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The lifting of the fourfold degeneracy of the zeroth Landau level in graphene under high magnetic fields
has been the subject of numerous experimental studies, and attributed to various mechanisms such as pure spin
splitting, spin splitting combined with subsequent valley splitting, or the formation of a quantum Hall insulator.
Unexplored, however, is the influence of an energy gap on the quantum Hall effect (QHE) states in graphene. Here
we demonstrate, using measurements of the magnetoresistance of graphene antidot lattices (GALs) in magnetic
fields up to 30 T and temperatures between 2 and 100 K, that gap opening in these samples is accompanied by
valley polarization and a change from linear to parabolic band structure at low carrier energies. The emergence
of a massive character of the carriers profoundly alters the transport characteristics of the zeroth Landau level,
which manifests itself in a linear increase of the activated gap with magnetic field. Furthermore, samples of the
highest quality display spin splitting on top of the valley splitting, albeit of significantly smaller magnitude.
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I. INTRODUCTION

Graphene’s remarkable electronic properties arise from
its peculiar lattice structure with two different sublattices,
which leads to a linear energy dispersion wherein the valence
and conduction band meet at the charge neutrality point
(CNP).1 As a characteristic feature of graphene, its N = 0
Landau level (LL) is equally shared by electrons and holes,
with the fourfold degeneracy originating from the spin and
sublattice symmetry (pseudospin). High magnetic fields can
lift the degeneracy,2–4 which has mainly been ascribed to
electron-electron interactions4,5 or the Zeeman effect.2,3,6,7

Recently, the issue of whether the symmetry breaking favors
“spin-first, valley-later” splitting or vice versa8 has attracted
increasing attention. Preferential valley splitting could for
example provide access to a valley Hall effect, wherein carriers
in different valleys flow to opposite transverse edges upon
application of an in-plane electric field. The valley Hall
effect belongs to the same category of Berry-phase supported
topological transport phenomena as its counterpart, the spin
Hall effect.9

Despite the progress in exploring the zeroth LL of pristine
graphene, only little is known about the impact of an energy
gap on the LL splitting hierarchy in graphene. Addressing this
question requires a method to reliably introduce a band gap.10

One possible strategy is to introduce lateral confinement in
the form of a graphene antidot lattice (GAL).11 According
to theory, GALs have a fundamental band gap that scales
inversely with the neck width between the nanoholes, akin
to graphene nanoribbons.12–15 From the experimental side,
a transport gap, whose magnitude increases with decreasing
neck width,16,17 has been observed, although unequivocal
proof for the presence of a fundamental band gap has remained
elusive so far.18 Theory furthermore predicts that an isolated
graphene antidot in a magnetic field causes breaking of
the electron-hole symmetry in the individual valleys.19 Here
we present magnetotransport data acquired from GALs of

different geometry, demonstrating that the antidot confinement
potential opens a gap which induces a parabolic dispersion for
electrons and holes. The associated valley-split lowest LLs are
found to be attached to this parabolic, and accordingly the
actual gap measured is composed of the zero-field gap plus the
cyclotron energy.

II. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experiment

An example of the investigated GALs, electrically con-
tacted in Hall bar geometry, is displayed in Fig. 1(a). A
series of pristine graphene and GAL devices were fabricated
either on a Si/SiO2 substrate or freely suspended, following
a previously described procedure.18 The CNP of the samples
typically ranged between VCNP = 5 and 20 V, while for the
suspended flakes it was located close to zero gate voltage
(VCNP = 0 V) after current annealing. Electrical measurements
were performed by standard ac lock-in techniques with an
input impedance of 100 M� down to T = 1.4 K and under
external magnetic fields up to 30 T. We investigated a total of
13 devices on 7 different substrates, with a maximum carrier
mobility of 5.000 cm2/V s reached for GALs on SiO2, and up
to 20.000 cm2/V s for suspended devices.

