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RENORMALIZABILITY CONDITIONS FOR
ALMOST COMMUTATIVE MANIFOLDS

WALTER D. VAN SUIJLEKOM

Abstract. We formulate conditions under which the asymptotically expanded spectral
action on an almost commutative manifold is renormalizable as a higher-derivative gauge
theory. These conditions are of graph theoretical nature, involving the Krajewski diagrams
that classify such manifolds. This generalizes our previous result on (super)renormalizability
of the asymptotically expanded Yang–Mills spectral action to a more general class of particle
physics models that can be described geometrically in terms of a noncommutative space. In
particular, it shows that the asymptotically expanded spectral action which at lowest order
gives the Standard Model of elementary particles is renormalizable.

1. Introduction

Over the past few years it has turned out that many particle physics models can be
described geometrically by modifying the internal structure of spacetime, making it slightly
noncommutative. Indeed, there are so-called almost commutative manifolds that allow for a
geometrical derivation of Yang–Mills theory [6, 1], or even the full Standard Model, including
Higgs potential and neutrino mass terms [7, 9, 19]. Theories that go beyond the Standard
Model were described in [27, 28, 26, 20]. Also supersymmetric models such as N = 1 super-
Yang–Mills theory and supersymmetric QCD have been derived geometrically [3, 4].

The basic idea in all these examples is that one describes an almost commutative mani-
fold by spectral data, and then applies a general spectral action principle to derive physical
Lagrangians. This paper continues on some of our recent results on renormalizability of the
asymptotically expanded spectral action considered as higher-derivative theories: in [30, 29]
we have shown that the Yang–Mills model is superrenormalizable as a gauge theory by ob-
serving that the asymptotically expanded spectral action contains natural higher-derivative
regulators. We stress the importance of taking an asymptotic expansion, as it allows for a
derivation of local Lagrangians, in contrast to eg. [18]. There, the full spectral action was
considered as a non-local field theory, behaving completely differently for large momenta.

In the present paper, we will formulate conditions for almost commutative manifolds
that render the (asymptotically expanded) spectral action renormalizable as a gauge theory;
even superrenormalizable in special cases. We show that these conditions apply to the
aforementioned physical models. A convenient way to express our conditions is in terms of
cycles in Krajewski diagrams [21] for the finite noncommutative geometries.

As we proceed, we note that the asymptotically expanded spectral action considered as a
higher-derivative gauge theory is not multiplicatively renormalizable. This is in concordance
with the interpretation of the spectral action as defining a physical theory at one particular
mass scale, as already proposed in [5, 6]. For the Standard Model this mass scale is the GUT
scale.
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This paper is organized as follows. In Section 2 we recall some basic definitions from
noncommutative geometry, specializing to almost noncommutative manifolds of the form
M × F : a product of an ordinary Riemannian manifold M with a finite noncommutative
space F . We recall Krajewski’s diagrammatic classification and formulate a notion of R-
connectedness; it will be related to renormalizability later on. We derive the gauge and
scalar fields as a consequence of the noncommutative structure of M ×F . Essentially, these
are coefficients for a twisted Dirac operator D.

In Section 3 we define the spectral action for M × F as

Tr f(D/Λ)

for some positive function f and a cutoff parameter Λ. This is considered as an action
functional in the gauge and scalar fields. We derive the lowest-order terms in an asymptotic
expansion as Λ→∞, as well as the terms at any order in Λ but quadratic in the fields.

In Section 4 we introduce a gauge fixing for almost commutative manifolds, much inspired
by ’t Hooft’s Rξ-gauge fixing for models with spontaneous symmetry breaking. This allows in
Section 5 for a power-counting argument to show that the asymptotically expanded spectral
action on M×F is (super)renormalizable. Using results from the relevant BRST-cohomology,
this is then completed to show renormalizability as a gauge theory, provided the Krajewski
diagram for the finite space F satisfies a certain graph-theoretical property, namely, the
aforementioned R-connectedness. In particular, this applies to the asymptotically expanded
spectral action that at lowest order is the Standard Model of elementary particles.
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2. Almost commutative manifolds

The object of study in this paper is the spectral action [5] for almost commutative man-
ifolds. As a motivating example, let us start with a description of ordinary, commutative
manifolds in terms of purely spectral data. Suppose M is a compact Riemannian spin man-
ifold, with a spinor bundle S. Then the Hilbert space L2(M,S) of its square-integrable
sections sets the stage for such a spectral description. The Dirac operator DM = iγµ ◦ ∇Sµ
associated to the metric via the Levi–Civita connection ∇S lifted to the spinor bundle de-
fines a self-adjoint operator on L2(M,S). Ellipticity of DM as a differential operator and
compactness of M imply that the resolvents of DM are compact operators. Finally, the Dirac
operator is compatible with the action of the coordinate functions: the action of functions
f ∈ C∞(M) on L2(M,S) by pointwise multiplication has bounded commutators [DM , f ].

If the manifold M is of even dimension m, there is a grading (chirality) γM , making DM

an odd operator. Finally, spin-manifolds are selected out of spinc-manifolds by the charge
conjugation operator: it is an anti-linear operator JM : L2(M,S)→ L2(M,S).

This canonical ‘triple’ (C∞(M), L2(M,S), DM ; γM , JM) motivates the following abstract
definition of a spectral triple [8].
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Definition 1. A spectral triple (A,H, D) is given by an unital ∗- algebra A represented
faithfully as operators in a Hilbert spaceH and a self-adjoint operator D such that (1+D2)−1/2

is a compact operator and [D, a] bounded for a ∈ A.

A spectral triple is even if the Hilbert space H is endowed with a Z/2Z-grading γ such that
[γ, a] = 0 and {γ,D} = 0.

A real structure of KO-dimension n ∈ Z/8Z on a spectral triple is an antilinear isometry
J : H → H such that

J2 = ε, JD = ε′DJ, Jγ = ε′′γJ (even case).

The numbers ε, ε′, ε′′ ∈ {−1, 1} are a function of n mod 8:

n 0 1 2 3 4 5 6 7

ε 1 1 −1 −1 −1 −1 1 1
ε′ 1 −1 1 1 1 −1 1 1
ε′′ 1 −1 1 −1

Moreover, with b0 = Jb∗J−1 we impose that

[a, b0] = 0, [[D, a], b0] = 0, ∀ a, b ∈ A,

A spectral triple with a real structure is called a real spectral triple.

Thus, the real structure gives H the structure of an A-bimodule. In other words, the
algebra A⊗A◦ acts on H, where A◦ is the opposite algebra to A.

Definition 2. Let (A,H, D) be a spectral triple. The A-bimodule of Connes’ differential
one-forms is given by

Ω1
D(A) :=

{∑
k

ak[D, bk] : ak, bk ∈ A

}
In the case of the canonical triple, Clifford multiplication establishes an isomorphism (cf.

[8, 22])

Ω1(M) ' Ω1
DM

(C∞(M)).

Besides the canonical triple for a Riemannian spin manifold M , there is the following class
of simple examples.

Definition 3. A finite real spectral triple is a spectral triple for which the Hilbert space is
finite dimensional. We will write such a spectral triple suggestively,

F := (AF , HF , DF ; γF , JF )

Example 4. The algebra Mn(C) of complex n × n matrices acts on itself by left and right
matrix multiplication; this gives rise to a finite real spectral triple

(AF = Mn(C), HF = Mn(C), DF = 0; JF = (·)∗).

This example is closely related to Yang–Mills theories (cf. [5, 6])
3



Example 5. The noncommutative description of the Standard Model is based on the real
algebra

AF = C⊕H⊕M3(C).

