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More Or Less True:

DCTL for Continuous-Time MDPs

David N. Jansen

Radboud Universiteit, Model-based System Development,
Nijmegen, The Netherlands. dnjansen@cs.ru.nl

Abstract. Discounted Computation Tree Logic is a logic that measures utility (as a real
value in the interval [0,1]) instead of discrete truth (only 0 or 1). It is able to express
properties that give more weight to the near future than to the far future. This article
extends earlier work on DCTL with time, to continuous-time Markov chains and continuous-
time Markov decision processes. It presents model checking algorithms for the two possible
semantics of DCTL.
This technical report is an extended version of [4].

1 Introduction

In what context is it appropriate to announce: “It is going to rain”? Unless the world goes away
in the meantime, one could say that this statement is always true: it will eventually rain again,
perhaps this afternoon, perhaps next week, or perhaps in three months. However, we are tempted
to say that the statement is more appropriate in a situation where we expect rain very soon.

Similarly, all computer systems will fail eventually. Therefore, a requirement like “The system
will forever fulfil its task” is, in some sense, never satisfied. Models to verify requirements on
reactive systems (which engage in an ongoing interaction with their environment and are not
meant to terminate) typically assume that the system has infinitely long behaviours, while every
implementation will stop fulfilling its task at some time. In such situations, it is more appropriate
to abandon speaking about absolute truth and rather look at the utility of a system. The longer
a system fulfils its task, the higher its utility.

In another situation, namely testing, engineers are satisfied if the system fulfils its requirements
for a certain amount of time. An error appearing after tenthousand successful tests is perhaps
ascribed to mistyping some input, or it may just end up in the list of known bugs. An error
appearing in the third test will cause a much stronger response: the system will have to be repaired.

In these situations, the point is that utility requirements give more weight to the near future
than to the far future. The logic Discounted Computation Tree Logic (DCTL) was defined in [1]
to express this kind of utility requirements. DCTL is interpreted in a quantitative setting, where
any real number between 0 and 1 is a truth value (0 corresponding to “false” or “useless” and 1 to
“true” or “most useful”), similar to a “degree of truth” in fuzzy logic [8]. To achieve the difference
in weight between near and far future, it introduces discounting: an influence on the utility (a
rainy state, an error in the system under test) is weighted by the length of the path to reach it.

Another possibility to regard DCTL properties is to think of an impatient game player. Assume
somebody plays a (single-player) game that may involve both random choices and strategic or
nondeterministic choices, to be resolved by the player. In some states, the player wins a reward.
The player, however, is not ready to play the game infinitely long, but decides at any moment to
abort the game with some probability. The utility expressed by a suitable DCTL property is a
measure of the expected reward from the game.

DCTL was defined in [1] for discrete-time Markov decision processes (MDP), and their special
cases discrete-time Markov chains (DTMC) and labelled transition systems (LTS). In these models,
the only way to measure the length of a path is to count the number of transitions. While this
works well when each step takes approximately the same amount of time, it becomes unexact
when step timings differ.
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Contributions. In this article, I therefore undertake to extend the work of [1] to continuous-
time Markov decision processes (CTMDP) and their special case continuous-time Markov chains
(CTMC). These formalisms equip each transition with a rate indicating how fast (on average) the
transition is taken.

DCTL temporal operators, interpreted over DTMCs, were shown in [1] to have two differing
semantics: a fixpoint and a path semantics. I show that these variants also exist in the continuous-
time model and provide model checking algorithms for both. To resolve the nondeterminism in
CTMDPs, one needs a scheduler or a strategy. The fixpoint semantics by definition only allows
so-called positional schedulers, i. e. schedulers that always choose the same action in a given state.
In the path semantics, in principle, several classes of schedulers are possible. However, as in
the discrete-time case, I only provide a model checking algorithm for CMTCs, systems without
nondeterminism.

2 Preliminaries

Notations. We denote the minimum of two values by r ⊓ s := min{r, s} and their maximum by
r ⊔ s := max{r, s}. For a n×n-matrix A, let A|i...j be the n×n-matrix where all rows except the
rows i, i+ 1, . . . , j have been set to 0.

Definition 1. A continuous-time Markov decision process (CTMDP) is a tuple M = (S,A,R,AP , L)
consisting of

– a nonempty set of states S;
– a nonempty, finite set of actions A;
– a transition rate matrix R : S ×A× S → R≥0, written R

a(s, s′).
– a nonempty, finite set of atomic propositions AP;
– a labelling function L : S × AP → [0, 1] (here we extend the usual definition).

We denote the components of M by SM, AM, RM, APM, LM, repectively, and we omit the
subscript M if M is clear from the context.

