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A comparison of time-memory trade-off attacks
on stream ciphers

Fabian van den Broek and Erik Poll

Institute for Computing and Information Sciences,
Radboud University Nijmegen, The Netherlands.

Abstract. Introduced by Hellman, Time-Memory Trade-Off (TMTO)
attacks offer a generic technique to reverse one-way functions, where one
can trade off time and memory costs and which are especially effective
against stream ciphers. Hellman’s original idea has seen many different
improvements, notably the Distinguished Points attack and the Rain-
bow Table attack. The trade-off curves of these approaches have been
compared in literature, but never leading to a satisfying conclusion. A
new TMTO attack was devised for the A5/1 cipher used in GSM, which
combines both distinguished points and rainbow tables, which we refer
to as the Kraken attack.1. This paper compares these four approaches
by looking at concrete costs of these attacks instead of comparing their
trade-off curves. We found that when multiple samples are available the
Distinguished Points attack has the lowest costs. The Kraken attack is
an alternative to save more disk space at the expense of attack time.

1 Introduction

An attacker trying to break a cryptographic function can always try to either
brute force the function, or precompute all possible values beforehand and store
them in a large table, so every subsequent attack is a simple look-up. Most cryp-
tographic functions are protected from these attacks by having a large enough
key size or state size, which makes the time complexity or the storage require-
ments of such attacks too large in practice.

In 1980 Hellman caused a breakthrough by suggesting a Time-Memory Trade-
Off attack which is probabilistic and falls somewhere in between a brute force
attack and a precomputation attack. Hellman showed that using his attack he
could reverse an n-bit key cipher, in 22n/3 time complexity, by precomputing 2n

values and storing these in 22n/3 values [1]. This made ciphers using keys that
until then were thought large enough to prevent a brute-force attack suddenly
susceptible to this new Time-Memory Trade-Off attack.

Later research into TMTO attacks led to many improvements on Hellman’s
attack. First came the Distinguished Points method, which reduced the number

1 Correction after publication, Professor Jin Hong pointed out to us that the attack
we call the Kraken attack was already suggested in 2006, and named a fuzzy rainbow
table attack [10]. Hong et al. also found different results when comparing the different
TMTO attacks [19,20,18]



of disk seeks and is referenced to Rivest [2]. Later Oechslin [3] devised a compet-
ing method with a slight speed-up, called Rainbow Table. The Rainbow Table
attack seems to be better known, presumably due to its colorful name. Biryukov
and Shamir [4] found that TMTO attacks were especially useful against stream
ciphers, since an attacker can then make generic TMTO tables for a cipher which
can be matched against any large enough sample of keystream, increasing the
success chance for every sample. This new understanding directly led to new
proposed attacks against one of the most widely deployed stream ciphers in the
world: GSM’s A5/1 cipher [5,6].

In 2010 researchers demonstrated a TMTO attack to break the A5/1 cipher of
GSM [7]. This attack uses a new, unresearched, TMTO method which combines
two important, but very different TMTO improvements; namely Distinguished
Points and Rainbow Tables [8]. This new attack is called Kraken in this paper,
after the name of the tool used to perform the actual attack.

It seems rather strange for these researchers to have chosen a new approach
for their attack, so the question arises whether this new Kraken attack improves
on the already existing attacks. This paper aims to research how much, if any,
of an improvement this Kraken attack brings to the area of TMTO attacks.

Section 2 introduces the general idea of TMTO attacks. Section 3 introduces
and analyzes the four TMTO attacks: Hellman’s original attack [1] with Biryukov
and Shamir’s improvement for stream ciphers [4], Rivest’s Distinguished Points
approach [2], Oechslin’s Rainbow Tables [3], and the first theoretical analysis of
the Kraken attack (Section 3.4). We compare the TMTO attacks in Section 4,
including an informal analysis on the chances of chain merges. Finally some ideas
for future research are given and conclusions are drawn.

Related work Some of the discussed TMTO methods have previously been
compared with each other. Most of these publications compare the trade-off
curves for these attacks [4,9], which give the rate at which extra memory can be
traded in for a reduced attack time. Such as M2T = N2 for both the Hellman
and Distinguished Point attack, with M the memory cost, T the time cost of
the online phase, and N the size of the state space. Our comparisons are not
based on trade-off curves, because we feel that these curves hide too much of
the real costs such attacks have, such as the seek times in the online attack,
or the precomputation effort. Biryukov and Shamir compare Hellman’s attack
with Distinguished Points [4] and Erguler et al. compare Hellman’s attack with
Rainbow Tables in [9]. Barkan et al. [10] make the most complete comparison;
within a new theoretic framework they find the Distinguished Points attack
better than the Rainbow Table attack, mainly based on the possibility to shorten
the stored values of a Distinguished Points attack. However, this comparison is
still very broad and the question on which TMTO attack has the lowest costs,
in terms of time and memory, seems to still be open to debate.

In 2008 Hong et al. [11] already combined Distinguished Points with Rainbow
Tables, but in a different way than in the Kraken approach. Their combination
does not improve on just Distinguished Points or Rainbow Table attacks.



To the best of our knowledge there has been no analysis of the Kraken ap-
proach. The attack is considered in work by Krhovjak et al. [12], where they
use it as a practical example for an attack against A5/1, but they make no
comparison with the earlier attacks.

