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Abstract

We review quantization of gauge fields using algebraic properties of 3-regular graphs. We derive the Feynman
integrand at n loops for a non-abelian gauge theory quantized in a covariant gauge from scalar integrands
for connected 3-regular graphs, obtained from the two Symanzik polynomials.

The transition to the full gauge theory amplitude is obtained by the use of a third, new, graph polynomial,
the corolla polynomial.

This implies effectively a covariant quantization without ghosts, where all the relevant signs of the ghost
sector are incorporated in a double complex furnished by the corolla polynomial —we call it cycle homology—
and by graph homology.



1 Introduction

Feynman rules for scalar field theories reveal astonishing connections to algebraic geometry. These are most
easily seen upon the use of parametric representations, which furnish renormalized integrands suitable to
be analysed in mathematical terms. Crucial are here the two Symanzik polynomials, which underlie the
parametric representation [1, 2, 3, 4, 5, 6, 7].

If one wants to generalize this approach into the realm of gauge theories, a pedestrian approach would be
to turn every tensor integral appearing from any single graph into the parametric representation, creating a
bewildering number of tensor integrals for each and any contributing graph in a non-abelian gauge theory.
While effective on-shell methods have been suggested as an alternative and indeed succeeded at sufficiently
low loop orders [8, 9], the question how the transition from scalar to gauge field theory can be formulated
mathematically remained open.

Here we establish an answer and suggest a more succinct and, we believe, more elegant approach. It
allows us to obtain the renormalized integrand of a n-loop scattering amplitude in a gauge theory from the
use of the scalar amplitude with cubic interaction and through one further graph polynomial, beyond the
use of the two Symanzik polynomials, in one go.

We eliminate thereby the need to introduce ghosts in the context of covariant quantization and replace
their use by the use of the corolla polynomial. This polynomial, which incorporates all the necessary signs
of closed ghost loops, is still a strictly positive polynomial. This property is maintained in the pure Yang–
Mills sector. We also generalize it to enable the inclusion of fermions. Positivity then depends on the
representation of the gauge group which we choose for fermionic matter fields.

We believe our approach is useful as it is an approach to gauge theory amplitudes which does not rely on
on-shell recursion relations and methods of cut-reconstructibility. This has become the standard approach
to gauge theory amplitudes in particular in the context of N = 4 supersymmetric theories in recent years.
It nevertheless has shortcomings with respect to the consideration of loop amplitudes, and seems rather
restricted to the context of planar graphs, preferably to be considered in a theory with a vanishing β-
function.

Here, we offer an approach which is based on a mere study of the two Kirchhoff polynomials, the corolla
polynomial of [10], the combinatorics of parametric renormalization [17], and nothing else to obtain the
renormalized integrand of a generic gauge theory amplitude from the amplitude of a scalar field theory with
3-valent vertices only.

In this paper, we introduce our approach. Comparison of graph- and cycle homology with BRST homol-
ogy, an interpretation of Slavnov–Taylor identities through corolla differentials, and computations of gauge
theory amplitudes will be presented in future work, as will be a discussion of gravity Feynman rules from
this approach.

Acknowledgments

M.S. thanks Erik Panzer for many helpful discussions. D.K. is grateful to David Broadhurst, Francis Brown,
Spencer Bloch, Erik Panzer, Oliver Schnetz and Karen Yeats for shared collaborations and insights into the
topics of this work.

1.1 Results

We prove that the Feynman integrand at any finite loop order n in gauge theory can be obtained from the
study of two different complexes: graph homology and cycle homology, acting on 3-regular connected scalar
graphs.

Both complexes are reflected in the analytic structure of the Feynman integrand for an amplitude: residues
in parametric space along co-dimension k hypersurfaces biject with the integrands of graphs having k distinct
4-valent vertices and thus reflect graph homology, while cycle homology pairs with the structure of the corolla
polynomial defined below in Sect.(6), see also [10].
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In fact, we prove that there exists a corolla differential DΓ such that the Feynman integrand IΓ for
connected 3-regular graphs Γ,

IΓ =
e
−

|NΓ|Pf
ψΓ

ψ2
Γ

, (1)

gives rise, when summed over connected graphs Γ, to the total gauge theory amplitude, using DΓIΓ. The
differential DΓ arises from the corolla polynomial CΓ, which is a graph polynomial based on half-edge
variables, upon replacing each half-edge variable by a suitable differential operator assigned to any half-
edge.1

In a gauge theory, we must deal with the simultaneous requirements of unitarity of the scattering matrix
S and of covariance of fields which we assume to be representatives of the Poincaré group. These two
requirements severely restrict possible Feynman rules [11, 12, 13]. In particular, unphysical degrees of
freedom must be eliminated from observable amplitudes.

For the 3- and 4-valent vertices of gauge boson interactions this requires that those vertices are not
independent [14]. A 4-valent vertex has a Feynman rule which can be written in terms of two 3-valent
vertices connected through a marked edge, see Eq.(8), summing over the three s, t and u channels.

Actually, we have to clarify a few conventions from the start: we will mark in graphs edges and vertices
in various ways and let

G
r,l

n ,m

be the set of all graphs with external half-edges specifying the scattering amplitude r, with l loops and
n 4-gluon vertices, and m ghostloops. Similarly, we will indicate the number of marked edges and other
qualifiers as needed.

If we want to leave a qualifier l, n,m, · · · unspecified (so that we consider the union of all sets with any
number of such items), we replace it by /. A similar notation will be used below for sums or series of graphs

Xr,l

n ,m

which are sums (for fixed l) or series (for l = /) of graphs weighted by symmetry, colour and other such
factors as defined below. We dub such series combinatorial Green functions later on.

We can then consider graph homology, for shrinking an edge between two 3-valent vertices gives a 4-valent
vertex. In particular, the elimination of an edge through the graph homology boundary s, see Def.(4.13),
must be balanced against graphs which contain that newly generated 4-valent vertex, which can again be
homologically expressed through a generalized boundary S, S2 = 0, defined in Def.(4.16).

More precisely, let e be an edge connecting two 3-gluon vertices in a graph Γ, χe+ be the operator which
shrinks edge e, and we extend χe+ to zero when acting between any other two vertices. Let χ+ =

∑
e χ

e
+, see

Def.(4.2), a sum over all internal edges. Let S, with S2 = 0, be that generalized graph homology operator.
Then, for a gauge theory amplitude r:

Theorem 1.1. Let Xr,n

0 ;j
be the sum of all 3-regular connected graphs, with j ghost loops, and with external

legs determined by r and loop number n, weighted by colour and symmetry, let Xr,n

/ ,j
be the same allowing

for 3- and 4-valent vertices. We have

i) : eχ+Xr,n

0 ;j
= Xr,n

/ ;j
,

ii) : Seχ+Xr,n

0 ;j
= 0.

This theorem ensures that 3- and 4-valent vertices match to fulfil simultaneously the requirement of
relativistic field theory and S-matrix theory.

These two requirements also demand that unphysical degrees of freedom propagating in closed loops do
cancel. For this, we replace graph homology by cycle homology and can proceed analogously.

1Equation (1) above needs a correction for quadratic sub-divergences, which will be provided in detail later on
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Let δC+ be the operator which marks a cycle C through 3-valent vertices and unmarked edges, extend δC+
to zero on any other cycle. Let δ+ =

∑
C δ

C
+ sum over all cycles, see Def.(4.23). Let t be the corresponding

cycle differential t, defined in Def.(4.28). Let T , with T 2 = 0, be the generalized cycle homology operator
introduced in Def.(4.31). Then:

Theorem 1.2. Let Xr,n

j ;0
be the sum of all connected graphs with j 4-vertices contributing to amplitude r

and loop number n and no ghost loops, weighted by colour and symmetry, Xr,n

j ;/
be the same allowing for

any possible number of ghost loops. We have

i) : eδ+Xr,n

j ;0
= Xr,n

j ;/
,

ii) : Teδ+Xr,n

j ;0
= 0.

These two operations are compatible:

Theorem 1.3. i) We have [s, t] = [S, T ] = 0 and

Teδ++χ+Xr,n

0 ;0
= 0, Seδ++χ+Xr,n

0 ;0
= 0.

ii) Together, they generate the whole gauge theory amplitude from 3-regular graphs:

eδ++χ+Xr,n

0 ;0
= Xr,n

/ ;/
=: Xr,n.

Remark 1.4. Xr,n is the only non-trivial element in the cycle and graph homology which we here construct.
It will be an object of future study.

Finally, we get the Feynman integrands in the unrenormalized and renormalized case for a gauge theory
amplitude r from 3-regular connected graphs of scalar fields.

Theorem 1.5. The full Yang–Mills amplitude UΓ for a graph Γ can be obtained by acting with a corolla
differential operator (see below) on the scalar integrand UΓ({ξe}) for Γ, setting the edge momenta ξe = 0
afterwards.

Moreover, UΓ gives rise to a differential form JUΓ

Γ and there exists a vector HΓ such that the unrenormal-
ized Feynman integrand for the sum of all Feynman graphs contributing to the connected k-loop amplitude r
is

Φ(Xr,k) =
∑

|Γ|=k,res(Γ)=r

colour(γ)

sym(Γ)

∫
(HΓ · JUΓ

Γ ),

The renormalized analogue is given by writing U
R

Γ instead of UΓ.

1.2 Organization of the paper

The next section gives a detailed account of our graph-theoretic notions including graph homology. Then,
we turn to the structure of Feynman rules for scalar fields in the parametric representation, including
renormalization as rigorously detailed for parametric representations in [17]. The peculiar situation in gauge
theory is discussed in the fourth section, and a review of gauge theory from the viewpoint of Hochschild
cocycles and the corresponding combinatorial Green functions is provided in the fifth. The sixth section
combines these results with the corolla polynomial and the corolla differentials, culminating in Theorem 1.5
above. Short conclusions finish the paper.

2 Graphs

We first define the necessary graph theoretic notions.

3



2.1 Vertices, edges, half-edges

We consider connected graphs with labelled edges and vertices. We consider graphs as elements of a free
commutative Q-algebra H , which is graded as a vectorspace by the first Betti number, the number of
algebraically independent cycles in a graph.

For a graph Γ, we let Γ[1] = Γ
[1]
E ∪ Γ

[1]
I ≡ EΓ = EΓ

E ∪EΓ
I be the set of its external and internal edges and

let Γ[0] ≡ V Γ be the set of its vertices.
We do not allow for internal edges which form self-loops (tadpoles): every internal edge can be considered

as a pair of two distinct vertices.2

For a vertex v ∈ V Γ, let n(v) be the set of edges adjacent to v, and its cardinality |n(v)| be the valence
of v. For an edge e ∈ EΓ, we let v(e) be the set e[1] ≡ e ∩ V Γ. If |v(e)| = 2, the edge e is an internal edge.
If |v(e)| = 1, e is an external edge, as self-loops are excluded.

Definition 2.1. A pair (v, e) with e ∈ n(v) is called a half-edge. We let HΓ be the set of half-edges of Γ.

An internal edge e defines two half-edges uniquely.3 An ordering of the set v(e) defines an orientation of
that edge. Reversing that ordering is called an edge swap.

An oriented internal edge e connects two vertices, which we call source, s(e) ∈ V Γ, and target, t(e) ∈ V Γ,
for an edge oriented from source to target.

Half-edges will play an important role for us as our new graph polynomial, which we dub the corolla
polynomial below, is actually based on the half-edges of a graph.

Definition 2.2. The set of all half-edges incident to a given vertex,

cor(v) :=
⋃

e∈n(v)

(v, e),

is called the corolla at v.

Definition 2.3. We denote
Pe := cor(s(e))cor(t(e)),

as an ordered pair of corollas.

We call two such pairs Pe, Pf disjoint if the edges e and f are disjoint.
External edges e at v are identified with the half-edge (v, e) and are always regarded as oriented to the

vertex.

Definition 2.4. We say that a graph is j-regular if all vertices have valence j, |n(v)| = j, ∀v ∈ V Γ.

Let Γ be 3-regular. Let C Γ be the set of all its cycles (not circuits!). For C ∈ C Γ and v ∈ C a vertex, let
vC ∈ HΓ be the unique half-edge at v not in Ci.

Definition 2.5. A graph is n-connected if it is connected after removal of any n of its internal edges.

Remark 2.6. A 2-connected graph is commonly called one-particle irreducible (1PI) in physics.

2.2 Orientation and Cycles

We need oriented graphs for two reasons: to define graph homology, and to have cyclic ordering at each
corolla so that each half-edge incident to a vertex has a precursor and a successor at that vertex.

Let Mk be an oriented Riemann surface of genus k. We call a graph k-compatible, if it can be drawn on
Mk without self-intersections.

2The Q-vectorspace of graphs with self-loops forms an ideal and co-ideal Itad, and we can effectively work in a quotient
H/Itad.

3Note that we discard self-loops indeed. As a consequence, a chosen vertex and an edge incident to that vertex label a
half-edge uniquely.
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Definition 2.7. We say a graph is of genus k if it is k-compatible but not j-compatible for any j < k. A
planar graph is of genus 0.

