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Abstract

Nowadays, prokaryotic genomes are sequenced faster than the capacity to manually curate gene annotations. Automated
genome annotation engines provide users a straight-forward and complete solution for predicting ORF coordinates and
function. For many labs, the use of AGEs is therefore essential to decrease the time necessary for annotating a given
prokaryotic genome. However, it is not uncommon for AGEs to provide different and sometimes conflicting predictions.
Combining multiple AGEs might allow for more accurate predictions. Here we analyzed the ab initio open reading frame
(ORF) calling performance of different AGEs based on curated genome annotations of eight strains from different bacterial
species with GC% ranging from 35–52%. We present a case study which demonstrates a novel way of comparative genome
annotation, using combinations of AGEs in a pre-defined order (or path) to predict ORF start codons. The order of AGE
combinations is from high to low specificity, where the specificity is based on the eight genome annotations. For each AGE
combination we are able to derive a so-called projected confidence value, which is the average specificity of ORF start
codon prediction based on the eight genomes. The projected confidence enables estimating likeliness of a correct
prediction for a particular ORF start codon by a particular AGE combination, pinpointing ORFs notoriously difficult to predict
start codons. We correctly predict start codons for 90.564.8% of the genes in a genome (based on the eight genomes) with
an accuracy of 81.167.6%. Our consensus-path methodology allows a marked improvement over majority voting
(9.764.4%) and with an optimal path ORF start prediction sensitivity is gained while maintaining a high specificity.
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Introduction

The accurate annotation of bacterial genomes is essential to

apply sequence data in many (bio)medical research topics such as

microbiology, immunology and infectious diseases [1,2]. It is

required for a better understanding of the biology of bacteria as it

involves identification of genes and subsequent proteins, regulatory

networks and pathways. In practice, genome annotation often

starts with the submission of a genome sequence to online

annotation services, also named automated genome annotation

engines/pipelines, which will be referred to as AGEs throughout

this manuscript [3]. The output of these services usually consists of

ab initio predicted open reading frames (ORFs) with start-, stop

positions and function predictions. Start- and stop codon

prediction is usually performed by ORF calling software, such as

GLIMMER [4,5], GeneMark [6,7] or Prodigal [8], implemented

in these AGEs. Correctly predicting ORFs is essential; prediction

of gene function, ribosomal binding sites, promoter mapping, and

subcellular location are all dependent on correct start codon

prediction. Subsequent functional annotation of ORFs involves

many steps including BLAST-like [9] searches in existing

databases such as RefSeq [10], Genbank [11] and SwissProt

[12], or hidden Markov model screenings with Pfam [13] or

FIGfams [14]. As AGEs consist of different prediction steps and

associated parameters (Table S1), they can for a given genome

suggest different ORF predictions [15]. AGEs not uncommonly

provide incorrect annotation calls [16,17] (according to our study,

roughly 14%–58% of start codon predictions are incorrect; see

below). This begs the question: which AGE to choose for my

genome of interest? Next to choosing a particular AGE to

annotate a genome of interest, majority voting has been suggested

as a method to combine predictions from different ORF prediction

algorithms [18–23]. However, one is unable to know which

predictions are likely in need for manual curation and which are

likely to be correct. Therefore, most predicted ORFs are manually

curated for start- and stop codons and gene function [24]. In order

to prioritize genes to be manually curated it would therefore be

highly advantageous to allocate a level of confidence to every ORF

prediction.
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Here we studied the start codon prediction performance of

different AGEs based on a total of twelve strains from different

bacterial species with widely differing GC%. Eight of these

genomes have GC% ranging from 35–52% and the remaining

four genomes have more extreme GC%. The genome annotations

of the twelve well-studied strains have been extensively (manually)

curated and are therefore considered to be of high quality. We

chose not to incorporate stand-alone ORF calling software (e.g.

GLIMMER [4,5], GeneMark [6,7] and Prodigal [8]) as this work

is meant as a practical case study and therefore focuses on AGEs,

as these are commonly used in annotation efforts. As stop codon

predictions are only rarely being predicted wrong by AGEs (see

below) we present a novel method to combine the result of

multiple AGEs in order to more reliably predict start codon

locations. Our work-flow uses consensus predictions by specific

combinations of AGEs in a particular order (or path). This path

was quite conserved for the eight moderate GC% organisms (35–

52%) under study but less with the more extreme GC% genomes.

The order of AGE combinations is from high to low specificity,

where the specificity is based on the start codon prediction

performance of these AGE combinations on the individual

genome annotations. Based on the eight moderate GC% genomes,

this path allows us to correctly predict start codons for 90.564.8%

of the genes in a genome with an accuracy of 81.167.6%. For

each AGE combination we are able to derive a novel so-called

projected confidence value, which is the average specificity of

ORF start codon prediction based on the eight genomes. This

projected confidence value allows pinpointing ORFs of which the

start codon is likely notoriously difficult to predict. We hypothesize

that the proposed concept can also be applied to the prediction of

stop codons and importantly gene function, allowing a researcher

to focus resources by manually curating fewer genes.