It is represented on C96, where 96 is 2 (particles and anti-particles) times 3 (families) times
4 leptons plus 4 quarks with 3 colors each. Finally, there is a 96× 96 matrix DF , a grading
γF and real structure JF , which are explicitly described in [7, 9]; they constitute a real spectral
triple of KO-dimension 6.

We will be interested in a combination of Riemannian spin manifolds and such finite
triples.

Definition 6. An almost commutative manifold (AC manifold) is given by the tensor product
of the canonical triple and a finite spectral triple:

M × F := (C∞(M)⊗ AF , L2(M,S)⊗HF , DM ⊗ 1 + γ5 ⊗DF )

The picture one should have in mind is that of Kaluza–Klein theories, where the spacetime
manifold was extended by an extra dimension. In the present case, this extra dimension is
a finite noncommutative space.

2.1. Classification of finite spectral triples. We follow the work of Krajewski [21] where
a diagrammatic way was introduced to classify finite real spectral triples, given by quintuples
(AF , HF , DF ; γF , JF ). We formulate these diagrams in slightly different terms. Recall that
if M is an AF -bimodule, the contragredient AF -bimodule M◦ is defined by

M◦ = {m : m ∈M}

with action m 7→ amb = b∗ma∗ for all a, b ∈ AF ,m ∈ M . In particular, if M is a left
AF -module, M◦ is a right AF -module.

The structure of AF can be determined explicitly from Wedderburn’s Theorem:

(1) AF '
N⊕
i=1

Mki(Fi).

for some k1, . . . , kN and Fi = R,C or H depending on i.
In the following, we will denote by Γ(0) and Γ(1) the vertex and edges sets of an oriented

graph Γ with source and target maps s, t : Γ(1) → Γ(0). Also, we indicate by (v1v2) an edge
between vertices v1 and v2.

Definition 7. Given a finite-dimensional algebra AF =
⊕

iMki(Fi), a Krajewski diagram
for AF of KO-dimension n is an oriented decorated graph Γ with the following properties

(1) Edges between two vertices come in pairs with opposite orientation: if e = (v1v2) is
an edge, then there also exists an edge e = (v2v1) and these come in pairs.

(2) Each vertex v is decorated by an irreducible AF -bimodule Mv together with a choice
of basis, i.e. Mv = Cnv ⊗ Cmv◦ for some nv,mv ∈ {k1, . . . , kN}.

(3) Each edge e is decorated by a (non-zero) first-order operator De : Ms(e) →Mt(e), i.e.
such that

De(amb) = aDe(mb) +De(am)b− aDe(m)b; (a, b ∈ AF ,m ∈Mv),

and De = D∗e .
4



(4) There is an involutive graph automorphism j : Γ → Γ such that nj(v) = mv for all

v ∈ Γ(0). In other words, Mj(v) = M◦
v . If Jv : Mv → M◦

v is the anti-linear map
that assigns to a bimodule its contragredient bimodule,1 we demand that for an edge
e = (v1v2):

Dj(e) = ε′Jj(v2)DeJ
−1
j(v1)

In the even case, there is an additional labeling on the vertices by signs ±1 and the edges
connect only vertices of opposite signs. Moreover, if v has sign ±1, then j(v) has sign ±ε′′.

Usually, one depicts a Krajewski diagram as embedded in the plane, with the columns and
rows labeled by the integers ki that appear in the decomposition (1) of AF . One places a
node at (nv,mv) for each vertex in Γ with Mv = Cnv⊗Cmv◦. The pairs (e, e) of oriented edges
in Γ are indicated by a single line in the planar diagram, which by (3) run only horizontally or
vertically. The graph automorphism j translates as a reflectional symmetry of the diagram
along the diagonal (with the labeling ±1 mapped to ±ε′′).

· · · ki · · · kj · · ·
...

k◦i

...

k◦j

...

��	�
�� ��	�
��

��	�
��

Figure 1. The lines between two nodes represent a non-zero De : Cns(e) ⊗
Cm◦

s(e) → Cnt(e) ⊗ Cm◦
t(e) , as well as its adjoint De : Cnt(e) ⊗ Cm◦

t(e) → Cns(e) ⊗
Cm◦

s(e) . The non-zero components Dj(e) and Dj(e) are related to ±De and ε′De.

Given a Krajewski diagram Γ = (Γ(0),Γ(1)) for AF , we construct a finite spectral triple for
the algebra AF as follows. We define

HF =
⊕
v∈Γ(0)

Mv =
⊕
v∈Γ(0)

Cnv ⊗ Cmv◦

on which AF acts on the left. The real structure JF is the sum of operators

Jv : Mv →Mj(v).

The Dirac operator DF is the sum of the operators

De : Ms(e) →Mt(e).

This defines a symmetric linear operator because De = D∗e . Finally, in the even case the
signs on Mv give rise to a grading γF on HF for which DF is odd and the left action of AF
on HF is even, and such that γFJF = ε′′JFγF .

1Actually, this is slightly more subtle in the case of KO-dimension 2,3,4, or 5; in that case, one needs two
vertices v1, v2 and one has two maps Jv1 : Mv1 →Mj(v2) and Jv2 : Mv2 →Mj(v1) that satisfy Jj(v2)◦Jv1 = −1.
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Example 8. The Krajewski diagram for the Standard Model is depicted in Figure 2. It
indicates the precise structure of HF = C96 as a representation space of AF = C ⊕ H ⊕
M3(C). The double appearance of the row and column 1 accounts for the multiplicities of the
corresponding representations in HF . The nonempty blocks in the matrix DF are indicated
by the dotted and straight lines, reflection along the diagonal gives JF , and γF is of opposite
sign when reflected along the diagonal (KO-dimension 6).

1 2 1 1 3

1◦

2◦

1◦

1
◦

3◦

��	�
�� ��	�
�� ��	�
��

��	�
�� ��	�
�� ��	�
��

��	�
��

��	�
��

��	�
��

��	�
��

��	�
��

��	�
��

�
�

�
�

�
�

�
�

�
�

�
�

Figure 2. The Krajewski diagram of the Standard Model

Krajewski has shown in [21] that there is a one-to-one correspondence between such di-
agrams and finite real spectral triples modulo unitary equivalence (related to the choice of
basis on Mv). We recall from loc. cit. a useful result for the Dirac operator.

Lemma 9 ([21]). Let (AF , HF , DF ; γF , JF ) be a finite real spectral triple. There is a decom-
position DF = D0 + ∆ + JF∆J−1

F where D0 commutes with the action of AF ⊗ A◦F and ∆
commutes with the action of A◦F . Moreover,

(2) ∆ = −
∫
U(AF )

g[∆, g∗]dµ(g).

where dµ is the Haar measure on the Lie group U(AF ) consisting of unitaries in AF .

Proof. If Γ is the Krajewski diagram corresponding to (AF , HF , DF ; γF , JF ) then we can
decompose D =

∑
eDe with each De : Ms(e) →Mt(e). As before, write Mv = Cnv ⊗Cmv◦ for

all v. We denote by D0 the sum of such operators for which ns(e) = nt(e) and ms(e) = mt(e).
If this is not the case, then since any first-order operator such as De splits into left AF -
linear and right AF -linear components we have that either ns(e) = nt(e) or ms(e) = mt(e),
respectively. It is clear that DF − D0 is the sum of these, so we define the right AF -linear
(or left A◦F -linear) operator

∆ =
∑

e:ms(e)=mt(e)

De

6



Then JF∆J−1
F gives the remaining sum over all edges e for which ns(e) = nt(e), showing

DF = D0 + ∆ + JF∆J−1
F .

