
PDF hosted at the Radboud Repository of the Radboud University

Nijmegen

The following full text is a preprint version which may differ from the publisher's version.

For additional information about this publication click this link.

http://hdl.handle.net/2066/117240

Please be advised that this information was generated on 2017-12-05 and may be subject to

change.

http://hdl.handle.net/2066/117240

Journal of Machine Learning Research ??? (???) ??? Submitted ???; Published ???

Speedy Q-Learning: A Computationally Efficient

Reinforcement Learning Algorithm with a Near-Optimal

Rate of Convergence∗

Mohammad Gheshlaghi Azar m.azar@science.ru.nl

Department of Biophysics

Radboud University Nijmegen

6525 EZ Nijmegen, The Netherlands

Rémi Munos remi.munos@inria.fr

Mohammad Ghavamzadeh mohammad.ghavamzadeh@inria.fr

INRIA Lille, SequeL Project

40 avenue Halley

59650 Villeneuve d’Ascq, France

Hilbert J. Kappen b.kappen@science.ru.nl

Department of Biophysics

Radboud University Nijmegen

6525 EZ Nijmegen, The Netherlands

Editor: TBA

Abstract

We consider the problem of model-free reinforcement learning (RL) in the Markovian
decision processes (MDP) under the probably approximately correct (PAC) model. We
introduce a new variant of Q-learning, called speedy Q-learning (SQL), to address the
problem of the slow convergence in the standard Q-learning algorithm, and prove PAC
bounds on the performance of this algorithm. The bounds indicate that for any MDP with
n state-action pairs and discount factor γ ∈ [0, 1), a total number of O

(

n log(n)/((1 −
γ)4ǫ2)

)

steps suffices for SQL to converge to an ǫ-optimal action-value function with high

probability. We also derive a lower-bound of Ω
(

n/((1−γ)2ǫ2)
)

for all RL algorithms, which
matches the upper bound in terms of n (up to a logarithmic factor) and ǫ. Moreover, our
results have better dependencies on ǫ and 1−γ (the same dependency on n), and thus, are
tighter than the best available results for Q-learning. The SQL algorithm also improves
on existing results for the batch Q-value iteration, in terms of the computational budget
required to achieve a near optimal solution.

1. Introduction

Finding an optimal policy for a Markovian decision process (MDP) is a classical problem
in the fields of operations research and decision theory. When an explicit model of an MDP

∗. An extended abstract of this paper appeared in the Proceedings of Advances in Neural Information
Processing Systems (NIPS 24), pp. 2411-2419.

c©??? Mohammad Gheshlaghi Azar, Rémi Munos, Mohammad Ghavamzadeh and Hilbert J. Kappen.

Gheshlaghi Azar, Munos, Ghavamzadeh and Kappen

(i.e., transition probability and reward functions) is known, one can rely on dynamic pro-
gramming (DP) (Bellman, 1957) algorithms such as value iteration or policy iteration (see,
e.g., Bertsekas, 2007a; Puterman, 1994) to compute an optimal policy of the MDP. Value it-
eration algorithm computes the optimal action-value function Q∗ by successive iterations of
the Bellman operator T (will be defined in Section 2). One can show that in the discounted
infinite-horizon setting the convergence of value iteration is exponentially fast, since the
Bellman operator T is a contraction mapping (Bertsekas, 2007b) on the action-value func-
tion Q. However, value iteration rely on an explicit knowledge of the MDP. In many real
world problems the transition probabilities are not initially known, but one may observe
transition samples using Monte-Carlo sampling, either as a single trajectory obtained by fol-
lowing an exploration policy (a rollout), or by simulating independent transition samples in
the state(-action) space using a generative model (simulator) of the dynamical system. The
field of reinforcement learning (RL) is concerned with the problem of finding an optimal pol-
icy or the optimal value function from the observed reward and transition samples (Sutton
and Barto, 1998; Szepesvári, 2010).

One may characterize RL methods as model-based or model-free. In model-based RL,
we first learn a model of the MDP and then use it to approximate value functions using DP
techniques. In contrary, model-free methods compute an approximation of a value func-
tion by making use of a sample-based estimate of the Bellman operator without resorting
to learning an explicit model of the dynamical system. Q-learning (QL) is a well-known
model-free RL algorithm that incrementally finds an estimate of the optimal action-value
function (Watkins, 1989). The QL algorithm can be seen as a combination of the value it-
eration algorithm and stochastic approximation, where at each time step k a new estimate
of the optimal action-value function for all state-action pairs (x, a) is calculated using the
following update rule:1

Qk+1(x, a) = (1− αk)Qk(x, a) + αkTkQk(x, a)

= (1− αk)Qk(x, a) + αk (TQk(x, a)− ǫk(x, a)) ,

where ǫk(x, a) = TkQk(x, a)− TQk(x, a), TkQk(x, a) is the empirical estimation of Bellman
operator and αk is the learning step. One may show, using an induction argument, that
for the choice of linear learning step, i.e., αk = 1

k+1 , Qk+1 can be seen the average of the
estimates of Bellman operator throughout the learning process:

Qk+1(x, a) =
1

k + 1

k
∑

j=0

(TQj(x, a)− ǫj(x, a)).

It is not then difficult to prove, using a law of large number argument, that the term
1/(k+1)

∑

k
j=0ǫj , is asymptotically averaged out, and thus, for k → ∞ the update rule of QL

becomes equivalent to Qk+1 = 1/(k+1)
∑

k
j=0TQj . The problem with this result is that the

rate of convergence of the recursion Qk+1 = 1/(k+1)
∑

k
j=0TQj to Q∗ is significantly slower

than the original Bellman recursion Qk+1 = TQk. In fact, one can prove that the asymptotic

1. In this section, for the sake of simplicity in the notation, we assume that the action-values of all state-
action pairs are updated in parallel. Note that, in general, this assumption is not required for the proof
of convergence of Q-learning.

2

Speedy Q-Learning

rate of convergence of QL with linear learning step is of order Õ(1/k1−γ) (Szepesvári, 1997),2

which in the case of γ close to 1 makes its convergence extremely slower than the standard
value iteration algorithm, which enjoys a fast convergence rate of order Õ(γk). This slow
rate of convergence, i.e., high sample complexity, may explain why the practitioners often
prefer the batch RL methods, such as approximate value iteration (AVI) (Bertsekas, 2007b),
to QL despite the fact that QL has better memory requirements than the batch RL methods.

In this paper, we focus on RL problems that are formulated as finite state-action dis-
counted infinite-horizon MDPs and propose a new algorithm, called speedy Q-learning
(SQL), to address the problem of slow convergence of Q-learning. The main idea is to
modify the update rule of Q-learning such that, at each iteration k, the new estimate of
action-value function Qk+1 closely follows the Bellman operator TQk. This guarantees that
the rate of convergence of SQL, unlike QL, is close to the fast rate of convergence of the
value iteration algorithm. At each time step k, SQL uses two successive estimates of the
bellman operator TQk and TQk−1 to update the action-value function

Qk+1(x, a) = αkQk(x, a) + (1− αk)
[

kTQk(x, a)− (k − 1)TQk−1(x, a)− ǫk(x, a)
]

, (1)

which makes its space complexity twice as QL. However, this allows SQL to achieve a
significantly faster rate of convergence than QL, since it reduces the dependency on the
previous Bellman operators from the average 1/(k + 1)

∑

k
j=0TQj (in the case of QL) to

only TQk +O
(

1/(k + 1)
)

, with the choice of αk = 1/(k + 1):

Qk+1(x, a) = αkQk(x, a) + (1− αk)
[

kTQk(x, a)− (k − 1)TQk−1(x, a)− ǫk(x, a)
]

=
1

k + 1

k
∑

j=0

(

jTQj(x, a)− (j − 1)TQj−1(x, a)− ǫj(x, a)
)

= TQk(x, a) +
1

k + 1
(TQ−1(x, a)− TQk(x, a))−

1

k + 1

k
∑

j=0

ǫj(x, a),

where in the second line we rely on an induction argument. This shows that similar to
QL, the iterates of SQL are expressed in terms of the average estimation error, and thus,
the SQL update rule asymptotically averages out the sampling errors. However, SQL has
the advantage that at each time step k the iterate Qk+1 closely follows (up to a factor of
O(1/(k + 1)) the latest Bellman iterate TQk instead of the average 1/(k + 1)

∑k
j=0 TQj in

the case of QL. As a result, unlike QL, it does not suffer from the slow convergence due to
slow down in the value iteration process (see Section 3.3 for a detailed comparison of QL
and SQL’s convergence rates).