Results

We studied the ORF start codon predictions by four AGEs

(BASys, ISGA, RAST and xBASE; Table 1) for twelve genomes

from well-studied strains of different bacterial species. This set of

twelve genomes consists of eight genomes with a moderate GC%

(percentage guanine-cytosine; moderate is defined as a range from

35–52%): Escherichia coli K12 MG1655, Bacillus subtilis 168,

Lactobacillus plantarum WCFS1, Lactococcus lactis KF147, Streptococcus

pneumoniae TIGR4, Salmonella enterica subsp. enterica serovar Typhi

str. Ty2, Neisseria meningitidis MC58 and Haemophilus influenzae Rd

KW20 (Table 2); and four genomes with a more extreme GC

content: Mycobacterium tuberculosis H37rv, Mycoplasma mobile 163K,

Pseudomonas putida KT2440 and Streptomyces coelicolor A3(2) (Table 2).

In our analysis we evaluated all ORFs that were either predicted

by an AGE or that were present in the reference genomes (Figs. 1

and 2 and see materials and methods). Below we explore, next to

our consensus-path prediction method (Fig. 3), different alternative

approaches to obtain accurate start codon predictions. The results

for these alternative approaches are based on a representative set

of four moderate GC% genomes: E. coli K12 MG1655, B. subtilis

168, L. plantarum WCFS1, L. lactis KF147 (Table 2). Next, we

present the results of our consensus-path approach based on the

above-mentioned twelve genomes.

ORF Predictions of the Four AGEs only Partly Overlap
To assess the overlap in ORF start codon predictions by

different AGEs we compared the predicted start codons to those in

the original annotation for four moderate GC% reference

genomes: B. subtilis 168, E. coli K12 MG1655, L. lactis KF147

and L. plantarum WCFS1 (Table 2). These four genomes are

assumed to be a fair representation of moderate GC content

genomes. Some AGEs better predict ORF start codons than other

AGEs (Fig. S1), indicated by the different levels of correct- and

incorrect predicted ORFs (e.g. ISGA consistently has the highest

absolute number of correct predictions). This is also illustrated by

the different combinations of ORF start codon prediction

qualifications assigned for each AGE (e.g. correct-, incorrect-,

false positive-, false negative- or N/A prediction), which were

found for these four genomes (Fig. 4). For instance, more ORF

start codons are correctly predicted by BASys compared to ISGA

(2.660.1% and 1.760.4% respectively). Depending on the

genome, either ISGA (83.6% correct predicted ORF start codons

for L. plantarum) or RAST (82.762.3% correct predicted ORF start

codons for L. lactis, E. coli and B. subtilis) performs best in respect to

ORF start codon prediction accuracy (Fig. 4 and Fig. S1). Based

on the four genomes, about half of the ORF start codons were

correctly predicted by all four AGEs. The four AGEs perform

inconsistent (Fig. 4) for a considerable fraction of the predicted

ORFs (ranging from 40.6% for L. lactis KF147 to 57.9% for B.

subtilis 168). In conclusion, for these four reference genomes, not

one AGE will provide the best possible result for all ORFs (Fig. 4).

We therefore hypothesize that a combination of AGEs might allow

for more accurate prediction of start codon coordinates.

Start Codon Prediction Performance by Majority Voting
Majority voting allows combining the annotation predictions

from different AGEs and potentially results in more reliable

predictions [18]. With majority voting, a start codon for a given

ORF is based on the fact that it was predicted by most AGEs. The

more AGEs are in consensus, the higher the confidence in the

majority-voted start codon for that particular ORF. We evaluated

the performance of majority voting against the single AGE with

the lowest percentage of incorrect start codon predictions (ISGA

or RAST, depending on the genome) on the four genomes.

Majority voting introduces many more false positive (a predicted

ORF was not annotated in the reference genome) ORFs (153–397)

and false negative (ORF present in the reference genome, but not

predicted by AGEs) ORFs (284–924) compared to ISGA or RAST

(Fig. 5). However, the absolute number of incorrect predictions is

also slightly lower with majority voting compared to ISGA or

RAST alone. Likely, certain AGEs introduce inconsistencies in the

voting results and thereby prevent correct predictions from being

selected, in disfavor of other engines. Because predictions are only

considered if a majority is reached, majority voting could lead to

fewer predicted ORFs: ORFs for which voting results in a draw

are missed. In conclusion, different AGEs may predict different

ORFs correctly. As majority voting results in many false positive

and false negative predictions, we hypothesize that specific

combinations of AGEs possibly achieve better ORF start codon

predictions.

