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Abstract. LOPES is a digital antenna array for the radio measurement of cosmic-ray air
showers at energies around 1017 eV. It is triggered by the KASCADE-Grande air-shower array
at the Karlsruhe Institute of Technology (KIT), Germany. Because of an absolute amplitude
calibration and a sophisticated data analysis, LOPES can test models for the radio emission to an
up-to-now unachieved level, thus improving our understanding of the radio emission mechanisms.
Recent REAS simulations of the air-shower radio emission come closer to the measurements
than any previously tested simulations. We have determined the radio-reconstruction precision
of interesting air-shower parameters by comparing LOPES reconstructions to both REAS
simulations and KASCADE-Grande measurements, and present our latest results for the angular
resolution, the energy and the Xmax reconstruction based on the radio measurement of about
500 air showers. Although the precision of LOPES is limited by the high level of anthropogenic
noise at KIT, it opens a promising perspective for next-generation radio arrays in regions with
a lower ambient noise level.
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1. Introduction

The radio detection of cosmic-ray air showers is under investigation since almost 50 years [1],
[2]. Reconstructing air-shower parameters, like the energy and the atmospheric depth of the
shower maximum, Xmax, turned out to be much more challenging than expected. First, a
sufficient understanding of the radio emission is necessary, which requires detailed simulations
taking into account not only the dominant geo-magnetic emission process [3], [4], but also the
sub-dominant Askaryan effect1 [5], and the effect of the refractive index of air [6], [7], which
affects the coherence conditions for the radio emission. Second, natural and especially human-
made radio background strongly affects the radio measurements and leads to a relatively high
detection threshold around 1016−1017 eV. Still, research on the radio technique continues, since
it offers a duty cycle close to 100%, which allows to increase the effective observing time by an
order of magnitude compared to the established air-fluorescence and air-Cherenkov techniques.

LOPES [8], [9] is a digital radio-antenna array triggered by the co-located KASCADE-
Grande experiment [10], [11] at the Karlsruhe Institute of Technology (KIT), Germany. Different
antenna configurations and orientations have been used to study the polarization of the radio
signal [12], [13], which is consistent with a dominant geo-magnetic origin. The results presented
here, have been obtained with east-west aligned antennas within an effective bandwidth of
43 − 74MHz. To identify the air-shower radio pulses in the noisy environment of KIT, the
individual LOPES antennas are digitally combined to an interferometer using an open-source
analysis software [14]. Moreover, several steps of data conditioning improve the signal-to-noise
ratio, and raw data are corrected for the phase and amplitude behavior of the LOPES hardware,
which has been determined in separate calibration measurements [15], [16]. More details on the
setup and the analysis procedures can be found in references [17], [9].

2. Results

The usability of the radio technique for ultra-high energy cosmic ray physics depends on
reconstruction uncertainties of the important air-shower parameters, i.e. the arrival direction,
the energy of the primary particle, and the atmospheric depth of the shower maximum, Xmax,
which is correlated with the primary mass. In principle, this precision can be estimated with
simulations, but although the theoretical understanding of air-showers and their radio emission
has dramatically improved in recent years, it still has deficiencies. REAS3 [18], a Monte-Carlo
simulation code taken into account both the geo-magnetic radio emission as well as the Askaryan
effect, can reproduce the amplitude of LOPES events within the measurement uncertainties, but
produces too steep lateral distributions [19], [20]. This might be related to the refractive index
now implemented in REAS (v3.11) currently under investigation. Thus, we have determined
the radio-reconstruction precision experimentally, by comparing the LOPES reconstruction to
KASCADE-Grande, respectively KASCADE, reconstructions of the same events (figure 1).

2.1. Arrival direction

The arrival direction is reconstructed by LOPES with cross-correlation beamforming [21]. A
fit using the KASCADE-Grande direction as input determines the direction by maximizing the
cross-correlation amplitude. The KASCADE-Grande angular resolution is negligible against the
demonstrated upper limit of the LOPES angular resolution of about 0.7◦. A potential bias of
the KASCADE-Grande input direction to the results has been studied and can be neglected
as well [22]. Furthermore, we observe a slightly better angular resolution when using a conical
wavefront for the beamforming instead of a spherical wavefront, which supports our recent result
that the radio wavefront is approximately conical [23].