Definition 2.8. An orientation (Γ, or) of a graph Γ is an ordering of V Γ together with an ordering of each
v(e) for all internal edges e. Here, an ordering of v(e) is the choice of one of the two possible bijections
between v(e) and the set {s(e), t(e)}.

Two orderings distinguished by an even number of vertex permutations and edge swaps are equivalent.
We write (Γ, or) for an oriented graph. We set (Γ, or) = −(Γ, or′) for or, or′ inequivalent orientations of the
same graph.

Lemma 2.9. (Conant, Vogtmann [15]) An ordering of a 3-regular graph is equivalent to a cyclic ordering
of all its corollas.

Definition 2.10. For an oriented 3-regular graph of genus k and e ∈ n(v), let e+ and e− be the edges before
(e−) and after (e+) edge e in the cyclic ordering of the corolla at v, induced by the orientation of Mk.

Remark 2.11. Note that such an orientation of a graph is compatible with a strict ordering of edges: the
ordering of vertices orders the pair s(e), t(e) lexicographically (with s(e) < t(e) say), while multiple edges
having the same source and target are ordered by the orientation of the underlying Riemann surface.

2.3 Graph homology

We will use various homologies on graphs, with corresponding boundary operators, and suitable variants to
study the filtrations of graphs by the number of ghost cycles and the number of internal 4-valent vertices.
We start with standard graph homology for scalar graphs with 3- and 4-valent vertices.

2.3.1 Graph homology s̃ (following Conant, Vogtmann [15])

For an edge e in a graph Γ, let Γe be the graph where e shrinks to zero length. Its orientation is obtained as
follows: we permute vertex labels collecting signs until the edge e connects vertex 1, s(e) = 1, to vertex 2,
t(e) = 2. Let σ be the sign of the necessary permutations. Then we shrink edge e and the so-obtained vertex
is labelled 1. We inherit all remaining edge orientations and the ordering of vertices remains unchanged,
with vertices 3, 4, . . . , |V Γ| relabelled to 2, 3, . . . , |V Γ| − 1. This defines an orientation of Γe. If σ is negative,
we change the orientation by en edge swap.

For an oriented graph Γ, let

s̃Γ =
∑

e∈EI

Γe,

be a sum of graphs obtained by shrinking edge e and assigning the orientation as above. Graph homology
comes from the classical result

Theorem 2.12. (graph homology) s̃ ◦ s̃ = 0.

2.3.2 Graphs with marked vertices

We can restrict graph homology to graphs with vertex valence bounded by |n(v)| ≤ 4 by setting all terms
which have vertices of valence higher than four to zero in the image of s̃.

For such graphs, let V3 be the set of 3-valent vertices, V4 be the set of 4-valent vertices, so V Γ = V3 ∪ V4.
Let W4 ⊂ V4 be a chosen subset. If a vertex w ∈ W4, call it a marked vertex. A pair (Γ,W4) is a graph

with marked vertices.
Let uw be the obvious map which removes the marking at vertex w, and W4(Γ) be the map which marks

the vertices of Γ which are in W4. So uw(Γ,W4) = (Γ,W4 − w). Note that an orientation of Γ induces an
ordering of the set W4. Set σ(w) = j if and only if w ∈ W4 is in the j-th place in that ordering.
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We extend graph homology with boundary s̃ to graphs with marked 4-valent vertices and boundary S̃
by setting

S̃(Γ,W4) = (s(Γ),W4) + (−1)|V4|
∑

w

(−1)σ(w)(Γ,W4 − w). (2)

Proposition 2.13. S̃ is a differential:
S̃2 = 0.

Proof. We compute:

S̃2(Γ,W4) = S̃

(
(s̃(Γ),W4) + (−1)|V4|

∑

w

(−1)σ(w)(Γ,W4 − w)

)

= (−1)|V4|+1
∑

w

(−1)σ(w)(s̃(Γ),W4 − w) + (−1)|V4|
∑

w

(−1)σ(w)(s̃(Γ),W4 − w)

+(−1)|V4|
∑

w∈W4

(−1)σ(w)
∑

u∈W4−w

(−1)σ(u)(s̃(Γ),W4 − w − u)

= 0,

where the last line vanishes due to the ordering of vertices in W4, which makes sure that each pair (w, u)
appears twice with a relative sign.

We will soon see (Prop.(4.21)) that the sum over all connected graphs is in the kernel of S, the gauge-

theory equivalent of S̃.

Remark 2.14. While the above operators s̃, S̃ were defined on scalar graphs, we also have variants s, S
for gauge theory graphs where we have internal gauge boson or ghost propagators or fermion propagators.
There are obvious restrictions then to shrink only edges which connect two 3-gluon vertices. The detailed
homology operations available in such circumstances are exhibited in Section 4.

We now make graphs into a Hopf algebra.

2.4 Algebra of graphs

As we said before, we consider graphs as generators of a free commutative Q-algebra of graphs H . We write
I for the unit represented by the empty set, with disjoint union of graphs furnishing the product.

Definition 2.15. The number of external edges nE := |EΓ
E | assigns the weight

ωΓ := 4− nE = |V Γ
3 | − 2|EΓ

I |+ 4|Γ|,

to a graph.

A graph has positive valuation if ωΓ ≥ 0. A graph has ι-valuation if ωΓ ≥ ι. Note that the valuation of
a graph is invariant under shrinking edges.

The most obvious Hopf algebra structure is given by a co-product based on subgraphs of non-negative
weights:

∆Γ = Γ⊗ I+ I⊗ Γ +
∑

∅6=γ=
∏
γi,ωγi≥0

γ ⊗ Γ/γ,

is a coproduct, for a connected commutative Hopf algebra with unit I and the span of all non-trivial graphs
as augmentation ideal, as usual [16].

Remark 2.16. Note that we assign to a graph γ the powercounting weight ωΓ of four dimensional gauge
theory: a graph with four external half-edges is logarithmically divergent, a graph with three external half-
edges is linear divergent, and a graph with two external half-edges is quadratically divergent.
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Definition 2.17. Let f := {γi} be a subset of proper positive valued 1PI subgraphs γi ⊂ Γ such that any
two elements γi, γj of f fulfill: γi ∩ γj = ∅, or γi ⊂ γj or γj ⊂ γi.Then, f is called a forest.

Definition 2.18. It is maximal, if and only if Γ/f contains no positive valued proper subgraph. It is
complete, if it contains all positive valued proper subgraphs of all its elements.

We denote by |f | the number of elements of f and by FΓ the set of all forests of Γ. For a union of graphs
γ =

⋃
i γi we say it has ι valuation if all its components have. There are Hopf algebras for any ι-valuation:

∆ι(Γ) = Γ⊗ I+ I⊗ Γ +
∑

γ,ω(γ)≥ι

γ ⊗ Γ/γ.

In particular the antipode for positive valued graphs can be written as

S(Γ) = −
∑

f∈FΓ

(−1)|f |f × Γ/f,

where the sum includes the empty set.

If the number of external edges of a subgraph γ is greater than two, |γ
[1]
E | > 2, then γ shrinks to a vertex

in Γ/γ. If it equals two, the two external edges are identified to a single edge in Γ/γ.4

These Hopf algebras on scalar graphs straightforwardly generalize to gauge theory graphs and in particular
act on the sum of all graphs contributing to a given amplitude —the combinatorial Green function— filtered
by the number of 4-valent vertices and the number of ghost loops.

From now on, we demand that orientations of a graph Γ are such that for any proper subgraph γ ⊂ Γ

with two external edges e, f , |γ
[1]
E | = 2, the edges e, f form a consistently oriented edge in Γ/γ. Then, the

orientation of Γ determines the orientations of f and Γ/f , for all forests f .

Definition 2.19. We call eγ+ the edge pointing towards γ, eγ− the edge pointing away from it.

Lemma 2.20. Let γ1, γ2 ⊂ Γ be two proper propagator subgraphs, |γ
[1]
i,E | = 2. Then, either: γ1 ⊂ γ2 or

γ2 ⊂ γ1 or γ1 ∩ γ2 = ∅.

Proof. This follows from [17, Lemma 51].

3 Feynman rules for scalar integrands

First, some general remarks. For n external edges and l loops, an overall factor c = (−i)n+3(l−1)gn+2(l−1)

is not explicitly given below. All momentum integrals are understood in Euclidean space, all parametric
integrals over the real simplex σ : {Ae > 0}, with boundary

∏
e∈Γ[1] Ae = 0. A pairing between a parametric

integrand and a simplex as in

Φ(Γ) =

∫

σ

dAΓ[1] IΓ,

means just that: the pair of the simplex and a form, and is to be regarded as an honest integral only when the
integrand is replaced by its suitably renormalized form as defined below, typically indicated by a superscript
R, so that the integral actually exists. We often simply write

∫
for
∫
σ.

Let Γ be a 3-regular graph as defined in Definition 2.4. In order to define the momenta, choose an
orientation on Γ, which we represent by ε (the incidence matrix):

εve =





1 if the vertex v is the endpoint of the edge e,

−1 if the vertex v is the starting point of the edge e,

0 if e is not incident on v.

4If we were to have massive particles, we had to blow up notation slightly.
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Furthermore, choose a basis of loops L ⊂ C Γ of l =: |Γ| independent loops of Γ and for each ℓ ∈ L an
orientation given by εℓ.5

The Feynman amplitude of Γ is6

Φ(Γ) = QE
Γ

∫
dkL
(2π)dl

( ∏

e∈Γ[1]

1

ξ′2e

)
,

where ∫
dkL
(2π)dl

:=
∏

ℓ∈L

∫

R4

ddkℓ
(2π)d

,

and
εveξ

′
e := εveξe +

∑

ℓ∈L
ℓ[1]∋e

εℓvekℓ.

Note that we also include the external momenta, which is useful for our purposes. This gives just an overall
factor above,

QE
Γ =

∏

e∈Γ
[1]
ext

ξ2e .

We define
−

∑

e∈Γ[1],e adj. to v

εveξe =: ξv,

to be the external momentum for every vertex v of our graph. Note that if v is a vertex to which an external
edge e is adjacent, ξv does not equal ξe.

In Schwinger parametric form, the Feynman amplitude for generic ξe is

Φ(Γ) =

∫
dAΓ[1] IΓ,

where the integration is a short-hand notation for

∫
dAΓ[1] =

∏

e∈Γ[1]

∞∫

0

dAe =

∫

σ

dAe,

and the integrand is obtained from integrating the universal quadric ([1])

QΓ :=
∑

e∈Γ[1]

Aeξ
′2
e ,

so that analytically, we study the expression

IΓ := QE
Γ

∫
dkL
(2π)dl

∏

e

e−QΓ

∏

v

δ4
(∑

εevk(e)
)
,

which corresponds to a graph where at each vertex v, an external momentum ξv is entering, and which can
be written in the form of Eq.(1), by use of the graph polynomials, to which we now turn.

5εℓ is such that εℓve1 = −εℓ
ve2

, where e1 and e2 are the two edges adjacent to v, which are inside ℓ.
6d is the dimension of spacetime, and can be safely set to four as later on we will renormalize the parametric integrand

before integrating. If the reader wishes to integrate first, d can be used as a regulator, which is mathematically questionable
though [18] when combined with minimal subtraction despite its popularity in physics.
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3.1 The first Kirchhoff polynomial ψΓ

For the first Kirchhoff polynomial consider the short exact sequence

0 → H1 → QE
∂︷︸︸︷
→ QV,0 → 0. (3)

Here, H1 is provided by a chosen basis for the algebraically independent loops of a graph Γ. E = |EΓ| is the
number of edges and V = |V Γ| the number of vertices, so QE is an E-dimensional Q-vectorspace generated
by the edges, similar QV,0 for the vertices with a side constraint setting the sum of all vertices to zero.

Consider the matrix (see [1, 19])

N0 ≡ (N0)ij =
∑

e∈li∩lj

Ae,

for li, lj ∈ H1.
Define the first Kirchhoff polynomial as the determinant

ψΓ := |N0|.

Proposition 3.1. ([1, Prop.2.2]) The first Kirchhoff polynomial can be written as

ψΓ =
∑

T

∏

e6∈T

Ae

where the sum on the right is over spanning trees T of Γ.

3.2 The second Kirchhoff polynomial φΓ and |N |Pf

Let σi, i ∈ 1, 2, 3 be the three Pauli matrices, and σ0 = I2×2 the unit matrix.
For the second Kirchhoff polynomial, augment the matrix N0 to a new matrix N in the following way:

i. Assign to each edge e a quaternion

qe := q0σ
0 − i

3∑

j=1

qjσ
j ,

so that ξ2e I2×2 = qeqe, and to the loop li, the quaternion

ui =
∑

e∈li

Aeqe.

ii. Consider the column vector u = (ui) and the conjugated transposed row vector u. Augment u as the
rightmost column vector to M , and u as the bottom row vector.

iii. Add a new diagonal entry at the bottom right
∑

e qeqeAe.