Informally speaking, the behaviour of a CTMDP is as follows: It is always in a state, say s.
The atomic proposition p has utility L(s, p) ∈ [0, 1]. Transitions are triggered according to the
following rule: The CTMDP first chooses nondeterministically an action a. Then, the probability
that the transition to s′ becomes enabled within at most t time units is 1− e−Ra(s,s′)t. If there are
several states s′ with Ra(s, s′) > 0, the first transition that becomes enabled is taken. In effect, this
leads to an exponential distribution with the so-called exit rate of Ea(s) :=

∑
s′∈S R

a(s, s′). Its

cumulative density function is Pr
(
s

≤t−−→
a

| a
)
= 1 − e−Ea(s)t and its probability density function

is pdf
(
s

t−→
a

| a
)
= Ea(s)e−Ea(s)t.

The probability to go to state s′, if in state s action a is chosen, is then P a(s, s′) := Ra(s, s′)/Ea(s).
Together, the transition to s′ will be taken in time at most t with probability

Pr
(
s

≤t−−→
a

s′ | a
)
= P a(s, s′)(1− e−Ea(s)t) .

We will also use EM(s) := max
a∈A

Ea
M(s) and EM := max

s∈S
EM(s).

It may happen that for some states and actions, Ea(s) = 0. In that case, we say that s is a-
absorbing. If the CTMDP is in state s and chooses action a, the behaviour stops, and the CTMDP
stays in s forever. If state s is a-absorbing for each action a ∈ A, we call s (strictly) absorbing.

A continuous-time Markov chain (CTMC) is a CTMDP that does not contain nondeterministic
choices, i. e., a CTMDP M with |AM| = 1.

Example 2. Figure 1 depicts an example of a simple continuous-time Markov chain. The propo-
sition black denotes the “blackness” of a state. There is, a. o., a transition from s to t with rate
Ra(s, t) = 3. State u is absorbing. The unique action has been omitted from the figure.
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L(s, black) = 0.1 L(t, black) = 0.4 L(u, black) = 0.9

Fig. 1. Example CTMC

A path is a (finite or infinite) sequence of the form

s0
t0−→
a0

s1
t1−→
a1

s2 → · · ·

where si ∈ S, ai ∈ A such that Rai(si, si+1) > 0, and ti ∈ R≥0. It represents a possible behaviour
of the CTMDP. We denote the set of paths by Path and the set of maximal paths by Pathmax.
(Maximal paths are paths that are infinite or that end in an absorbing state.)

A cylinder set is a set of maximal paths of the following form:

C (s0, a0, I0, s1, a1, I1, . . . , an−1, In−1, sn) :={
s0

t0−→
a0

s1
t1−→
a1

· · · tn−1−−−→
an−1

sn → · · ·
∣∣∣ ti ∈ Ii for all i < n

}

where Ii are intervals in R≥0.

The Probability Space of Paths. A scheduler is a function that resolves the nondeterministic
choices in a CTMDP. A CTMDP together with a measurable scheduler induces a fully probabilistic
process, where a probability space can be defined.

A scheduler in principle bases its choices on the history of the system. Restricted scheduler
classes only check a part of the history. The most powerful schedulers, history-dependent sched-
ulers, are functions from non-maximal paths to actions D : (Path \ Pathmax) → A. See [7] for
details. However, in the rest of this article, we will mostly look at (time-abstract) positional sched-
ulers, which base the choice on the current state only. They are functions D : S → A.

A CTMDP (S,A,R,AP , L) and a positional schedulerD together induce a CTMC (S, {∗}, R̃,AP , L).
Its transition relation is defined by R̃∗(s, s′) = RD(s)(s, s′). From this, one can define a probabil-
ity space (Pathmax, C,PrDs ). Here, C is the smallest σ-algebra that contains all cylinder sets. Its
probability measure is the unique measure induced by:

PrDs0(C(s0)) := 1

PrDs0 (C (s0, D(s0), I0, s1, a1, I1, . . . , an, In, sn+1)) :=

:= Pr
(
s0

∈I0−−−−→
D(s0)

s1 | D(s0)
)
· PrDs1 (C (s1, a1, I1, . . . , an, In, sn+1)) .

Lemma 3. The function defined above is a measure.

Proof. This lemma has been shown in [7, Theorem 2]. ⊓⊔

A CTMDP M is uniform if all exit rates are equal, i. e. for all states s and actions a, Ea
M(s) =

EM. For a CTMDP M, we can find a uniform CTMDP having a similar probability distribution
as follows.

We first define the CTMDP Munif = (S,A, R̃,AP , L) which is almost the same as M, except
that we add to each state a self-loop such that the total exit rate becomes E ≥ EM for every state
and action:

R̃a(s, s′) :=

{
Ra(s, s′) if s 6= s′

E −
∑

t 6=sR
a(s, t) if s = s′ .
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For a uniform (or uniformised) CTMDP, we can define its embedded discrete-time MDP as follows:
P = PM is given by (S,A, P,AP , L), where the transition probabilities P a(s, s′) are given by
P a(s, s′) = Ra(s, s′)/EM.