The idea of using previous estimates of the action-values has already been employed in
order to improve the performance of QL. A popular algorithm of this kind is Q(λ) (Watkins,
1989; Peng and Williams, 1996), which incorporates the concept of eligibility traces in
QL, and has been empirically shown to have a better performance than QL, i.e., Q(0),
for suitable values of λ. Another recent work in this direction is Double Q-learning (van

2. The notation g = Õ(f) implies that there are constants c1 and c2 such that g ≤ c1f logc2(f).

3

Gheshlaghi Azar, Munos, Ghavamzadeh and Kappen

Hasselt, 2010), which uses two estimators for the action-value function in order to alleviate
the over-estimation of action-values in QL. This over-estimation is caused by a positive
bias introduced by using the maximum action-value as an approximation for the maximum
expected action-value.

The rest of the paper is organized as follows. After introducing the notation used in
the paper in Section 2, we present our Speedy Q-learning algorithm in Section 3. We first
describe the synchronous and asynchronous versions of the algorithm in Section 3.1, then
state our main theoretical result, i.e., high-probability bounds on the performance of SQL
as well as a new lower bound for the sample complexity of RL, in Section 3.2, and finally
compare our bound with the previous results on QL and Q-value iteration in Section 3.3. In
Section 4, we numerically evaluate the performance of SQL on different problems. Section 5
contains the detailed proofs of the results of Sections 3.2, i.e., performance bounds of SQL
and a general new lower bound for RL. Finally, we conclude the paper and discuss some
future directions in Section 6.

2. Preliminaries

In this section, we introduce some concepts, definitions, and notation from the Markov
decision processes (MDPs) theory and stochastic processes that are used throughout the
paper. We start by the definition of supremum norm (ℓ∞-norm). For a real-valued function
g : Y 7→ R, where Y is a finite set, the supremum norm of g is defined as ‖g‖ , maxy∈Y |g(y)|.

We consider the standard reinforcement learning (RL) framework (Bertsekas and Tsit-
siklis, 1996; Sutton and Barto, 1998) in which a learning agent interacts with a stochastic
environment and this interaction is modeled as a discrete-time discounted MDP. A dis-
counted MDP is a quintuple (X,A, P,R, γ), where X and A are the set of states and ac-
tions, P is the state transition distribution, R is the reward function, and γ ∈ (0, 1) is a
discount factor. We denote the effective horizon of MDP by β defined as β = 1/(1−γ). We
also denote by P (·|x, a) and r(x, a) the probability distribution over the next state and the
immediate reward of taking action a at state x, respectively.3 To keep the representation
succinct, we use Z for the joint state-action space X×A.

Assumption A1 (MDP regularity) We assume that the joint state-action set Z is finite
with cardinality n, and the immediate rewards r(x, a) are in the interval [0, 1].4

A policy π determines the distribution of the control action given the past observations.
A policy is called stationary if the distribution depends only on the last state x and is
deterministic if it assigns a unique action to each state x ∈ X. The value and the action-
value functions of a policy π, denoted respectively by V π : X 7→ R and Qπ : Z 7→ R, are
defined as the expected sum of discounted rewards that are encountered when the policy π
is executed. Given a MDP, the goal is to find a policy that attains the best possible values,
V ∗(x) , supπ V

π(x), ∀x ∈ X. Function V ∗ is called the optimal value function. Similarly

3. For the sake of simplicity in notation, here we assume that the reward r(x, a) is a deterministic function
of state-action pairs (x, a). It is straightforward to extend our results to the case of stochastic rewards
under some mild assumptions, e.g., boundedness of the absolute value of the rewards.

4. Our results also hold if the rewards are taken from some interval [rmin, rmax] instead of [0, 1], in which
case the bounds scale with the factor rmax − rmin.

4

Speedy Q-Learning

the optimal action-value function is defined as Q∗(x, a) = supπ Q
π(x, a), ∀(x, a) ∈ Z. The

optimal action-value functionQ∗ is the unique fixed-point of the Bellman optimality operator
T defined as

(TQ)(x, a) , r(x, a) + γ
∑

y∈X
P (y|x, a)(MQ)(y), ∀(x, a) ∈ Z,

where M is the max operator over action-value functions and is defined as (MQ)(y) =
maxa∈AQ(y, a), ∀y ∈ X.5 We now define the cover time of MDP under the policy π as
follows:

Definition 1 (Cover Time) Let π be a policy over a finite stat-action MDP and t ≥ 0
be an integer. Define τπ(x, t) to be the number of time-steps between t and the first future
time that all state-action pairs z ∈ Z are visited (the MDP is covered) starting from state
x ∈ X at time-step t and following π. The state-action space Z is covered by the policy π if
all the state-action pairs are visited at least once under the policy π.

The following assumption that bounds the expected cover time of the MDP guarantees
that asymptotically all the state-action pairs are visited infinitely many times under the
policy π.

Assumption A2 (Boundedness of the expected cover time) Let 0 < L < ∞ and t
be an integer. We assume that under the policy π, for all x ∈ X and t > 0, we have

E
(

τπ(x, t)
)

≤ L.

3. Speedy Q-Learning

In this section, we introduce a new RL algorithm, called speedy Q-Learning (SQL), derive
performance bounds for its synchronous and asynchronous variants, and compare these
bounds with similar results on standard Q-learning (QL).

3.1 Synchronous and Asynchronous SQL Algorithms

In this subsection, we introduce two variants of the SQL algorithm, synchronous SQL and
asynchronous SQL. In the asynchronous version, at each time step, the action-value of only
one state-action pair, the current observed state-action, is updated, while the action-values
of the rest of the state-action pairs remain unchanged. For the convergence of this instance of
the algorithm, it is required that all the states and actions are visited infinitely many times,
which makes the analysis slightly more complicated. On the other hand, having access to a
simulator that can generate samples anywhere in the state-action space, the algorithm may
be formulated in a synchronous fashion, in which we first generate a next state y ∼ P (·|x, a)
for each state-action pair (x, a), and then update the action-values of all the state-action
pairs using these samples. The pseudo-code of the synchronous and asynchronous versions of

5. It is important to note that T is a γ-contraction mapping w.r.t. to the ℓ∞-norm, i.e., for any pair of
action-value functions Q and Q′, we have ‖TQ− TQ′‖ ≤ γ ‖Q−Q′‖ (Bertsekas, 2007b, Chap. 1).

5

Gheshlaghi Azar, Munos, Ghavamzadeh and Kappen

SQL are shown in Algorithms 1 and 2, respectively. It is possible to show that asynchronous
SQL is reduced to synchronous SQL when the cover time τπ(x, t) = n for all x ∈ X and
t ≥ 0. In this case, the action-values of all state-action pairs are updated in a row. In other
words, Algorithm 1 may be seen as a special case of Algorithm 2. Therefore, in the sequel
we only describe the more general asynchronous SQL algorithm.

Algorithm 1: Synchronous Speedy Q-learning
Input: initial action-values Q0, discount factor γ, and number of steps T
Q−1 := Q0; // Initalization

t := k := 0;
repeat // Main loop

αk :=
1

k + 1
;

foreach (x, a) ∈ Z do // Update the action-value function for all (x, a) ∈ Z

Generate the next state sample yk ∼ P (·|x, a);
TkQk−1(x, a) := r(x, a) + γMQk−1(yk);
TkQk(x, a) := r(x, a) + γMQk(yk);
Qk+1(x, a) := (1− αk)Qk(x, a) + αk

(

kTkQk(x, a)− (k − 1)TkQk−1(x, a)
)

; // SQL update

rule

t := t+ 1;

end

k := k + 1;

until t ≥ T ;

return Qk

As it can be seen from the update rule of Algorithm 2, at each time step, the algorithm
keeps track of the action-value functions of the two most recent iterations Qk and Qk−1,
and its main update rule is of the following form at time step t and iteration k:

Qk+1(Xt, At) = (1− αk)Qk(Xt, At) + αk

(

kTkQk(Xt, At)− (k − 1)TkQk−1(Xt, At)
)

, (2)

where TkQ(Xt, At) = 1/|Yk|
∑

y∈Yk

[

r(Xt, At) + γMQ(y)
]

is the empirical Bellman opti-
mality operator using the set of next state samples Yk, where Yk is a short-hand notation
for Yk,t(x, a), the set of all samples generated up to time step t in round k by taking ac-
tion a in state x. At each time step t, Algorithm 2 works as follows: (i) it simulates the
MDP for one-step at state Xt, i.e., it first draws the action At ∈ A from the distribution
π(·|Xt) and then makes a transition to a new state yk ∼ P (·|Xt, At), (ii) it updates the
two sample estimates TkQk−1(Xt, At) and TkQk(Xt, At) of the Bellman optimality opera-
tor applied to the estimates Qk−1 and Qk of the action-value function at the previous and
current rounds k − 1 and k, for the state-action pair (Xt, At) using the next state yk, (iii)
it updates the action-value function of (Xt, At), generates Qk+1(Xt, At), using the update
rule of Eq. 2, (iv) it checks if all (x, a) ∈ Z have been visited at least once at iteration
k, and if this condition is satisfied, we move to the next round k + 1, and finally, (v) we
replace Xt+1 with yk and repeat the whole process until t ≥ T . Moreover, we let αk decays
linearly with the number of iterations k, i.e., αk = 1/(k + 1). Note that the update rule
TkQk(Xt, At) := (1−ηN)TkQk(Xt, At)+ηN (r(Xt, At)+γMQk(yk)) is used to incrementally
generate an unbiased estimate of TQk.