For the integral formula (2), we compute the matrix coefficients of the difference between
the left and the right-hand side in Eq. (2) in terms of a basis of the Hilbert space HF . We
decompose

HF =
⊕
v

Mv =
⊕
v

Cnv ⊗ Cmv◦; (α = 1, . . . , nv, β = 1, . . .mv)

and write {eαβv } for the corresponding basis. Then,〈
eα1β1
v1

,

∫
U(AF )

g∆g∗dµ(g)eα2β2
v2

〉
=

∫
U(AF )

〈
eα1β1
v1

, geα
′
1β
′
1

w1

〉
∆
α′1α

′
2

(w2w1)δ
β′1β
′
2

〈
eα
′
2β
′
2

w2
, g∗eα2β2

v2

〉
dµ(g)

where we sum over all repeated indices and where ∆
α′1α

′
2

(w2w1)δ
β′1β
′
2 are the matrix coefficients of

(the right AF -linear) ∆(w2w1) : Mw2 →Mw1 . Next,〈
eα1β1
v1

, geα
′
1β
′
1

w1

〉
= δv1,w1g

α1α′1
v1

δβ1β
′
1

in terms of the defining matrix coefficients g
α1α′1
v1 of g ∈ U(AF ) in the representation Cnv1 .

Note that this is a representation of U(AF ), since U(AF ) '
∏

i U(ki,Fi). This turns the
above integral into

∆
α′1α

′
2

(v2v1)δ
β1β2

∫
U(AF )

gα1α′1
v1

g
α2α′2
v2 dµ(g) = ∆α1α2

(v2v1)δ
β1β2δv1,v2

by the Peter–Weyl Theorem. However, ∆(v2v1) maps between different irreducible represen-
tations of U(AF ) which implies the vanishing of the above expression and completes the
proof. �

We will now formulate a condition on Krajewski diagrams that below will turn out to
characterize renormalizable models. Let Γ be a Krajewski diagram for AF . We construct

a graph Γ̃ whose vertex set Γ̃(0) is the set of inequivalent irreducible representations of AF ,

or, of the Lie group U(AF ). In other words, Γ̃(0) is the set {k1, . . . , kN} appearing in the

decomposition (1). The set of edges for Γ̃ is defined as

Γ̃(1) := {(n, n′) : ∃e ∈ Γ(1) such that ns(e) = n and nt(e) = n′}

There is a map of graphs ψ : Γ → Γ̃ defined as follows. For a vertex v ∈ Γ(0) we set

ψ(v) = nv ∈ Γ̃(0); for an edge e ∈ Γ(1) we set

ψ(e) = (ns(e), nt(e))

Essentially, the graph Γ̃ is the projection of the Krajewski diagram Γ onto the horizontal

axis. By symmetry, Γ̃ is also the projection of Γ onto the vertical axis; this corresponds to
pre-composing ψ with the graph automorphism j : Γ→ Γ.

Adopting the usual terminology from graph theory, we will refer to an edge with the same
source and target vertex as a loop; a cycle is a path which begins and starts at the same
vertex, but with no other repeated vertices (i.e. it does not contain loops).

7



Definition 10. In the above notation, a lift along ψ of a cycle γ = ẽ1 · · · ẽm of length m

in Γ̃ is a cycle e1 · · · el of length l ≥ m such that the path ψ(e1) · · ·ψ(el) coincides with γ̃
modulo loops.

Figure 3 illustrates such a ‘horizontal lift’ of graphs; similarly, we can define a vertical lift
by using the map ψ ◦ j.

��	�
�� ��	�
��

��	�
�� ��	�
��

//

oo

OO

��

 
ψ

��	�
�� ��	�
��%%ee

Figure 3. The cycle in Γ at the left-hand side is a lift along ψ of the cycle

in Γ̃ at the right-hand side (we have suppressed the loops at the two vertices).

Definition 11. We say that a Krajewski diagram Γ is R-connected in dimension m if

(1) every cycle γ̃ in Γ̃ of length less than m can be lifted along ψ to a cycle γ in Γ,
(2) every two cycles γ̃1, γ̃2 of total length less than m, which are not connected to a

common vertex 1 or 1 in Γ̃, can be lifted to a single cycle γ in Γ along ψ and ψ ◦ j,
respectively, i.e.

ψ(γ) ∼ γ̃1; ψ(j(γ)) ∼ γ̃2

where ∼ denotes equivalence of cycles in Γ̃ modulo loops.
(3) For r ≥ 3, there are no tuples γ̃1, . . . γ̃r of cycles of total length m, which are not

mutually connected to a common 1 or 1.

Note that the last condition is trivially satisfied in the case m ≤ 4, since every cycle has
length at least 2. The case m = 4 happens to be our case of interest.

Proposition 12. The Krajewski diagram of the Standard Model (Figure 2) is R-connected
in dimension 4.

Proof. Indeed, the graph Γ̃ is given by

2 1 1 3

��	�
�� ��	�
�� ��	�
�� ��	�
��
where we have suppressed the loops. Every cycle and every pair of distinguished cycles in Γ̃
of total length 4 can be lifted to a single cycle γ in the Krajewski diagram of Figure 2. The
pair consisting of two copies of the cycle (12)(21) (going back-and-forth between 1 and 2)
have a common vertex 1. For this reason, they do not enter in Condition (2) (which, in fact,
they would not satisfy). The concatenated cycle (12)(21)(12)(21) (going back-and-forth
twice between 1 and 2) is of length 4, and was already treated (cf. Condition (1)). A similar
argument applies to the cycle (12)(21). �

Example 13. Let us give an example of a Krajewski diagram which is not R-connected (in
dimension 4). Consider

8



1 2 1 3

1◦

2◦

1
◦

3◦

��	�
�� ��	�
�� ��	�
�� ��	�
��

��	�
��

��	�
��

��	�
��

 Γ̃ = 1 2 1 3

��	�
�� ��	�
�� ��	�
�� ��	�
��

Indeed, the pair of cycles {(12)(21), (13)(31)} obtained by going back and forth along the

left and right edge in Γ̃ does not lift to a cycle in Γ.

2.2. Gauge fields from AC manifolds. Let us now describe how noncommutative man-
ifolds naturally give rise to a gauge theory (cf. [9, Section 10.8]). For simplicity, we will
restrict to almost commutative manifolds, so that (A,H, D) will always denote M × F , i.e.

(A,H, D) = (C∞(M,AF ), L2(M,S)⊗HF , DM ⊗ 1 + γM ⊗DF ).

for some finite spectral triple F = (AF , HF , DF ; γF , JF ).

Definition 14. Denote by U(A) the group of unitaries of A. The gauge group of M ×F is
given by

SU(A) = {u ∈ U(A) : detFu = 1}
where the determinant is taken pointwise in the representation HF .

The group SU(A) acts naturally on the Dirac operator D by conjugation, as well as on
the representation of A on H: a 7→ uau∗. If there is a real structure, then we transform

D 7→ UDU∗,

with U = uu∗◦ ≡ uJuJ−1. This suggests that we should rather take the image of SU(A)
under the map u 7→ uu∗◦. Indeed, in [14] the gauge group was defined in this way, leading
to a quotient of SU(A) by an abelian group. Since in most of our examples the latter group
will be finite, it will be ignored in what follows.

Proposition 15. Let M × F be an almost commutative manifold as above and write

AF =
N⊕
i=1

Mki(Fi); (Fi = R,C or H).

(1) The gauge group of M × F is given by SU(A) = C∞(M,SU(AF )).
(2) The Lie algebra su(AF ) of SU(AF ) is isomorphic to

su(A) '
N⊕
i=1

su(ki)⊕ u(1)⊕(C−1)

9



where C is the number of complex algebras in the above decomposition of AF and
su(ki) denotes o(ki), su(ki) or sp(ki) depending on whether Fi = R,C or H, respec-
tively.