2 Typical TMTO

Assume a scenario in which an attacker tries to break a known cryptographic
function f for which he has obtained at least one sample of ciphertext y. His
goal is to reverse the function f , i.e. to find an input x for which y = f(x). This
model covers different scenarios:

– Finding the preimage x of a hash function f for the hash value y.
– Finding the key x used to encrypt a known plaintext p to produce y, i.e. a key
x such that y = f(x) = encryptx(p), with encrypt e.g. a DES encryption.

– Finding the internal state used to encrypt a known plaintext p with a stream
cipher. Here x is the internal state of cipher f and y is the corresponding
keystream. So f(x) = y and y is obtained by XORing cipherstream and
known plaintext.

This paper is concerned with the third scenario, finding the “internal state” x of a
stream cipher and not the key. Note that in many stream ciphers it is possible to
retrieve the key that was used from a given internal state. The essential difference
is that when reversing a stream cipher an attacker can construct tables which
are more generic, so they can accept multiple samples from different plaintexts
as explained in Section 3.1.

A typical TMTO attack consists of two phases: the first is the precomputation
phase, often called the offline phase, while the second is referred to as the real-
time, or online phase. In the offline phase, the attacker precomputes a large table
(or sets of tables) using the function f he is trying to break, while in the online
phase the attacker captures a sample of keystream and checks if this happens
to be in his tables. If this attack is successful the attacker can learn the internal
state x for which y = f(x). We can evaluate these kinds of attacks by looking
at different parameters and costs:

– N : the size of the state space.
– T (Attack time): This can be subdivided between the time for the offline

phase, Tpre, in orders of magnitude, and the time for the online phase, which
in turn can be subdivided into computation time Tc, measured in computa-
tion steps of f and seek time Ts, measured in number of disk seeks.

– M (Memory): memory cost of the attack.
– C (Coverage): the number of points from N covered by the tables.
– D (Data): number of usable data samples (y’s) during the online phase.
– P (Chance of success): the chances of a collision between the observed ci-

phertext and the precomputed tables.
– ρ (Precomputation ratio): the ratio between the number of precomputed

points from N and the total number of points N .



Intuitively, the chance of success P seems equal to the precomputation ratio,
ρ = C/N , i.e. the number of points covered by the tables divided by the number
of points in the search space. However, this is not exactly true for a number of
reasons. Firstly, the tables can contain duplicate values. A certain number of du-
plicate values is to be expected when the coverage increases, however duplicates
within the same table can lead to so called chain merges, which cause large parts
of table rows to overlap. These chain merges will be discussed in more detail in
the next section, but will for the most part be ignored in the analysis until Sec-
tion 4, which details why it is hard to give an estimate on the occurrences of
these chain merges. To stress this difference we introduce C̄ and ρ̄ as variants of
the respective variables that do take chain merges into account.

Secondly, a definition of P = ρ assumes that all outputs of the cryptographic
function f are equally likely, so all points in N have the same chance of occurring.
This difference between P and ρ does not matter for our comparisons, but we
will see in the practical example of Section 3.4 that this assumption does not
always hold in practice.

Lastly, if an attacker has multiple samples, as he might have for a stream
cipher, then the chance of success increases by a factor D, the number of samples.

3 The TMTO attacks

This section compares the costs of the four attacks: Hellman’s original attack,
Distinguished Points, Rainbow Tables, and Kraken. For each we give a theorem
that states the cost for the general case with an arbitrary number of tables,
followed by a corollary where we align some of the parameters to allow for
an easy comparison. For these corollaries we assume an attacker abides by the
mt2 = N rule, which will be introduced in Section 3.1, and precomputes enough
points so that Dρ = 1. So, the corollaries normalize the attack costs, for easier
comparison.

3.1 Hellman’s original TMTO attack on stream ciphers

TMTO attacks were introduced by Hellman for attacking block ciphers [1]. In
Hellman’s attack the precomputation tables were created using a single piece
of known plaintext. During the online phase an attacker needs to retrieve an
encryption of that exact same piece of known plaintext in order to match it
against his precomputed tables and have a chance on a successful attack. These
precomputed tables are useless for other known plaintext/ciphertext pairs.

In 2000 Biryukov and Shamir [4] found that TMTO attacks against stream
ciphers have an extra benefit: an attacker can create tables which are more
generic, so any piece of known key stream can be matched to them. These samples
can even be overlapping. If an attacker has created TMTO tables to look for
keystream occurrences of n bits and he obtains e.g. n+ 6 consecutive bits, this
gives him 7 different keystream samples of length n to match with the results in
his tables. Since every sample of known keystream has its independent chance



x0 → fi(x0) → fi(fi(x0)) → . . .→ f t
i (x0)

x1 → fi(x1) → fi(fi(x1)) → . . .→ f t
i (x1)

x2 → fi(x2) → fi(fi(x2)) → . . .→ f t
i (x2)

...
...

...
. . .

...
xm → fi(xm) → fi(fi(xm)) → . . .→ f t

i (xm)

Fig. 1. A single m× t matrix of function fi. Only the first and last points of each chain
are stored.

of matching with the precomputed values, every sample increases the success
chance of the attack. Alternatively, an attacker can make an estimate, D, on the
expected number of samples he will be able to obtain in the real-time phase,
this enables him to save a factor D on precomputation (both time and storage)
to achieve the same success probability as that obtained with an attack on a
cipher with D = 1. This effectively transforms the time-memory trade-off into a
time-memory-‘number of data samples’ trade-off.