6

Speedy Q-Learning

Algorithm 2: Asynchronous Speedy Q-learning
Input: initial action-values Q0, policy π, discount factor γ, number of step T , and initial state X0

t := k := 0; // Initialization

α0 = 1;
foreach (x, a) ∈ Z do

Q−1(x, a) := Q0(x, a);
N0(x, a) := 0;

end

repeat // Main loop

Draw the action At ∼ π(·|Xt);
Generate the next state sample yk by taking action At in state Xt;

ηN :=
1

Nk(Xt, At) + 1
;

TkQk−1(Xt, At) := (1− ηN)TkQk−1(Xt, At) + ηN
(

r(Xt, At) + γMQk−1(yk)
)

;
TkQk(Xt, At) := (1− ηN)TkQk(Xt, At) + ηN

(

r(Xt, At) + γMQk(yk)
)

;
Qk+1(Xt, At) := (1− αk)Qk(Xt, At) + αk

(

kTkQk(Xt, At)− (k − 1)TkQk−1(Xt, At)
)

; // SQL

update rule

Nk(Xt, At) := Nk(Xt, At) + 1;
Xt+1 = yk;
if min(x,a)∈Z Nk(x, a) > 0 then // Check if all (x, a) ∈ Z have been visited at round k

k := k + 1;

αk :=
1

k + 1
;

foreach (x, a) ∈ Z do

Nk(x, a) := 0;
end

end

t := t+ 1;

until t ≥ T ;

return Qk

3.2 Main Theoretical Results

The main theoretical results of this paper are expressed as high-probability bounds for the
performance of both synchronous and asynchronous versions of the SQL algorithms. We
also report a new lower bound on the number of transitions required for every RL algorithm
to achieve an ǫ-optimal estimate of Q∗ with high probability (w.p. 1 − δ).6 The derived
performance bound shows that SQL has a rate of convergence T = O

(

nβ4 log(n/δ)/ǫ2
)

,
which matches the proposed lower bound of RL in terms of n (up to a logarithmic factor),
ǫ, and δ. However, the dependency of our bound on the horizon β is worse than the lower-
bound by a factor of order O(β2).

Theorem 2 (Performance Bound of Synchronous SQL) Let A1 hold and QT be the
estimate of Q∗ generated by Algorithm 1 after T steps. Then, with probability at least 1− δ,
we have

‖Q∗ −QT ‖ ≤ β2

γn

T
+

√

2n log 2n
δ

T

 .

6. We report the detailed proofs in Section 5.

7

Gheshlaghi Azar, Munos, Ghavamzadeh and Kappen

Theorem 3 (Performance Bound of Asynchronous SQL) Let A1 and A2 hold and
QT be the estimate of Q∗ generated by Algorithm 2 after T steps. Then, with probability at
least 1− δ, we have

‖Q∗ −QT ‖ ≤ β2

γeL log 2
δ

T
+

√

2eL log 2
δ log

4n
δ

T

 .

These results, combined with the Borel-Cantelli lemma (Feller, 1968), guarantee that QT

converges almost surely to Q∗ with the rate
√

1/T for both Algorithms 1 and 2. Moreover,
the PAC bounds of Corollaries 4 and 5, which quantify the number of steps T required
to reach the error ǫ > 0 in estimating the optimal action-value function w.p. 1 − δ, are
immediate consequences of Theorems 2 and 3, respectively.

Corollary 4 (Finite-time PAC Bound of Synchronous SQL) Under A1, after

T = ⌈4 n β4 log 2n
δ

ǫ2
⌉

steps (transitions), the uniform approximation error of Algorithm 1 is small, i.e., ‖Q∗ −QT ‖ ≤
ǫ, with probability at least 1− δ.7

Corollary 5 (Finite-time PAC Bound of Asynchronous SQL) Under A1 and A2, af-
ter

T = ⌈4 e L β4 log 2
δ log 4n

δ

ǫ2
⌉

steps (transitions), the uniform approximation error of Algorithm 2 is small, i.e., ‖Q∗ −QT ‖ ≤
ǫ, with probability at least 1− δ.

The following general result provides a new lower bound on the number of transitions T
for every RL algorithm to achieve an ǫ-optimal performance w.p. 1−δ, under the assumption
that the RL algorithm is (ǫ, δ)-correct.8

Definition 6 ((ǫ, δ, T ∗)-correct RL algorithm) Let A be the class of all RL algorithms
that rely on estimating the action-value function Q∗ and QA

T be the estimate of Q∗ by the
algorithm A ∈ A after T ≥ 0 transitions. The RL algorithm A ∈ A is called (ǫ, δ, T ∗)-correct
on the class of MDPs M, if for all T > T ∗ and for all M ∈ M, we have

∥

∥Q∗ −QA
T

∥

∥ ≤ ǫ
with probability at least 1− δ.

Theorem 7 (Lower bound on the sample complexity of RL) There exists some ǫ0,
δ0, γ0, c1, c2, and a class of MDPs M, such that for all ǫ ∈ (0, ǫ0), γ ∈ (γ0, 1), δ ∈ (0, δ0),

7. For every real number u, ⌈u⌉ is defined as the smallest integer number not less than u.
8. This result improves on the state-of-the-art (Strehl et al., 2009) in terms of the dependency on β, by a

factor of O(β2). Our result is also more general than the one by Strehl et al. (2009) in the sense that it
does not require a sequential update of the value functions or following a deterministic policy. On the
other hand, our result is slightly worse than the previous lower bound in terms of dependency on n.

8

Speedy Q-Learning

and every (ǫ, δ, T ∗)-correct RL algorithm A ∈ A on the class of MDPs M the number of
transitions

T > T ∗ = ⌈nβ
2

c1ǫ2
log

1

c2δ
⌉.

3.3 Relation to the Existing Results

In this section, we first compare our results for the SQL algorithm with the existing results on
the convergence of the standard Q-learning. The comparison indicates that SQL accelerates
the convergence of QL, especially for large values of β and small values of α. We then
compare SQL with batch Q-value iteration (QVI) in terms of the sample and computational
complexities, i.e., the number of samples and the number of time units 9 required to achieve
an ǫ-optimal solution with high probability, as well as space complexity, i.e., the memory
required at each step of the algorithm.

3.3.1 A Comparison with the Convergence Rate of the Standard Q-Learning

There are not many studies in the literature concerning the convergence rate of incre-
mental model-free RL algorithms such as QL. Szepesvári (1997) provided the asymptotic
convergence rate for QL under the assumption that all the states have the same next state
distribution. This result shows that the asymptotic convergence rate of QL with a linearly
decaying learning step has exponential dependency on β, i.e. T = Õ(1/ǫβ).

Even-Dar and Mansour (2003) investigated the finite-time behavior of synchronous QL
for different time scales. Their main result indicates that by using the polynomial learning
step αk = 1

/

(k + 1)ω , 0.5 < ω < 1, synchronous QL achieves ǫ-optimal performance
w.p. at least 1− δ after

T = O

n

(

β4 log nβ
δǫ

ǫ2

) 1
w

+

(

β log
β

ǫ

) 1
1−ω

 , (3)

steps, where the time-scale parameter ω may be tuned to achieve the best performance.
When γ ≈ 1, the horizon β = 1/(1− γ) becomes the dominant term in the bound of Eq. 3,
and thus, the bound is optimized by finding an ω that minimizes the dependency on β.
This leads to the optimized bound of order Õ

(

β5/ǫ2.5
)

with the choice of ω = 0.8. On the
other hand, SQL is guaranteed to achieve the same precision with only O

(

β4/ǫ2
)

steps. The
difference between these two bounds is substantial for large β2/ǫ.

Even-Dar and Mansour (2003) also proved bounds for the asynchronous variant of Q-
learning in the case that the cover time of MDP can be uniformly bounded from above
by some finite constant. The extension of their results to the more realistic case that the
expected value of the cover-time is bounded by some L > 0 (Assumption A2) leads to the
following PAC bound:

9. In the sequel, we consider the CPU time required to compute a single-sample estimate of the Bellman
optimality operator as the time unit.