B. Divergence of magnetoresistance

In Fig. 1(a) the magnetic field-dependent electrical resis-
tance at the CNP and T = 1.4 K is depicted for nonstructured
graphene and two different GALs with a nanohole spacing
of 100 and 200 nm, respectively. The pristine graphene
exhibits a monotonous positive magnetoresistance at low
magnetic fields, most likely arising from spatial carrier
mobility fluctuations.20 Under higher B fields (>10 T), in
the quantum Hall regime, the resistance increase becomes
more pronounced, indicative of degeneracy lifting of the zeroth
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FIG. 1. (Color online) (a) Lateral four-probe magnetoresistance of GALs with 100 nm (solid green line) and 200 nm spacing (dashed
red line), and a pristine graphene device (short dashed black line). Right inset: Zoom of the magnetoresistance in the main panel. Left inset:
Scanning electron micrograph (scale bar is 1 μm) of a typical Hall bar device with 100 nm nanohole spacing. The current leads and Hall
probe contacts are colored yellow and green, respectively. (b) Arrhenius plot of the conductivity at the CNP of the 100 nm spacing sample for
magnetic fields between 6 and 25 T.

LL.2–4 By comparison, the GAL with 100 nm nanohole spacing
features a quasilinear negative magnetoresistance up to ∼1 T,
ascribable to a change of the hopping probability between
localized states in this regime.18,21–23 At higher B fields,
the sample displays a diverging, positive magnetoresistance.
A similar behavior has been observed for several other 100 nm
spacing samples, and also for the GAL with 200 nm nanohole
spacing, albeit with a weaker resistance increase in the latter
case. Figure 1(b) reveals that for the B field range between 6
and 25 T, the minimum conductivity of a 100 nm spacing GAL
as a function of inverse temperature can be well fitted by the
Arrhenius equation24 σ ∝ exp(−Ea/2kBT ), where Ea is the
activation gap.

To further analyze the diverging magnetoresistance we
explore the carrier concentration dependence of both the
Hall and longitudinal resistance. The Hall resistance of a
100 nm spacing GAL device (VCNP = 15.5 V) is depicted
in Fig. 2(a) as a function of the voltage V = VG − VCNP, with
the back gate voltage VG. The resistance plateaus observed at
Rxy = {±2h/e2,±6 h/e2, . . .} corresponding to filling factors
ν = {±2,6, . . .} are characteristic of the LL pattern of pristine
graphene. At temperatures above 30 K, there is a smooth
zero transition of Rxy between the ν = −2 and ν = +2
plateaus, even at the highest B field (see data at 88 K).
This behavior is similar to pristine graphene, and testifies a
finite, equal density of electrons and holes near the CNP.25

However, below 30 K, Rxy diverges at small charge carrier
densities q, and does not cross zero anymore for magnetic
fields above 10 T. The divergence of the Hall resistance
follows a (±1/q) dependence away from the quantized ν = ±2
plateaus, and occurs at higher absolute voltages |VG − VCNP|
with increasing B field. Correspondingly, the longitudinal
(σxx) and transverse (σxy) conductivity flatten into a zero
plateau toward the CNP upon crossing from filling factor
ν = −2 to ν = +2 [see Fig. 2(b)]. Close to the CNP
no current could be detected within the digitalization limit,
revealing the presence of an insulating state. The Hall data,
taken together with the temperature dependent conductivity
and diverging magnetoresistance, prove the presence of a
fundamental energy gap in the GALs.

C. Valley-first splitting of the N = 0 LL

The Hall resistance data in Fig. 2(a) provide direct access
to the electron and hole density via the inverse Hall coefficient
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FIG. 2. (Color online) (a) Hall resistance measured at VCNP