Hellman’s attack on stream ciphers then goes as follows. In order to reverse
the function f , a table is precomputed in the offline phase, for a single known
plaintext. In order to cover as much of the N points of the search space as
possible, an m × t matrix is computed, where the m rows consist of chains
of length t and where each point in the chain is a new iteration of f on the
result of the previous point (see Figure 1). Finally, only the begin point and end
point of each chain are stored (ordered by the endpoints) as the precomputation
table. In the rest of this article we will talk about precomputation matrices
and tables, where matrices denote the temporary m × t precomputation chains
and tables refer to the end product, essentially the compressed storage of the
matrices. During the online phase, the attacker obtains keystream samples (e.g.
by sniffing a known plaintext encryption, or because he can perform a chosen-
plaintext attack). He then makes another chain of at most t iterations of applying
the function f and for each iteration checks if the result matches one of the
endpoints stored in his table. If this happens, he recomputes the chain starting
from the corresponding begin point until the preimage of the ciphertext, thereby
reversing function f in an attack time of order t in the online phase.

Adding more rows to the matrix computed in the offline phase will eventually
cause duplicates, two duplicate points in different chains will cause the rest of
these chains to cover the exact same points: the chains merge. Merging chains
waste storage and precomputation effort on duplicate points. Hellman shows [1]
that the probability of success is bounded by:

(1/N)

m∑
i=1

t−1∑
j=0

[(N − it)/N)]j+1 ≤ P ≤ (mt/N). (1)

Hellman proves that this lower bound can be approximated to 3/4 for tables for
which mt2 = N . He argues that increasing m and t beyond mt2 = N is ineffec-
tive, since the chance of overlap only increases as m and t increase. Therefore



Hellman continues his analysis of using m× t matrices satisfying mt2 = N . Most
of the subsequent work on time-memory trade-offs copies this choice, although
there is no real reason for this.

A single m × t matrix satisfying mt2 = N covers only 1/t-th of the search
space N . So, in order to cover a larger part of the search space, Hellman proposed
to construct l different m × t matrices each using a variant of the f function,
fi. The function fi is defined as fi(x) = hi(f(x)) where hi is a simple output
modification that is different for each i. In this way, all l tables only have a small
chance of duplicate chains (only within a single table). Naturally there are still
chances of duplicate points between different tables, but these will not cause
chain merges and are thus not so costly.

Theorem 1. The general costs for Hellman’s attack adapted for stream ciphers
are:
M = 2ml entries,
Tc = tlD fi-computations,
Ts = tlD seeks in tables of m entries.

Proof. The memory costs equals the costs of one table, 2m since it only stores the
starting and endpoints, times the number of tables, l. Having l different tables
also carries additional costs in terms of attack time during the online phase,
since the attacker will now have to create l different chains of length t for every
sample, so both Tc and Ts are in the order of tlD fi-computations or seeks,
respectively.

In this general case, it might seem that the factor D only has a negative impact
on the costs, however, the value for l, the number of tables, can be reduced with
a factor D when attacking stream ciphers while the success chance remains the
same.

Corollary 1. When reversing a stream cipher, using D samples and the m× t
matrices satisfy mt2 = N and precomputing enough points to satisfy Dρ = 1,
the costs are:
Tpre = O(N/D), Tc = t2 fi-computations,
M = 2mt/D entries, Ts = t2 seeks in tables of m entries.

Proof. The attacker makes l tables, each with a different fi. Since each table
covers 1/t-th of the search space (mt2 = N) and the attacker expects D sam-
ples, he needs t/D different tables to cover an area of equal size to the search
space. So, there are l = t/D tables each covering mt points, which means the
precomputation time Tpre is in the order of N/D, since mt2 = N (assuming that
D ≤ t). The costs for M , Tc and Ts follow by simply substituting l with t/D in
Theorem 1

The memory costs M are measured in entries. We are assuming two entries are
needed per chain, which is an overestimate, since some bits can be spared by
clever storage methods. The seek time Ts is measured in the number of disk
seeks necessary for the attack. In his original analysis Hellman ignores the effect
that the size of the tables might have on the time of an individual disk seek.



In order to achieve a more accurate measure we take the size of the tables into
account, but we ignore the way the tables are organized on disk in our analysis.

Hellman’s attack provides a time-memory trade-off controlled by choice of the
chain length t. The table only stores two points for each chain, the begin and end
point. As Theorem 1 shows, increasing t reduces the memory cost, but increases
the time needed in the online phase, as more time is needed for computing the
chain. Conversely, reducing t reduces the time in the online phase at the expense
of higher memory cost. Note that if we choose t = 1 we have a dictionary attack,
while if we choose t = N we have a part of a brute-force attack.

3.2 Distinguished Points

The use of distinguished points was the first improvement on Hellman’s ap-
proach. Hellman’s analysis has a practical problem: there is a huge time differ-
ence between computing fi and a disk seek to see if any fi(x) is stored in the
precomputation table. In fact, Hellman’s t2 seeks in the precompution tables
are extremely more expensive than the t2 fi-computations [2]. Since Hellman’s
analysis counted only the computation steps (T = t2) the difference between
theory and practice is very big.