Note that by momentum conservation, to each vertex, we assign a momentum ξv. and a corresponding
quaternion qv.

Remark 3.2. Note that we use that we work in four dimensions of space-time, by rewriting the momentum
four-vectors in a quaternionic basis.

The matrix N has a well-defined Pfaffian determinant (see [19]) with a remarkable form obtained for
generic ξe and hence generic ξv:
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Lemma 3.3. ([19, Eq.3.12])

|N |Pf = −
∑

T1∪T2




∑

e6∈T1∪T2

τ(e)ξe




2
∏

e6∈T1∪T2

Ae,

where τ(e) is +1 if e is oriented from T1 to T2 and −1 else.

Proof. See [19] .

Note that |N |Pf = |N |Pf({ξv}) is a function of all ξv, v ∈ Γ[0]. It gives the second Symanzik polynomial
upon setting the ξe in accordance with the external momenta:

Q : ξe → ξe + qe,

and setting ξe = 0 for all edges e afterwards.

Proposition 3.4.

φΓI2×2 = Q (|N |Pf)|ξe=0 = −
∑

T1∪T2

Q(T1)Q(T1)
∏

e6∈T1∪T2

A2,

where the sum is over spanning two-forests T1∪T2, so T1, T2 are two disjoint non-empty trees which together
cover all vertices of Γ. Here, Q(Ti) =

∑
v∈T 0

i
qv, v a vertex of Ti, the momentum qv incoming at that vertex

expressed in the quaternionic basis.

Remark 3.5. For a Feynman graph Γ contributing to a scattering amplitude r with k external edges adjacent
to m ≤ k vertices of Γ, φΓ is the quantity of interest. The quantity |NΓ|Pf , which assigns a momentum ξv to
every vertex (not only to those m which have external edges attached) is more natural from a graph-theoretic
viewpoint. For us, it has the added advantage that it assigns a four-momentum ξe to every edge. Derivatives
with respect to such four-momenta will generate gauge theory Feynman rules for us below.

Corollary 3.6. ∂
∂ξeµ

|N |Pf is linear in (Aeξ
µ
e ).

For edges e 6= f , ∂2

∂ξeµ∂ξ(f)ν
|N |Pf is linear in (AeAfg

µν) and constant in all ξe.

For e = f , ∂2

∂ξeµ∂ξeν
|N |Pf is linear in gµν , constant in all ξe and linear in Ae.

Proof. This follows readily from Lemma 3.3.

Example 3.7. We let

Γ =

1

2

3 4

with {1, 2, 3}, {1, 2, 4} a basis for the cycles of Γ. Then,

N :=

(
N0 :=

(∑
e∈hi∩hj

Ae

)
ij

∑
e∈hj

µeAe
∑
e∈hj

µeAe
∑
e∈Γ[1] µeµeAe

)

so

NΓ =




A1 +A2 +A3 A1 +A2 A1µ1 +A2µ2 +A3µ3

A1 +A2 A1 +A2 +A4 A1µ1 +A2µ2 +A4µ4

A1µ1 +A2µ2 +A3µ3 A1µ1 +A2µ2 +A4µ4

∑4
i:=1Aiµiµi




ψΓ = (A1 +A2)(A3 +A4) +A3A4 =
∑

sp.Tr.T

∏

e6∈T

Ae

10



and

φΓ = −(A3 +A4)A1A2p
2
a +A2A3A4p

2
b +A1A3A4p

2
c

=
∑

sp.2−Tr.T1∪T2

Q(T1) ·Q(T2)
∏

e6∈T1∪T2

Ae.

Remark 3.8. We use the two Symanzik polynomials to integrate out loop momenta in scalar integrands
upon using

1

ξ′e · ξ
′
e

=

∞∫

0

e−Aξ
′
e·ξ

′
edA, ξ′e · ξ

′
e = ξ′e

2
,

so that we get back Eq.(1).

3.3 Correction for quadratic subdivergences

The renormalized massless quadratically divergent two-point self-energy

ΣR(q
2, µ2) = q2σ(q2/µ2),

vanishes at q2 = 0, and σ = ΣR/q
2 vanishes at q2 = µ2:

ΣR(q
2, µ2)|q2=0 = 0,

(
1

q2
ΣR(q

2, µ2)

)

|q2=µ2

= 0. (4)

This fixes the two renormalization conditions for any graph contributing to a massless quadratically divergent
two-point functions which we employ. Transversality of the gluon propagator self-energy

Πµν = q2(gµν − q̂µq̂ν)Π(q
2/µ2),

renders this as a single condition Π(1) = 0 on the sum of all contributing graphs at each loop order.
All graphs contributing to other Green functions are renormalized by simple subtractions at chosen

kinematics (see [17] for a complete discussion).
Let us now discuss the correction factor for each quadratically divergent (sub)graph. The scalar integrand

in parametric variables is

IΓ =
e
−

|NΓ|Pf
ψΓ

ψ2
Γ

dA1 · · · dA|Γ[1]|.

In fact, for gauge theory we need to study integrands which are slightly more general:

ĨΓ,F= : F
e
−

|NΓ|Pf
ψΓ

ψ2
Γ

dA1 · · · dA|Γ[1]|.

Here,

F =
FN ({Ae})

FD({Ae})

is a rational function of the variables Ae, which is a quotient of homogeneous polynomials FN , FD. In fact,
our integrand in Yang–Mills or gauge theory will give us a finite sum of such terms with different F .

We want to analyse the degree of the form

AFΓ =
F

ψ2
Γ

dA1 · · · dA|Γ[1]|.
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Consider a set of variables γ
[1]
I ⊆ Γ

[1]
I , for γ ⊂ Γ a subgraph (the case γ = Γ is allowed). For a polynomial

function f = f({Ae}) we let |f |
γ
[1]
I

be twice7 the degree of that polynomial in the variables indicated. For

a rational function which is a quotient f1/f2 of such functions, we have |f1/f2|γ[1]
I

= |f1|γ[1]
I

− |f2|γ[1]
I

. Also,

|dA1 · · · dA|Γ[1]||γ[1]
I

= |γ
[1]
I |.

Proposition 3.9. For any AFΓ appearing in the integrand of a graph Γ, we have |AFΓ |γ[1]
I

≤ ωγ.

Proof. All short-distance singularities of a Feynman integrand correspond to forests and their degree is
bounded by the powercounting ωγ , for all γ appearing as components of forests.

Now assume |AFΓ |γ[1]
I

= 2 for some γ. Such quadratically divergent short-distance singularities can only

originate from self-energy subgraphs. Such graphs have two distinguished vertices at which external edges are
adjacent. Moreover, it follows from Lemma 2.20 that quadratically divergent subgraphs are either disjoint
or nested. We have immediately from the definition of the second Kirchhoff polynomial φγ =: q2ψγ• , which
defines γ• to be the graph where those two vertices are identified [17].

For each |AFΓ |γ[1]
I

above, let 2FΓ be the set of subgraphs γ ⊆ Γ such that |AFΓ |γ[1]
I

= 2, for all γ ∈ 2FΓ .

Define, for all AFΓ ,

A
F

Γ := AFΓ
∏

γ∈2FΓ

ψγ•

ψγAeγ+
. (5)

Lemma 3.10. The form A
F

Γ has only logarithmic poles along divergent subgraphs including self-energy
subgraphs. Renormalizing these remaining logarithmic poles of self-energy subgraphs at a fixed µ2 imposes
renormalization conditions Eq.(4).8

Proof. A partial integration with respect to the quadratic subgraph variables renders its overall divergence
logarithmic. The boundary term is eliminated by our renormalization conditions, which adopt the BPHZ
conditions of massive propagators to the renormalization conditions adopted here for massless gluons. See
[17, Section 3.5].

Let us exhibit this in an example. Integrating the universal quadric, Eq.(3), only the propagators for the
quadratically divergent subgraph γ leaves us with a contribution

1

ξ′
eγ−

F
e
−
ξ′e

2ψγ•
ψγ (dA)γ
ψ2
γ

1

ξ′
eγ+

,

with eγ± defined in Def.(2.19).
Setting Ai = tγai isolates the quadratic divergence:

1

ξ′
eγ−

Fe
−tγ

ξ′e
2ψγ•
ψγ Ωγ ∧ tγ
t2γψ

2
γ

1

ξ′
eγ+

.

Consider the integral limcγ→0

∫∞

cγ
against the above, and partially integrate with respect to tγ . This gives,

modulo terms which vanish when cγ → 0, a boundary term

1

ξ′eγ−

F

ψ2
γ

(
1− ξ′e

2ψγ•
ψΓ

)
1

ξ′
eγ+

which is polynomial in ξ′e and hence vanishes in our renormalization conditions.

7The mass dimension of an edge variable Ae is −2.
8We consider the case of massless propagators. For the incorporation of masses, see [19].
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What remains though is the logarithmically divergent

1

ξ′
eγ−

Fψγ•ξ
′
e
2
e
−tγ

ξ′e
2ψγ•
ψγ Ωγ ∧ tγ

tγψ4
γ

1

ξ′
eγ+

.

which justifies the result above, upon using momentum conservation ξ′e = ξ′eγ+
, and

ξ′e
ξ′
eγ+

= 1 =
1

2πi

∮

γe

e−ξ
′
e
2Ae

Ae
,

with γe a curve which picks the residue at Ae = 0. Collecting such residues will be automatic in our approach
below.

Remark 3.11. For a self-energy graph γ and an F such that |AFγ |γ = 2, and ĨΓ
F

= ĨΓ
F
(q2), the factor

Eq.(5) is in accordance with subtractions (ĨΓ
F
(q2)− ĨΓ

F
(0))/q2− (ĨΓ

F
(µ2)− ĨΓ

F
(0))/µ2, in accordance with

the conditions (4).

3.4 Renormalization

By summing over all F , we have finally constructed an integrand which we will call UΓ with log-poles only
along any forest. We can hence render it finite by the usual forest formula. We define

UR
Γ :=

∑

f∈FΓ

(−1)|f |Q(UΓ/f )Q0(Uf ),

where for f =
⋃
i γi, Uf =

∏
i Uγi and Q,Q0 are the maps

Q : ξe → ξe + qe, Q0 : ξe → ξe + qe,0,

where qe are the momenta as prescribed by the amplitude under consideration, qe,0 those prescribed by the
renormalization scheme for this amplitude.

Remark 3.12. Note that a single ĨΓ,F renormalizes similarly,

ĨRΓ,F = F
∑

f∈FΓ

(−1)|f |Q



e
−

|NΓ/f |Pf
ψΓ/f

ψ2
Γ/f


Q0


e

−
|Nf |Pf
ψf

ψ2
f


 ,

with notation as in [17]. Note in particular how derivatives with respect to four-vectors ξe still act on ĨRΓ,F :
for any monomial in derivatives XE :=

∏
e∈E ∂ξeµ(e) , we have

XE Ĩ
R
Γ,F = F

∑

f∈FΓ

(−1)|f |


 ∏

e∈E∩Γ/f [1]

∂ξeµ(e)


Q



e
−

|NΓ/f |Pf
ψΓ/f

ψ2
Γ/f





 ∏

e∈E∩f [1]

∂ξeµ(e)


Q0


e

−
|Nf |Pf
ψf

ψ2
f


 . (6)

This is particularly useful for future work when combined with the projective renormalized integrand, see
[17].

Also, even when Γ is a graph without external ghost lines, some of the forests appearing above can cor-
respond to graphs with open ghost lines. Then, Eq.(6) reconfirms the formula Eq.(22) below for amplitudes
with open ghost (or fermion, in an obvious modification) lines.

Remark 3.13. The regularized integrand in dimensional regularization is obtained by multiplying UΓ

by 1/ψ
(4−d)/2
Γ , and treating the Clifford algebra accordingly. Evaluating the parametric integrals on the

regularized integrand first and renormalizing in accordance with our renormalization prescription produces
the same renormalized results as above. Using a minimal subtraction scheme is different though. See [18]
for a discussion of this point.
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4 Gauge Theory Graphs

We now turn to graphs in gauge theory, as contrasted to 3-regular graphs in scalar field theory. While the
latter were graphs which can be regarded as corollas with three half-edges, connected by gluing two half-
edges from different corollas to an internal edge e which hence determine a pair of corollas Pe, the former
are graphs with 3- and 4-valent vertices.

Again, we can consider them based on corollas, this time corollas which have either three or four half-
edges of gauge boson type (indicated by wavy lines), or one gauge-boson half-edge with two half-edges of
ghost type (indicated by consistently oriented straight dashed lines), or one gauge-boson half-edge with two
half-edges of fermion type (indicated by consistently oriented straight full lines).

We repeat our notational conventions. We mark in such graphs edges and vertices in various ways and
we let

G
r,l

n ,m

be the set of all graphs with external half-edges specifying the amplitude r, with l loops and n 4-gluon
vertices, and m ghostloops. Similarly, we will indicate the number of marked edges and other qualifiers as
needed.