Start Codon Prediction Performance by Consensus
Predictions
Another approach is to trust only the consensus prediction of

(combinations of) AGEs. A prediction is only considered if all or a

subset of engines predicts the same start codon. We therefore

categorized predicted ORFs for which the start codon was

determined in consensus for all combinations of two, three or

four AGEs. Each of these determined consensus predictions was

classified according to the reference genome in one of the

following categories: (i) correct, (ii) incorrect, (iii) false negative or

(iv) false positive (Fig. 2). Different combinations of two, three or

four AGEs show different subsets of ORF start codons to be

correctly predicted in E. coli K12 MG1655 (Figs. S3 and S4). For

Reduce Manual Curation by Combining AGE Prediction
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example, the combined consensus prediction of RAST and xBASE

has a sensitivity (i.e. the coverage level with respect to the reference

genome ORFs, taking into account both incorrectly and the

correctly predicted ORFs; see formula 3) of 77.5% and a specificity

(i.e. the percentage correct of predictions; see formula 2) of 86.0%,

while the combination of RAST and BASys has a sensitivity of

58.3% and a specificity of 90.8%. Expectedly, the consensus

prediction results of BASys, RAST and xBASE has a decreased

sensitivity to 52.4%, but an increased specificity to 92.2%.

Apparently, combining multiple AGEs allows predicting fewer

ORF starts (lower sensitivity), but allows a more reliable start

codon prediction (increased specificity). The combination of all

four AGEs has the lowest sensitivity (50.1%) and the highest

specificity (94.6%) for the E. coli K12 MG1655 data set. Similar

observations were made for the other three genomes (Fig. S3): a

sensitivity and specificity range of respectively 44.6% and 94.1%

for B. subtilis 168, 50.5% and 96.5% for L. lactis KF147, 49.4% and

96.2% for L. plantarum WCFS1 was observed when this consensus

prediction of all four AGEs was used.

Interestingly, some combinations of two AGEs provide a higher

specificity compared to a combination of three engines; e.g. ISGA,

RAST and xBASE (88.9%) versus BASys and ISGA (92.0%) or

BASys and RAST (90.8%) (Fig. S3); this trend is observed for E.

coli K12 MG1655 as well as for the other three genomes (Fig. S3).

This leads to the postulate that serially applying consensus

predictions of specific combinations of AGEs in order of specificity

would allow better overall prediction compared to the alternatives:

majority voting, the most reliable AGE only, or consensus

Figure 1. Assignment of meta ORFs. ORFs that contain start- (or stop) codon coordinates which are located in 10% proximity (of the length of the
shortest ORF in the set of two ORFs being compared) to its neighboring ORF’s start- (or stop) codon coordinate, were grouped into the same mORF
prediction. Gray boxes: predicted ORFs, with 10% margins of their length up- and downstream indicated by blue, dashed boxes. Yellow boxes:
reference genome ORFs. Here, five exemplary mORF allocations are illustrated: (i) The stop codon coordinate of the suggested ORF provided by AGEY
matches the ORF stop coordinate of that suggested by AGEX. Therefore, these two ORFs are grouped into the same mORF (mORF A). (ii) The ORF
predicted by AGEX falls within the ORF predicted by AGEY. Therefore, these two ORFs are grouped into the same mORF (mORF A). (iii) The start codon
predicted by AGEx falls within the 10% boundary of the start codon predicted by AGEy. Therefore, these two ORFs are grouped into the same mORF
(mORF A). (iv) The predicted ORF by AGEx contains start- and stop codons both located outside the 10% boundary to the start- and stop codons of
the ORF predicted by AGEy. Therefore, these two ORFs are assigned different mORFs (mORFs A and B). (v) Comparable to iv, the predicted ORF by
AGEx contains start- and stop codons located outside the 10% boundary to the start- and stop codons of the ORF predicted by AGEy. Even though
there is small overlap between these two ORFs (dashed line), they are assigned different mORFs (mORFs A and B) because they exceed the 10% limit.
Note that predicted ORFs by the fictive AGEs X and -Y must have the same orientation to be assigned to the same mORF.
doi:10.1371/journal.pone.0063523.g001
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predictions based on one AGE combination. As described above,

approximately 50% of the ORF start codons can be correctly

predicted by using the consensus of four AGEs. The question

remains: how to reliably as possible predict the remaining half of

ORF start codons?

A Specific Path in Consensus Predictions of Different
Combinations of Engines
In the previous paragraphs it was shown that majority voting

has a high false positive rate (Fig. 5). For this reason we are looking

for alternative ways to maximize the prediction specificity.

Therefore, our objective is to achieve a best-as-possible specificity

for start codon prediction based on the twelve genomes.

Unfortunately, in order to obtain high specificity we have to

accept lower sensitivity, resulting in a lower (re)coverage of ORFs

(see also Fig. S3). The consensus prediction of all four AGEs (Figs.

S3 and S4) allows accurately predicting half of the actual ORF

start codons present in the selected four moderate GC% genomes.