In 1982, a solution was proposed referenced to Ron Rivest [2, page 100],
namely to identify a subset of special points, called distinguished points. These
points should be easily recognized, usually by a fixed prefix, such as the first
k bits being ‘0’. In the offline phase, chains are computed until such a distin-
guished point is reached, and that point is then stored as the endpoint. If no
distinguished point is reached for a certain number of maximum computation
steps, the entire chain is dropped and a new one is computed. In the online phase,
the attacker starts developing a chain from captured ciphertext until he reaches
a distinguished point, and only then does he need to perform an expensive disk
seek. If no distinguished point is encountered in the development of this chain
after a predetermined number of steps, than this captured piece of ciphertext is
not covered by the tables.

Rivest’s approach reduces the number of disk seeks, since now only a single
disk seek is needed for every chain that is computed during the online attack,
instead of one disk seek for every link. This leads to matrices with chains of
varying length. However on average the chain length will be t = 2k.

Using distinguished points has one other benefit. When the precomputation
tables are finished it is possible to remove all chain merges from the tables,
simply by looking for identical end points. After all, if two chains within a table
merge, they will end in the same distinguished point. There is not really an easy
way to decide which chain to drop from the table, although an attacker could
record the number of points in each chain, while precomputing, in order to keep
the longest one. Alternatively, keeping both chains will increase the coverage of
the search space (assuming different start points where chosen, then a least a
single unique point is added to the coverage by keeping merging chains), at the
cost of using storage for duplicate points.



Theorem 2. The general costs for a Distinguished Points attack are:
M = 2ml entries,
Tc = tlD fi-computations,
Ts = lD seeks in tables of m entries.

Proof. The memory costs remain exactly the same as in the previous theorem.
The computation costs will also remain the same since a distinguished point will
on average be encountered after t steps. The disk-seek cost is now lowered to one
disk seek per chain. Since the attacker needs to make l chains —one for each
table— for every data sample, the seek time is Ts = lD.

Corollary 2. For the Distinguished Points attack, where the m × t matrices
satisfy mt2 = N and precomputing enough points to satisfy Dρ = 1, the costs
are:
Tpre = O(N/D), Tc = t2 fi-computations,
M = 2mt/D entries, Ts = t seeks in tables of m entries.

Proof. The attacker again needs to create l = t/D tables, so both the precompu-
tational work and memory storage remain the same. The costs for Tc and Ts are
determined by substituting t/D for l in the preceding theorem.

This approach can actually save some memory in practice, since k bits of every
endpoint are constant and need not be stored. This makes the entries smaller,
but the number of entries remains 2mt. The time cost in the online phase also
remains t2 evaluations of an fi, but now only t disk seeks are expected, instead of
t2 for Hellman’s original attack: a disk seek is only needed when a distinguished
point is encountered, which happens once for each chain (on average after per
t = 2k computations), whereas in Hellman’s original attack it has to be done for
all points in the chain.

3.3 Rainbow Table

A different improvement on Hellman’s approach, called Rainbow Table, was
proposed by Oechslin in 2003 [3], with a factor-2 speed-up in the online phase,
for an attack with single samples. Additionally, it has none of the overhead that
Distinguished Points causes with its variable length, sometimes even unending,
chains. However, the Rainbow Table attack is mostly known for its smaller chance
of chain merge when less than N points are precomputed.

Oechslin suggested to precompute one large matrix (instead of t different
ones) with a different fi for every link in the chain. The name Rainbow Table
stems from the idea of calling each simple output modification hi a different
color; each column has its own color, so the entire table looks like a rainbow. This
prevents some chain merges, since now two chains can only merge if they reach
the same value in the same column (i.e. while applying the same fi). Duplicate
points can, of course, still occur, but the penalty for these is not as severe since
the chains will not merge if a duplicate happens in a different column.



x0 →1 f0(x0) →2 f1(f0(x0)) →3 . . .→t ft(ft−1(. . . f0(x0) . . . ))
x1 →1 f0(x1) →2 f1(f0(x1)) →3 . . .→t ft(ft−1(. . . f0(x1) . . . ))
x2 →1 f0(x2) →2 f1(f0(x2)) →3 . . .→t ft(ft−1(. . . f0(x2) . . . ))
...

...
...

. . .
...

xml →1 f0(xmt) →2 f1(f0(xmt)) →3 . . .→t ft(ft−1(. . . f0(xmt) . . . ))

Fig. 2. A ml × t rainbow matrix using t different fi functions. Only the first and last
points of each chain are stored.

Theorem 3. The general costs for a Rainbow Table attack are:
M = 2ml entries,

Tc = t(t+1)
2 D fi-computations,

Ts = tD seeks in a table of lm entries.

Proof. In a Rainbow Table attack there is a single rainbow table which has ml
chains, of which only the first and last point are stored, so 2ml entries. These ml
chains are for comparisons sake, so ml chains of length t have the same coverage

as the l m× t matrices of other attacks. The online attack time becomes t(t+1)
2 D

instead of tlD, because a different fi is used for every link in the chain. So instead
of computing a single chain (y, f(y), f2(y), ..) for every data sample an attacker
now needs to evaluate t chains of a length ascending from 1 to t fi calculations,
with a different fi for every link:

y →ft ft(y) ↑
y →ft−1

ft−1(y) →ft ft(ft−1(y))
t

. .
. ...

...
...

y →f0 . . .→ft−1
ft−1(. . .)→ft ft(ft−1(. . . (f0(y) . . .)) ↓

For each of these t chains, the end point needs to be looked up in the table, for
each of the D data samples, which results in tD disk seeks.