Consequently, there is a one-to-one correspondence between irreducible representations of the
algebra AF and of the Lie algebra su(AF ) provided AF contains no copies of R, and either
no complex subalgebras, or at least one non-trivial (i.e. not C) complex subalgebra.

Proof. (1) is direct. (2). Note that u(A) is a direct sum of simple Lie algebras o(ki), u(ki)
and sp(ki) according to Fi = R,C,H, respectively. All these matrix Lie algebras have a
trace, and we observe that the matrices in o(ki) and sp(ki) are already traceless. For the
complex case, we can write Xi ∈ u(ki) as Xi = Yi + zi where zi = TrXi, showing that:

u(ki) = su(ki)⊕ u(1).

The determinant condition in the definition of SU(A) translates at the infinitesimal level to
the unimodularity condition TrHF

X = 0. Explicitly, this becomes∑
i

αi Tr(Xi) = 0

where αi are the multiplicities of the fundamental representations of Mki(Fi) appearing in
HF . Using the above property for the traces on simple matrix Lie algebras, we find that
unimodularity is equivalent to

C∑
l=1

αilzil = 0

where the sum is over the complex factors (i.e. for which Fi = C) in A, labeled by i1, . . . , iC .
This reduces the C abelian factors to C − 1 copies of u(1). �

Example 16. For the Standard Model spectral triple of Example 5 (cf. Example 8) this gives
su(AF ) = su(3)⊕ su(2)⊕ u(1), as desired ([7, Proposition 2.16] or [9, Proposition 1.185]).

Now that we have found the gauge group of an almost commutative manifold, let us
determine the gauge fields that M × F naturally gives rise to through the differential one-
forms.

Proposition 17. The differential one-forms Ω1
DM

(A) on M × F allow for a direct sum
decomposition:

Ω1
D(A) ' Ω1(M,AF )⊕ C∞(M,Ω1

DF
(AF )).

where Ω1(M,AF ) ≡ Ω1(M) ⊗ AF . Moreover, the AF -bimodule of differential one-forms
Ω1
DF

(AF ) is generated by ∆.

Proof. This follows directly from the splitting

D = DM ⊗ 1 + γM ⊗DF

noting further that γµ and γM are orthogonal with respect to the Hilbert–Schmidt inner
product.

The integral formula for ∆ in Lemma 9 combined with the observation that [D, a] = [∆, a]
for all a ∈ AF shows that ∆ is already a one-form; this shows that AF∆AF ⊂ Ω1

DF
(AF ).

The same observation also shows that Ω1
DF

(AF ) ⊂ AF∆AF . �
10



Let us describe the linearly independent components of Ω1
DF

(AF ); inspired by the discus-
sion in Krajewski [21].

An element φ ∈ Ω1
DF

(AF ) is given by sums of elements of the form

a∆b =
∑

e:ms(e)=mt(e)

aDeb.

Since some edges induce linear operators De between the same representations of AF , the
above summands are not independent. In order to turn this into a sum over linearly in-

dependent terms, the graph Γ̃ introduced previously is quite convenient. Namely, given an

edge ẽ in Γ̃ connecting different vertices, we consider the linear span Sẽ in Hom(Cs(ẽ),Ct(ẽ))
of all matrices De with e ∈ ψ−1(ẽ). If {fpẽ }p (p = 1, . . . , Sẽ) is a basis for Sẽ we can write

(3) De =
∑
p

Mp
e f

p
ψ(e), Mp

e ∈ C.

Note that the self-adjointness of D implies that Mp
e = M

p

e and fpψ(e) = (fpψ(e))
∗. Adopting

this form of De, we can write

a∆b =
∑

ẽ∈Γ̃(1):s(ẽ)6=t(ẽ)

∑
p

 ∑
e∈ψ−1(ẽ)

ms(e)=mt(e)

Mp
e

 afpẽ b.

We denote the independent fields by

φpẽ = afpẽ b : a, b ∈ AF .

which is an element in Hom(Cs(ẽ),Ct(ẽ)). Thus, we can write a general element φ ∈ Ω1
DF

(AF )
as

φ =
∑

e:ms(e)=mt(e)

∑
p

Mp
e φ

p
ẽ.

We conclude that the number of independent components of φ is∑
ẽ:s(ẽ)6=t(ẽ)

s(ẽ)t(ẽ) dimSẽ

A corresponding orthonormal basis (orthonormal with respect to the Hilbert–Schmidt norm
on Ω1

DF
(AF ) ⊂ EndHF ) can be found by combining the indices ẽ and p with the canonical

bases of Cs(ẽ) and Ct(ẽ): we denote this orthonormal basis of Ω1
DF

(AF ) by {eI}I .
The vertices of Γ̃ label irreducible representations of AF , and consequently of su(AF ).

Thus, the fields φpẽ carry the induced representation, that is, by conjugation of the source
and target representations s(ẽ) and t(ẽ).

Example 18. Consider the Krajewski diagram of the Standard Model (Figure 2). The

fields that appear connect the vertices 2 and 1, and 2 and 1 in Γ̃: they carry the induced
representation of u(1)⊕ su(2). In fact, this is precisely the Higgs doublet in the electroweak
model, having 2 independent degrees of freedom.

11



Let us end this section by describing the inner fluctuations of the metric, induced by
coupling D to gauge fields in Ω1

D(A). The origin of this can also nicely be described in terms
of Morita self-equivalences of the algebra A (cf. [9, Sect. 10.8]).

We consider a self-adjoint element ω + γMφ ∈ Ω1
D(A), in terms of the splitting in Propo-

sition 17. The unimodularity condition on the gauge group is transferred to the gauge
fields by demanding that TrF ω = 0. Combining this with self-adjointness implies that
ω ∈ Ω1(M, isu(AF )). This allows for an inner fluctuation:

D  D + A+ γMΦ

where

A = ω + ε′JωJ−1 = iγµ adωµ; Φ = φ+ ε′JφJ−1.

These formulas can be checked using the splitting of Proposition 17.

Remark 19. Note that a term such as TrF Φn (with the trace over HF ) can be easily com-
puted from the Krajewski diagram. Indeed, it corresponds to a sum over cycles in Γ of length
l, for which the trace splits over a horizontal and vertical part:

TrF Φn =
∑

γ=el···e1

∑
pi

cp1...pl(γ) Trs(ẽ1)

(
φplẽl . . . φ

p1
ẽ1

)
Tr

s(j̃(e1))

(
φpl
j̃(el)

. . . φp1
j̃(e1)

)
where we have denoted ẽi = ψ(ei) and φpẽ ≡ 1 if ẽ is a loop in Γ̃ (i.e., if s(ẽ) = t(ẽ)). The
coefficient is given essentially by

cp1...pn(γ) ∝Mp1
e1
· · ·Mpl

el

in terms of the basis coefficients of De in Equation (3). Moreover, the self-adjointness of Φ
implies that the components φpẽ satisfy:

φp
ẽ

= (φpẽ)
∗

where we recall that e is the edge e with reversed orientation.

This last Remark and its relation to the notion of R-connectedness of Definition 11 will
play a crucial role in the subsequent discussion on renormalization of the gauge field theories
that correspond to M × F , which we will now define.

3. Spectral action for almost commutative manifolds

Starting with an almost commutative manifold M × F with Krajewski diagram Γ for F ,
we have now set the stage for a gauge theory on M . Summarizing, we have derived:

(1) a gauge group SU(A) = C∞(M,SU(AF ) with reductive (local) gauge algebra su(AF ),
(2) gauge fields A in the adjoint representation of this gauge group,
(3) scalar fields Φ, with independent components φẽ ∈ Hom(V,W ) with V and W irre-

ducible representations of SU(AF ), parametrized by the vertices s(ẽ) and t(ẽ) in the

graph Γ̃.