If we also want to successfully predict the remaining ORFs with

high specificity, they could be predicted with the consensus

prediction of different AGE combinations (i.e. using consensus

predictions from combinations of two or three AGEs). This process

could be done via an iterative algorithm to arrive at an optimal

order of consensus predictions. This path of serially applying

combinations of AGEs ensures high specificity for prediction of

ORF start codons for a genome of interest. The consensus-path

method is explained further in Figure 3 and the materials and

methods. From now on we refer to this optimal order of consensus

predictions as consensus-path. From the numbers of correct-,

incorrect, and false positive predictions (Figs. S1 and S2; and

Fig. 4), we determined for each AGE and combinations of AGEs

(see above) for the twelve reference genomes a sensitivity and

error-rate (specificity) in ORF start codon prediction (Fig. S3).

These error-rates allowed determining for each round of the path

an error-rate for each AGE or combination of AGEs (Fig. 3). After

each round, the AGE or a combination of AGEs was selected with

the highest specificity (Fig. 3). The order of AGE combinations

resulting in the highest specificity was quite similar in all eight

moderate GC% bacterial genomes (Fig. 6) but less similar for the

more extreme GC% genomes (Fig. S5).

The consensus-path consisted of using the ORF predictions of

five specific combinations of AGEs applied consecutively (Figs. 3

and 6). We limited the number of successive rounds to five as

relatively few new ORFs were added in additional rounds (Fig. 6).

For instance round 6 added only 152 new ORFs for E. coli K12

MG1655 (Fig. 6). Notably, the specificity decreases with each

round making the ORF start codon predictions of additional

rounds inaccurate (e.g. a 58.6% error-rate for each prediction after

round five in E. coli K12 MG1655, strongly increasing for the

successive rounds) (Fig. 6). Our consensus-path approach enables

one to estimate the reliability of prediction, and thus to assess the

need for a start codon to be manually curated. An optimal order

may work best for a given genome, but it might not work best for

another genome. Therefore, we tested if a ‘‘conserved’’ consensus-

path was present in the eight moderate GC% genomes (Figs. S6A

and S6B).

For the eight moderate GC% genomes the paths appear to

be similar (Figs. S6A and S6B). To determine the consensus-

path that is most conserved across the eight genomes, we

ranked for each genome the AGE combinations based on

specificity (Figs. S6A and S6B). A simple formula (formula 4) was

applied. It takes into account the rank, specificity and sensitivity

to determine for that AGE (combination) an impact on correctly

predicting ORF start codons (Fig. 6; see also Fig. S5 for the

extreme GC% genomes). The five selected AGE combinations

were: BASys-ISGA-RAST-xBASE in the first round, ISGA-

RAST-xBASE in the second, BASys-ISGA-RAST in the third,

ISGA-RAST in the fourth and BASys-RAST-xBASE in the fifth

round. This path was applied to the eight reference genomes

(Fig. 7). This resulted in a 9.764.4% gain in precision

compared to majority voting and a 1.763.7% gain in precision

compared to the single best performing AGE (Fig. 7). Based on

the specificity of particular AGE combinations in the five

rounds we derive a so-called projected confidence value. It is

calculated as the average specificity of a particular AGE

combination over the eight genomes (Fig. 6; calculated with

formula 2). The overall projected confidence values (i.e.

probability of an ORF start codon prediction to be correct)

for these AGE combinations were calculated to be: 95.761.4%

for a consensus of BASys-ISGA-RAST-xBASE, 75.662.3% for

ISGA-RAST-xBASE, 67.6626.0% for BASys-ISGA-RAST,

53.1619.1% for ISGA-RAST and 42.6612.3% for BASys-

RAST-xBASE.

Figure 2. Classification of AGE gene predictions. Gray: reference genes from a bacterial reference genome with which the AGE predictions are
compared. I (green): correct AGE prediction with matching coordinates. II (red): ‘‘incorrect’’ predictions with an incorrect start- and/or stop codon, but
belonging to the same mORF. Note that the majority of stop codons were correctly assigned (Fig. S1B). III (blue): false positive ORFs predicted by an
AGE and not present in the reference genome. IV: false negative predictions were allocated to AGEs that failed to predict a reference ORF.
doi:10.1371/journal.pone.0063523.g002
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Consistently Mis-predicted ORFs
Applying any AGE results in ORFs that are either not predicted

or incorrectly predicted compared to the reference ORFs. For the

four moderate GC% genomes E. coli K12 MG1655, B. subtilis 168,

L. plantarum WCFS1, L. lactis KF147 we investigated whether these

ORFs share common characteristics. Many of the ORFs present

in the reference genomes were consistently mis-predicted (i.e. ORF

is missed or has an incorrectly predicted start codon) by the AGEs:

208 for E. coli, 237 for B. subtilis, 103 for L. plantarum and 93 for L.