In order to compare this attack to the other approaches we need the matrix to
cover an equal number of points. The other approaches use t m × t matrices.
With a rainbow table there is only a single table, so this needs to cover mt2

points. Keeping the chain length t, means the attacker will need mt entries in
his table to cover mt2 points. So we assume an mt × t matrix, with t different
fi’s, as Figure 2 shows.

Corollary 3. For the Rainbow Table attack, where the ml × t matrices satisfy
mt2 = N and precomputing enough points to satisfy Dρ = 1, the costs are:

Tpre = O(N/D), Tc = t(t+1)
2 D fi-computations,

M = 2mt/D entries, Ts = tD seeks in a table with mt/D entries.

Proof. In the Rainbow Table case there is little difference in costs between the
general case and the case where an attacker chooses m and t to satisfy mt2 = N ,
since there is only a single table and only the chain size determines the attack



time. For comparison’s sake, we use a rainbow table of dimensions (mt/D)× t,
which covers an equal number of points as the previous stream cipher TMTO
attacks, and keeps the values for Tpre and M equal. By substituting l with t/D,
the memory costs are also fixed.

Since D will generally be smaller than t, the number of disk seeks is an improve-
ment when compared to a Hellman style attack, though not as much as the use
of distinguished points. Also keep in mind that every table seek could be more
costly when using a rainbow table, because of its larger size than the l tables
used in the other approaches.

The Rainbow Table attack is most known for a smaller chance of chain
merges, but the table defined in Corollary 3 will have a similar chance of chain
merges than the previous attacks for D = 1. Because the same amount of points
are precomputed in every fi (all the points in a single rainbow table column, or
all the points covered in 1 Hellman or distinguished point table) and a duplicate
between those points causes a chain merge. When assuming more samples, or
when precomputing fewer points, i.e. Dρ < 1, then the Rainbow Table attack
will probably have fewer chain merges than the other TMTO attacks.

The online attack time of the Rainbow Table attack is only dependent on
the chain length, ignoring the number of entries in the table, which causes the
slight speed up for attacks where D = 1.

3.4 Generalized Kraken approach

In 2009, researchers started a project to break GSM’s standard encryption cipher
A5/1 in practice, using a combination of time-memory trade-off techniques. They
proposed the joint creation of a set of TMTO tables to which everyone could
contribute [13]. The idea was to share the intense computing burden of a TMTO’s
precomputation step by having everyone willing to participate perform a part of
the computation on modern GPUs, and share their results over the Internet. In
the end however, the project ended up using a set of tables being computed on
a single computer. This set was dubbed “The Berlin Set” and its parameters are
discussed in detail later in this section. First we focus on the general approach
that was used in this attack.

In order to find the internal state of a generic stream cipher, the Kraken
approach combines both distinguished points and rainbow tables in the table
layout. This is done by first choosing distinguished points as bit strings starting
with k zeros. Then, normal TMTO chains are computed by repeatedly applying
fi to random start points until the output is a distinguished point. The chain
is then continued but now with a different fi; in essence changing the rain-
bow color. This is repeated for a predetermined number, s, of rainbow colors
(f0 . . . fs functions), until a distinguished point is found while using the final
fs of this chain. This point is the endpoint of a chain and is stored together
with the corresponding start point in the TMTO table. Figure 3 shows such a
precomputation matrix. In order to match a sample y against a table during
the online phase, s different chains need to be developed ranging in size from



x0 → f0(x0) → f0(f0(x0)) →∗ k||y00 → f1(k||y00) →∗ . . .→ fs(. . . )→ k||y0s
x1 → f0(x1) → f0(f0(x1)) →∗ k||y10 → f1(k||y10) →∗ . . .→ fs(. . . )→ k||y1s
x2 → f0(x2) → f0(f0(x2)) →∗ k||y20 → f1(k||y20) →∗ . . .→ fs(. . . )→ k||y2s
...

...
xm→ f0(xm)→ f0(f0(xm))→∗ k||ym0→ f1(k||ym0)→∗ . . .→ fs(. . . )→ k||yms

Fig. 3. A Kraken matrix, where k||y denotes a distinguished point with the first k bits
‘0’. Only the first and last points of each chain are stored. Note that each Kraken chain
consists of s Distinguished Points chains.

t to st fi-computations, analogously to the Rainbow Table online attack. On
average this will lead to one distinguished point per fi subchain, assuming that
each possible output of fi is equally likely. While applying fs, the attacker can
see if the resulting distinguished point matches the stored endpoint. The dis-
tinguished point found in the chain while applying fs−1, needs to be developed
further by applying fs until the last distinguished point is found. This continues
to the distinguished point found using the first f0, which should require a chain
of around st computation steps to match the final distinguished point with the
stored endpoint, as Figure 4 shows. This approach can boil down to compressing
s different Distinguished Points tables into one: Each chain basically consists of
s subchains, depending on the choice of s and t. Intuitively, this means that the
memory costs will be lowered by a factor s, but the attack time will increase
by a factor s. This attack should keep all other advantages of a Distinguished
Points attack, such as the easily identifiable chain merges. When compared with
a Rainbow Table attack the number of chain merges should rise with a factor
t = t′/s, where t′ is the new total chain length, because the same fi is used for
each subchain.

The average length of each subchain, t, can be adjusted by choosing a different
length of k for the k-bit distinguished point. The length of one full chain is equal
to t′ = st.

y →∗fs k||x0s ↑
y →∗fs−1

k||x1s−1 →∗fs k||x1s
sy →∗fs−2

k||x2s−2 →∗fs−1
k||x2s−1 →∗fs k||x2s

. .
. ...