Still, if we want to leave a qualifier l, n,m, · · · unspecified (so that we consider the union of all sets with
any number of such items), we replace it by /. For sums or series of graphs we continue to use

Xr,l

n ,m

which are sums (for fixed l) or series (for l = /) of graphs weighted by symmetry, colour and other such
factors as defined below.

We now start adopting graph homology to our purposes in gauge theory.

4.1 Marking edges

Recall that the Feynman rule for the 4-valent vertex is

Φ
(

2

1

3

4)
=+ fa1a2bfa3a4b(gµ1µ3gµ2µ4 − gµ1µ4gµ2µ3)

+ fa1a3bfa2a4b(gµ1µ2gµ3µ4 − gµ1µ4gµ3µ2)

+ fa1a4bfa2a3b(gµ1µ2gµ4µ3 − gµ1µ3gµ4µ2).

We introduce a new edge type which has the following Feynman rule:

Φ
(

e
2

1

3

4)
= fa1a2bfa3a4b(gµ1µ3gµ2µ4 − gµ1µ4gµ2µ3)

=: colour
( )

We,

(7)

so that we can write the 4-point vertex as

∼ + + . (8)

(The relation ∼ denotes that the left- and right-hand side have the same Feynman amplitude.) Note that
because of this relation, the internal marked edge does not correspond to a propagator. It is just a graphical
way of writing the three terms of the 4-valent vertex.

Remark 4.1. The fact that the 4-valent vertex decomposes in such a way into a product of two corollas is
actually the starting point for recursion relations of amplitudes [20, 21].
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For any graph Γ with marked edges, let Γ be the graph where the marked edges shrink to zero length.9

The Feynman–Schwinger integrand of a graph with marked edges is given for us by

IΓ =
( ∏

e∈Γ
[1]
marked

We

)



∏

v∈V Γ,v∩Γ
[1]
marked=∅

Vv


 IΓ. (9)

Here, Vv is the colour-stripped part of the Feynman rule of a 3-gluon vertex,

Vv =
∑

cycl(1,2,3)

(ξ1 − ξ2)µ3gµ1µ2 . (10)

Note that the scalar integrand IΓ does obviously not contain the edge variables of the -marked edges.
For future use, we define

IΓ =
( ∏

e∈Γ
[1]
marked

We

)



∏

v∈V Γ,v∩Γ
[1]
marked=∅

Vv


 e

−
∑
e∈Γ

unmarked

Aeξ
′2
e

, (11)

which is such that ∫
dkL
(2π)dl

IΓ = IΓ.

Definition 4.2. Define a derivation χ+ : H → H on generators by

χ+Γ =
∑

e∈Γ
[1]
int

χe+Γ,

where

χe+Γ =

{
0 if e shares a vertex with a marked, fermion or ghost edge,

Γe otherwise.

The next lemma shows how symmetry factors relate upon exchanging 4-valent vertices for a pair of
corollas with a marked edge in-between. We consider graphs with l loops, k 4-gluon vertices and k′ marked
edges, for an amplitude r. Also, G denotes unlabelled graphs, in contrast to labelled graphs in G .

Lemma 4.3. For any graph Γ ∈ G
r,l

k ,k′
we have

1

Sym(Γ)
Γ ∼

1

k

∑

Γ′∈G
r,l

k−1 ,k′+1

∃e∈Γ
′[1]
marked:Γ

′/e=Γ

1

Sym(Γ′)
Γ′. (12)

Proof. Let v ∈ Γ
[0]
4 with adjacent edges 1, 2, 3, 4:

Γ =

1 2 3 4
v

.

(We do not show Γ’s external edges in the diagram.) Apply (8):

1

Sym( )

=
1

Sym( )

(
+ +

)
.

The following three cases can occur:

9If we have k marked edges, here are 3k different graphs Γ which have the same Γ.
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1. The four edges adjacent to v are each un-interchangeable. In this case

Sym
( )

= Sym
( )

= Sym
( )

= Sym
( )

,

so that

1

Sym( )

∼
1

Sym( )

+
1

Sym( )

+
1

Sym( )

.

Note that the three graphs at the right-hand side are all non-isomorphic.

2. Two of v’s adjacent edges are interchangeable, say 1 and 2. Then

= .

The symmetry factors of the new graphs are

Sym
( )

= Sym
( )

,

and

Sym
( )

= 1
2 Sym

( )
,

so that

1

Sym( )

∼
1

Sym( )

(
+ 2

)

=
1

Sym( )

+
1

Sym( )

.

Note that the two graphs at the right-hand side are unequal.

3. Three of v’s adjacent edges are interchangeable, say 1, 2 and 3. Then

= = ,

and

Sym
( )

= 1
3 Sym

( )
.

So:

1

Sym( )

∼
3

Sym( )

=
1

Sym( )

.
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Thus we can conclude that

1

Sym(Γ)
Γ =

∑

Γ′∈G
n,l

k−1 ,k′+1

∃e∈Γ
′[1]
marked:Γ

′/e=Γ
where the new vertex is v

1

Sym(Γ′)
Γ′.

The result follows up summing this over all 4-valent vertices in Γ, giving rise to the factor #Γ
[0]
4 = k:

Γ ∼
1

k

∑

Γ′∈G
n,l

k−1 ,k′+1

∃e∈Γ
′[1]
marked:Γ

′/e=Γ

1

Sym(Γ′)
Φ(Γ′).

Example 4.4. Take Γ = and apply equation (8) to the 4-valent vertex:

1
2 ∼ 1

2

(
+ +

)
= + 1

2 . (13)

Example 4.5. Take Γ = and apply (8) to one of the two vertices:

1
6 ∼ 1

6

(
+ +

)
= 1

2 . (14)

Analogously, we get

1
6 ∼ 1

2 ,

so that we can write

1
6 ∼ 1

2

(
1
2 + 1

2

)
. (15)

Example 4.6.

1
2 ∼ 1

2

(
+ +

)
= 1

2 + .

The next lemma is crucial, as it shows that the fundamental relation between a 4-gluon vertex and a pair
of 3-gluon vertices, in all three channels, gives a relation between combinatorial Green functions. We would
have no chance at getting a well-defined gauge theory without such a relation.

Lemma 4.7. i. For any k and k′, k′ < k:

1

( kk′ )
Xn.l
k−k′ ,k′

∼
1

( k
k′+1 )

Xn,l

k−k′−1 ,k′+1
.

ii. For any k:
Xn,l

k
∼ Xn,l

k .
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Proof. For i. we have from lemma 4.3 for the Green’s function Xn,l

k−k′ ,k′
:

Xn,l

k−k′ ,k′
=

∑

Γ∈G
n,l

k−k′ ,k′

1

Sym(Γ)
Γ

∼
1

k − k′

∑

Γ∈G
n,l

k−k′ k′

∑

Γ′∈G
n,l

k−k′−1 ,k′+1

∃e∈Γ
′[1]
marked:Γ

′/e=Γ

1

Sym(Γ′)
Γ′

=
k′ + 1

k − k′

∑

Γ′∈G
n,l

k−k′−1 ,k′+1

1

Sym(Γ′)
Γ′

=
k′ + 1

k − k′
Xn,l

k−k′−1 ,k′+1
.

The factor k′+1 appears because every graph Γ′ ∈ G
n,l

k−k′−1 ,k+1′ can be obtained from #Γ
′[1]
marked = k′+1

graphs Γ ∈ G
n,l

k−k′ ,k′ by applying (8). Using the identity

( k

k′ + 1

)
=
k − k′

k′ + 1

( k
k′

)
,

it follows that
1

( kk′ )
Xn,l

k−k′ ,k′
∼

1

( k
k′+1 )

Xn,l

k−k′−1 ,k′+1
.

For ii. we have

Xn,l

k
∼

1

( kk′ )
Xn,l

k−k′ ,k′
.

This is true by induction: it is an equality for k′ = 0 and the inductive step is true by i.. Taking k′ = k
gives:

Xn,l

k
∼ Xn,l

k .

In the following, if r is an n-gluon amplitude, we often replace the subscript r by n, as in this example:

Example 4.8. Take n = 3, l = 1 and k = 1.

X3,1

1
= 1

2 + 1
2 + 1

2

∼ + + + 1
2 + 1

2 + 1
2 = X3,1

1

where we have used Eq.(13).

Example 4.9. Take n = 2, l = 2 and k = 2. Note that G
2,2

2 contains just one graph and use (14) and (15):

X2,2

2
= 1

6 ∼ 1
2 ∼ 1

2 + = X2,2
2 .

Lemma 4.10. i. For any graph Γ ∈ G
n,l

:

1

Sym(Γ)

(χ+)
k

k!
Γ =

∑

Γ′∈G
n,l

k

skeleton(Γ′)=Γ

1

Sym(Γ′)
Γ′.

where the skeleton of a marked graph is the graph with its markings removed.
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ii. For any k ≥ 0, (χ+)k

k! Xn,l = Xn,l
k .

iii. We have eχ+Xn,l = Xn,l
/ = Xn,l

/
.

Proof. For i. we have

1

Sym(Γ)

(χ+)
k

k!
[Γ] =

1

Sym(Γ)

∑

{e1,...,ek}⊂Γ
[1]
int

[χe1+ · · ·χkk+ Γ]

=
1

Sym(Γ)

∑

Γ′∈G
n,l

k

skeleton(Γ′)=[Γ]

#
{
{e1, . . . , ek} ⊂ Γ

[1]
int

∣∣ [χe1+ · · ·χkk+ Γ] = Γ′
}
Γ′

=
∑

Γ′∈G
n,l

k

skeleton(Γ′)=[Γ]

1

Sym(Γ′)
Γ′.

For ii. we apply i. to the combinatorial Green’s function Xn,l, instead of a single graph. Summing over all

graphs in G
n,l

yields

(χ+)
k

k!
Xn,l =

∑

Γ∈G
n,l

1

Sym(Γ)

(χ+)
k

k!
Γ

=
∑

Γ′∈G
n,l

k

1

Sym(Γ′)
Γ′ = Xn,l

k .

Finally, iii. follows directly from ii. by taking the sum over k.

Example 4.11. Take and k = 2; then lemma 4.10.i reads

1
2

(χ+)
2

2
= 1

2

(
+

)
= .

Remark 4.12. Note that χ+ has a non-trivial kernel as it can create self-loops graphs, for example:

1
2χ+ = ∼ 1

2

Here we have used that

∼ + + ∼ 2 .

This does not influence our results, since self-loops have amplitude zero.

It is now time to study graph homology, again by studying marked edges, but now the labelling plays a
crucial role.

4.2 The graph differential s for gauge theory graphs

Definition 4.13. The derivation s : H → H is given on generators by

sΓ =
∑

e∈Γ
[1]
int

(−)#{e′∈Γ
[1]
marked | e′<e}seΓ
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where

seΓ =

{
0 if e shares a vertex with a marked or ghost edge

Γe otherwise

In the above, < is a (strict) total ordering on Γ[1].
Next, we want to distinguish the markings created by χ+ and s. Therefore we draw the latter with two

lines instead of one. So two lines indicate the action of s, and we denote: Γ
[1]

∪ Γ
[1]

= Γ
[1]
marked ⊂ Γ

[1]
int.

Proposition 4.14. s is a differential: s2Γ = 0.

Proof. We compute

s2Γ =
∑

e1,e2∈Γ
[1]
int

(−)#{e′1∈Γ
[1]
marked | e′1<e1}+#{e′2∈Γ

[1]
marked∪{e1} | e′2<e2}se1se2Γ

=
∑

e1,e2∈Γ
[1]
int

e1<e2

(−)#{e∈Γ
[1]
marked | e1<e<e2}+1se1se2Γ

+
∑

e1,e2∈Γ
[1]
int

e1>e2

(−)#{e∈Γ
[1]
marked | e2<e<e1}se1se2Γ

= 0.

Example 4.15. We work with labelled graphs, eg.

Γ =
3

4

5

6

7

1 2 ,

for which

s2 = s + s + s + s + s

= − − + + = 0.

4.3 The differential S for gauge theories

Marking edges, which corresponds upon summation of connected diagrams to shrinking pairs of two 3-gluon
vertices to 4-gluon vertices, should match with the graphs with 4-gluon vertices present in the theory. This
can be phrased homologically.

Definition 4.16. A derivation S : H → H is given by S = s+ σ where

σΓ = (−)#Γ
[1]
marked

∑

e∈Γ[1]

(−)#{e′∈Γ[1] | e′>e}σeΓ,

and
σeΓ = Γe .