lactis (Fig. 4; Figs. S1 and S2). If we would be able to understand

Figure 3. The methodology of comparative annotation and a step-by-step description for the consensus-path. A. In our methodology,
a single genome of interest (1) is first uploaded to the four different AGEs (2) for ORF prediction and annotation (see also Table 1). After receiving all
predictions from the respective AGEs, a mORF assignment is performed (3), as described in Figure 1. Finally, on this set of mORFs for the genome of
interest, the AGE gene predictions are classified (e.g., correct and incorrectly predicted mORFs) (4) as described in Fig. 2. B. With the mORFs
generated as described in A, a consensus-path calculation can be performed to find the sequential (combinations of) AGEs predicting the subset of
mORFs under study with the highest specificity. This cycle (or iteration) consists of the following steps: (1) generating all possible AGE combinations
(single AGEs only are also included) within the set of engines used (2) calculating for each possible AGE combination (or single AGE) its specificity for
that subset of mORFs considered (see formula 2 in the materials and methods). AGE combinations selected in the previous round are omitted in
subsequent iterations. (3) The AGE combination (or single AGE) generating the highest specificity (hence, lowest error-rate) is selected. (4) These
predicted mORFs are added to the (existing) list of predicted mORFs (5), for the genome of interest. (6) mORFs selected in (4) are removed from the
mORFs file originally started with. The remaining mORFs are subjected to a next step of selecting the AGE (combination) with the highest specificity
(1). This iteration is repeated until for a given genome no new mORFs are added to the prediction results in (4).
doi:10.1371/journal.pone.0063523.g003
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why these predictions are going wrong, it might be possible to

improve current AGEs. We therefore analyzed false negative

ORFs that were consistently missed by all four AGEs (93 for E.

coli, 62 for B. subtilis, 37 for L. plantarum and 49 for L. lactis) and the

ORFS with consistently incorrectly predicted start codons by all

four AGEs (115 for E. coli, 175 for B. subtilis, 66 for L. plantarum and

44 for L. lactis), to determine whether they share characteristics

that might explain their incorrect start codon prediction. Smaller

reference ORFs (,750 nucleotides; nt) are significantly more often

missed by all AGEs (false negatives) (Fig. S7; chi-square p-values:

,0.0001 for any of these four genomes). This was not the case for

ORFs with consistently incorrectly start codons (Fig. S7; ,750 nt

chi-square p-values: E. coli: 0.70; B. subtilis: 0.07; L. plantarum: 0.48;

L. lactis: 0.36). Possibly, AGEs have a threshold at a specific ORF

length which could explain false negative ORF predictions.

The same phenomenon is observed for ORFs missed by our

consensus-path prediction (i.e. ORFs not called after five rounds of

consensus-paths). Compared to the corresponding reference

genomes, smaller ORFs (i.e. ,750 nt) are significantly more often

missed (chi-square p-values ,0.0001 for any of these four

genomes).

Apart from ORF length, we tested these missed and incorrectly

predicted ORFs for overrepresentation in other functional data

(predictions) such as protein functionality (COG [25], DAVID

database [26,27], Pfam [13]), and subcellular protein localization

(PSORTdb [28]). However, we did not find any significant

overrepresentation of these functional annotations in the subset of

incorrect predicted ORF start codons, nor in the false negative-

and/or positive ORF subset (data not shown).

Discussion

In order to improve start codon prediction in bacterial genomes

by current AGEs we present an alternative method to majority

voting [18]. We present a consensus-path for the prediction of

bacterial ORFs by combining AGEs that could save researchers

time, as manual curation of ORF start codons is tedious. As

specificity in ORF start prediction is leading in ORF start curation

the path is largely based on the specificity of AGEs (combinations).

For eight moderate GC% genomes, we observe similar paths

allowing us to postulate a generalized consensus-path for moderate

GC% genomes. This consensus-path is specific for the four AGEs

under study and might change as a result of changes within the

ORF prediction procedures used in the AGEs and certainly when

other AGEs are considered. Nevertheless, the application of an

optimal path allows gaining sensitivity while maintaining a high

specificity in ORF start codon prediction. In our case study, the

consensus-path prediction is performed by assessing the consensus

predictions of serially applying five AGE combinations: (i) BASys-

ISGA-RAST-xBASE, (ii) ISGA-RAST-xBASE, (iii) BASys-ISGA-

Table 1. Automated genome annotation engines (AGE) used in this study.

Engine name (AGE) Website of AGE Reference

BASys http://basys.ca/ Hemmerich et al., 2010

ISGA http://isga.cgb.indiana.edu/ Aziz et al., 2008

RAST http://rast.nmpdr.org/ Chaudhuri et al., 2008

xBASE http://www.xbase.ac.uk/annotation/ Van Domselaar et al., 2005

The listed AGEs are commonly used pipelines for analysis and annotation of gene function and start- and stop codons.
doi:10.1371/journal.pone.0063523.t001

Table 2. Genomes used in this study.