...
...

y →∗f0 . . . →
∗
fs−2

k||xss−2 →∗fs−1
k||xss−1 →∗fs k||xss ↓

Fig. 4. The online phase of a Kraken attack. Here k||X denotes a distinguished point
with the first k bits ‘0’. Only the last point of every chain is matched against the
precomputation table.



Theorem 4. The general costs for the Generalized Kraken attack are:
M = 2ml entries,

Tc = s(s+1)
2 tlD fi-computations,

Ts = slD seeks in tables of m entries.

Proof. The costs for memory use and disk seeks remain the same as in the
Distinguished Points case. The computation costs are still based on the costs for
matching a single sample against a single table multiplied with the number of
tables and the number of samples. The attacker needs to make s chains of sizes

increasing from t to st, so in total s(s+1)
2 t fi-computations, to match a single

sample against a single table.

In the Kraken attack we are faced with an additional variable s, which introduces
a new Time-Memory Trade-Off within a TMTO attack. It also complicates mat-
ters when creating the accompanying corollary by increasing the possible choices.
Here we choose two of the most obvious scenario’s:

– the full chain length of the Kraken tables is as large as in the previous
attacks, which leads to s more tables (Corollary 4, more tables),

– the sub chain length of the Kraken tables is equal to the chain length of the
previous attacks, the full chains are s times larger than the previous attacks
(Corollary 5, bigger tables).

Of course these only show two possible choices for s, t and m, of which the first
scenario coincides with m(st)2 = N and the second with the familiar mt2 = N .

Corollary 4 (more tables). When reversing a stream cipher with the Kraken
approach, using D samples and the m × st matrices satisfy m(st)2 = N and
precomputing enough points to satisfy Dρ = 1, the costs are:

Tpre = O(N/D), Tc = (s+1)
2 (st)2 fi-computations,

M = 2mst
D entries, Ts = s2t seeks in a tables of m entries.

Proof. A single table will cover m× st points, or 1/st of the key space N (since
m(st)2 = N), so st tables are needed to achieve enough coverage for Dρ = 1.
Given that f is a stream cipher, an attacker can reduce the number of required
tables to l = st

D . This means the memory costs will be M = 2m × st
D = 2mst

D
entries.

The attacker needs a total of s(s+1)
2 t fi-computations, to match a single sam-

ple against a single table. Since there are D samples and st
D tables, the total

attack time Tc equals: (s+1)
2 (st)2. The attacker must create s separate chains for

each table. During the online attack this comes down to s disk seeks per table,
on st

D tables and D samples gives Ts = s2t disk seeks within tables of m value
pairs.

Corollary 5 (bigger tables). When reversing a stream cipher with the Kraken
approach, using D samples and the m × st matrices satisfy mt2 = N and pre-
computing enough points to satisfy Dρ = 1, the costs are:

Tpre = O(N/D), Tc = (s+1)
2 t2 fi-computations,

M = 2mt
sD entries, Ts = t seeks in a tables of m entries.



Proof. A single table will cover m×st points, or s/t of the key space N (assuming
s < t), so t/s tables are needed to achieve enough coverage for Dρ = 1. Given
that f is a stream cipher, an attacker can reduce the number of required tables
to l = t

sD . This means the memory costs will be M = 2m× t
sD = 2mt

sD entries.

The attacker needs a total of s(s+1)
2 t fi-computations, to match a single sam-

ple against a single table. Since there are D samples and t
sD tables, the total

attack time Tc equals: (s+1)
2 t2. The attacker must create s separate chains for

each table. During the online attack this comes down to s disk seeks per table,
on t

sD tables and D samples gives Ts = t disk seeks, but again disk seeks within
tables of M value pairs.

The scenario of Corollary 4 for Kraken uses the same sized matrices as that
of Corollary 2 for the Distinguished Points. It needs s2 more tables than the
scenario of Corollary 5, which is reflected in all the costs. However, keep in
mind that the value of t in Corollary 4 is s times higher than the value of t in
Corollary 5.

The costs in Corollary 5 confirm our intuition of Kraken using s compressed
distinguished points tables. So it can reduce memory costs a factor s at the
price of increasing the computation cost in the online phase by a factor s+1

2 in
comparison with Distinguished Points approach, which is better than our initial
intuition.

Kraken in practice The Kraken approach was devised by researchers from
the hacker community to demonstrate the weakness of the encryption used in
GSM; the stream cipher A5/1. This stream cipher has an internal state of 64
bits, which is initiated with a 64 bit session key and a 22-bit, publicly known,
frame number. The cipher then produces 328 bits of keystream of which the
first 100 are discarded. Of the remaining 228 bits, the first half are used for the
encryption of a packet on the uplink (mobile phone to cell tower) and the second
half is used for encryption on the downlink (cell tower to mobile phone).

The natural assumption here is that the state space has size 264, but care-
ful examination of the clocking function shows that a large part of the possible
internal states are unreachable from any valid state. Several studies have mea-
sured the decline of possible states in the A5/1 cipher [14,8], and all of these find
that only around 15% of all possible states are still viable after the initial 100
clockings. This means in practice that an attacker only needs to cover around
15% of the state space: N ≈ 261.26.

In the attack against A5/1 the fi(x) is setting x in the internal state of
A5/1, clocking it a 100 steps forward and then producing 64 bits of keystream,
combined with some trivial output modification (the rainbow colors). These 64
output bits are then used to set the new internal state for the next round.