9

Gheshlaghi Azar, Munos, Ghavamzadeh and Kappen

Proposition 8 (Even-Dar and Mansour, 2003) Under A1 and A2, for all ω ∈ (0.5, 1),
after

T = O

[

(

L log 1
δ

)1+3ω
β4 log nβ

δǫ

ǫ2

]
1
w

+

[

Lβ log
1

δ
log

β

ǫ

] 1
1−ω

steps (transitions), the uniform approximation error of asynchronous QL ‖Q∗ −QT ‖ ≤ ǫ,
w.p. at least 1− δ.

The dependence on L in this algorithm is of order O(L3+ 1
ω +L

1
1−ω), which with the choice

of ω ≈ 0.77 leads to the optimized dependency of order O(L4.34), whereas asynchronous
SQL achieves the same accuracy after just O(L) steps. This result indicates that for MDPs
with large expected cover-time, i.e., slow-mixing MDPs, asynchronous SQL may converge
substantially faster to a near-optimal solution than its QL counterpart.

3.3.2 SQL vs. Q-Value Iteration

Finite sample bounds for both model-based and model-free (Phased Q-learning) QVI have
been derived in (Kearns and Singh, 1999; Even-Dar et al., 2002; Kakade, 2004, chap. 9.1).
These algorithms can be considered as the batch version of Q-learning. They show that to
quantify ǫ-optimal action-value functions with high probability, we need Õ

(

nβ5/ǫ2
)

and

Õ
(

nβ4/ǫ2) samples in model-free and model-based QVI, respectively.10 A comparison
between their results and the main result of this paper suggests that the sample com-
plexity of SQL, which is of order Õ

(

nβ4/ǫ2
)

, is better than model-free QVI in terms of
β. Although the sample complexities of SQL and model-based QVI are of the same or-
der, SQL has a significantly better computational and space complexity than model-based
QVI: SQL needs only 2n memory space, while the space complexity of model-based QVI
is min

(

Õ(nβ4/ǫ2), n(|X|+ 1)
)

(Kearns and Singh, 1999). SQL also improves the computa-

tional complexity by a factor of Õ(β) compared to both model-free and model-based QVI.11

Table 1 summarizes the comparisons between SQL and the RL methods discussed in this
section.

4. Experiments

In this section, we empirically evaluate the performance of the synchronous SQL (Al-
gorithm 1) on several discrete state-action problems. We also examine the convergence
of these algorithms and compare it with Q-learning and model-based Q-value iteration
(QVI) (Kearns and Singh, 1999). The source code of all the algorithms is available at
http://www.mbfys.ru.nl/~mazar/Research Top.html.

10. For the sake of simplicity, here we ignore the logarithmic dependencies of the bounds.
11. Since SQL performs only one Q-value update per sample, its sample and computational complexities

of are of the same order. The same argument also applies to the standard Q-learning. On the other
hand, in the case of model-based QVI, the algorithm needs to iterate the action-value function of all
the state-action pairs at least Õ(β) times. This leads to a computational complexity of order Õ(nβ5/ǫ2)
given that only Õ(nβ4/ǫ2) entries of the estimated transition matrix are non-zero.

10

Speedy Q-Learning

Method SQL Q-learning Model-based QVI Model-free QVI

SC Õ

(

nβ4

ǫ2

)

Õ

(

nβ5

ǫ2.5

)

Õ

(

nβ4

ǫ2

)

Õ

(

nβ5

ǫ2

)

CC Õ

(

nβ4

ǫ2

)

Õ

(

nβ5

ǫ2.5

)

Õ

(

nβ5

ǫ2

)

Õ

(

nβ5

ǫ2

)

SPC Θ(n) Θ(n) min
(

Õ(nβ4/ǫ2), n(|X|+ 1)
)

Θ(n)

Table 1: Comparison between SQL, Q-learning, model-based, and model-free Q-value itera-
tion (QVI) in terms of sample complexity (SC), computational complexity (CC), and space
complexity (SPC).

x1 x2500xk xk+1xk−1

a = −1

a = +1

Figure 1: The Linear MDP problem. States x1 and x2500 are the two absorbing states
and state xk is an example of the interior states. The absorbing states have reward 1 and
the interior states have reward −1. From an interior state xk, all the other states in the
direction of the selected action are reachable with a probability proportional to their inverse
distance to xk (see Eq. 4).

Linear MDP: This problem consists of 2500 states X = {x1, . . . , x2500} arranged in a one-
dimensional chain (see Figure 1). There are two possible actions A = {−1,+1} (left/right),
and every state is accessible from every other state except for the two ends of the chain,
which are absorbing states. A state xk ∈ X is called absorbing if P (xk|xk, a) = 1 for all
a ∈ A, and thus, P (xl|xk, a) = 0, ∀l 6= k. Any transition to one of the two absorbing
states has reward 1 and to any other state (interior states) has reward −1. The transition
probability from an interior state xk to any other state xl is inversely proportional to their
distance in the direction of the selected action, and zero for all the states in the opposite
direction. This can be written formally as (xk is an interior state, i.e., xk 6= x1, x2500)

P (xl|xk, a) ∝

1

|l − k| if (l − k)a > 0,

0 otherwise.
(4)

The optimal policy for this problem is to reach the closest absorbing state as soon as possible.

Combination Lock: This problem is a stochastic variant of the reset state space model
introduced in Koenig and Simmons (1993), where more than one reset state is possi-
ble (see Figure 2). Similar to the Linear MDP problem, here we consider 2500 states
X = {x1, . . . , x2500} arranged in a one-dimensional chain and two possible actions A =

11

Gheshlaghi Azar, Munos, Ghavamzadeh and Kappen

x1 x2500xk xk+1xk−1

a = −1

a = +1

Figure 2: The Combination Lock problem. State x2500 is the absorbing goal state and state
xk is an example of the interior states. The goal state has reward 1 and is reached only of
an all-ones {+1, . . . ,+1} sequence of actions is taken. For every interior state, the rewards
of actions −1 and +1 are set to 0 and −0.01, respectively. The transition probability upon
taking the wrong action −1 is inversely proportional to the distance of the states.

{−1,+1}. However, there is only one absorbing state (corresponding to the state lock-
opened) with associated reward of 1 in this problem. This state is reached if an all-ones
sequence {+1, . . . ,+1} of actions is taken. Otherwise, if at some state xk, k < 2500, action
−1 is taken, the lock randomly resets to a state xl, l < k (in the original combination lock
problem, the lock always resets to the initial state x1). For every interior state, the rewards
of actions −1 and +1 are set to 0 and −0.01, respectively. The transition probability upon
taking the wrong action −1 is inversely proportional to the distance of the states (similar
to the Linear MDP problem), i.e.,

P (xl|xk,−1) ∝

1

k − l
if l < k,

0 otherwise.

Note that this problem is more difficult than Linear MDP since the goal state is only
reachable from one single state x2499.

Grid World: This MDP consists of a grid of 50×50 states. A set of four actions {RIGHT,
UP, DOWN, LEFT} is assigned to every state. The location of each state x on the grid
is determined by its coordinates cx = (hx, vx), where hx and vx are integers from 1 to 50.
There are 196 absorbing firewall states at the edges of the grid and one at the center of the
grid, i.e., cx = (25, 25). The reward of the central firewall state is −1, other firewall states is
defined as r(x, a) = −1/ ‖cx‖2 , ∀a ∈ A, and all the other states (non-absorbing states) is 0.
This means that both the top-left and central absorbing (firewall) states have the minimum
reward −1, and the remaining absorbing states have rewards that increase proportionally
to their distance to the state in the bottom-right corner. The transition probabilities are
defined in the following way: taking an action a at any non-absorbing state x results in a
one-step transition in the direction of a with probability 0.6, and a random move to a state
y 6= x with probability inversely proportional to their Euclidean distance 1/ ‖cx − cy‖2.

The optimal policy here is to survive as long as possible in the grid by avoiding the
absorbing firewall states at the center and edges of the grid. Note that since the costs of the
firewall states are different, the optimal policy would prefer the states near the bottom-right
corner of the grid in order to avoid high-cost absorbing states.

12

Speedy Q-Learning

4.1 Experimental Setup and Results

We now describe our experimental setting. The convergence behavior of SQL is compared
to two other algorithms: the Q-learning algorithm of Even-Dar and Mansour (2003) (QL)
and the model-based Q-value iteration (QVI) of Kearns and Singh (1999). QVI is a batch
RL algorithm that first estimates the model using the whole data set and then performs
value iteration on the learned model.