= 15.5 V for T = 4 K and T = 88 K, each at magnetic fields
of B = 15 T and B = 30 T. For temperatures above the band gap (T =
88 K), the Hall resistance shows a smooth, monotonous zero crossing
around the CNP. Below the band gap (T = 4 K), the Hall resistance
diverges, while outside the insulating region the usual graphene QHE
plateaus occur at filling factors ν = {±2, ±6, ±10, . . .} (dashed gray
horizontal lines). (b) Longitudinal and transverse conductivity of the
same sample. The shaded area indicates the insulating regime. (c)
Concentration of electrons (positive values) and holes (negative val-
ues), as determined from the Hall data. At T = 88 K (dash-dotted red
line B = 15 T; dashed red line B = 30 T) electrons and holes coexist at
the CNP. At T = 4 K (solid blue line B = 15 T; dashed blue line B =
30 T), the gap region emerges. The three light gray curves (solid
bold, solid fine, and dashed) are ideal curves representing pure
electron or hole conduction outside the gap for different gap sizes.
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FIG. 3. (Color online) Schematic illustration of B-field induced splitting of the zeroth Landau level in the GALs, with concomitant transition
from a linear to a parabolic dispersion close to the band edges. The resulting Landau level density of states displays an actual LL gap Eg which
is distinguished from the activation gap Ea (both in dark green).

1/RH = B/Rxy . For a semiconductor with two types of charge
carriers, the densities are related to the Hall coefficient by26

1

RH

= e(nμn + pμp)2

nμ2
n − pμ2

p

, (1)

where n and p are the electron and hole density, and μn and
μp are the corresponding mobilities. This simple two-carrier
model is applicable to graphene despite the presence of
electron-hole puddles since tunneling between the correspond-
ing areas can occur.25 In the present samples, the conductance
is symmetric in charge carrier density around the CNP, and
hence the condition of equal mobility is fulfilled (μp = μn).
In case of a zero band gap, the total charge carrier density q

= n − p can be determined from q = αV, with α = 8.5 ×
1010 cm−2 V−1 as the gate coupling constant for the 100 nm
spacing sample. In Fig. 2(c) the resulting coexisting electron
density n = 1

2 [(n + p) + q] and (negative) hole density −p =
− 1

2 [(n + p) − q] around the CNP are plotted as a function
of q. In the n-type regime (q > 5 × 1015 m−2), electrons are
the majority charge carriers approaching a density of n = q,
while the hole density p approaches zero (vice versa for the
p-type regime). At the CNP the carrier density is n = p =
2.8 × 1015 m−2 at T = 88 K and B = 15 T. Similar to pristine
graphene,25 the individual carrier density increases when the
magnetic field is further increased since the degeneracy of the
N = 0 LL is proportional to the B field, reaching n = p =
4.5 × 1015 m−2 at B = 30 T. Upon cooling to T = 4 K, the
Hall resistance Rxy starts to diverge at the CNP, and at B =
15 T the zero crossing has vanished [see Fig. 2(a)], indicating
that electrons and holes no longer coexist near the CNP. For
higher magnetic fields, Rxy starts to rise from the ν = ±2
plateaus already at higher gate voltage, evidencing a stronger
N = 0 Landau level splitting 2�q in the charge carrier density.
This trend is mirrored in the charge carrier density plot [see
Fig. 2(c)] by a shift of the asymptote from αV = ±�q =
±2.2 × 1015 m−2 at B = 15 T to ±4.6 × 1015 m−2 at B =
30 T. Inside the insulating region −�q � αV � �q, the
equality n = p = q = 0 holds, while to the left (αV � −�q) the
total charge carrier density is q = αV + �q, and, accordingly,
the conduction is p type with n = 0 and −p = q. By
comparison, to the right (αV � ±�q) the total charge carrier

density is q = αV − �q, resulting in n-type conduction with
p = 0 and n = q.