In the precomputation phase 40 independent tables (l ≈ 25.3) were created,
dubbed the Berlin set. As distinguished points were chosen those points starting
with 12 zeros (k = 12). Eight rainbow colors were used per table (s = 8) and
they differ for each table, so in total there are 320 different colors.



Table 1. Comparison of the different attacks, for Dρ = 1 and mt2 = n.

TMTO technique M Tc Ts

Hellman’s attack 2mt/D t2 t2 in m entries
Distinguished Points 2mt/D t2 t in m entries

Rainbow Table 2mt/D t(t+1)
2

D tD in mt/D entries

Kraken (more tables, t′ = st) 2mt′/D (s+1)
2

t′2 st′ in m entries

Kraken (bigger tables) 2mt/sD (s+1)
2

t2 t in m entries

Every chain consists of eight subchains of average length t. Assuming each
possible outcome of an fi is equally likely: t = 212. So t′ = 8× 212 = 215.

Initially, every table was computed with 8,662,000,000, approximately 233,
rows (m = 233). After which one of every two chains with duplicate end points
was removed and the current set contains around 6,000,000,000 entries per table.

This means that for the Berlin set around 215 × 233 × 25.3 = 253.3 points
were precomputed. The set ended up covering around 215 × 232.5 × 25.3 = 252.8

distinct points, so over 29% of the chains ended up merging with an earlier chain.
This surprisingly high percentage can, in part, be explained by the state-space
collapse of A5/1. However, it still shows that chain merges can indeed have a
significant impact on a TMTO attack performance in practice.

With N ≈ 261.26, the Berlin set has its parameters between the two discussed
options in Corollaries 4 and 5: mt2 < N < m(st)2. The tables in the Berlin set
take up around 1.6TB on disk and one attack with 51 samples (one packet
in GSM is 114 bits, so 51 samples of 64 bits) can be performed within several
seconds on high-end, but off-the-shelf hardware. Experiments with self-generated
bursts put the success chance of the attack with 51 samples to around 20%.

4 Comparison

The main idea behind Kraken is to combine the benefits of both Distinguished
Points (i.e. low number of disk seeks) and Rainbow Tables (i.e. fewer duplicates).
The question is whether this really turns out beneficial. The cost of the different
attacks are compared in Table 1, which lists the costs given in Corollaries 1 to
5. The two possible Kraken approaches are both shown, but Corollary 4 has st
substituted for t′, so its t′ is comparable to the value of t for the other attacks.

The three classic attacks Hellman’s attack (adapted for stream ciphers) is
added in this table as a baseline, since the other attacks all improve on almost all
costs. Between Distinguished Points and Rainbow Table it seems that a Rainbow
Table is the best choice for D = 1, with only the disk seeks being more expensive
due to the larger table. This makes Rainbow Tables the best choice for attacking
block ciphers.

However, when attacking stream ciphers with multiple samples, D > 1, the
comparison is not so simple. The online attack time and the number of disk seeks



for Rainbow Table, Tc and Ts, both increase beyond those of the Distinguished
Points attack. Of course increasing D also decreases the size of the rainbow table
used, making each table search cheaper, but generally seek time will be in the
order of the logarithm of the table size, so this benefit is smaller than the increase
in the number of disk seeks. Based on these calculations, the more samples are
expected during the online attack, the more attractive the Distinguished Points
approach becomes, compared to Rainbow Tables.

The Kraken attacks Our initial intuition that the Kraken approach is com-
parable to s Distinguished Points tables stored as one, seems validated when
looking at the respective costs of both Kraken attacks and the Distinguished
Points attack. If we take s = 1, then the Kraken approaches are the same as
Distinguished Points, and their costs are identical. Another way to look at the
Kraken approach is as a “bloated” rainbow table, with every rainbow color ex-
panded from one column to t columns (on average). Looking at the costs for
the online attack time for the Kraken approach, if we choose t = 1 and s = t′

(essentially a rainbow table), it almost compares to the online attack costs of
a Rainbow Table attack, where the difference can be explained by a Rainbow
Table attack having a single table instead of the st

D or t
sD tables of the respective

Kraken attacks.
It is clear from this comparison that having Kraken tables of the more-tables

variant is not the best choice. It has more disk seeks than the bigger-tables
approach and the Distinguished Points attack, without the benefit of smaller
memory costs.

Kraken vs the classics The Kraken attack can be tuned further by changing
the s parameter. Basically, the Kraken attack moves in between the Distin-
guished Points and Rainbow Table attacks, guided by the value of s, where a
higher choice of s will save memory costs, but increase the online attack costs.

From the two realistic Kraken approaches shown in the comparison table,
only the bigger-tables approach is competitive in this analysis. If the memory
costs are the single limiting factor for using the Distinguished Points or Rainbow
Table attack, then this Kraken attack seems a good choice.

Although, with the continuous drop in the prices of memory such a scenario
seems unlikely, so depending on the number of expected samples a Rainbow
Table or a Distinguished Points attack is probably the better choice.

Comparing chain merges The comparison above is based on all attacks satis-
fyingDρ = 1, in other words the costs are compared when all attacks precompute
the same amount of points. However, due to duplicates and chain merges not all
precomputed points will be unique. It would be more fair if we compared the
costs of the attacks when they all satisfy Dρ̄ = 1, so the number of precomputed
unique values would be in the order of N/D.