All the algorithms are evaluated in terms of ℓ∞-norm performance loss of the action-
value function ‖Q∗ −QT ‖ at time-step T . We choose this performance measure in order to
be consistent with the performance measure used in Section 3.2. The optimal action-value
function Q∗ is computed with high accuracy using value iteration. We consider QL with
polynomial learning step αk = 1/(k+ 1)ω where ω ∈ {0.51, 0.6, 0.8} and the linear learning
step αk = 1/(k+1). Note that ω needs to be larger than 0.5, otherwise QL may diverge (see
Even-Dar and Mansour, 2003, for the proof).

To have a fair comparison of the three algorithms, since each algorithm requires dif-
ferent number of computations per iteration, we fix the total computational budget of the
algorithms to the same value for each benchmark. The computation time is constrained to
30 seconds for the linear MDP and combination lock problems. For the grid world, which
has twice as many actions as the other benchmarks, the maximum running time is fixed
to 60 seconds. We also fix the total number of samples, per state-action, to 105 samples
for all problems and algorithms. Smaller number of samples leads to a dramatic decrease
in the quality of the solutions of all the three algorithms. Algorithms were implemented
as MEX files (in C++) and ran on a Intel core i5 processor with 8 GB of memory. CPU
time was computed using the system function times() that provides process-specific CPU
time. Randomization was implemented using gsl rng uniform() function of the GSL li-
brary, which is superior to the standard rand().12 Sampling time, which is the same for all
the algorithms, were not included in the CPU time. At the beginning of every run (i) the
action-value functions are randomly initialized in the interval [−Vmax, Vmax], and (ii) a new
set of samples is generated from P (·|x, a) for all (x, a) ∈ Z. The corresponding results are
computed after a small fixed amount of iterations. All the results are averaged over 50
different runs.

Figure 3 shows the performance-loss in terms of the elapsed CPU time for the three
problems and algorithms with the choice of β = 1000. We observe that SQL outperforms
QL and QVI in all the three problems. It achieves a reasonable performance very rapidly,
just in a few seconds. The minimum and maximum errors are attained for the combination
lock and grid world problems, respectively. We also observe that the difference between the
final outcome of SQL and QL (the second best method) is significant, about 30 times, in
all domains.

Figures 4 and 5 show the means and standard deviations of the final performance-loss
as a function of the horizon β. We observe that for large values of β, i.e. β ≥ 100, SQL
outperforms other methods by more than an order of magnitude in terms of both mean and
standard deviation of performance loss. SQL performs slightly worse than QVI for β ≤ 10.
However, the loss of QVI scales worse than SQL with β, e.g., for β = 1000, SQL has about

12. http://www.gnu.org/s/gsl.

13

Gheshlaghi Azar, Munos, Ghavamzadeh and Kappen

0 10 20 30
10

1

10
2

10
3

Linear

CPU time (sec)

L
o

s
s

0 10 20 30
10

1

10
2

10
3

Combination lock

CPU time (sec)
0 20 40 60

10
1

10
2

10
3

Grid world

CPU time (sec)

QL (ω=0.51)

QL (ω=0.60)

QL (ω=0.80)

QL (ω=1.00)

 QVI

 SQL

Figure 3: A comparison between SQL, QL, and QVI. Each plot compares the performance
loss of the policies induced by the algorithms at one of the three problems considered in
this section. All the results are averaged over 50 different runs.

two order of magnitude advantage over QVI. QL performs better for larger values of ω when
the horizon β is small, whereas for large values of β smaller ω’s are more preferable.

10
1

10
2

10
3

10
−4

10
−2

10
0

10
2

Linear

Lo
ss

 (
m

ea
n)

Horizon β
10

1
10

2
10

3
10

−4

10
−2

10
0

10
2

Combination lock

Horizon β
10

1
10

2
10

3
10

−4

10
−2

10
0

10
2

Grid world

Horizon β

QL (ω=0.51)
QL (ω=0.60)
QL (ω=0.80)
QL (ω=1.00)
SQL
QVI

Figure 4: A comparison between SQL, QL, and QVI given a fixed computational and
sampling budget. The plot shows the means of the final performance of the algorithms in
terms of the horizon β. All the results are averaged over 50 different runs.

14

Speedy Q-Learning

10
1

10
2

10
3

10
−4

10
−2

10
0

10
2

Linear

Horizon β

Lo
ss

 (
st

an
da

rd
 d

ev
ai

at
io

n)

10
1

10
2

10
3

10
−4

10
−2

10
0

10
2

Combination lock

Horizon β
10

1
10

2
10

3
10

−4

10
−2

10
0

10
2

Grid world

Horizon β

QL (ω=0.51)
QL (ω=0.60)
QL (ω=0.80)
QL (ω=1.00)
SQL
QVI

Figure 5: A comparison between SQL, QL, and QVI given a fixed computational and
sampling budget. The plot shows the the standard deviations of the final performance of
the algorithms in terms of the horizon β. All the results are averaged over 50 different runs.

These results are consistent with the performance bound of Theorem 2 and indicate that
the SQL algorithm manages to average out the simulation noise caused by sampling, and
converges rapidly to a near optimal solution, which is robust in comparison to the other
algorithms. Moreover, we may conclude that SQL significantly improves the computational
complexity of learning w.r.t. the standard QL and QVI in the three problems studied in
this section.

5. Analysis

In this section, we first give some intuition about the convergence of asynchronous variant
of SQL and provide the full proof of the finite-time analysis reported in Theorems 2 and 3.
We then prove Theorem 7, the RL lower bound, in Section 5.1. We start by introducing
some notation.

Let Yk be the set of all samples drawn at round k of the SQL algorithms and Fk be
the filtration generated by the sequence {Y0,Y1, . . . ,Yk}. Note that for all (x, a) ∈ Z, the
update rule of Equation 2 may be rewritten in the following more compact form:

Qk+1(x, a) = (1− αk)Qk(x, a) + αkDk[Qk, Qk−1](x, a),

where Dk[Qk, Qk−1](x, a) , 1
αk

[

(1 − αk)TkQk(x, a) − (1 − 2αk)TkQk−1(x, a)
]

and αk =
1/(k + 1). We now define the operator D[Qk, Qk−1] as the expected value of the empirical
operator Dk conditioned on the filtration Fk−1, i.e.,

D[Qk, Qk−1](x, a) , E(Dk[Qk, Qk−1](x, a)|Fk−1) =
1− αk

αk
TQk(x, a)−

1− 2αk

αk
TQk−1(x, a),

where the last equality follows from the fact that in both Algorithms 1 and 2, TkQk(x, a)
and TkQk−1(x, a) are unbiased empirical estimates of the Bellman optimality operators

15

Gheshlaghi Azar, Munos, Ghavamzadeh and Kappen

TQk(x, a) and TQk−1(x, a), respectively. Thus, the update rule of SQL can be rewritten as

Qk+1(x, a) = (1− αk)Qk(x, a) + αk

(

D[Qk, Qk−1](x, a)− ǫk(x, a)
)

, (5)

where the estimation error ǫk is defined as the difference between the operator D[Qk, Qk−1]
and its sample estimate Dk[Qk, Qk−1], i.e.,

ǫk(x, a) , D[Qk, Qk−1](x, a)−Dk[Qk, Qk−1](x, a), ∀(x, a) ∈ Z.

We have the property that E
[

ǫk(x, a)|Fk−1

]

= 0, which means that for all (x, a) ∈ Z,
the sequence of estimation errors

{

ǫ1(x, a), ǫ2(x, a), . . . , ǫk(x, a)
}

is a martingale difference
sequence w.r.t. the filtration Fk. Finally, we define the martingale Ek(x, a) to be the sum
of the estimation errors, i.e.,

Ek(x, a) ,
k
∑

j=0

ǫj(x, a), ∀(x, a) ∈ Z. (6)

The following steps lead to the proof of Theorems 2 and 3: (i) Lemma 9 shows the
stability of SQL, i.e., the sequence of Qk’s stays bounded in SQL. (ii) Lemma 10 states
the key property that each iterate Qk+1 in SQL is close to the Bellman operator applied
to the previous iterate Qk, i.e., TQk. More precisely, in this lemma we show that Qk+1

is equal to TQk plus an estimation error term of order Ek/k. (iii) Lemma 11 provides a
performance bound on ‖Q∗−Qk‖ in terms of a discounted sum of the cumulative estimation
errors {Ej}k−1

j=0 . Lemma 9 to 11 hold for both Algorithms 1 and 2. (iv) Given these results,
we prove Theorem 2 using a maximal Azuma’s inequality stated in Lemma 12. (v) Finally,
we extend this proof to asynchronous SQL, and prove Therorem 3, using the result of
Lemma 14.

For simplicity of the notation, we often remove the dependence on (x, a), e.g., writing
Q for Q(x, a) and Ek for Ek(x, a). Also note that for all k ≥ 0, the following relations hold
between αk and αk+1 in Algorithms 1 and 2:

αk+1 =
αk

αk + 1
and αk =

αk+1

1− αk+1
.