Proposition 4.17. S is a differential: S2Γ = 0.
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Proof. A calculation shows that

sσΓ = (−)Γ
[1]
marked

∑

e1∈Γ
[1]

∑

e2∈Γ
[1]
int

(−)#{e′1∈Γ[1] | e′1>e1}+#{e′2∈Γ
[1]
marked | e′2<e2}se2σe1Γ

σsΓ = (−)Γ
[1]
marked+1

∑

e2∈Γ
[1]
int

∑

e1∈Γ[1]

(−)#{e′2∈Γmarked | e′2<e2}+#{e′1∈Γ[1] | e′1>e1}se2σe1Γ

= −sσΓ,

and also

σ2Γ =
∑

e1∈Γ[1]

∑

e1∈Γ[1] r{e1}

(−)#{e′1∈Γ[1] | e′1>e1}+#{e′2∈Γ[1]
r{e1} | e′2>e2}σe1σe2Γ

=
∑

e1,e2∈Γ[1]

e1<e2

(−)#{e∈Γ[1] | e1<e<e2}+1σe1σe2Γ

+
∑

e1,e2∈Γ[1]

e1>e2

(−)#{e∈Γ[1] | e1<e<e2}σe1σe2Γ

= 0.

so that
S2Γ = s2Γ + sσΓ + σsΓ + σ2Γ = 0.

Remark 4.18. Note that upon summing the markings in a 3-valent corolla, and identifying such a sum
with a 4-valent vertex, the operators s, S here reduce to the operators s̃ and S̃ we had before in Eq.(2).

Example 4.19.

sσ = −s =

σs = −σ = −

σ2 = −σ = 0

S2 = 0

Example 4.20.

sσ = −s + s = 0

σs = 0

σ2 = −σ + σ = − + = 0

S2 = 0

The cancellations between 3-gluon and 4-gluon vertices necessary to obtain a unitary and covariant gauge
theory demand that shrinking internal edges in graphs with k3 3-gluon vertices and k4 4-gluon vertices
matches with the graphs having (k3 − 2) 3-gluon vertices, and (k4 +1) 4-gluon vertices. Rephrased in terms
of our marked edges and using our sign conventions, that precisely is captured by

Proposition 4.21. Let Γ be a graph without marked edges. Then:

Seχ+Γ = 0. (16)
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Proof. By definition:

eχ+Γ =
∑

k≥0

∑

e1,...,ek∈Γ
[1]
int

e1<···<ek

χe1+ · · ·χek+ Γ

on which

seχ+Γ =
∑

k≥0

∑

e1,...,ek+1∈Γ
[1]
int

e1<···<ek+1

k+1∑

l=1

(−)l−1χe1+ · · · sel · · ·χ
ek+1

+ Γ

=
∑

k≥1

∑

e1,...,ek∈Γ
[1]
int

e1<···<ek

k∑

l=1

(−)l−1χe1+ · · · sel · · ·χ
ek
+ Γ

σeχ+Γ =
∑

k≥1

∑

e1,...,ek∈Γ
[1]
int

e1<···<ek

(−)k
k∑

l=1

(−)k−lχe1+ · · · sel · · ·χ
ek
+ Γ

= −seχ+Γ.

We conclude that
Seχ+Γ = (s+ σ)eχ+Γ = 0.

Example 4.22.

eχ+ = + + + + + + +

seχ+ = + + + +

− − + +

σeχ+ = − − − − −

− + − +

Seχ+ = 0

This finishes our considerations of graph homology; we have proved Theorem 1.1.

4.4 The ghost cycle generator δC+

We now turn to an investigation of the ghost sector through cycle homology.

Definition 4.23. Let CΓ be the set of cycles in Γ. We write CΓ = {C1, C2, . . .}.

δ+Γ =
∑

C∈CΓ

δC+Γ,

where

δC+Γ =

{
0 if C has a vertex which has an adjacent marked or ghost edge

ΓC otherwise.

Note that an (unoriented) ghost cycle is the short-hand notation for the sum of the two orientations:

= + .
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Lemma 4.24. i. For any graph Γ ∈ G
n,l

:

1

Sym(Γ)

(δ+)
k

k!
Γ =

∑

Γ′∈G
n,l

k

skeleton(Γ′)=Γ

1

Sym(Γ′)
Γ′.

ii. For any k ≥ 0, (δ+)k

k! Xn,l = Xn,l

k
.

iii. We have eδ+Xn,l = Xn,l

/
.

Proof. Analogous to Lemma 4.7.

Example 4.25. An example for Lemma 4.24.i is

1
2δ+ = 1

2

(
+ +

)
= + 1

2

Remark 4.26. The operators χe+ and δC+ commute, hence so do χ+ and δ+.

Corollary 4.27. i. The combinatorial Green’s functions Xn,l

k ,l̃
can be written as

Xn,l

k ,l̃
=
χk+δ

l̃
+

k!l̃!
Xn,l

0 ,0
.

ii. The full combinatorial Green’s function can be written as

Xn,l

/ ,/
= eχ+eδ+Xn,l

0 ,0
.

4.5 The cycle differential t

Definition 4.28. For a graph Γ choose a labelling of the cycles C1, C2, . . . ∈ CΓ. We define a derivation
t : H → H acting on graphs as:

tΓ =
∑

Ci∈CΓ

(−)#{Ci′∈CΓgh | i′<i}tCiΓ

where

tCΓ =

{
0 if C has a vertex which has an adjacent marked or ghost edge

ΓC otherwise.

Next, we want to distinguish the markings created by δ+ and t. Therefore we draw the former with little
circles instead of dots. We denote: CΓ ∪ CΓ = CΓgh ⊂ CΓ.

Proposition 4.29. t is a differential: t2Γ = 0.

Proof. Analogous to Proposition 4.14.

Example 4.30. Consider the graph

Γ =

3

4

5

6

7

1 2a b c d
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and label the two cycles:

C1 =

3

4

a b , C2 =

6

7

c d .

Then:

t2 = t + t

= − + = 0.

4.6 The differential T

The T -homology checks that the longitudinal degrees of freedom in a loop through 3-gluon vertices are
appropriately matched by ghost loops, so that physical amplitudes are in the kernel of T . Hence, we define

Definition 4.31. A derivation T : H → H is given by T = t+ τ where

τΓ = (−)#CΓgh

∑

Ci∈CΓ

(−)#{C′
i∈CΓ | i′>i}τCiΓ

and
τCiΓ = ΓCi .

Proposition 4.32. T is a differential: T 2Γ = 0.

Proof. As in Proposition 4.17 this follows from tτΓ = −τtΓ and τ2Γ = 0.

Example 4.33.

tτ = −t =

τt = −τ = −

τ2 = −τ = 0

T 2 = 0

Example 4.34.

tτ = −t + t = 0

τt = 0

τ2 = −τ + τ = − + = 0

T 2 = 0

Proposition 4.35. Let Γ be a graph without ghost edges. Then Teδ+Γ = 0.

Proof. Analogous to Proposition 4.21.

Symmetry factors are no issue in the following example as we sum over both orientations for the two
ghost lines.

Example 4.36.

eδ+ = + + +

teδ+ = + − +

τeδ+ = − − − +

Teδ+ = 0
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This homology ensures that longitudinal degrees of freedom propagating in loops cancel. We summarize:

Theorem 4.37. Let Γ be a graph without marked and ghost edges. Then

Seδ+eχ+Γ = 0, and Teδ+eχ+Γ = 0.

4.7 The bicomplex

As [s, t] = [S, T ] = 0, we get a double complex:

...

s

��

...

s

��

· · ·
t

// Hk,l̃

s

��

t
// Hk,l̃+1

s

��

t
// · · ·

· · ·
t
// Hk+1,l̃

s
��

t
// Hk+1,l̃+1

s
��

t
// · · ·

...
...

Here, H...,... are to be regarded as reflecting the relevant vector space structure only of these spaces. The
corresponding Hopf algebras and combinatorial Green functions are discussed now. This bicomplex above
and its relation to gauge symmetry and BRST cohomology will be the study of future work.

5 Combinatorial Green functions

The Hopf algebras on scalar graphs straightforwardly generalize to gauge theory graphs. In particular,
the coproduct acts on the sum of all graphs contributing to a given amplitude —the combinatorial Green
function— filtered by the number of 4-valent vertices and the number of ghost loops. Let us make this more
precise.

5.1 Gradings on the Hopf algebra

Recall that the Hopf algebra H is graded by the loop number, since the number of loops in a subgraph γ ⊂ Γ
and in the graph Γ/γ add up to |Γ| ≡ n(Γ). Another (multi)grading is given by the number of vertices. In
order for this to be compatible with the coproduct —creating an extra vertex in the quotient Γ/γ— we say
a graph Γ with EE(Γ) external edges, is of multi-vertex-degree (j3, j4, . . .) if the number of m-valent vertices
is equal to jm+ δm,EE(Γ). One can check that this grading is compatible with the coproduct. Moreover, the
two degrees are related via

∑
m(m − 2)jm(Γ) = 2|Γ|. This grading can be extended to involve other types

of vertices —such as j̃ ghost-gluon vertices— cf. [22] for full details.

5.2 Series of graphs

As said, from a physical point of view, it is not so interesting to study individual graphs; rather, one considers
whole sums of graphs with the same number of external lines. In this section, we will study series of 1PI
graphs in the Hopf algebra H :

Gk,n0 =
∑

|Γ|=n,|EE(Γ)|=k

Γ
colour(Γ)

sym(Γ)
,
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Figure 1: A 3-regular gluon cycle (left) and an oriented ghost cycle (right)

This is the sum of all 1PI 3-regular (0 4-valent vertices) graphs with first Betti number n and k external
gluon edges (which fixes the amplitude r under consideration), normalized by their symmetry factors sym(Γ),
the rank of their automorphism groups, in the denominator, and also weighted in the numerator by the
corresponding colour factor colour(Γ):

colour(Γ) :=
∏

v∈V Γ

Rv
∏

e∈EΓ
I

δs(e),t(e).

Here, Rv is determined by a choice of a representation of th gauge group at v, and s(e), t(e) are the vertex
labels for source and target of the internal edge e. Typical, Rv is the adjoint representation for gluon
self-interactions or the fundamental representation for a gluon interacting with fermionic matter fields.

Similarly, we write Gk,nj for series of graphs which have j 4-valent vertices, with all other vertices 3-valent.

Also, we consider external ghost edges and loops. We let Gk,k̃,nj;ñ denote the sum of graphs which have k

external gluon edges, k̃ external ghost edges, j 4-valent vertices, with all other vertices 3-valent, and ñ ghost
cycles (Figure 1). We let Ĝk,nj;ñ be the same sum where we consider all j 4-valent vertices, and all ñ ghost
cycles as marked.

Summarizing, the superscript on G always indicate the external structure of the graphs in the series,
whereas the subscripts indicate the 4-vertex degree, the loop number, or the ghost cycle degree.

We have shown in [23] that we can impose the Slavnov–Taylor identities on the Hopf algebra H , com-
patibly with the coproduct, equating all of the following formal elements:

Qk,k̃ :=


 G

k,k̃,/
/

(G
2,0,/
/ )k/2(G

0,2̃,/
/ )k̃/2




1/(k+k̃−2)

, (17)

independent of the numbers k and k̃ of external gluon and ghost edges, respectively. The thus-defined single

formal series Q ≡ Qk,k̃ will play the role of a ‘charge’ element in the Hopf algebra.

Proposition 5.1. The coproduct on the Green’s functions read

∆(Gk,nj3j4;ñ) =
∑

jm=j′m+j′′m
n=n′+n′′

ñ=ñ′+ñ′′

(Gk,n
′

Q2n′′

)j′3j′4;ñ′ ⊗Gk,n
′′

j′′3 j
′′
4 ;ñ′′

with Gk,nj3j4;ñ the above series of graphs of vertex multidegree (j3, j4), first Betti number n and ñ ghost cycles.

After taking the Slavnov–Taylor identities (17) into account, the coproduct reads on the above series of
graphs

∆(Gk,n) =
∑

n=n′+n′′

(GkQ2n′′

)n′ ⊗Gk,n
′′

.

Remark 5.2. Note that neither the lhs nor the rhs depend on k̃ in the above proposition, as Q ≡ Qk,k̃,
∀k, k̃.

26



Remark 5.3. The inclusion of fermions is parallel to the study of ghost edges and loops, and a mere
notational exercise.

Another way to describe the Green’s function Gk is in terms of so-called grafting operators, defined in
terms of 1PI primitive graphs. We start by considering maps Bγ+ : H → Aug, with Aug the augmentation
ideal, which will soon lead us to non-trivial one co-cycles in the Hochschild cohomology of H . They are
defined as follows.

Bγ+(h) =
∑

Γ∈〈Γ〉

bij(γ, h,Γ)

|h|∨

1

maxf(Γ)

1

(γ|h)
Γ,

where maxf(Γ) is the number of maximal forests of Γ, |h|∨ is the number of distinct graphs obtainable by
permuting edges of h, bij(γ, h,Γ) is the number of bijections of external edges of h with an insertion place
in γ such that the result is Γ, and finally (γ|h) is the number of insertion places for h in γ [24].

∑
Γ∈<Γ>

indicates a sum over the linear span 〈Γ〉 of generators of H .
The sum of the Bγ+ over all primitive 1PI Feynman graphs at a given loop order and with given residue

will be denoted by Bl;n+ , as in [24]. More precisely,

Bk;n+ =
∑

γ prim
|γ|=n

EE(γ)=k

1

Sym(γ)
Bγ+.