We search for gauge invariant action functionals. The most simplest, manifestly gauge
invariant one is given the trace of a function of the fluctuated Dirac operator [5, 6]:

S[A,Φ] := Tr f

(
D + A+ γ5Φ

Λ

)
,

12



together with a real cut-off parameter Λ. Locally, we have

D + A = iγµ(∇S
µ + Aµ).

with ∇S
µ the spin connection on a Riemannian spin manifold M and Aµ a skew-hermitian

traceless matrix. The field Φ is considered as a self-adjoint element in C∞(M,EndHF ).
For simplicity, we take M to be flat (i.e. vanishing Riemann curvature tensor) and 4-

dimensional; we therefore write γ5 ≡ γM . Furthermore, we will assume that f is a suitable
Laplace transform:

f(x) =

∫
t>0

e−tx
2

g(t)dt.

Proposition 20 ([6]). In the above notation, there is an asymptotic expansion (as Λ→∞):

(4) S[A,Φ] ∼
∑
m≥0

Λ4−mf4−m

∫
M

am(x, (D + A+ γ5Φ)2),

in terms of the Seeley–De Witt invariants of (D + A + γ5Φ)2. The coefficients are defined
by fk :=

∫
t−k/2g(t)dt.

Recall that the Seeley–De Witt coefficients am(x, (D + A + γ5Φ)2) are gauge invariant
polynomials in the fields Aµ and Φ. Indeed, the Weitzenböck formula gives

(5) (D + A+ γ5Φ)2 = −∇µ∇µ − 1

2
γµγνFµν − γ5[D + A,Φ] + Φ2

in terms of the curvature Fµν = ∂µAν−∂νAµ+[Aµ, Aν ] ofAµ and∇µ = ∂µ+Aµ. Consequently,
a Theorem by Gilkey [16, Theorem 4.8.16] shows that (in this case) am are polynomial gauge
invariants in Fµν and the endomorphisms

E =
1

2
γµγνFµν + γ5[D + A,Φ]− Φ2

as well as their covariant derivatives (with respect to the connection Aµ). The order ord of
am is m, where we set on generators:

ordAµ1;µ2···µk = k; ord Φ;µ1···µk = k + 1.

Consequently, the curvature Fµν has order 2, and Fµ1µ2;µ3···µk has order k. For example,
a4(x,D2

A) consists of terms proportional to TrF FµνF
µν and TrF ((∇µΦ)2 + Φ4). Moreover,

am = 0 for all odd m. In fact, we have:

Theorem 21. The spectral action for the almost commutative manifold M × F is given,
asymptotically as Λ→∞, by

S[A] =
f4NΛ4

2π2
Vol(M)− f2Λ2

2π2

∫
M

TrF Φ2 +
f(0)

8π2

∫
M

TrF
(
(∇µΦ)2 + Φ4

)
− f0

24π2

∫
M

TrF FµνF
µν +O(Λ−1)

where N = dimHF .
13



From Remark 19 it follows that we have in terms of the — now x-dependent — components
φpẽ of Φ:

(6)

∫
TrF Φ2 =

∑
e,p

cp1p2(ee)

∫
Trs(ẽ)(φ

p1
ẽ )∗φp2ẽ .

Similarly,

(7)

∫
TrF (∇µΦ)2 =

∑
e,p1,p2

cp1p2(ee)

∫
Trs(ẽ)(∇µφ

p1
ẽ )∗∇µφp2ẽ

and finally, in terms of a sum over cycles in Γ:∫
TrF Φ4 =

∑
γ=e1e2e2e1

∑
pi

cp1...p4(γ)

∫
Trs(ẽ1)(φ

p4
ẽ1

)∗(φp3ẽ2)∗φp2ẽ2φ
p1
ẽ1

(8)

+
∑

γ=j(e1)j(e1)e2e2

∑
pi

cp1...p4(γ)

∫
Trs(ẽ2)(φ

p4
ẽ2

)∗φp2ẽ2 Trs(ẽ1)(φ
p1
ẽ1

)∗φp1ẽ1

+
∑

γ=j(e1)e2j(e1)e2

∑
pi

cp1...p4(γ)

∫
Trs(ẽ2)(φ

p4
ẽ2

)∗φp2ẽ2 Trs(ẽ1)(φ
p1
ẽ1

)∗φp1ẽ1 ,

where e1, e2 are horizontal edges in Γ. These expressions will become useful later on.

The appearance of the Yang–Mills action and Higgs-like potential for Φ at lowest order
in the spectral action on M × F is the main motivation to study this model. As a matter
of fact, if we take F to be described by Figure 2 and choosing the De to correspond to the
physical Yukawa matrices, then one derives in this way the full Standard Model of elementary
particles, including the spontaneous symmetry breaking potential for the Higgs field [7, 9].

In the present paper, we aim at a better understanding also of the higher-order terms
in the asymptotic expansion of the spectral action and in particular the role they play as
regulators of the quantum gauge theory defined at lowest order. The free part of S[A,Φ] is
by definition the part of S[A,Φ] that is quadratic in the fields

(9) S0[A,Φ] =
1

2

d

du

d

dv
(S[uA+ vA,Φ] + S[A, uΦ + vΦ])

∣∣∣∣
u=v=0

.

Theorem 22. There is the following asymptotic expansion (as Λ→∞) for the free part of
the spectral action on a flat background manifold M

S0[A,Φ] ∼ −
∑
k≥0

(−1)kf−2kΛ
−2k

(
ck

∫
TrF F̂

µν∆k(F̂µν) + c′k

∫
TrF (∂µΦ)∆k(∂µΦ)

)
where ∆ is the Laplacian on (M, g), F̂µν = ∂µAν − ∂νAµ and ck, c

′
k are the following positive

constants:

ck =
1

8π2

(k + 1)!

(2k + 3)(2k + 1)!
; c′k =

1

8π2

k!

(2k + 1)!
.

The free Yang–Mills part was obtained in [29]. The free contribution for the scalar field
Φ can be derived along the same lines. Let us check the lowest order terms appearing in the
above formula for S0[A] with the Yang–Mills action appearing in [7] (cf. Theorem 21 above).
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Corollary 23. Modulo negative powers of Λ, we have

S0[A,Φ] ∼ − f2

4π2

∫
M

TrF Φ2 +
1

8π2
f(0) TrF (∂µΦ)(∂µΦ)− f0

24π2

∫
M

TrF F̂
µνF̂µν +O(Λ−1).

We see that S0[A,Φ] is the usual (free part of the) Yang–Mills action and a free scalar
field action. In fact, we can write more concisely

S0[A,Φ] ∼ − f2

4π2

∫
M

TrF Φ2 +

∫
M

TrF (∂µΦ)ϑΛ(∆)(∂µΦ)−
∫

TrF F̂µνϕΛ(∆)(F̂ µν)

in terms of the following expansions (in Λ):

ϕΛ(x) :=
∑
k≥0

(−1)kΛ−2kf−2kckx
k;

ϑΛ(x) :=
∑
k≥0

(−1)kΛ−2kf−2kc
′
kx

k.

This form motivates the interpretation of S0[A,Φ] (and of S[A,Φ]) as a higher-derivative
gauge theory. As we will see below, this indeed regularizes the theory in such a way that
S[A,Φ] defines a superrenormalizable field theory. This comes with the usual intricacies
of gauge theories with spontaneously symmetry breaking. Before proceeding with a gauge
fixing and renormalization, we discuss the Higgs potential for Φ.