Strain (genome) GC%
Genome size
(Mb) Gram (+/2)

Sequence date*/last
update

NCBI accession
number

Number of
annotated
genes**

Bacillus subtilis 168 44 4.22 + 18-NOV-1997 20-JAN-2012 NC_000964.3 4262

Escherichia coli K12 MG1655 50 4.64 2 16-JAN-1997 11-JAN-2012 NC_000913.2 4235

Haemophilus influenzae Rd KW20 38 1.83 2 28-JUL-1995 15-OCT-2012 NC_000907.1 1715

L. lactis KF147 35 2.60 + 01-DEC-2009 21-NOV-2011 NC_013656.1 2605

Lactobacillus plantarum WCFS1 44 3.31 + 25-JUN-2001 21-NOV-2011 NC_004567.1 3128

Mycoplasma mobile 163K 25 0.77 2 13-APR-2004 01-APR-2010 NC_006908.1 661

Mycobacterium tuberculosis H37rv 66 4.41 2 13-SEP-2001 20-AUG-2012 NC_000962.2 4048

Neisseria meningitidis MC58 52 2.27 2 17-MAR-2000 19-JAN-2012 NC_003112.2 2122

Pseudomonas putida KT2440 61 6.18 2 08-APR-2002 27-SEP-2012 NC_002947.3 5424

Streptomyces coelicolor A3(2) 72 8.67 + 09-MAY-2002 19-JAN-2012 NC_003888.3 7833

Salmonella enterica subsp. enterica
serovar Typhi str. Ty2

52 4.79 2 25-SEP-2002 24-OCT-2012 NC_004631.1 4448

Streptococcus pneumoniae TIGR4 40 2.16 + 29-JUN-2001 20-JAN-2012 NC_003028.3 2163

Listed is genome (sequence) data from the twelve reference strains used in this study (genome annotations as of the December 07th 2012).
*According to GenBank (http://www.ncbi.nlm.nih.gov/genbank/) [11].
**Totaling both protein-coding and tRNA genes; no pseudogenes were included.
doi:10.1371/journal.pone.0063523.t002
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RAST, (iv) ISGA-RAST and (v) BASys-RAST-xBASE. Compared

to majority voting we observe with our consensus path method an

increase of 9.764.4% of predicted ORF start codons for which no

further manual curation would be required. This equals easily

hundreds of genes. Because application of consensus prediction is

straight-forward, a researcher could without complex procedures

benefit from an increase in annotation quality. Importantly, based

on a novel projected confidence value one can determine ORFs

for which likely an incorrect start codon prediction has been made.

These ORFs can subsequently be targeted for manual curation. In

addition, this information could be used to improve current ORF

start codon prediction services and tools. Especially ORFs

acquired in the fifth round of consensus-path prediction (E. coli:

99; B. subtilis: 97; L. plantarum: 58; L. lactis: 63) are notoriously

difficult to predict and likely require manual curation.

The results presented in this case study have been achieved with

the ORF start codon predictions of web-based genome annotation

services that are free to use. Although our conclusions are based on

four bacterial AGEs (Table 1) and eight moderate GC% bacterial

genomes, we believe that this consensus-path based on the four

AGEs can be applied to other moderate GC% organisms.

Moreover, the concept of our consensus-path can be applied to

other AGEs and other moderate GC% genomes. Compared to

majority voting, the consensus prediction of multiple AGEs over

multiple rounds of prediction results in 9.764.4% more correct

predictions and 12.764.8% less false positive and 6.960.5% less

false negative predictions (Fig. 7). Compared to the single, most

reliable engines with the highest impact (either ISGA or xBASE)

there is a slight gain in correct start codon prediction with

1.763.7% more correct predictions. However, 1.862.3% more

false positives and 5.661.8% more false negatives were observed

because some ORFs are over- or under predicted by a

combination of AGEs but not by another single AGE. In any

case, after applying the consensus-path approach, one is still able

to supplement the already acquired predictions with those of a

single AGE. However, these added predictions will generally be

more error-prone and no high level of projected confidence can be

assigned to them.