Lemma 9 (Stability of SQL) Let A1 hold and assume that the initial action-value func-
tion Q0 = Q−1 is uniformly bounded by Vmax = β, then we have

‖Qk‖ ≤ Vmax, ‖ǫk‖ ≤ Vmax, and ‖Dk[Qk, Qk−1]‖ ≤ Vmax ∀k ≥ 0.

Proof We first prove that ‖Dk[Qk, Qk−1]‖ ≤ Vmax by induction. For k = 0 we have

‖D0[Q0, Q−1]‖ = ‖T0Q−1‖ ≤ ‖r‖ + γ‖MQ−1‖ ≤ Rmax + γVmax = Vmax.

16

Speedy Q-Learning

Now let us assume that for any k ≥ 0, ‖Dk[Qk, Qk−1]‖ ≤ Vmax. Then we obtain

‖Dk+1[Qk+1, Qk]‖ =
∥

∥

∥

1−αk+1

αk+1
Tk+1Qk+1 − 1−2αk+1

αk+1
Tk+1Qk

∥

∥

∥

≤
∥

∥

∥

(

1−αk+1

αk+1
− 1−2αk+1

αk+1

)

r
∥

∥

∥
+ γ

∥

∥

∥

1−αk+1

αk+1
MQk+1 − 1−2αk+1

αk+1
MQk

∥

∥

∥

≤ ‖r‖ + γ
∥

∥

∥

1−αk+1

αk+1
M
(

(1− αk)Qk + αkDk[Qk, Qk−1]
)

− 1−2αk+1

αk+1
MQk

∥

∥

∥

= ‖r‖ + γ
∥

∥

∥
M

(

1−αk

αk
Qk +Dk[Qk, Qk−1]

)

− 1−αk

αk
MQk

∥

∥

∥

≤ ‖r‖ + γ
∥

∥

∥
M

(

1−αk

αk
Qk +Dk[Qk, Qk−1]− 1−αk

αk
Qk

)∥

∥

∥

≤ ‖r‖ + γ ‖Dk[Qk, Qk−1]‖ ≤ Rmax + γVmax = Vmax,

and thus by induction, we deduce that for all k ≥ 0, ‖Dk[Qk, Qk−1]‖ ≤ Vmax.
The bound on ǫk follows from ‖ǫk‖ = ‖E

(

Dk[Qk, Qk−1]|Fk−1

)

−Dk[Qk, Qk−1]‖ ≤ Vmax,

and the bound ‖Qk‖ ≤ Vmax is deduced by the fact that Qk = 1
k

∑ k−1
j=0Dj [Qj , Qj−1].

The next lemma shows that Qk is close to TQk−1, up to a O(1k) term minus the cumu-
lative estimation error 1

kEk−1.

Lemma 10 Under A1, for any k ≥ 1 we have

Qk = TQk−1 +
1

k
(TQ0 − TQk−1 − Ek−1) . (7)

Proof We prove this result by induction. The result holds for k = 1, where Equation 7
reduces to Equation 5. We now show that if Equation 7 holds for k ≥ 1 then it also holds
for k + 1. Assume that Equation 7 holds for k, then from Equation 5 we have

Qk+1 = (1− αk)Qk + αk

[

1− αk

αk
TQk −

1− 2αk

αk
TQk−1 − ǫk

]

= (1− αk)
[

TQk−1 + αk−1 (TQ0 − TQk−1 − Ek−1)
]

+ αk

[

1− αk

αk
TQk −

1− 2αk

αk
TQk−1 − ǫk

]

= (1− αk)

[

TQk−1 +
αk

1− αk
(TQ0 − TQk−1 − Ek−1)

]

+ (1− αk)TQk − (1− 2αk)TQk−1 − αkǫk

= (1− αk)TQk + αk (TQ0 − Ek−1 − ǫk) = TQk + αk (TQ0 − TQk − Ek)

= TQk +
1

k + 1
(TQ0 − TQk − Ek) .

Thus Equation 7 holds for k + 1, and as a result, holds for all k ≥ 1.

Now we bound the difference between Q∗ and Qk in terms of the discounted sum of the
cumulative estimation errors {E0, E1, . . . , Ek−1}.

17

Gheshlaghi Azar, Munos, Ghavamzadeh and Kappen

Lemma 11 (Error Propagation in SQL) Let A1 hold and assume that the initial action-
value function Q0 = Q−1 is uniformly bounded by Vmax = β, then for all k ≥ 1, we have

‖Q∗ −Qk‖ ≤ 1

k

γβ2 +
k
∑

j=1

γk−j ‖Ej−1‖

 (8)

≤ β

k

[

γβ + max
j=1:k

‖Ej−1‖
]

. (9)

Proof For any sequence of cumulative errors {E0, E1, . . . , Ek−1}, we have
∑k

j=1 γ
k−j ‖Ej−1‖ ≤

βmaxj=1:k ‖Ej−1‖. Thus, we only need to prove (8), and (9) will automatically follow. We
again prove this lemma by induction. The result holds for k = 1 since we have

‖Q∗ −Q1‖ = ‖TQ∗ − TQ0 − ǫ0‖ ≤ γ ‖Q∗ −Q0‖ + ‖ǫ0‖ ≤ 2γVmax + ‖ǫ0‖ ≤ γβ2 + ‖E0‖ .

Note that the first equality follows from Lemma 10. We now show that if the bound holds
for k, then it should also hold for k + 1. If (8) holds for k, then using Lemma 10 we have

∥

∥Q∗ −Qk+1

∥

∥ =

∥

∥

∥

∥

Q∗ − TQk −
1

k + 1
(TQ0 − TQk − Ek)

∥

∥

∥

∥

≤ ‖αk(TQ
∗ − TQ0) + (1− αk)(TQ

∗ − TQk)‖ + αk ‖Ek‖
≤ αk ‖TQ∗ − TQ0‖ + (1− αk) ‖TQ∗ − TQk‖ + αk ‖Ek‖
≤ γαkVmax + γ(1− αk) ‖Q∗ −Qk‖ + αk ‖Ek‖ .

Since we assumed that (8) holds for k, we may write

∥

∥Q∗ −Qk+1

∥

∥ ≤ αkγVmax + γ(1− αk)αk−1

γβ2 +
k
∑

j=1

γk−j ‖Ej−1‖

+ αk ‖Ek‖

= γβαk + γ2β2αk + γαk

k
∑

j=1

γk−j ‖Ej−1‖ + αk ‖Ek‖

=
1

k + 1

γβ2 +

k+1
∑

j=1

γk+1−j ‖Ej−1‖

 .

Thus, Equation 8 holds for k + 1, and as a result by induction, it holds for all k ≥ 1.

Before stating the next lemma, we report the maximal Azuma-Hoeffding’s inequality
(see e.g., Cesa-Bianchi and Lugosi 2006), which is used in the proof of this lemma.

Proposition 12 (Maximal Azuma-Hoeffding’s Inequality) Let V = {V1, V2, . . . , Vk}
be a martingale difference sequence w.r.t. a sequence of random variables {X1, X2, . . . , Xk},
i.e., E(Vj+1|X1, . . . , Xj) = 0 for all 0 < j ≤ k, such that V is uniformly bounded by L > 0.

If we define Sk =
∑k

i=1 Vi, then for any ǫ > 0, we have

P

(

max
j=1:k

Sj > ǫ

)

≤ exp

(−ǫ2

2kL2

)

.

18

Speedy Q-Learning

We now state Lemma 13 in which we prove a high probability bound on the estimation
error term in Lemma 11, i.e., maxj=1:k ‖Ej−1‖.

Lemma 13 Let A1 hold and assume that the initial action-value function Q0 = Q−1 is
uniformly bounded by Vmax = β. Then for all k ≥ 1, with probability at least 1− δ, we have

max
j=1:k

‖Ej−1‖ ≤ β

√

2k log
2n

δ
. (10)

Proof We begin by providing a high probability bound on max1≤j≤k |Ej−1(x, a)| for a
given state-action pair (x, a). Note that

P

(

max
j=1:k

|Ej−1(x, a)| > ǫ

)

= P

(

max

[

max
j=1:k

Ej−1(x, a) , max
j=1:k

(

− Ej−1(x, a)
)

]

> ǫ

)

= P

({

max
j=1:k

Ej−1(x, a) > ǫ

}

⋃

{

max
j=1:k

(

− Ej−1(x, a)
)

> ǫ

})

≤ P

(

max
j=1:k

Ej−1(x, a) > ǫ

)

+ P

(

max
j=1:k

(

− Ej−1(x, a)
)

> ǫ

)

,

(11)
We can now bound both terms in (11) using the maximal Azuma-Hoeffding’s inequal-
ity stated in Proposition 12. As mentioned earlier, the sequence of random variables
{

ǫ0(x, a), ǫ1(x, a), . . . , ǫk(x, a)
}

is martingale difference w.r.t. the filtration Fk generated
by random samples {y0, y1, . . . , yk}(x, a) for all (x, a), i.e., E[ǫk(x, a)|Fk−1] = 0. So, we have

P

(

max
j=1:k

Ej−1(x, a) > ǫ

)

≤ exp

(−ǫ2

2kV 2
max

)

,

P

(

max
j=1:k

(

− Ej−1(x, a)
)

> ǫ

)

≤ exp

(−ǫ2

2kV 2
max

)

.