3.1. Higgs mechanism and higher derivatives. Given the above Higgs-like form of the
spectral action at lowest order in the asymptotic expansion, it is natural to expand the scalar
field Φ around its vacuum expectation value 〈Φ〉0 = v, which we assume to be constant. We
write

Φ = v + χ

and refer to the fluctuations χ as the Higgs field. The constant vacuum expectation value
v will appear in S[A,Φ] as generating mass terms for the Higgs and the gauge field; this
is spontaneous symmetry breaking (which might also not occur when v = 0). Since the
asymptotically expanded spectral action is considered as a higher-derivative theory, the
interpretation of mass terms is not so straightforward. Still, we can asymptotically expand
the free part of S[A,Φ] as above:

S0[A,Φ] ∼ 1

2

∫
M

TrF (∂µχ)ϑΛ(∆)(∂µχ) +
1

2

∫
M

TrF χϑ
′
Λ(∆; v)(χ)

+
1

2

∫
M

(∂µA
a
ν)ϕΛ(∆)(∂µAaν − ∂νAaµ) + Aaµϕ′Λ(∆; v)ab(Abµ)

We now in addition have terms involving expansions ϑ′Λ and ϕ′Λ which — as ϑΛ and ϕΛ do
— start with a differential operator of degree 0 (i.e. a mass term). Besides derivatives, they
also involve a series expansion in v.

In addition to the above free part, the splitting Φ = v + χ induces terms in S[A,Φ] that
are linear in both A and χ (and in v):

(10)

∫
M

TrF (∂µχ)$Λ(∆; v)([Aµ, v])
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where we have as above a expansion defined by:

$Λ(x; v) =
∑
k≥l≥0

(−1)kΛ−2kf−2kbk,l(v)xk−l

and bk,l(v) acts (pointwise) on EndHF and is of order 2l ≤ 2k in v. We also write the
components of $Λ in terms of the basis {eI}I of Ω1

DF
(AF ) ⊂ EndHF introduced in the

previous section:

$Λ(x; v) = ($Λ(x; v)IJ)

With a slight abuse of notation, we write e0 for the identity in EndHF , normalized to have
Hilbert–Schmidt norm equal to 1.

For convenience, we introduce the following inner product:

(11) (φ1, φ2) =

∫
M

TrF φ
∗
1$Λ(∆; v)(φ2).

on endomorphisms φ1, φ2 ∈ C∞(M,EndHF ). Thus, the above term (10) reads (∂µχ, [A
µ, v]).

4. Rξ-gauge fixing

We add a Rξ-type gauge-fixing term with higher-derivatives of the following form:

Sgf [A,Φ] ∼ 1

2ξ

∫
TrF (∂µA

aµ − ξχ[T a, v])$Λ(∆; v) (∂νA
aν − ξχ[T a, v])(12)

which is chosen so that the terms linear in both A and χ cancel the cross-terms of (10). In
terms of the inner product (11) we have more concisely:

Sgf [A,Φ] =
1

2ξ
(∂νA

aν − ξχ[T a, v], ∂µA
aµ − ξχ[T a, v])

where we consider ∂µA
aµ(x) as an endomorphism of HF (i.e. as a multiple of the identity).

As usual, the above gauge fixing requires a Jacobian, conveniently described by a Faddeev–
Popov ghost Lagrangian:

(13) Sgh[A,C,C,Φ] =
(
C
a
,∆Ca − ∂µ[Aµ, C]a − ξ[C,Φ][T a, v]

)
Here C,C are the Faddeev–Popov ghost fields which are g-valued fermionic fields: C = CaT a

and C = C
a
T a. Accordingly, [C,Φ] := Ca[T a,Φ].

Proposition 24. The sum S[A,Φ]+Sgf [A,Φ]+Sgh[A,C,C,Φ] is invariant under the BRST-
transformations:

sAµ = ∂µC + [Aµ, C]; sΦ = −[C,Φ];

sC = −1
2
[C,C]; sC

a
=

1

ξ
∂µA

aµ − χ[T a, v].(14)

Proof. First, s(S) = 0 because of gauge invariance of S[A,Φ]. Indeed, sAµ and sΦ are just
gauge transformations by the (fermionic) field C.

For the gauge fixing and ghost terms, we compute

s(Sgf) =
1

ξ
(∂µA

aµ − ξχ[T a, v],−∆Ca + ∂µ[Aµ, C]a + ξ[C,Φ][T a, v])
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since sχ = s(v + χ) ≡ sΦ. On the other hand,

s(Sgh) =
(
ξ−1∂µA

aµ − χ[T a, v],∆Ca − ∂µ[Aµ, C]a − ξ[C,Φ][T a, v]
)

which modulo vanishing boundary terms is minus the previous expression. �

Note that s2 6= 0, which can be cured by standard homological methods: introduce an
auxiliary (aka Nakanishi-Lautrup) field h so that C and h form a contractible pair in BRST-
cohomology. In other words, we replace the above transformation in Equation (14) on C by
sC = −h and sh = 0. If we replace Sgf +Sgh by sΨ with Ψ an arbitrary gauge fixing fermion,
it follows from gauge invariance of S and nilpotency of s that S + sΨ is BRST-invariant.
The above special form of Sgf + Sgh can be recovered by choosing

Ψ = (C
a
, 1

2
ξha + ∂µA

aµ − ξχ[T a, v]).

We derive the propagators by inverting the non-degenerate quadratic forms in the fields
A, ξ and C given by S0[A,Φ] + Sgf [A, ξ]. This yields for the gauge propagator:

Dab
µν(p, v; Λ) =

[
gµν −

pµpν
p2

](
1

p2ϕΛ(p2) + ϕ′Λ(p2; v)

)ab
+ ξ

pµpν
p2

(
1

p2$Λ(p2; v)00 + ξϕ′Λ(p2; v)

)ab
.

The Higgs propagator becomes:

DIJ(p, v; Λ) =

(
1

p2ϑΛ(p2) + ϑ′Λ(p2; v) + ξµ(p2; v)

)IJ
where

µ(p2; v)IJ := TrF eI [T
a, v]$Λ(p2; v)eJ [T a, v]

The ghost propagator is

D̃ab(p, v; Λ) =
δab

p2$Λ(p2; v)00

.

Remark 25. In [29] we argued that for the pure Yang–Mills system the function ϕΛ(p2)
appearing in the denominator of the propagator is nowhere-vanishing, provided we impose
the conditions f (2k)(0) ≥ 0 on the even derivatives of f . Consequently, the gauge propagator
did not have other poles than a physical pole at p2 = 0. In the present case, where we allow
for spontaneous symmetry breaking, such a conclusion can not be drawn. Typically, there
will be unphysical poles (involving ξ) appearing in the gauge and also in the Higgs and ghost
propagators. Since we will be mainly concerned with renormalizability in this paper, we will
ignore these poles in what follows. Of course, a treatment of (the lack of) unitarity for this
higher-derivative theory does require a careful analysis of these unphysical poles as well. At
lowest order (as in Theorem 21), one expects to find a cancellation of the unphysical poles
appearing in the gauge and Higgs propagator, similar to [17].
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5. Renormalization on an almost commutative manifold

As said, we consider the asymptotic expansion (as Λ→∞) of the spectral action on the
AC manifold M×F as a higher-derivative field theory. This means that we will use the higher
derivatives of Fµν and Φ that appear in the asymptotic expansion as natural regulators of
the theory, similar to [24, 25] (see also [15, Sect. 4.4]). However, note that the regularizing
terms are already present in the asymptotic expansion of the spectral action and need not
be introduced as such. Let us consider the expansion of Theorem 22 up to order n (which
we assume to be at least 4), i.e. we set f4−m = 0 for all m > n while f4, . . . f4−n 6= 0. Also,
assume a gauge fixing of the form (12) and (13).