With this and the above Proposition, we can show [24, Theorem 5]:

Gk =

∞∑

l=0

Bk;n+ (GkQ2n); (18)

∆(Bk;n+ (GkQ2n)) = Bk;n+ (GkQ2n)⊗ I+ (id⊗Bk;n+ )∆(GkQ2n). (19)

Equation (18) is known as the combinatorial Dyson–Schwinger equation, while (19) shows that Bk;n+ is a
Hochschild cocycle for the Hopf algebra H .

5.3 The generator of ghost loops

We again consider the map δ+ : H → H that replaces gluon loops in a Feynman graph by ghost loops.

Remark 5.4. In accordance with our previous definition of δ+, it becomes an algebra derivation δ+ : H → H
by the assignment

δ+(Γ) = (l̃ + 1)
∑

g⊂Γ

Γg 7→g̃.

for a 1PI Feynman graph Γ at ghost loop order l̃. The sum is over all oriented 3-regular gluon cycles g, and
Γg 7→g̃ denotes the graph Γ with the 3-regular gluon cycle g replaced by a ghost cycle g̃ (cf. Figure 1), of the
same orientation.

The notation δ+ suggests that there is also a δ−. In fact, such an operator can be defined and would
replace a ghost loop by a gluon loop. We will not further study such an operator, since our interest lies in
generating physical amplitudes from zero-ghost-loop amplitudes.

Example 5.5. Consider the following one-loop gluon self-energy graph:

Γ = .

Its symmetry factor is Sym(Γ) = 2 so that

δ+

( )
= 2 .
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A two loop example is given by the graph

Γ′ =

for which Sym(Γ′) = 2. Now,

δ+

( )
= 2 + 2 + 2 .

The first graph on the rhs obtains a factor of two because the two orientation of the ghost loop both
reproduce this graph when the little gluon loop is replaced by a ghost loop.

The other two possible gluon cycles give the same graphs with again a coefficient of two for each of them,
with the two orientations of the ghost cycle now resulting in those two remaining graphs on the rhs. In full
accordance with Lemma 4.24, the ratio of the symmetry factor of a graph on the left by the symmetry factor
of a graph on the right counts such multiplicities.

With that lemma we conclude:

Proposition 5.6. When acting on series of graphs with no ghost cycles (ñ = 0):

eδ
+

◦Bk;n+ =
∑

γ prim
|γ|=n,ñ(γ)=0
EE(γ)=k

1

Sym(γ)
B
eδ

+
(γ)

+ ◦ eδ+

where the sum is over graphs γ with no ghost cycles.

Remark 5.7. There is a similar result for connected graphs on the exponentiation of χ+. We give it here
without proof. It follows directly though from extending the definition of graph Hopf algebras and their
Hochschild cohomology from 1PI to connected graphs. When acting on series of graphs with no marked
edges:

eχ
+

◦Bk;n+ =
∑

γ prim
|γ|=n,j(γ)=0
EE(γ)=k

1

Sym(γ)
B
eχ

+
(γ)

+ ◦ eχ+

where the sum is over graphs γ with no marked edges and j(γ) is the number of 4-valent vertices.
Together, the two results on the interplay of Hochschild cohomology and exponentiation show that gauge

invariant combinatorial Green functions are obtained from gauge invariant skeleton graphs into which gauge
invariant subgraphs are inserted.

Example 5.8. Let us consider the example of the gluon self-energy at two loops:

G2
n=2 = +

1

6
+

1

2
+

1

2
(20)

+
1

2
+ + +

+
1

2
+ + +

whose zero-ghost-loop part is

G2
n=2,ñ=0 =

1

6
+

1

2
+

1

2
(21)

+
1

2
+

1

2

One readily checks that (1 + δ+)G
2
n=2,ñ=0 = G2

n=2.
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Theorem 5.9. Let H̃ be the Hopf subalgebra of H generated by Gk,n for all n ≥ 0 and k = 2, 3, 4. Then
exp δ+ is an automorphisms of the graded Hopf algebra H̃:

exp δ+(x1x2) = exp δ+(x1) exp δ+(x2); ∆(exp δ+(x)) = (exp δ+ ⊗ exp δ+)∆(x).

for x1, x2, x ∈ H̃.

Proof. By definition, δ+ is an algebra derivation so that exp δ+ is an algebra automorphism. Note that at a
given loop order l, the exponential terminates at that power n and is thus well-defined on the graded algebra
underlying H̃ .

Let us then consider the compatibility of δ+ with the coproduct structure. Recall from [22] the formula

∆(Gk) =
∑

j3,j4,j̃≥0

Gk(Q3)j3(Q4)2j4 (Q1,2̃)ñ ⊗Gk
j3j4 j̃

.

which holds even without the Slavnov–Taylor identities. It continues to hold when restricting to graphs with
zero ghost loops:

∆(Gkñ=0) =
∑

j3,j4

Gkñ=0(Q
3
ñ=0)

j3(Q4
ñ=0)

2j4 ⊗Grj3,j4;ñ=0.

We now apply exp δ+ ⊗ exp δ+ to this equation to obtain after imposing the Slavnov–Taylor-identities Q3 =
Q4:

(exp δ+ ⊗ exp δ+)∆(Gkñ=0) =
∑

j3,j4

Gk(Q3)j3 (Q4)2j4 ⊗ exp δ+
(
Gkj3j4;ñ=0

)

=
∑

n≥0

GkQ2n ⊗ exp δ+
(
Gkn,ñ=0

)

since in the absence of ghost vertices j3 + 2j4 = 2n in terms of the first Betti number n. Lemma(4.24) then
yields exp δ+(G

k
n,ñ=0) = Gkn, which completes the proof.

This can be extended to the connected Green’s functions Xk,n, where also a similar result can be shown
for expχ+.

Example 5.10. First, recall the Slavnov–Taylor identities G3G2̃ = G1,2̃G2 which at one-loop order become:

+
1

2
+ + − − −

+
1

2
+ = 0.

We compute ∆′(G2,n=2
ñ=0 ) with G2,n=2

ñ=0 given in Eq.(21). For the first graph on the last line, we have

∆′

(
1

2

)
=

1

2
⊗

If we apply exp δ+ ⊗ exp δ+ to this expression, we obtain

1

2

(
+ 2

)
⊗

(
+ 2

)

For the coproduct on the last graph in Eq.(21) we have

∆′

(
1

2

)
= ⊗
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and applying exp δ+ ⊗ exp δ+ to this expression yields


 + +


⊗

(
+ 2

)

On the other hand, ∆′(exp δ+G
2,n=2
ñ=0 ) = ∆′(G2,n=2) is computed from Eq.(20):

∆′(G2,n=2) =

(
1

2
+

)
⊗

+ 2 ⊗

+


 + +


⊗

+


2 + 2


 ⊗

We conclude that

(exp δ+ ⊗ exp δ+)∆
′(G2,n=2

ñ=0 )−∆′(exp δ+(G
2,n=2
ñ=0 )) =

2


1

2
+ + +

− + − −


 ⊗

which vanishes by the Slavnov–Taylor identities upon adding the contribution of 4-valent vertices.

6 The corolla polynomial and differentials

6.1 The Corolla Polynomial

Finally, we introduce the Corolla Polynomial ([10]). It is a polynomial based on half-edge variables av,j
assigned to any half-edge (v, j) determined by a vertex v and an edge j. We need the following definitions:

• For a vertex v ∈ V let n(v) be the set of edges incident to v (internal or external).

• For a vertex v ∈ V let Dv =
∑

j∈n(v) av,j .

• Let C be the set of all cycles of Γ (cycles, not circuits). This is a finite set.

• For C a cycle and v a vertex in V , since Γ is 3-regular, there is a unique edge of Γ incident to v and
not in C, let vC be this edge.

• For i ≥ 0 let

Ci =
∑

C1,C2,...Ci∈C

Cjpairwise disjoint






i∏

j=1

∏

v∈Cj

av,vC


 ∏

v 6∈C1∪C2∪···∪Ci

Dv
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• Let
C =

∑

j≥0

(−1)jCj

For any finite graph Γ, this is a polynomial C = C(Γ) —the corolla polynomial— because Ci = 0 for
i > |C |.

Theorem 6.1. ([10]) Let T Γ be the set of sets T of half edges of Γ with the property that

• every vertex of Γ is incident to exactly one half edge of T

• Γr T has no cycles

Then
C(Γ) =

∑

T∈T Γ

∏

h∈T

ah

Remark 6.2. This shows that the corolla polynomial is strictly positive. As it applies in this form as a
corolla differential to pure Yang–Mills theory, this results in a positivity statement on Yang–Mills theory
which does not hold for gauge fields coupled to matter fields. Accordingly, the sign of the β-function in
gauge theory becomes dependent on the number of fermion families, and their representations.

Remark 6.3. For a graph Γ, let E be a set of pairwise disjoint internal edges of Γ. For i ≥ 0 let

CiE(Γ) =
∑

C1,C2,...Ci∈C

Cj pairwise disjoint
Cj∩E=∅






i∏

j=1

∏

v∈Cj

av,vC




∏

v 6∈C1∪C2∪···∪Ci∪E

Dv




where the sum forbids cycles from sharing either vertices or edges with E.

Let
CE(Γ) =

∑

j≥0

(−1)jCjE(Γ).

Then,
CE(Γ) = C(Γ− E)

where Γ − E is the graph with the edges and vertices involved in E removed. Removing a vertex removes
all its incident half-edges so that 2|E| new external edges are generated. Note that C∅(Γ) = C(Γ).

Define

Cfr(Γ) :=
∑

E

(
CE(Γ)

∏

e∈E

We

)
,

where We is defined in (7).

Corollary 6.4.

Cfr(Γ) =
∑

E

(
∑

T∈T E

(
∏

h∈T

ah)
∏

e∈E

We

)
.

Proof. Immediate.
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Remark 6.5. Consider a 3-regular graph Γ which has j, j ≥ 2, 3-valent vertices, and let P be a set of m
paths, 2m ≤ j, on internal edges and 3-valent vertices in Γ which each connect two external 3-valent vertices
(a 3-valent vertex v is external if n(v) contains an external edge) with pi ∩ pj = ∅, ∀pi, pj ∈ P.

Consider for chosen set E and P as above, with E ∩ P = ∅, for i ≥ 0,

CiE,P(Γ) =
∑

C1,C2,...Ci∈C

Cj pairwise disjoint
Cj∩E=∅
Cj∩P=∅






i∏

j=1

∏

v∈Cj

av,vC


 ∏

v 6∈C1∪C2∪···∪Ci∪E∪P

Dv


×

×


∏

p∈P

∏

v∈p

av,vp


 ,

where the sum forbids cycles from sharing either vertices or edges with E, and vp is the unique half-edge at
v not in p.

Let
CE,P(Γ) =

∑

j≥0

(−1)jCjE,P(Γ).

Finally, we set

Cfr
P(Γ) :=

∑

E

(
CE,P(Γ)

∏

e∈E

We

)
. (22)

6.2 Corolla differentials

Our main use of the corolla polynomial is to construct differential operators with it. These operators
differentiate with respect to momenta ξe assigned to edges e of a graph, and act on the second Kirchhoff
polynomial written for generic edge momenta ξe, that is on |N |Pf .

Only at the end of the computation will we employ the map

Q : ξe → ξe + q(e).

We then set ξe = 0 after we have applied the corolla differentials so that we obtain the standard second
Symanzik polynomial for specific external momenta as prescribed by gauge theory amplitudes.

For a half edge h ≡ (w, f) ∈ HΓ, we let e(h) = f and v(h) = w. We remind the reader that h+ and h−
are the successor and the precursor of h in the oriented corolla at v(h), and that we assign to a graph Γ:

i. to each (possibly external) edge e, a variable Ae and a 4-vector ξe;

ii. to each half edge h, a Lorentz index µ(h);

iii. a factor colour(Γ).

6.3 The differential D0

The corolla polynomial is an alternating sum over terms Ci, where i counts the number of loops. Similarly,
the corolla differentials are a sum of terms Di. We start with D0.

32



Let Γ ∈ G n,l:

U0(Γ) =

∫

E

dkL
(2π)dl

C0
Γ(D)e−

∑
e∈Γ[1] Aeξ

′2
e ,

where
C0

Γ(D) =
∏

v∈Γ[0]

Dv, Dv = Dv1 +Dv2 +Dv3

(the edges incident on v are labelled 1, 2, 3),

Dv1 = − 1
2g
µ2µ3

(
εv2

1

A2

∂

∂ξ2µ1

− εv3
1

A3

∂

∂ξ3µ1

)
.