Lemma 4. Positional schedulers are invariant under uniformisation, i. e. for every scheduler on
M there is one on Munif and vice versa, such that the probability measures of the respective
induced CTMCs are equal up to stuttering in the same state.

Proof. As the Munif -scheduler corresponding to D on M, we choose D again. This is possible as
the state space and the set of actions do not change. Note that the CTMC induced by D on Munif

only differs from the CTMC induced by D on M by self-loops. Weak bisimulation on CTMCs [3a]
ignores self-loops, so the two are weakly bisimilar. ⊓⊔

3 The Logic DCTL

DCTL consists of state formulas, denoted ϕ,ψ, and path formulas, denoted Ψ . The syntax of state
and path formulas is given by the following grammar:

ϕ ::= 1 | p | ¬ϕ | ϕ ∧ ϕ | ϕ⊕w ϕ | ∃Ψ | ∀Ψ

Ψ ::= ⋄α ϕ | �αϕ | △αϕ

where p is an atomic proposition, w ∈ [0, 1] is a weight, and α ∈ R>0 is a discount rate. We call
⋄α ϕ the discounted maximum, �αϕ the discounted minimum, and △αϕ the discounted average
over paths.

3.1 Semantics

The semantics of a DCTL state formula ϕ is a mapping [[ϕ]] : S → [0, 1] from states to utilities. It
can be defined by:

1 true [[1]] (s) = 1

p atomic proposition, p ∈ AP [[p]] (s) = L(s, p)

¬ϕ negation [[¬ϕ]] (s) = 1− [[ϕ]] (s)

ϕ ∧ ψ conjunction [[ϕ ∧ ψ]] (s) = [[ϕ]] (s) ⊓ [[ψ]] (s)

ϕ⊕w ψ weighted sum, w ∈ [0, 1] [[ϕ⊕w ψ]] (s) = (1− w) [[ϕ]] (s) + w [[ψ]] (s)

The interpretation of ∃Ψ and ∀Ψ is closely linked to the interpretation of path formulas. Informally,
the semantics of ∃Ψ is the expected utility of Ψ under the best scheduler and ∀Ψ is its expected
utility under the worst scheduler. ⋄α ϕ is the maximum of all ϕ-values along the path, where we
apply a discount: if a value appears after time t, it is reduced with the factor e−αt, with the result
that earlier states can more easily influence the maximum than later ones. �αϕ is the minimum of
all discounted ϕ-values along the path, and △αϕ is the average over all ϕ-values, where the value
after time t now gets relative weight e−αt, in accordance with the idea that earlier states are more
important than later ones.

There are two possibilities to formalise the semantics of path formulas: either as the fixpoint of
an operator, or via a look at the complete path at once. In the following sections, we will give the
detailed definition of the two semantics.
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[[∃⋄α ϕ]]f (s) = µu. [[ϕ]]f (s) ⊔max
a∈A

1

Ea(s) + α

∑

s′∈S

R
a(s, s′)u(s′)

[[∀⋄α ϕ]]f (s) = µu. [[ϕ]]f (s) ⊔min
a∈A

1

Ea(s) + α

∑

s′∈S

R
a(s, s′)u(s′)

[[∃�αϕ]]
f (s) = µu. [[ϕ]]f (s) ⊓max

a∈A

α

Ea(s) + α
+

1

Ea(s) + α

∑

s′∈S

R
a(s, s′)u(s′)

[[∀�αϕ]]
f (s) = µu. [[ϕ]]f (s) ⊓min

a∈A

α

Ea(s) + α
+

1

Ea(s) + α

∑

s′∈S

R
a(s, s′)u(s′)

[[∃△αϕ]]
f (s) = µu.max

a∈A

α

Ea(s) + α
[[ϕ]]f (s) +

1

Ea(s) + α

∑

s′∈S

R
a(s, s′)u(s′)

[[∀△αϕ]]
f (s) = µu.min

a∈A

α

Ea(s) + α
[[ϕ]]f (s) +

1

Ea(s) + α

∑

s′∈S

R
a(s, s′)u(s′)

Fig. 2. Fixpoint semantics for CTMDPs

3.2 Fixpoint Semantics

The fixpoint semantics arises by lifting the classical connection between CTL and the µ-calculus
to a quantitative setting. For a transition system, we denote by ∃Pre(u) the set of all states that
have a transition into the set u. Then the set [[∃⋄ϕ]] of all states satisfying ∃⋄ϕ is the smallest
fixpoint of the equation u = [[ϕ]] ∪ ∃Pre(u), written as µu. [[ϕ]] ∪ ∃Pre(u).