Remark 26. Note that for n = 4 the asymptotically expanded spectral action is given by the
action appearing in 21 and strictly speaking not a higher-derivative gauge theory. However,
in what follows it is convenient to also consider the case n = 4, giving us the physically
interesting Lagrangian.

Then, we easily derive from the structure of ϕΛ(p2), ϑΛ(p2) and $Λ(p2; v) that the propa-
gators of the gauge field, the Higgs field χ, and the ghost field, respectively behave as |p|−n+2

as |p| → ∞. Indeed, in this case:

ϕΛ(p2) =

n/2−2∑
k=0

Λ−2kf−2kckp
2k; ϑΛ(p2) =

n/2−2∑
k=0

Λ−2kf−2kc
′
kp

2k;

$Λ(p2) =

n/2−2∑
k=0

Λ−2kf−2kc
′′
k(v)p2k

which behave like |p|n−4 as |p| → ∞. Moreover, ϑ′Λ(p2; v) and ϕ′Λ(p2; v) are subleading in |p|
since they behave as v2|p|n−2 as |p| → ∞.

Let us now consider the weights on the vertices in a Feynman graph (not to be confused
with a Krajewski diagram). For gauge-Higgs interactions involving i gauge and j Higgs
fields, the maximal number of derivatives is n− i− j, essentially because the total order of
the corresponding term in the Lagrangian is less than or equal to n. Similarly, for the gauge-
ghost interaction, the maximal number of derivatives is n − 3. Finally, the Higgs-ghost
interaction behaves slightly better and has ≤ n − 4 derivatives. We adopt the following
notation:

number of ... number of ...

IA internal gauge lines Vij gauge-Higgs vertices

Iχ internal Higgs lines ṼA gauge-ghost vertices

Ĩ internal ghost lines Ṽχ Higgs-ghost vertices

Let us now find an expression for the superficial degree of divergence ω of a Feynman
graph. In 4 dimensions, we find in terms of the above notation at loop order L:

ω ≤ 4L− IA(n− 2)− Iχ(n− 2)− Ĩ(n− 2) +
n∑

i+j=3

Vij(n− i− j) + ṼA(n− 3) + Ṽχ(n− 4).
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Lemma 27. Let EA, Eχ and Ẽ denote the number of external gauge, Higgs and ghost edges,
respectively. The superficial degree of divergence of the Feynman graph satisfies

ω ≤ (4− n)(L− 1) + 4− (EA + Eχ + Ẽ).

Proof. We use the relations

2IA + EA =
n∑

i+j=3

iVij + ṼA; 2Iχ + Eχ =
n∑

i+j=3

jVij + Ṽχ; 2Ĩ + Ẽ = 2ṼA + 2Ṽχ.

Indeed, these formulas count the number of half (gauge/Higgs/ghost) edges in a Feynman
graph in two ways: from the number of edges and from the valences of the vertices. We use

them to substitute for 2IA, 2Iχ and 2Ĩ in the above expression for ω so as to obtain

ω ≤ 4L− IAn− Iχn− Ĩn+ n

(∑
i,j

Vij + ṼA + Ṽχ

)
− (EA + Eχ + Ẽ)

from which the result follows at once from Euler’s formula L = IA + Iχ + Ĩ −
∑

i,j Vij − ṼA−
Ṽχ + 1. �

As a consequence, ω < 0 if E+ Ẽ > 4 so that the theory is powercounting renormalizable.
Moreover, if n ≥ 8 then ω < 0 for all L ≥ 2: all Feynman graphs are finite at loop order

greater than 1. In this case, all divergent graphs are at one loop, and satisfy E + Ẽ ≤
4. We conclude that the asymptotically expanded spectral action on an AC manifold is
renormalizable, and if n ≥ 8 then it is superrenormalizable.

Of course, the spectral action on an AC manifold being a gauge theory, there is more
to renormalizability than just power counting: we have to establish gauge invariance of the
counterterms. We already know that the counterterms needed to render the perturbative
quantization of the asymptotically expanded spectral action finite are of order 4 or less in
the fields and arise only from one-loop graphs. The key property of the effective action at
one loop is that it is supposed to be BRST-invariant, s(Γ1) = 0. In particular, assuming a
regularization compatible with gauge invariance, the divergent part Γ1,∞ is BRST-invariant.
We will use results from [10, 11, 12, 2, 13] on BRST-cohomology for Yang–Mills type theories
to determine the form of the BRST-closed functionals of order 4 or less in the fields. In
fact, in these references a relation is established between BRST-cohomology and Lie algebra
cohomology for the gauge group: BRST-closed functionals are given by integrals of gauge
invariant polynomials in the fields.

First, recall that with respect to the orthogonal decomposition of su(AF ) of Proposition 15
we can write the curvature Fµν =

∑
i F

i
µν with F i

µν ∈ u(ki,Fi). Gauge invariant functionals
are then given by

(15)

∫
TrF i

µνF
iµν ,

for all i. These terms appear, though with a common pre-factor, in Theorem 21.
Let us then consider the field Φ with independent components φpẽ, as labeled by the edges

of the graph Γ̃ introduced at the end of Section 2.1. The index p runs from 1, . . . , dimSẽ
and the field φẽ is in the representation of su(AF ) induced by the irreducible representations
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that are given by s(ẽ) and t(ẽ) in Γ̃(0). The most general form of a gauge invariant functional
in the components of Φ of degree 2 is given by

(16)

∫
Tr(φp1ẽ )∗φp2ẽ ,

for all ẽ, p1, p2. Note that these terms appear in Theorem 21 (cf. Equation (6)). There is
also a term of second order in Φ involving covariant derivatives, it is:

(17)

∫
Tr(∇µφ

p1
ẽ )∗∇µφp2ẽ ,

and is also present in Theorem 21 (cf. Equation (7)).
Slightly more complicated is the search for the gauge invariant functionals that are quartic

in the fields φpẽ. In terms of the graph Γ̃, they are given by a combination of the following

sums over cycles in Γ̃:∑
γ̃=ẽ1ẽ2ẽ3ẽ4

Trs(ẽ4)=t(ẽ1) φ
p1
ẽ1
· · ·φp4ẽ4 ;

∑
γ̃=ẽẽ

Trs(ẽ)=t(ẽ)(φ
p1
ẽ )∗φp2ẽ

∑
γ̃′=ẽ

′
ẽ′

Tr
s(ẽ′)=t(ẽ

′
)
(φ

p′1
ẽ′ )
∗φ

p′2
ẽ′(18)

That is, all gauge invariant quartic polynomials in Φ arise by taking traces along cycles of

length 4 in Γ̃, and traces along pairs of cycles of total length 4. In the latter case, we exclude
the possibility that the cycles γ̃ and γ̃′ both connect to the vertex 1 or the vertex 1. In fact,
the contribution arising from such cycles can be written as the trace along a single cycle of
length 4, due to the fact that Tr1 : C→ C acts as the identity.

Example 28. Consider the following graph Γ̃:

2 1 3
��	�
�� ��	�
�� ��	�
��

The pair of cycles (21)(12) and (13)(31) give a contribution

Trφ(21)φ(12) Trφ(31)φ(13) = (φ(21)φ(12))(φ(31)φ(13))

since (φ(21)φ(12)) and (φ(31)φ(13)) are elements in Hom(C,C) ' C. Now, the concatenated
cycle (21)(12)(13)(31) of length 4 gives the same contribution

Trφ(21)φ(12)φ(31)φ(13) = (φ(21)φ(12))(φ(31)φ(13))

for the same reason.