Using that all corollas are oriented, we can write this as

Dg(h) := − 1
2g
µh+µh−

(
εh+

1

Ae(h+)

∂

∂ξ(h+)µh
− εh−

1

Ae(h−)

∂

∂ξ(h−)µh

)
,

for any half-edge h. The operator Dv is such that if it acts on e−
∑
e∈Γ[1] Aeξ

′2
e , it gives the 3-vertex Feynman

rule of Eq.(10):

Dve
−

∑
e∈Γ[1] Aeξ

′2
e = V (3)

v e−
∑
e∈Γ[1] Aeξ

′2
e .

In order to calculate C0
Γ(D) ≡ C0

Γ(h → Dg(h)), we also need to know the Leibniz terms DvV
(3)
w , where

v, w ∈ Γ[0].

• If v and w do not share an edge, DvV
(3)
w = 0.

• Suppose they share exactly one edge; we give it label 5. Let 1 and 2 be the other edges at v and 3 and
4 the other ones at w:

5

2

1

3

4

v w.

Then:

DvV
(3)
w =

1

A5
(gµ4µ2gµ3µ1 − gµ2µ3gµ4µ1) ≡

We

Ae
,

where We is the Feynman rule for a marked edge (equation (7)). Note that thus

DvV
(3)
w = DwV

(3)
v .

• Suppose that v and w share two edges, 3 and 4. Let 1 be the other edge at v and 2 the other one at w:

3

4

1 2v w .

Then:

DvV
(3)
w =

( 1

A3
(gµ4µ4gµ2µ1 − gµ2µ4gµ4µ1) +

1

A4
(gµ3µ3gµ2µ1 − gµ3µ2gµ3µ1)

)

=
W3

A3
+
W4

A4
.

where we have used equation (7). Note that also in this case

DvV
(3)
w = DwV

(3)
v .

Contracting the indices further gives self-loops which can be omitted:

DvV
(3)
w = 3C2δ

a1a2gµ1µ2

( 1

A3
+

1

A4

)
.
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6.4 Regular terms and residues

We can now compute immediately the application of D0 to the scalar integrand IΓ, that is, U
0(Γ) := D0IΓ.

U0(Γ) =

∫
dkL
(2π)dl

( ∏

v∈Γ[0]

Dv

)
e−

∑
e∈Γ[1] Aeξ

′2
e

=

∫
dkL
(2π)dl

[( ∏

v∈Γ[0]

V (3)
v

)

+
∑

w,w′∈Γ[0]

w and w′ share an edge
w<w′

(DwV
(3)
w′ )

( ∏

v∈Γ[0]

v 6=w,w′

V (3)
v

)

+
∑

w,w′,x,x′∈Γ[0]

w and w′ and x and x′ share an edge
w<w′<x<x′

(DwV
(3)
w′ )(DxV

(3)
x′ )

( ∏

v∈Γ[0]

v 6=w,w′,x,x′

V (3)
v

)

+ · · ·

]
e−

∑
e∈Γ[1] Aeξ

′2
e .

With the result of the previous subsection we get (recall that we exclude graphs with self-loops):

U0(Γ) =

∫
dkL
(2π)dl

[( ∏

v∈Γ[0]

V (3)
v

)
+
∑

e∈Γ
[1]
int

We

Ae

( ∏

v∈Γ[0]

v not adj. to e

V (3)
v

)

+
∑

{e1,e2}⊂Γ
[1]
int

e1 and e2 do not share a vertex

We1We2

Ae1Ae2

( ∏

v∈Γ[0]

v not adj. to e1,e2

V (3)
v

)

+ · · ·

]
e−

∑
e′∈Γ[1] Ae′ξ

′2
e′ .

=
∑

k≥0

∑

{e1,...,ek}⊂Γ
[1]
int

e1, . . . , ek do not share a vertex

We1 · · ·Wek

Ae1 · · ·Aek

∫
dkL
(2π)dl

×

( ∏

v∈Γ[0]

v not adj. to e1,...,ek

V (3)
v

)
e−

∑
e∈Γ[1] Aeξ

′2
e .

The first term we recognise as the Feynman-Schwinger integrand of Γ. The other terms we can write as
the integrands of marked versions of Γ (equation (9)). More precisely,

U0(Γ) =
∑

k≥0

∑

{e1,...,ek}⊂Γ
[1]
int

1

Ae1 · · ·Aek

∫
dkL
(2π)dl

I (χe1+ · · ·χek+ Γ)e−Ae1ξ
′2
e1

−···−Aek ξ
′2
ek ,

where I (Γ) is given in equation (11). Recall that in the exponent in the integrand only the unmarked edges

are included. That is why the factor e−Ae1ξ
′2
e1

−···−Aekξ
′2
ek appears. This factor does not change the residue

along
∏
e∈Γ

[1]
int

Ae = 0.

Each subset of edges here is accompanied by a corresponding set of poles. By construction, the residues
along these poles correspond to integrands where the edges shrink to form 4-valent vertices with the correct
Feynman rules.
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Using the χe+-operator, we can write the integral Ũ0(Γ) as:

Ũ0(Γ) =
∑

k≥0

∑

{e1,...,ek}⊂Γ
[1]
int

∫
dAΓ[1]r{e1,...,ek}

I(χe1+ · · ·χek+ Γ).

In terms of Feynman amplitudes, this is

Ũ0(Γ) =
∑

k≥0

∑

{e1,...,ek}⊂Γ
[1]
int

Φ(χe1+ · · ·χek+ Γ) = Φ(eχ+Γ). (23)

Instead of applying Ũ0 to a single graph, we can do this to the combinatorial Green’s function Xn,l.
This gives us the Green’s function for all graphs in Yang–Mills theory without the ghosts, but including the
4-valent vertices:

Proposition 6.6. Collecting residues as above produces the evaluation by the Feynman rules of all 3- and
4-valent graphs in gauge theory without internal ghost or fermion edges:

Ũ0(Xn,l) = Φ(eχ+Xn,l) = Φ(Xn,l

/
).

Proof. The above equation (23) is used, together with Lemma 4.10.iii.

6.5 Exponentiating residues

Let us discuss the pairing between the integrand with poles along the boundaries of the simplex, with

boundaries given by σΓ :
∏|Γ

[1]
I |

i=1 Ai = 0, and the Feynman integrand U0(Γ) in more detail.

The amplitude Ũ0(Γ) can be obtained from U0(Γ) by taking residues along hypersurfaces
∏
e∈E Ae = 0

and regular parts and integrating:

Ũ0(Γ) =
∑

k≥0

∑

{e1,...,ek}⊂Γ
[1]
int

∫
dAΓ[1]r{e1,...,ek} Reg

A1,...,Âe1 ,...,Âek ,...=0

Res
Ae1 ,...,Aek=0

U0(Γ).

For a function f = f({Ae}) of graph polynomial variables Ae, e ∈ γ
[1]
I with at most simple poles at the

origin localized in disjoint sets of edges E, we can write

f =
∑

E

fE,

where the sum is over all such sets and fE is the part of f which is regular upon setting variables Ae, e ∈

(Γ
[1]
I − E) to zero.
For any set E of mutually disjoint internal edges of Γ, consider

∏
e∈E

∮
γe
f, and let fE be its regular

part. For any finite graph Γ, let E γ be the set of all sets of mutually disjoint edges (∅ included).
Consider the differential form

JfΓ :=
(
fE

∧

e∈(Γ
[1]
I −E)

dAe

)
E∈EΓ

.

Let ME
Γ be the hypercube

ME
Γ := R

|Γ
[1]
I |−|E|

+ ,

and the corresponding vector
HΓ(M

E
Γ )E∈E Γ .

Then, there is a natural pairing
∫
HΓ · JfΓ :=

∑

E∈EΓ

∫

ME
Γ

(
fE

∧

e∈(Γ
[1]
I −E)

dAe

)
.
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6.6 Graph homology and the residue map

Note that in parametric integration we integrate against the simplex σ ≡ σΓ with boundary
∏
e∈Γ[1] Ae = 0.

We have co-dimension k-hypersurfaces given by

Ai1 = · · · = Aik = 0.

The Feynman integrand we have constructed above comes from regular parts, and residues along these
hypersurfaces. It can be described by the following commutative diagram.

G
j ,/

∋ Γ
χ+

−−−−→ χ+(Γ) ∈ G
(j+1) ,/yΦ

yΦ

Φ(Γ)
∑
e Rese

−−−−−→ Φ(χ+(Γ))

The underlying geometry will be interpreted elsewhere.

6.7 Covariant gauges

For an edge e, let

Gρµν(e) :=
gµν

ξ′e
2 − 2ρ

ξ′eµξ
′
eν

ξ′e
4

the corresponding gluon propagator in a covariant gauge (ρ = 1/2 being the transversal Landau gauge, ρ = 0
the Feynman gauge). One computes

Gρµν(e) =

∞∫

0

−1

2Aρ

∂

∂ξ′eµ

∂

∂ξ′eν
e−ρAξ

′
e
2

dA =:

∞∫

0

gρµν(e)dA.

We set
GρΓ :=

∏

e∈Γ
[1]
I

Gρµ(s(e),e)µ(t(e),e)
(e),

for half-edges (s(e), e) and (t(e), e), and gρΓ accordingly.
We let IΓ(ρ) be the corresponding scalar integrand obtained by substituting Ae → ρAe for each internal

edge e.
GρΓ acts as a differential operator so that

GρΓIΓ(ρ) = FG(ρ)IΓ(ρ),

with FG(ρ) a polynomial in ρ, edge variables Ae and 4-momenta ξe.
Similarly, the corolla differential DΓ acts as a differential operator so that

DΓIΓ(1) = FDIΓ(1),

with FD a polynomial in the 4-momenta ξe and a rational function in the edge variables Ae.
To compute in an arbitrary covariant gauge, we then work with

FG(ρ)FDIΓ(1).
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6.8 Yang–Mills theory

Consider a cycle C through 3-valent vertices in a graph Γ, and consider

∏

v∈C

Dg(vC).

This is a differential operator with coefficients which are monomials in variables 1/Ae, where e ∈ C.
Let DC be the part in this differential operator which is linear in all variables 1/Ae, for e ∈ C. Let φC

be the Feynman rule for a ghost loop on C, summed over both orientations.

Lemma 6.7.
φC := DCe

−
∑
e∈C Aeξ

′
e
2

.

Proof. This follows directly from the Feynman rules for ghost propagators and ghost-gluon vertices. Lin-
earization eliminates all poles with residues corresponding to 4-valent 2-ghost-2-gluon vertices.

Now consider the corolla polynomial C(Γ) and replace each half-edge variable h by the differential Dg(h).
This defines a differential operator

d(Γ)YM := C(Γ)(h → Dg(h)),

We consider d(Γ)YM(IΓ) where

IΓ :=
e
−

|NΓ|Pf
ψΓ

ψ2
Γ

,

is the scalar integrand for a graph Γ.

Proposition 6.8. All poles in d(Γ)YMIΓ are located along co-dimension |E| hypersurfaces Ae = 0, e ∈ E
for subsets E of mutually disjoint edges are simple poles.

Proof. Corollary 3.6 ensures that poles are at most of first order and appear only when two derivatives act
on the same edge. By the definition of the corolla polynomial this can only appear in mutually disjoint
ordered pairs of corollas. All poles coming from divergent subgraphs are located along subsets of connected
edges, as divergent subgraphs have more than a single edge.

By our previous results on the Leibniz terms we can summarize now for the parametric integrand:

Corollary 6.9. The residues of these poles correspond to graphs where each corresponding pair of corollas
Pe is replaced by a 4-valent vertex.

Proof. Setting an edge variable to zero shrinks that edge in the two Symanzik polynomials by the standard
contraction-deletion identities [2, 3, 25].

The Leibniz terms serve the useful purpose to shrink an edge between two 3-gluon vertices. They
provide a residue which corresponds to the integrand where the corresponding edge is a marked edge in our
conventions. it is hence part of the integrand for a graph with a corresponding 4-valent vertex. As we have
checked before, when summing over all connected 3-regular graphs, we correctly reproduce the Feynman
integrand for all gluon self-interactions.

We stress that in doing so we want to shrink edges only between pairs of corollas which both are corollas
for 3-gluon vertices, and will not mark edges between other type of vertices. This leads us to

Definition 6.10. We let D(Γ)YMIΓ be the part d(Γ)YMIΓ which is linear in all variables 1/Ae.

This eliminates all poles in D(Γ)YMIΓ of the form 1/Ae. We can regain then the contribution of 4-valent
4-gluon vertices by using Theorem 6.1 together with Remark 6.3:
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Lemma 6.11. Let
UΓ = gρΓC

fr(Γ)(ah → Dg(h))IΓ.

Then UΓ (cf. Eq.(5)) generates the integrand for the complete contribution of Γ to the full Yang–Mills theory

amplitude. U
R

Γ generates the corresponding integrand for the renormalized contribution.

Proof. Immediate application of Lemma 6.7 and Theorem 1.3.

This also proves Theorem 1.5 in the context of Yang–Mills theory.