1 Askaryan effect = radio emission due to the net charge variation during the shower development
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Figure 1. Comparision of the KASCADE-Grande and LOPES direction reconstructions (left)
and energy reconstructions (right). All stated numbers are determined with Gaussian fits.

2.2. Energy

Theoretically an energy precision as good as a few percent might be possible [24], but in a
real experiment noise and calibration uncertainties limit the achievable precision to 5 − 10%.
In addition, there are systematic uncertainties on the absolute energy scale, especially due
to our limited knowledge of air-showers physics. The energy of the primary particle has
been reconstructed with LOPES by two different methods: First, using the amplitude of
the cross-correlation beam after correction for the distance to the shower axis by assuming
an exponentially-decreasing lateral distribution [25]. Second, interpolating the individually
measured lateral distributions to a typical axis distance. Since this specific distance has only
little impact on the results shown here, we have used 100m for all events (a more sophisticated
variant of this method takes into account that the optimal distance depends slightly on the
shower inclination [26]). For both methods, we correct the amplitude for the geo-magnetic effect
dividing by the east-west projection of the Lorentz-force vector, which implies a correction on
the azimuth and zenith angle. We do not observe an improvement of the energy reconstruction
by applying an additional correction for the shower inclination as proposed by Allan [2]. Such
an additional correction might only be adequate when the amplitude is measured at larger
distances, since the slope of the lateral distribution depends on the zenith angle [27]. We have
cross-calibrated the LOPES energy scale with the KASCADE energy, i.e. centering the energy
distributions (figure 1, right) around 0. The width of the distributions is about 20% for both
reconstruction methods and seems to be dominated by the KASCADE energy uncertainty, which
allows us to set an upper limit for the LOPES energy precision of about 20%.

2.3. Atmospheric depth of the shower maximum Xmax

The sensitivity of radio measurements to the longitudinal shower development has recently
been confirmed experimentally [28]: the slope of LOPES lateral distributions is correlated
with muon measurements of the KASCADE-Grande muon-tracking detector [29], which are
already known to be sensitive to the shower development. The results support the theoretical
expectation that the radio signal is primarily sensitive to the geometrical distance between the
radio array and the shower maximum, which implies a sensitivity to Xmax. We have estimated
the LOPESXmax precision from the observed correlation to about 115 g/cm2. Moreover, we have
reconstructed Xmax for LOPES measurements in two different ways using REAS3 simulations
for calibration. Reconstructing Xmax with the slope of the lateral distribution yields a precision
of about 100 g/cm2 [30], reconstructing Xmax via the cone angle of the radio wavefront results
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in a precision of about 200 g/cm2 [23]. In both cases, the LOPES reconstruction seems to be
limited by the high level of ambient radio background at KIT, but REAS3 simulations indicate
that in low-background environments a precision of at least 30 g/cm2 is feasible.

3. Conclusion

By comparing LOPES and KASCADE-Grande measurements of the same air-showers, we
experimentally estimated the reconstruction precisions of LOPES radio measurements: 0.7◦

for the arrival direction, an upper limit of 20% for the energy, and 115 g/cm2 for Xmax. Since
LOPES suffers from a high level of anthropogenic radio background, next-generation radio arrays
in regions with lower background, like AERA [31] and Tunka-Rex [32], are expected to achieve
a significantly better precision. Moreover, these experiments allow to cross-calibrate the radio
reconstruction of the energy and of Xmax with the precise air-fluorescence, respectively air-
Cherenkov technique, and thus can test whether the radio precision can finally compete with
the established methods.
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[19] Schröder F G 2011 PhD Thesis URL digbib.ubka.uni-karlsruhe.de/volltexte/1000022313

[20] Ludwig M 2011 PhD Thesis URL digbib.ubka.uni-karlsruhe.de/volltexte/1000023592

[21] Nigl A et al - LOPES Collaboration 2008 Astronomy & Astrophysics 487 781–788
[22] We thank Johanna Lapp for her work on the LOPES direction reconstruction during her bachelor thesis.
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