Figure 4. Variation in AGE predictions for four moderate GC% bacterial genomes. The start codon prediction accuracy by BASys, ISGA,
RAST and xBASE is illustrated in this vertical bar-graph for four bacterial reference genomes: B. subtilis 168, E. coli K12 MG1655, L. lactis KF147 and L.
plantarum WCFS1. On the y-axis, the different classes of predicted ORF starts compared to the respective reference genomes are shown. A black
colored box is present only in combination with false positive predictions (blue). It signifies that for these mORFs no prediction data was provided by
any of the other AGEs. A total of 82 unique color/prediction classes were defined. They were plotted on the y-axis and a number was assigned
according to its prevalence per bacterial genome. These numbers are shown as a bar-graph on the x-axis: as a fraction/percentage of the total
number of mORFs available for that genome. In order to reduce the number of classes, those that occurred on average less than 0.50% in the four
genomes were removed leaving 22 prediction classes. See for all 82 classes Figure S2.
doi:10.1371/journal.pone.0063523.g004
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In the coming years, automated (genome) annotation processes

will keep continuing to improve to the point that, ideally, barely

any manual curation will be necessary. Currently, however,

researchers have to be careful with interpreting AGE ORF start

predictions. From this study we conclude that every AGE has its

own unique strengths and weaknesses, likely related to the

underlying tools and protocols used (Table S1). Therefore, it

could be rewarding to combine AGEs in order to benefit from

comparative annotation strategies; and thus to further increase the

specificity and sensitivity of ORF predictions for a given genome.

Materials and Methods

Genome Sequences and Annotations
The predicted ORF start codon coordinates were evaluated by

validation with ORFs from reference genomes from twelve well-

studied strains of different bacterial species. This set of twelve

genomes consists of eight moderate GC% genomes: E. coli K12

MG1655 (50% GC) [29], B. subtilis 168 (44%) [30], L. plantarum

WCFS1 (44%) [31], L. lactis KF147 (35%) [32], S. pneumoniae

TIGR4 (40%) [33], S. enterica subsp. enterica serovar Typhi str. Ty2

(52%) [34], N. meningitidis MC58 (52%) [35] and H. influenzae Rd

KW20 (38%) [36]. In addition, four more extreme GC% genomes

were analyzed: M. tuberculosis H37rv (66% GC) [37], M. mobile

163K (25%) [38], P. putida KT2440 (61%) [39] and S. coelicolor

A3(2) (72%) [40] (Table 2).

AGEs
For this study four microbial AGEs were selected: BASys [41],

ISGA [42], RAST [43] and xBASE [44,45] (Table 1). Although

there are other excellent online AGEs available, we selected these

four based on their relatively short queues and processing time,

and on their easily exportable annotation data. These engines are

all online, free-of-charge initiatives for non-profitable scientific

research. FASTA-files of the reference genomes (Table 2) were

uploaded to the engines, and default server settings were applied

with exception of the following non-trivial options: for RAST:

‘‘automatically fix errors’’, ‘‘fix frameshifts’’ and ‘‘backfill gaps’’

were selected; for ISGA: the standard/suggested ‘‘ISGA Prokary-

otic Annotation’’ pipeline of February 2011 was employed. ISGA

and xBASE use GLIMMER version 3 for its ORF prediction,

BASys uses GLIMMER version 2.1.3. RAST uses a custom ORF

caller called ‘‘RAST’’ (which was used in this study); however,

RAST also allows the use of GLIMMER version 3.

Comparison of ORF-predictions by Defining Meta ORFs
For comparing start codon coordinate positions we used in-

house Perl scripts for analyzing AGE annotation data. This

software package can be downloaded from https://trac.nbic.nl/

companion/and is open for public use. This tool – which we have

named COMPANION: an acronym for comparative genome

annotation – evaluates the start- and stop-codon coordinates of (i)

ORFs predicted by the different AGEs (Table 1), and (ii) ORFs

provided by the reference genome (Table 2). It then groups these

Figure 5. Start codon prediction performance by majority voting versus ISGA and RAST. This radar-plot illustrates start codon annotation
results for four moderate GC% reference genomes B. subtilis 168, E. coli K12 MG1655, L. lactis KF147 and L. plantarum WCFS1 determined by majority
voting with BASys, ISGA, RAST and xBASE predictions, or by a single AGE. With majority voting a prediction is trusted if more than 50% of the AGEs
predict exactly the same start codon coordinate for a given mORF. Predictions were evaluated with the reference genomes (Table 2). The axis
gridlines in all directions are in steps of 100 or 200 ORFs; with incorrect predicted ORF start codons (0u), false positively (FP) and false negatively (FN)
predicted ORF start codons (respectively 120u and 240u).
doi:10.1371/journal.pone.0063523.g005
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Figure 6. Applying multiple rounds of consensus predictions. Plotted in these graphs for four moderate GC% prokaryotic reference strains B.
subtilis 168, E. coli K12 MG1655, L. lactis KF147 and L. plantarum WCFS1 (Table 2) is the error-rate for start codon coordinate prediction (x-axis) versus
the new ORFs gained per prediction round (y-axis) for a selected AGE (diamond) or a selected combination of AGEs - two (circle), three (square) or
four engines (triangle) - with the lowest calculated error-rate for that concerning round of prediction. ORFs were only taken into account when they
were in consensus for their start codon coordinate prediction. Error-rates were calculated as discussed in materials and methods. A: BASys; B: ISGA; C:
RAST and D: xBASE. Note that the trend line is merely for illustrative purposes: it does not signify an actual relation between the data points.
doi:10.1371/journal.pone.0063523.g006