Since valley-first splitting is a necessary and sufficient
condition for the occurrence of a diverging Hall resistance,25 it
follows that the gap separates electrons and holes into two val-
ley split N = 0 LLs, whereas the spin degeneracy is preserved,
as illustrated in Fig. 3. Support for this conclusion derives
from the fact that RCNP depends only on the perpendicular
B-field component rather than the total B field (see Fig. 4).
In these measurements, the sample was rotated out-of plane
by an angle θ relative to the sample orientation perpendicular
to the external field. As exemplified for constant total fields
of Btot = 1, 6, 12, and 14 T, the angle-dependent resistance
at these magnetic fields coincides with the values recorded
at zero angle, where Btot (θ = 0◦) = Bperp (θ ). Moreover,
the minimum resistance remains unchanged upon keeping the
perpendicular field constant at different values of Btot (see
inset), with corresponding angle θ [Bperp = Btot cos(θ )]. Both
data sets confirm that the gap is not related to Zeeman splitting.
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FIG. 4. (Color online) Four-terminal measurements on a 100 nm
spacing device in tilted magnetic fields at T = 4 K. Data were
taken at angles θ = 0◦, 15◦, 30◦, 45◦, 60◦, and 75◦. The solid line
represents the resistance at the CNP as a function of perpendicular
field Bperp = Btot cos(θ ) at θ = 0◦ for a 100 nm spacing GAL
device. At θ = 0◦ (solid line) the resistance at the CNP shows a
negative magnetoresistance at small fields and a pronounced positive
magnetoresistance at higher fields. In the inset the total field is kept
constant while the perpendicular field changes. Here the resistance
remains at the zero angle value (solid lines) within the error bars.
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FIG. 5. (Color online) Magnetic field dependent activation gaps
for the 100 nm (black squares), 200 nm (red circles), and 100 nm
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representing linear fits. The dashed lines correspond to the calculated
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D. Introduction of a parabolic dispersion at small energies

The overall charge transport characteristics can be consis-
tently explained on the basis of a small band gap introduced
by the antidot lattice.13–15 Under an applied magnetic field,
the Ea values extracted from the temperature dependence [see
Fig. 1(b)] exhibit a close-to-linear dependence on the magnetic
field, as demonstrated by Fig. 5. Band structure calculations
indicate that the gap opening in GALs is accompanied by
the emergence of a parabolic energy dispersion in vicinity of
the gap13–15 (see Fig. 3). In the QHE regime, the two levels
originating from the N = 0 LL reside within this parabolic
dispersion region, whereas the higher (N �= 0) LLs remain in
the linear dispersion regime and are hence expected to mirror
the LL structure of pristine graphene. The parabolic dispersion
regime can be described by

E(k) = ±
(

h̄2k2

2m
+ E0

g

2

)
, (2)

where m is the mass, E0
g is the zero-field band gap originating

from the antidot lattice, and the ± sign accounts for electrons

and holes, respectively. The energy of the two N = 0 LLs is
therefore given by

E± = ± 1
2

(
h̄ωc + E0

g

)
, (3)

with the cyclotron frequency ωc = eB/m. The magnetic
field dependent band gap is thus given byEg = E+ − E− =
h̄ eB/m + E0

g , where m = meffme, with me as the free electron
mass. The LL energies can be related to the experimentally
accessible gate voltages by rewriting Eq. (3) in terms of
the gate voltage by using V = q/α = k2/2πα = Em/πh̄2α,
which leads to

V± = ±1

2

(
eB

απh̄
+ meffme

απh̄2 E0
g

)
, (4)

where V = VG − VCNP. Thus, in a parabolic dispersion V

depends linearly on the magnetic field. Note that in the
linear dispersive regime, the gate voltage positions of the N

�= 0 LLs also depend linearly on B field. This is apparent
from the conversion of E = sqrt(2eh̄ν2

F B|N |) to gate voltage
positions using V = q/α = E2/(πh̄2ν2

F α), which yields V± =
±2eB|N |/(πh̄α).

The B-field dependent LL positions for the 100 nm spacing
sample are visualized in the LL fan diagram of Fig. 6(a),
where the first derivative of the inverse Hall resistance
−d(1/Rxy)/dV is plotted as a function of both gate voltage and
magnetic field. To the right-hand side, line cuts are provided
for the inverse Hall resistance as well as its derivative at B =
30 T. The maxima within the green regions in the fan diagram
mark the transitions from one QHE plateau to the following,
and therefore represent the center of a LL. The black lines
are fits to Eq. (4), which yield an effective mass meff = 0.08
and a zero-field gap E0

g = 22.0 K. The latter value is in good
agreement with the estimated gap size of E0

g ≈ 15 K for similar
GALs at zero magnetic field.23 A gate coupling factor of α =
8.5 × 1010 cm−2 V−1 was extracted from the slope of the
higher LLs (red dash-dotted lines). The slightly increased α

results most likely from inhomogeneous electric field effects,
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Zeeman term ±g∗meffeB/4απh̄ into account.
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analogous to observations made on graphene nanoribbons.27

In the same manner, values of E0
g = 14.5 K, α = 7.2 ×

1010 cm−2 V−1, and meff = 0.10 were obtained for the 200 nm
spacing sample, and E0

g = 33.0 K, α = 5.0 × 1010 cm−2 V−1,
and meff = 0.08 for the suspended 100 nm spacing sample.