Now, adopting Definition 11, if the Krajewski diagram Γ is R-connected (in dimension 4)
the above traces can always be written in terms of cycles of length 4 in Γ which are precisely
the terms that are present in Theorem 21 (cf. Equation (8)). We conclude:

Theorem 29. Let M × F be an almost commutative manifold with dimM = 4; suppose
that AF contains no copies of R, and either no complex subalgebras, or at least one non-
trivial complex subalgebra (cf. Proposition 15). Consider the asymptotically expanded spectral
action up to order n ≥ 4.

If the Krajewski diagram describing the finite real spectral triple for F is R-connected in
dimension 4, then the asymptotically expanded spectral action (with f4−m = 0 for all m > n)
for M × F is renormalizable as a gauge theory. Moreover, it is superrenormalizable as a
gauge theory if n ≥ 8.
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As a corollary, we find that the asymptotically expanded Yang–Mills spectral action is
superrenormalizable (n ≥ 8), as was previously shown in [30, 29]. Indeed, the spectral triple
of Example 4 has Krajewski diagram

N

N ��	�
��
which is R-connected in a trivial way.

Similarly, Proposition 12 implies that the asymptotically expanded spectral action that
at lowest order is the Standard Model, is renormalizable as a gauge theory. In particular,
choosing n = 4 this implies that the Standard Model is renormalizable as a gauge theory.

Example 30. Let us illustrate the possible failure of renormalizability for the Krajewski
diagram in Example 13 which is not R-connected. There are fields φ(12) and φ(13) that could
combine to give a gauge-invariant counterterms proportional to(

(φ(12))
∗φ(12)

) (
(φ(13))

∗φ(13)

)
However, this term can never appear in the asymptotic expansion of the spectral action, since
the edges (12), (21), (13) and (31) do not lift to a cycle in Γ.

Note that the asymptotically expanded spectral action is not multiplicatively renormaliz-
able, since the coefficients in front of the counterterms might be different for different indices
(such as i, ẽ, and p). This is in contrast with the classical action in Theorem 21 where there
is a typical unification of couplings for all simple factors of the gauge group. This suggests
that one takes the spectral action S[A,Φ] (plus gauge fixing) as a starting point for the
renormalization group flow to then run the action to arbitrary energy scales.

It is an open question whether this approach to renormalizing the asymptotically expanded
spectral action using the intrinsic higher-derivative regulators is equivalent to perturbatively
quantizing the gauge theory defined by the lowest-order terms (appearing in Theorem 21)
using, say, dimensional regularization and minimal subtraction. Evidence that this might be
true can be found in [23] and is the subject of future research.

References

[1] J. Boeijink and W. D. van Suijlekom. The noncommutative geometry of Yang-Mills fields. J. Geom.
Phys. 61 (2011) 1122–1134.

[2] F. Brandt, N. Dragon, and M. Kreuzer. Lie algebra cohomology. Nucl. Phys. B332 (1990) 250.
[3] T. van den Broek and W. D. van Suijlekom. Supersymmetric QCD and noncommutative geometry.

Commun. Math. Phys. 303 (2011) 149–173.
[4] T. van den Broek and W. D. van Suijlekom. Supersymmetric QCD from noncommutative geometry.

Phys. Lett. B699 (2011) 119–122.
[5] A. H. Chamseddine and A. Connes. Universal formula for noncommutative geometry actions: Unifica-

tions of gravity and the standard model. Phys. Rev. Lett. 77 (1996) 4868–4871.
[6] A. H. Chamseddine and A. Connes. The spectral action principle. Commun. Math. Phys. 186 (1997)

731–750.
[7] A. H. Chamseddine, A. Connes, and M. Marcolli. Gravity and the standard model with neutrino mixing.

Adv. Theor. Math. Phys. 11 (2007) 991–1089.
[8] A. Connes. Noncommutative Geometry. Academic Press, San Diego, 1994.
[9] A. Connes and M. Marcolli. Noncommutative Geometry, Quantum Fields and Motives. AMS, Provi-

dence, 2008.
21



[10] J. A. Dixon. Calculation of BRS cohomology with spectral sequences. Commun. Math. Phys. 139 (1991)
495–526.

[11] M. Dubois-Violette, M. Talon, and C. M. Viallet. BRS algebras: Analysis of the consistency equations
in gauge theory. Commun. Math. Phys. 102 (1985) 105.

[12] M. Dubois-Violette, M. Talon, and C. M. Viallet. Results on BRS cohomology in gauge theory. Phys.
Lett. B158 (1985) 231.

[13] M. Dubois-Violette, M. Henneaux, M. Talon, and C.-M. Viallet. Some results on local cohomologies in
field theory. Phys. Lett. B267 (1991) 81–87.

[14] K. van den Dungen and W. D. van Suijlekom. Electrodynamics from noncommutative geometry. To
appear in J. Noncommut. Geom. [arXiv:1103.2928].

[15] L. Faddeev and A. Slavnov. Gauge Fields. Introduction to Quantum Theory. Benjaming Cummings,
1980.

[16] P. B. Gilkey. Invariance theory, the heat equation, and the Atiyah-Singer index theorem, volume 11 of
Mathematics Lecture Series. Publish or Perish Inc., Wilmington, DE, 1984.

[17] G. ’t Hooft. Renormalizable Lagrangians for massive Yang-Mills fields. Nucl.Phys. B35 (1971) 167–188.
[18] B. Iochum, C. Levy, and D. Vassilevich. Spectral action beyond the weak-field approximation.

arXiv:1108.3749.
[19] J.-H. Jureit, T. Krajewski, T. Schucker, and C. A. Stephan. On the noncommutative standard model.

Acta Phys. Polon. B38 (2007) 3181–3202.
[20] J.-H. Jureit and C. A. Stephan. On a classification of irreducible almost-commutative geometries IV. J.

Math. Phys. 49 (2008) 033502.
[21] T. Krajewski. Classification of finite spectral triples. J. Geom. Phys. 28 (1998) 1–30.
[22] G. Landi. An Introduction to Noncommutative Spaces and their Geometry. Springer-Verlag, 1997.
[23] C. Martin and F. Ruiz Ruiz. Higher covariant derivative regulators and nonmultiplicative renormaliza-

tion. Phys. Lett. B343 (1995) 218–224.
[24] A. A. Slavnov. Invariant regularization of nonlinear chiral theories. Nucl. Phys. B31 (1971) 301–315.
[25] A. A. Slavnov. Invariant regularization of gauge theories. Teor. Mat. Fiz. 13 (1972) 174–177.
[26] R. Squellari and C. A. Stephan. Almost-Commutative geometries beyond the Standard Model. III.

Vector doublets. J. Phys. A40 (2007) 10685–10698.
[27] C. A. Stephan. Almost-commutative geometries beyond the standard model. J. Phys. A39 (2006) 9657.
[28] C. A. Stephan. Almost-commutative geometries beyond the standard model. II. New colours. J. Phys.

A40 (2007) 9941.
[29] W. D. van Suijlekom. Renormalization of the asymptotically expanded Yang-Mills spectral action. To

appear in Commun. Math. Phys. [arXiv:1104.5199].
[30] W. D. van Suijlekom. Renormalization of the spectral action for the Yang-Mills system. JHEP 1103

(2011) 146.

Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nij-
megen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands

22

http://arxiv.org/abs/1103.2928
http://arxiv.org/abs/1108.3749
http://arxiv.org/abs/1104.5199

	1. Introduction
	Acknowledgements
	2. Almost commutative manifolds
	2.1. Classification of finite spectral triples
	2.2. Gauge fields from AC manifolds

	3. Spectral action for almost commutative manifolds
	3.1. Higgs mechanism and higher derivatives

	4. R-gauge fixing
	5. Renormalization on an almost commutative manifold
	References