However, it is hard to estimate the chances on chain merges in a general case
for the different approaches. In essence this problem boils down to the expected



overlap between two paths (of length t for most approaches) within a digraph
consisting of the N points of the search space as nodes and the current fi as the
edges between these nodes. This digraph is a directed pseudo forest, so every
node has out-degree 1, meaning there can exist source nodes, but no sinks and
from every node there exists a path leading to a cycle. An analysis of the number
of expected duplicates, or analogously the number of unique values for a certain
TMTO attack seems hard [15,16,17,10] and to our knowledge this is in fact an
open problem for most TMTO attacks.

We can however make some assumptions over the chain merges for the dif-
ferent approaches, when they all precompute the same amount of points. We
ignore single duplicate points and only look at chain merges, so only duplicates
under the same fi. Then by looking at the number of precomputed points per
different fi function, although ignoring many of the subtle differences between
the TMTO attacks, can give an indication on the chances of chain merges.

When we assume that the distinguished points from a Distinguished Points
attack are uniformly spread over the iterative function graph, then in general the
number of duplicates in the Distinguished Points tables will be about the same
as those in the Hellman attack. The number of duplicates in the Rainbow Table
attack will in general be smaller than for the Hellman and the Distinguished
Points attack, as long as the number of records in a rainbow table is smaller
than the m× t points in a Hellman or distinguished point table.

When we look at the two possible approaches for the Kraken attack, then
they are most easily compared to a Distinguished Points attack. The first Kraken
approach (m(st)2 = N , Corollary 4) uses s different colors inside an almost
standard Distinguished Points matrix. So, only 1/s th of the points in a single
table have the chance of leading to a chain merge, and we would therefore expect
s less chain merges in this Kraken approach than in a Distinguished Points
approach. The second Kraken approach (mt2 = N , Corollary 5) compresses s
different Distinguished Points tables into one, but because the end point of one
of those Distinguished Points tables is the start point for the next, chain merges
in one of these subchains will carry through the rest of the chain. Therefore, we
can roughly estimate that this Kraken attack has around s/2 more duplicates
due to chain merges than a Distinguished Points attack.

When we keep chain merges in mind, the comparison from Table 1 becomes
more subtle, since it seems that the factor s extra costs in memory and disk seeks
of the first Kraken approach compared to the second, is somewhat mitigated by
having less duplicates, and thus more unique points in its tables and a higher
success chance. However, since we have no hard way of quantifying the number
of chain merges in these attacks, this analysis remains very tentative.

Both Distinguished Points and Kraken have one extra benefit when compar-
ing chain merges. Both approaches have identifiable chain merges, which means
that every chain merge will automatically end in the same end point. So by
simply comparing end points all chain merges can be identified. With extra
precomputation effort both approaches are able to replace one chain of every
merging chain pair, with a new one, thereby increasing their coverage C̄. Nat-



urally, both the increase in coverage and the amount of extra precomputation
work are dependent on the number of chain merges.

5 Conclusions and directions for future research

We have presented the first analysis of the cost of the generalized form of the
TMTO attack used to break the A5/1 cipher, which we have called Kraken. We
have also given a first comparison of the costs of Kraken and three older TMTO
attacks: Hellman’s original attack, Distinguished Points, and Rainbow Tables.

Our comparison is more detailed than earlier work comparing these three
older forms of attack. Most [4,9] earlier work compared the trade-off curves of
these well known attacks. This tells us the rate at which extra memory can
be traded in for a reduced time, but completely ignores some important costs,
namely the precomputation, seek times, and the number of unique points cov-
ered by an attack. We do consider these costs in our comparison: for each attack
we give the memory and time costs, split into precomputation time, online com-
putation time, and number of disk seeks.

In our comparison in Section 4 the new Kraken attack performed fine, with
the lowest memory cost of all attacks and the ability to identify chain merges as
its major benefits. Only Distinguished Points seems a better choice in compari-
son, having a higher memory cost, but the lowest online attack costs. The more
well-known Rainbow Tables are only interesting for attacks with only a single
sample of plaintext-ciphertext known, as it is outperformed by Distinguished
Points for multiple samples.

Another limitation of comparisons of trade-off curves for the different ap-
proaches is that these curves are invariably made under the assumption that the
table sizes are always chosen so that mt2 = N . We see no convincing reason
to constraint the choice in parameters in this way. Hellman used the constraint
mt2 = N to compute a nice bound for the chance of success of his attack, but
other choices for m and t that do not satisfy this constraint might perform better
in concrete instances.

One factor that we still have not been able to quantify precisely in our com-
parison is the chance of duplicates during the precomputation of the tables.

We conjecture that the effectiveness of the Kraken attack is in fact lower
than our current results suggest when this number of duplicates values is taken
into account. The informal analysis of the expected number of chain merges in
Section 4 shows that Kraken has a higher chance of chain merges than the other
attacks when the number of rainbow colors in the Kraken approach is chosen to
achieve lower memory cost.

Estimating the chance of duplicates during precomputation is the most dif-
ficult aspect in achieving a fair comparison. Over 29% of all chains created in
the Kraken tables ended up merging with existing chains, showing that chain
merges can indeed be a significant factor when comparing TMTO attacks. We
know no way to compute the expected number of chain merges for the general
case, or indeed for any non-trivial practical cipher. Since theoretical analysis



of the chance of duplicates seems very difficult, we think that further research
which collects empirical data of practical experiments in constructing TMTO
tables may be the best way to shed light on this.
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