(12)

Combining (12) with (11), we deduce

P

(

max
j=1:k

|Ej−1(x, a)| > ǫ

)

≤ 2 exp

(−ǫ2

2kV 2
max

)

,

and then by a union bound over the state-action space, we obtain

P

(

max
j=1:k

‖Ej−1‖ > ǫ

)

≤ 2n exp

(−ǫ2

2kV 2
max

)

. (13)

Equation 13 may be rewritten for any δ > 0 as

P

(

max
j=1:k

‖Ej−1‖ ≤ Vmax

√

2k log
2n

δ

)

≥ 1− δ,

which concludes the proof.

19

Gheshlaghi Azar, Munos, Ghavamzadeh and Kappen

Proof of Theorem 2 The result of the theorem follows by plugging Equation 10 into
Equation 9, and taking into account that if n(k−1) < T ≤ nk then Algorithm 1 stops after
k iterations and returns Qk.

For the proof of Theorem 3, we rely on the following lemma which bounds the number
of steps required to visit all state-action pairs k times with high probability.

Lemma 14 Under A2, from any initial state x0 and for any integer k > 0, after running
Algorithm 2 for T = ekL log 1

δ steps, the state-action space Z is covered at least k times
under the policy π with probability at least 1− δ.

Proof For any state x0 ∈ X and time t > 0, we define a random variable Qk as the number
of steps required to cover the MDP k times starting from x0 at time t. Using Markov
inequality (Feller, 1968), for any x0 and t, we can bound Qk with high probability as

P(Qk > ekL) ≤ E (Qk)

ekL
≤ k supt>0maxx∈X E

(

τπ(x, t)
)

ekL
≤ kL

ekL
=

1

e
.

This mean that after a run of length ekL, the probability that the entire state-action space
is not covered at least k times is less than 1

e . The fact that the bound holds for any initial
state and time implies that after m > 0 intervals of length ekL, the chance of not covering
the MDP k times is less than 1

em , i.e., P(Qk > mekL) ≤ 1
em . With the choice of m = log 1

δ ,
we obtain P(Qk > ekL log 1

δ) ≤ δ. The bound then can be rewritten as

P

(

Qk ≤ ekL log
1

δ

)

≥ 1− δ,

which concludes the proof.

Proof of Theorem 3 Plugging the results of Lemmas 14 and 13 into Equation 9 (each
holds with probability at least 1− δ′, with δ′ = δ/2) concludes the proof of the theorem.

5.1 Proof of Theorem 7 - The Lower Bound

In this section, we provide the proof of Theorem 7. In our analysis, we rely on the likelihood-
ratio method, which has been perviously used to prove a lower-bound for multi-armed
bandits (Mannor and Tsitsiklis, 2004), and extend this approach to RL and MDPs. We
also make use of some technical lemmas in Strehl et al. (2009).

Let us consider the class of MDPs M as the set of all MDPs with n = 3n1 ≥ 3 state-
action pairs in which the state-action space Z is made of three smaller sets Z0, Z1, and
Z2 each of size n1. For all M ∈ M, both Z1 and Z2 consist of only absorbing states (see
Section 4 for the definition of an absorbing state). For all M ∈ M, every state-action
pair zl0 ∈ Z0 is connected to only two other state-action pairs zl1 ∈ Z1 and zl2 ∈ Z2 with
probabilities pM (zl0) and 1 − pM (zl0), respectively. The instant reward r(z) is set to 1 for
every state-action pair in Z1 and 0 elsewhere. One may solve the Bellman equation for M
and compute its optimal action-value function Q∗ in closed-form as follows:

20

Speedy Q-Learning

Figure 6: The class of MDPs considered in the proof of Theorem 7. Nodes represent state-
action pairs and arrows show transitions between the nodes (see the text for details).

Q∗(z) =

γβpM (z) z ∈ Z0,

β z ∈ Z1,

0 z ∈ Z2.

We consider a set of n1 + 1 MDPs in M, M
∗ = {M0,M1, . . . ,Mn1} with transition

probabilities pM0(z
i
0) = 1/2, i = 1, . . . , n1, and for l = 1, . . . , n1, pMl

(zl0) = 1/2 + 2ǫ/γβ
and pMl

(zi0) = 1/2, i = 1, . . . , l − 1, l + 1, . . . , n1. Note that here we make the assumption
that

2ǫ

γβ
≤ 1

2
. (14)

For the MDPs in M
∗, we have

Q∗
M0

(z) =

γβ/2 z ∈ Z0,

β z ∈ Z1,

0 z ∈ Z2.

Q∗
Ml

(z) =

γβ/2 + 2ǫ z = zl0,

γβ/2 z ∈ Z0, z 6= zl0,

β z ∈ Z1,

0 z ∈ Z2.

We define ǫ0 = 1/8, δ0 = e−4/2, and γ0 = 0.41. From now on, we fix some ǫ ∈ (0, ǫ0),
δ ∈ (0, δ0), γ ∈ (γ0, 1), and an algorithm A ∈ A, which we assume to be (ǫ, δ, T ∗)-correct.
We denote by EMl

and PMl
the expectation and probability for MDP Ml. We now define

t∗ =
β2

cǫ2
log

1

2δ
,

where c is a constant whose value will be determined later. We denote by Tl the number
of times that the state-action pair zl0 is tried during the execution of the algorithm A. We

21

Gheshlaghi Azar, Munos, Ghavamzadeh and Kappen

assume that for l 6= 0, we have Tl ≤ t∗. We will show that under this assumption, the
algorithm A violates (ǫ, δ, T ∗)-correctness. This will then follow that we must have Tl > t∗

for l 6= 0. Without loss of generality we assume that the above condition holds for l = 1, so
we have T1 ≤ t∗. We define Kt = X1

1 + . . . +X1
t , where X1

i = 1 if after the i’th execution
of state-action pair z10 , the algorithm ends up in a state-action pair in Z1, and X1

i = 0 if it
ends up in a state-action pair in Z2. We let E1 be the event defined by

E1 =

{

max
1≤t≤t∗

|2Kt − t| <
√

t∗ log(
1

2δ
)

}

.

Similar to Lemma 2 in Mannor and Tsitsiklis (2004), we can show that PM0(E1) > 3/4, in
which we have used the fact that δ < e−4/2. We now define E2 as the event that13

∀T > T ∗,
γβ

2
− ǫ < QA

T (z
1
0) <

γβ

2
+ ǫ. (15)

Since under event E2, we have |Q∗
M0

(z10)−QA
T (z

1
0)| ≤ ǫ, we may write PM0(E2) ≥ (1− δ),

and since δ < e−4/2 then PM0(E2) ≥ 3/4. Let E be the event that E1 and E2 occur,
i.e., E = E1 ∩ E2. We then have PM0(E) > 1/2.

We now show that if T1 ≤ t∗ and c ≥ 100, then PM1(E2) > δ. Let W be the history of all
the outcomes of trying state-action pair z10 for T1 times. We define the likelihood function
LMl

(W) = PMl
(W = w) for every possible history w. Given the definition of the likelihood

function the likelihood ratio LM1(W)/LM0(W) may be written as

LM1(W)

LM0(W)
=

(12 + 2ǫ
γβ)

K1(12 − 2ǫ
γβ)

T1−K1

(12)
T1

= (1− 16ǫ2

γ2β2
)K1(1− 4ǫ

γβ
)T1−2K1 , (16)

where we used K1 as a shorthand notation for KT1 . We now proceed to lower-bound the
terms on the right hand side of Eq. 16 when event E occurs. Since K1 ≤ T1 ≤ t∗, we have

(1− 16ǫ2

γ2β2
)K1 ≥ (1− 16ǫ2

γ2β2
)t

∗

= (1− 16ǫ2

γ2β2
)

(

β2/(cǫ2)
)

log(1/2δ)

(a)

≥ e−
(

(16d)/(cγ2)
)

log(1/2δ) = (2δ)(16d)/(cγ
2), (17)

where in (a) we used Lemma 3 in Mannor and Tsitsiklis (2004), and thus, d = 1.78 and we
should assume that

16ǫ2

γ2β2
≤ 1√

2
. (18)

Similarly, if event E has occurred, then event E1 has occurred, which implies

T1 − 2K1 ≤
√

t∗ log(
1

2δ
) =

β log(1
2δ)

ǫ
√
c

.