Combining the extracted values of meff and E0
g with Eq. (3)

provides the B-field dependent gap between the two N =
0 LL center positions. In Fig. 5 this actual LL gap (dashed
lines) is compared to the activation gaps (symbols). Since the
activation gap is the distance between the mobility edges of
the two broadened LLs, the difference between the activation
gap and the actual gap corresponds to the LL broadening
(see right part of Fig. 3). The extent of the LL broadening
differs depending on the amount of disorder.28,29 From the
plot, the LL broadening is estimated to be � = (90 ± 10),
(120 ± 10), and (30 ± 10) K for the 100, 200, and suspended
100 nm spacing sample, respectively. The latter broadening
is appreciably smaller than the value of ∼100 K reported for
pristine (nonsuspended) graphene at low temperatures.30 It
is furthermore noteworthy that a linear instead of parabolic
energy dispersion could not account for the observed magnetic
field behavior. In fact, this would result in a quite weak,
square-root-like dependence of the energy gap on the B field,1

such that reaching the measured LL positions would require
an unrealistically big hypothetical gap of 1800 K at 20 T.

E. Additional spin splitting

In the samples of highest quality, we could also detect
signatures of additional spin splitting associated with the
N = 0 LL, specifically a ν = 1 plateau appears at RH = h/e2.
It is best visible in the LL fan plots of the suspended 100 nm
spacing sample above 6 T, as exemplified by Fig. 6(b) showing
a zoom into the hole regime of the sample. The spin splitting
can be accounted for by the parabolic dispersion near the Dirac
point [Eq. (3)] complemented by a Zeeman term ±g∗μBB,
with g∗ as the effective electron g factor, which leads to an
additional term ±gmeffeB/4απh̄ in Eq. (4). The solid line in
Fig. 6(b) represents the fit to Eq. (4) without spin splitting,
whereas the dashed lines include spin splitting. As both fits
yield identical E0

g and meff the g factor remains the only
free fit parameter. On this basis, one obtains a g factor of

g∗ = 6 for the 200 nm GAL and g∗ = 5 for the 100 nm
suspended sample. These quite large values might be explained
by electron-electron exchange interactions, in analogy to the
2D gas in semiconductor heterojunctions:31,32

E0
ex =

(
1 − g

g∗

)√
2π�. (5)

When spin splitting is included, the estimated LL broadening
decreases to � = 60 K for the 200 nm spacing sample, and
� = 20 K for the suspended 100 nm spacing sample, as derived
from the field at which the spin splitting becomes visible. This
results in respective exchange energies of E0

ex = 100 K and
E0

ex = 30 K, which correspond well with E0
ex = 130 K reported

for pristine graphene.30

III. CONCLUSION

The observed QH insulator behavior points toward valley-
first splitting in the GALs provided that the charge carriers
would be associated with different valleys in the lowest LL,
similar to the case of pristine graphene. Due to the possibility
of sizable intervalley scattering, however, the situation might
be more complicated than for unstructured graphene, such
that further studies are needed to determine the effect of
the periodic nanohole array on the quasiparticle properties.
From an application perspective, valley-first splitting could
be exploited for graphene-based valleytronic devices such as
gate-tuned valley filters or beam splitters.33,34 To this end,
GAL devices of improved mobility (e.g., by use of BN)
would be highly beneficial. In addition, the emergence of a
massive character of the charge carriers is relevant for all
graphene semiconductor applications that rely upon a band gap
introduced by spatial confinement, like in, e.g., nanoribbons.
In fact, the introduction of a charge carrier mass at low carrier
densities might alter other properties unique to graphene.
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