Figure 7. Analysis of start codon prediction performance for single engines, majority voting and consensus prediction. For three
methods of processing AGE prediction data: (i) the single, most reliable AGE with highest impact (ISGA or xBASE, this varies between test strains;
calculated with formula 4), (ii) majority voting (MV) and (iii) consensus predictions (Cons. Pr.) are shown for four moderate GC% reference strains from
different species: B. subtilis 168, E. coli K12 MG1655, L. lactis KF147 and L. plantarumWCFS1. The number of mORFs is indicated which were incorrect-,
correct- or false positive predictions according to the reference genomes, by applying each method of prediction. With majority voting a prediction is
trusted if more than 50% of the AGEs for a mORF predict exactly the same start codon coordinate for that ORF. With consensus predictions we trust
only the in consensus start codon prediction by a combination of AGEs. Also shown are: coverage (percentage correctly and incorrectly predicted
ORFs, which are present in the reference genome), the total number of predicted ORFs, the fraction of missed ORFs according to the reference
genome (FN; false negatives), and the fraction of over-predicted ORFs (FP; false positives). Bottom row (below the arrow heads): the predicted ORFs
and the percentage of correct and incorrect predictions for the three methods.
doi:10.1371/journal.pone.0063523.g007
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ORF coordinates into equivalent ORFs based on position and

length of these ORFs. We name these ORF representatives meta

ORFs (mORF). ORFs of which the start or stop codon differs less

than 10% (of the ORF length of the shortest ORF of the two

ORFs being compared) compared to its reference ORF start or

stop codon were grouped into the same mORF prediction (Fig. 1).

Perl scripts were used to extract from this table for each mORF

the start codon for the respective engines. As both predictions and

reference genome annotations are merged, for each mORF the

predictions can be compared to the (if available) high quality

reference ORF start codon annotations. The COMPANION tool

was also used for statistical analysis and for determination of a

consensus-path as mentioned below.

Statistical Analysis on Meta ORFs
For each reference genome, the predicted start codons from the

various AGEs were matched to those of the corresponding ORFs

in the reference genome (Table 2 and Fig. 2). If a specific ORF

from the reference genome was not represented by an ORF

predicted by an AGE (combination), we defined that ORF start

codon prediction to be false negative for those AGEs. If an ORF

was predicted by an AGE but it was not present in the reference

genome, we defined that ORF as a false positive prediction. When

a predicted ORF start codon matched that in the reference

genome (hence, start codon predictions from the same mORF;

Fig. 1), it was considered a correct en therefore true positive

prediction. In case a predicted ORF was present in a reference

genome (same mORF) but its start codon did not match that of the

reference genome, it was considered an incorrect prediction.

Error-rate was calculated as follows (formula 1):

Error rate

~

P
(Incorrect Predictions

zFalse Positive Predictions)
P

(True Positive PredictionszIncorrect Predictions

zFalse Positive Predictions)

Specificity (a number between 0 and 1) was subsequently

calculated (formula 2):

Specificity~(1{Errorrate)

Sensitivity was calculated as follows (formula 3):

Sensitivity~

P
True Positive PredictionszIncorrect Predictions)

Number of Ref : Genome ORFs

Determination of the Consensus-path
Combining specificity, sensitivity and rank (where rank is the

order in which AGE (combinations) are predicted; see Fig. 6 and

Fig. S5), enables determining the impact of a certain prediction

method (i.e. a single AGE, majority voting or a consensus-path) on

the correct prediction of subset of ORF start codons under study.

To account for AGE (combinations) that perform less on specific

genomes, we incorporated the rank of prediction specificity into

our formula for determining the impact for a prediction method.

This was to account for that the order of prediction by an AGE

(combination) is crucial in our approach (Fig. 3B). Based on the

impact of a particular AGE (combination) for a particular genome,

we can calculate the average impact over eight moderate GC%

genomes of that AGE (combination). This impact for a prediction

method was calculated as follows (formula 4):

Impact~(1{Specificity) � Sensitivity
Rank

Formula 4 enables us to - for each genome - determine an

impact value for each AGE (combination). This allows establishing

a general consensus path (Fig. 3) by taking the highest impact values

for AGE (combinations) over the selected eight moderate GC%

genomes (Figs. S6A and S6B). This results in the average impact

value.

Because we analyze genomes with trusted ORF start annota-

tions (Table 2), we can derive projected confidence values for the

selected AGE (combinations) part of the consensus-path. These are

estimations of the probability of making correct ORF start codon

predictions (formula 2) when applying certain AGE (combinations)

to a new genome. Therefore, we are able to assign to each AGE

(combination) its own general projected confidence value, which is an

average of all projected confidence values for an AGE (combina-

tion) over the eight moderate GC% genomes.
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