Remark 6.12. If we were to work with non-linear gauges, we could avoid this linearization and use the

Leibniz terms for the graphs with 2-gluon 2-ghost and 4-ghost vertices. Also, note that U
R

Γ = U
R

Γ (ρ) depends
on the gauge parameter.

6.9 Amplitudes with open ghost or fermion lines

For k open ghost lines we have a straightforward generalization of these differentials by using Cfr
P
(G), see

Eq.(22), where each half edge h is again replaced by Dg(h) and linearization is understood as before. For
fermion lines, see below.

6.10 Gauge Theory

If we include matter fields, we need to add a second differential in particular for fermion fields:

Df(h) :=

(
1

A(e(h+))

∂

∂ξ(e(h+))µ(h+)
γµ(h+)γµ(h)

−
1

A(e(h−))

∂

∂ξ(e(h−))µ(h−)
γµ(h)γµ(h−)

)
.

Now we must carefully distinguish between fermion and ghost cycles.
For a collection of cycles C1, · · · , Cj contributing to Cj , consider partitions of this set into two subsets

If , Ig containing |If |+ |Ig | = j cycles. Replace av,vC → bv,vC for each C ∈ If . This defines C
Ig ,If (Γ)(ah, bh).

Upon summing over all possible partitions Ig, Il of the cycles for each j, this gives a further corolla polynomial
for which we write in slight abuse of notation C(Γ)(ah, bh). Assign a differential operator as follows:

UΓ = gρΓ
∑

j≥0

∑

|Ig |+|If |=j

CIg ,If (Γ)(Dg(h), Df (h))colour
Ig ,If (Γ),

where in CIg ,If , for Ig∪If 6= ∅, we keep only terms which are linear in variables 1/Ae for edges e ∈ C1∪· · ·∪Cj .
We can now proceed with Uγ as before.

Note that the restriction to Il = ∅ gives back the corresponding operator for Yang–Mills theory. From
here on, Theorem 1.5 follows for gauge theory as before for Yang–Mills theory.

Remark 6.13. Note that all this can be turned into a projective integrand, illuminating the slots in the
period matrix which are filled in a gauge theory as compared to a scalar field theory. In particular, one
hopes that the geometry of Eq.(6.6) is helpful to explain appearances and disappearances of periods in gauge
theory.

Remark 6.14. Putting fermions into the same colour rep as gauge bosons allows for immediate cancellations
between Dg and Df . This can be illuminating in studying the simplifications for supersymmetric gauge
theories.
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6.11 Examples: QED and Yang–Mills theory

In the following two examples, we compute the one-loop vacuum polarization in quantum electrodynamics,
and then the one-loop gluon vacuum polarization in Yang–Mills theory. Both examples can be obtained from
corolla differentials acting on the simplest possible 3-regular graph:

Γ :=

1

2

3 4a b .

We label its two internal edges 1, 2, and the external edges 3, 4. We also label the two vertices a, b. Edge 3
is oriented from vertex a to vertex b, and edge 4 vice versa, say.

We have six half-edges: h1 := (a, 3), h2 := (a, 2), h3 := (a, 1) and h4 := (b, 1), h5 := (b, 2), h6 := (b, 4),
with corresponding half-edge variables aa3, aa2 etc.

We have four 4-vectors ξ1, ξ2, ξ3, ξ4, with ξe ∈ M4, Minkowski space, with scalar product ξ2e ≡ ξe · ξe =
ξe

2
0 − ξe

2
1 − ξe

2
2 − ξe

2
3.

Example 6.15. In order to compute the one-loop vacuum polarisation in massless QED,

Π1 =

we proceed as follows. We have for the corolla polynomial

C1(Γ) = aa3ab4.

The scalar integrand is

I(Γ) =
1

2
ξ3

2ξ4
2 e

−
(ξ1−ξ2)2A1A2+(A3ξ3

2+A4ξ4
2)(A1+A2)

A1+A2

(A1 +A2)2
dA1dA2dA3dA4.

We can directly integrate A3, A4 eliminating any appearance of ξ3
2, ξ4

2 as in this example no derivatives
with respect to external edges appear in the corolla differential.

Indeed, replacing the two half-edge variables in C1(Γ) by the fermion differential and using the linearized
corolla differential (we symmetrize below in µ(3), µ(4) when allowed)

1

4A1A2

(
∂

∂ξ3µ(3)

∂

∂ξ4µ(4)
+

∂

∂ξ4µ(4)

∂

∂ξ3µ(3)

)
=

1

2A1A2

∂

∂ξ3µ(3)

∂

∂ξ4µ(4)

delivers π1, the integrand for Π1:

π1 := −
1

4
Tr(γµ(3)γµ(2)γµ(4)γµ(1))

∂

A1∂ξ1µ(1)

∂

A2∂ξ2µ(2)
I(Γ)

= −Tr(γµ(3)γµ(2)γµ(4)γµ(1))(ξ1 − ξ2)µ(1)(ξ2 − ξ1)µ(2)A1A2 ×

×
e−

(ξ1−ξ2)2A1A2
A1+A2

(A1 +A2)4
dA1dA2

(
AF1
γ =

A1A2

(A1 +A2)4
, |AF1

γ |γ = 0

)

+Tr(γµ(3)γµ(2)γµ(4)γµ(1))
1

2
gµ(1)µ(2) ×

×
e−

(ξ1−ξ2)2A1A2
A1+A2

(A1 +A2)3
dA1dA2

(
AF2
γ =

1

(A1 +A2)3
, |AF2

γ |γ = 2

)
.

Partially integrating the metric tensor term (equivalently, multiplying AF2
γ by A1A2

(A1+A2)A4
before integrating
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A4, see Eq.(5)) gives

π1 = Tr(γµ(3)γµ(2)γµ(4)γµ(1))(ξ1 − ξ2)µ(1)(ξ2 − ξ1)µ(2)A1A2 ×

×
e
−

(ξ1−ξ2)2A1A2
A1+A2

(A1 +A2)4
dA1dA2

+Tr(γµ(3)γµ(2)γµ(4)γµ(1))
1

2
gµ(1)µ(2)(ξ1 − ξ2)

2A1A2 ×

×
e
−

(ξ1−ξ2)2A1A2
A1+A2

(A1 +A2)4
dA1dA2.

Evaluating the trace, contracting indices and integrating delivers (Q replaces ξ1 − ξ2 by q, subtraction at
q2 = µ2 understood, i.e. Q0 replaces ξ1 − ξ2 by µ)

Π1 = 8(q2gµ(3)µ(4) − qµ(3)qµ(4))

∫
A1A2e

−
q2A1A2
A1+A2

(A1 +A2)4
− · · ·|q2=µ2 dA1dA2

which can be written projectively

Π1 = 8(q2gµ(3)µ(4) − qµ(3)qµ(4)) ln
q2

µ2

∫

P1(R+)

A1A2

(A1 +A2)4
(A1dA2 −A2dA1)

and which correctly evaluates to the expected transversal result

Π1 =
4

3
(q2gµ(3)µ(4) − qµ(3)qµ(4)) ln

q2

µ2
.

Next, we turn to Yang–Mills theory.

Example 6.16. We have

|N |Pf

ψ
= −ξ23A3 − ξ24A4 −

(ξ1 − ξ2)
2A1A2

A1 +A2

while the corolla polynomials read

C0 (a) = (aa3 + aa1 + aa2)(ab4 + ab1 + ab2)

C1 (a) = aa3ab4
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The corresponding differentials then become

C0 (D) = (Da3 +Da1 +Da2)(Db4 +Db2 +Db1)

=
(
− 1

2 )
2

(
gµ1µ2

(
−

1

A1

∂

∂ξ1µ3

−
1

A2

∂

∂ξ2µ3

)

+ gµ2µ3

( 1

A2

∂

∂ξ2µ1

−
1

A3

∂

∂ξ3µ1

)

+ gµ3µ1

( 1

A3

∂

∂ξ3µ2

+
1

A1

∂

∂ξ1µ2

))

×

(
gµ2µ1

(
−

1

A2

∂

∂ξ2µ4

−
1

A1

∂

∂ξ1µ4

)

+ gµ1µ4

( 1

A1

∂

∂ξ1µ2

−
1

A4

∂

∂ξ4µ2

)

+ gµ4µ2

( 1

A4

∂

∂ξ4µ1

+
1

A2

∂

∂ξ2µ1

))

C1 (D) = Da3Db4

= 4
(
− 1

2

)2(
−

1

A1

∂

∂ξ1µ3

−
1

A2

∂

∂ξ2µ3

)

×
(
−

1

A2

∂

∂ξ2µ4

−
1

A1

∂

∂ξ1µ4

)

for which the linear part, without the factor 4 (the space-time dimension), is

C̃1 (D) =
(
− 1

2

)2 1

A1A2

( ∂2

∂ξ1µ3∂ξ2µ4

+
∂2

∂ξ2µ4∂ξ1µ3

)

We compute

U0 = C0 (D)
eφ /ψ

ψ2

=
1

(A1 +A2)4

(
(A1 −A2)g

µ1µ2qµ3 − (2A1 +A2)g
µ2µ3qµ1

+ (A1 + 2A2)g
µ3µ1qµ2

)(
(A1 −A2)g

µ2µ1qµ4

+ (A1 + 2A2)g
µ1µ4qµ2 − (2A1 +A2)g

µ4µ2qµ1

)

× e
−q2
(
A1A2
A1+A2

+A3+A4

)

+
3

(A1 +A2)3

(
1−

→0, as residues are scale−independentself−loops︷ ︸︸ ︷
A1

A2
−
A2

A1

)
gµ1µ2e−q

2
(
A1A2
A1+A2

+A3+A4

)

and so

Ũ0 =

(
1

(A1 +A2)4
(
− (2A2

1 + 2A2
2 + 14A1A2)q

µ3qµ4

+(5A2
1 + 5A2

2 + 8A1A2)q
2gµ3µ4

))
hence |A

F1
γ |γ=0

e
−q2

A1A2
A1+A2 dA1dA2

+

(
3

(A1 +A2)3
gµ3µ4

)

hence |A
F2
γ |γ=2

e
−q2

A1A2
A1+A2 dA1dA2
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Similarly,

Ũ1 =
( 2A1A2

(A1 +A2)4
qµ3qµ4 −

1

(A1 +A2)3
gµ3µ4

)
e
−q2

A1A2
A1+A2 dA1dA2

We thus obtain for the corresponding integrals:
∫
Ũ0R =

(
11
3 q

µ3qµ4 − 25
6 q

2gµ3µ4) ln
( q2
µ2

)
,

which corresponds to the gauge boson loop:
,

and ∫
Ũ1R = −

(
1
3q
µ3qµ4 + 1

6q
2gµ3µ4) ln

( q2
µ2

)
, (24)

which corresponds to the ghost loop:
.

They combine to a transversal result:
∫
ŨR =

∫
Ũ0R −

∫
Ũ1R

= 4(qµ3qµ4 − q2gµ3µ4) ln
( q2
µ2

)
.

Multiplying with colour(γ)
sym(γ) = 1

2f
h1h2h3fh2h3h6 , this is the result for the 1-loop gluon self-energy in Yang–Mills

theory. The gauge theory result is immediate from including the previous example with a suitable colour
factor for the fermion loop.

7 Conclusion

7.1 Covariant quantization without ghosts

Consider U
R

Γ =:
∑∞

i=0(−1)iU
i,R

Γ in a notation which reflects the alternating structure of the corolla polyno-

mial. Set Ugh
R

Γ :=
∑∞
i=1(−1)iU

i,R

Γ .

Covariant quantization delivers naively the integrand U
0,R

Γ . Let PL be a projector onto longitudinal
degrees of freedom so that a physical amplitude is in the kernel of PL, PT the corresponding projector such
that PL + PT = id.

Summing over connected graphs contributing to a physical amplitude Xr,n at n loops, we know that

PL

(
U

0,R

Xr,n

)
= −PL

(
Ugh

R

Xr,n

)
.

The undesired longitudinal part of the ghost free sector determines the longitudinal part of the ghost con-
tribution by definition.

But also, to compute the ratio

PL

(
Ugh

R

Xr,n

)

PT

(
Ugh

R

Xr,n

)

is a combinatorial exercise in determining the interplay of these projectors with the Leibniz terms originating
from the corolla differentials in the various topologies. These longitudinal and transversal differentials are
determined by the same scalar integrand, and hence are not independent. Eq.(24) with the ratio two between
the qq and g form-factor is a typical example.

So the transversal part of the ghost sector is determined by the combinatorics of scalar graphs and the
longitudinal part. It hence is implicitly determined by the ghost free sector.
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7.2 Slavnov–Taylor Identities

Slavnov–Taylor identities are treated here as originating from co-ideals in the corresponding Hopf algebras.
We reproduce the Feynman rules in four dimensions as renormalized integrands, and can similarly reproduce
them in dimensional regularization, and checked that our renormalized Feynman integrand vanishes on the
corresponding co-ideals, as required.

In future work, we will directly demonstrate the validity of Slavnov–Taylor identities from the structure
of the corolla polynomial.
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