978. Réductions correctes et optimales dans le lambda-calcul.
Ph.D. thesis, Université Paris 7.

7

von Plato, J., 2008. Gentzen’s proof of normalization for natural deduction.
The Bulletin of Symbolic Logic 14 (2), 240–257.

Tait, W. W., 1967. Intentional interpretation of functionals of finite type I.
The Journal of Symbolic Logic 32 (2), 198–212.

Turing, A. M., 1937. The p-function in lambda-K-conversion. The Journal of
Symbolic Logic 2 (4), 164.

de Vrijer, R. C., 1987. Exactly estimating functionals and strong normaliza-
tion. Indagationes Mathematicae 49, 479–493.

8