13. Note that here the scenario is that the algorithm A has been executed for the total number of steps
T > T ∗, while the total number of times that the state-action pair z10 has been executed is T1 ≤ t∗.

22

Speedy Q-Learning

Therefore, we have

(1− 4ǫ

γβ
)T1−2K1 ≥ (1− 4ǫ

γβ
)

(

β/(ǫ
√
c)
)

log(1/2δ)
(b)

≥ e−
(

(4d)/(γ
√
c)
)

log(1/2δ) = (2δ)(4d)/(
√
cγ), (19)

where in (b) we assumed that

4ǫ

γβ
≤ 1√

2
. (20)

Note that the assumption in Eq. 20 implies the other two assumptions in Eqs. 14 and 18.
Thus, we only need to guarantee that the assumption of Eq. 20 holds (selected ǫ0 = 1/8
and γ0 = 0.41 guarantee that). Now substituting Eqs. 17 and 19 in Eq. 16, we obtain

LM1(W)

LM0(W)
≥ (2δ)

(

(16d)/(cγ2)
)

+
(

(4d)/(
√
cγ)
)

.

By selecting the constant c large enough (cγ2 = 100 suffices), we obtain that LM1(W)/LM0(W)
is larger than 2δ, whenever event E occurs. So, we may write

LM1(W)

LM0(W)
1E ≥ 2δ1E,

where 1E is the indicator function of event E. Then, we have

PM1(E2) ≥ PM1(E) = EM1 [1E] = EM0

[

LM1(W)

LM0(W)
1E

]

≥ EM0 [2δ1E] = 2δPM0(E) > δ,

where we used the fact that PM0(E) > 1/2. Since the event E2, i.e., ∀T > T ∗, γβ
2 −

ǫ < QA
T (z

1
0) < γβ

2 + ǫ implies that ∀T > T ∗, |Q∗
M1

(z10) − QA
T (z

1
0)| > ǫ, the fact that

PM1(E2) > δ implies that if T1 ≤ t∗ then PM1

(

{∀T > T ∗, |Q∗
M1

(z10)−QA
T (z

1
0)| ≤ ǫ}

)

< 1− δ
which contradicts the assumption that the algorithm A is (ǫ, δ, T ∗) correct. Therefore, the
algorithm A is (ǫ, δ, T ∗) correct if T1 > t∗. By repeating this process for l = 1, . . . , n1, we
obtain

if PMl

(

{∀T > T ∗, |Q∗
Ml

(zl0)−QA
T (z

l
0)| ≤ ǫ}

)

≥ 1− δ, then Tl > t∗ l = 1, . . . , n1.

The result then follows by summing up Tl’s for all state-action pairs zl0 ∈ Z0.

6. Conclusions and Future Work

In this paper, we presented a new reinforcement learning (RL) algorithm, called speedy
Q-learning (SQL). We analyzed the finite-time behavior of this algorithm as well as its
asymptotic convergence to the optimal action-value function. Our results are in the form of
high probability bounds on the performance loss of SQL, which suggest that the algorithm
converges to the optimal action-value function in a faster rate than the standard Q-learning.
The numerical experiments in Section 4 confirm our theoretical results showing that for large

23

Gheshlaghi Azar, Munos, Ghavamzadeh and Kappen

value of β = 1/(1−γ), SQL outperforms the standard Q-learning by a wide margin. Overall,
SQL is a simple, efficient, and theoretically well-founded RL algorithm that improves on
the existing similar methods such as Q-learning and sample-based value iteration.

In this work, we are only interested in the estimation of the optimal action-value function
and not the problem of exploration. Therefore, we did not compare our results to PAC-
MDP methods (Strehl et al., 2009; Szita and Szepesvári, 2010) and upper-confidence bound
based algorithms (Bartlett and Tewari, 2009; Jaksch et al., 2010), in which the choice of
the exploration policy has an influence on the behavior of the learning algorithm. However,
we believe that it would be possible to gain w.r.t. the state of the art in PAC-MDPs by
combining the asynchronous version of SQL with a smart exploration strategy. This is
mainly due to the fact that the bound for SQL has been proved to be tighter than the RL
algorithms used for estimating the value function in PAC-MDP methods (especially in the
model-free case). Also, SQL has a better computational requirement in comparison to the
standard RL methods. We leave this as a subject for future work.

Another possible direction for future work is to scale up SQL to large, possibly contin-
uous, state and action spaces, where function approximation is needed. We believe that
it would be possible to extend the current SQL analysis to the continuous case along the
same line as in the fitted value iteration analysis by Antos et al. (2007) and Munos and
Szepesvári (2008).

References

A. Antos, R. Munos, and Cs. Szepesvári. Fitted Q-iteration in continuous action-space
MDPs. In Proceedings of the 21st Annual Conference on Neural Information Processing
Systems, 2007.

P. L. Bartlett and A. Tewari. REGAL: A regularization based algorithm for reinforcement
learning in weakly communicating MDPs. In Proceedings of the 25th Conference on
Uncertainty in Artificial Intelligence, 2009.

R. Bellman. Dynamic Programming. Princeton Univ. Press, 1957.

D. P. Bertsekas. Dynamic Programming and Optimal Control, volume I. Athena Scientific,
Belmount, Massachusetts, third edition, 2007a.

D. P. Bertsekas. Dynamic Programming and Optimal Control, volume II. Athena Scientific,
Belmount, Massachusetts, third edition, 2007b.

D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena Scientific,
Belmont, Massachusetts, 1996.

N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cambridge University
Press, New York, NY, USA, 2006.

E. Even-Dar and Y. Mansour. Learning rates for Q-learning. Journal of Machine Learning
Research, 5:1–25, 2003.

24

Speedy Q-Learning

E. Even-Dar, S. Mannor, and Y. Mansour. PAC bounds for multi-armed bandit and Markov
decision processes. In 15th Annual Conference on Computational Learning Theory, pages
255–270, 2002.

W. Feller. An Introduction to Probability Theory and Its Applications, volume 1. Wiley,
January 1968.

T. Jaksch, R. Ortner, and P. Auer. Near-optimal regret bounds for reinforcement learning.
Journal of Machine Learning Research, 11:1563–1600, 2010.

S. M. Kakade. On the Sample Complexity of Reinforcement Learning. PhD thesis, Gatsby
Computational Neuroscience Unit, 2004.

M. Kearns and S. Singh. Finite-sample convergence rates for Q-learning and indirect algo-
rithms. In Advances in Neural Information Processing Systems 12, pages 996–1002. MIT
Press, 1999.

S. Koenig and R. G. Simmons. Complexity analysis of real-time reinforcement learning. In
Proceedings of the Eleventh National Conference on Artificial Intelligence. AAAI Press,
1993.

S. Mannor and J. N. Tsitsiklis. The sample complexity of exploration in the multi-armed
bandit problem. Journal of Machine Learning Research, 5:623–648, 2004.

R. Munos and Cs. Szepesvári. Finite-time bounds for fitted value iteration. Journal of
Machine Learning Research, 9:815–857, 2008.

J. Peng and R. J. Williams. Incremental multi-step Q-learning. Machine Learning, 22(1-3):
283–290, 1996.

M. L. Puterman. Markov Decision Processes, Discrete Stochastic Dynamic Programming.
A Wiley-Interscience Publication, 1994.

A. L. Strehl, L. Li, and M. L. Littman. Reinforcement learning in finite MDPs: PAC
analysis. Journal of Machine Learning Research, 10:2413–2444, 2009.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press,
Cambridge, Massachusetts, 1998.

Cs. Szepesvári. The asymptotic convergence-rate of Q-learning. In Advances in Neural
Information Processing Systems 10, Denver, Colorado, USA, 1997, 1997.

Cs. Szepesvári. Algorithms for Reinforcement Learning. Synthesis Lectures on Artificial
Intelligence and Machine Learning. Morgan & Claypool Publishers, 2010.

I. Szita and Cs. Szepesvári. Model-based reinforcement learning with nearly tight explo-
ration complexity bounds. In Proceedings of the 27th International Conference on Ma-
chine Learning, pages 1031–1038. Omnipress, 2010.

H. van Hasselt. Double Q-learning. In Advances in Neural Information Processing Systems
23, pages 2613–2621, 2010.

25

Gheshlaghi Azar, Munos, Ghavamzadeh and Kappen

C.J.C.H. Watkins. Learning from Delayed Rewards. PhD thesis, Kings College, Cambridge,
England, 1989.

26