As explained in [1], one can lift these fixpoint equations to a quantitative setting by interpreting
∪ as the pointwise maximum and ∃Pre(u) as the expected value of u, achievable in one step, under
the best scheduler. Then, the semantics of ∃⋄α ϕ is the greater of the current utility of ϕ and the
expected utility after one transition. When we formalise this idea, we get the equations in Fig. 2
for the fixpoint semantics. Some remarks on them are in order.

Discounted Maximum Operator. For a CTMC M, the discounted semantics of ∃⋄α ϕ is
obtained as follows. Let α be a discount rate and u : S → [0, 1] be a state utility function. Then
∃PreMα (u) : S → [0, 1] yields at state s the expected discounted utility immediately after the first
jump. That is, if we move to s′ at time t, we get e−αtu(s′). Thus, ∃PreMα (u)(s) is the expected
value of the random variable e−αTu(X), where T is the random variable denoting the time of the
first jump and X the random variable denoting the state reached by the first jump.

For CTMDPs, we additionally maximize over all actions a ∈ A, i. e. we choose the action with
the maximal expected discounted utility. Let X0 be the current state, and A0 the action taken in
this state. A simple calculation shows that

∃PreMα (u)(s) = max
a∈A

E[e−αTu(X)|X0 = s,A0 = a]

= max
a∈A

1

Ea(s) + α

∑

s′∈S

Ra(s, s′)u(s′).

Inserting these results in [[∃⋄α ϕ]]
f
= µu. [[ϕ]]

f ⊔ ∃PreMα (u) and [[∀⋄α ϕ]]
f
= µu. [[ϕ]]

f ⊔ ∀PreMα (u)
yields the equations in Fig. 2.

Discounted Minimum Operator. The operator ∀�αϕ should be equivalent to ¬∃⋄α ¬ϕ.
Therefore, we derive the semantics as follows:

[[∀�αϕ]]
f
(s) = 1− µu.(1− [[ϕ]]

f
(s)) ⊔max

a∈A
E[e−αTu(X)|X0 = s,A0 = a]
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= νû. [[ϕ]]
f
(s) ⊓min

a∈A
E[1− e−αT (1− û(X))|X0 = s,A0 = a]

︸ ︷︷ ︸
=:∀P̂reM

α
(û)

.

Then,

∀P̂reMα (û)(s) = min
a∈A

α

Ea(s) + α
+

1

Ea(s) + α

∑

s′∈S

Ra(s, s′)û(s′).

We will see shortly that the fixpoint is unique. Therefore, we can write µ in Fig. 2 instead of ν.

Discounted Average Operator. To calculate [[∃△αϕ]]
f
, we have to take an average between

[[ϕ]]
f
and the utility after one step, giving more weight to the near future than to the far one. The

natural candidate to choose the weight is the pdf of the probability to lose patience, t 7→ αe−αt.
This leads to the definition:

[[∃△αϕ]]
f
M (s) = µu.max

a∈A

∑

s′∈S

∞∫

0

pdf
(
s

t−→
a
s′ | a

)
·

·




t∫

0

αe−ατ dτ [[ϕ]]
f
M (s) +

∞∫

t

αe−ατ dτu(s′)


 dt

Properties. The fixpoints are unique because the respective functions are contractions:

Lemma 5. The functions under the fixpoint operators are contractions according to the L∞-norm.

Proof. Let’s look at the function

D : u 7→ [[ϕ]]
f
M ⊔ ∃PreMα (u) = [[ϕ]]

f
M ( · ) ⊔max

a∈A

1

Ea + α

∑

s′∈S

Ra( · , s′)u(s′),

used to define [[∃⋄α ϕ]]
f
M = µu.D(u). We have to show that this function is a contraction, i. e.

there exists an ε > 0 such that, given u, v : S → [0, 1], we get

‖D(u)−D(v)‖∞ ≤ (1− ε)‖u− v‖∞. (0a)

We first let s be a state such that ‖D(u) − D(v)‖∞ = |D(u)(s) − D(v)(s)|. We assume w. l. o. g.
that D(u)(s) ≥ D(v)(s).

Then, distinguish on which side of the ⊔ is chosen. Obviously, if D(u)(s) = [[ϕ]]
f
M (s) = D(v)(s),

then (0a) holds for any ε. If D(u) = ∃PreMα (u) > D(v) = [[ϕ]]
f
M (s), the difference |D(u)(s) −

D(v)(s)| is never larger than |∃PreMα (u)(s) − ∃PreMα (v)(s)|, so it is enough to show (0a) for the
case that both choose ∃PreMα .

Let ε := mina∈A,s∈S α/(E
a(s) + α). Now, for any action a ∈ A, we have

∣∣∣∣∣
1

Ea(s) + α

∑

s′∈S

Ra(s, s′)u(s′)− 1

Ea(s) + α

∑

s′∈S

Ra(s, s′)v(s′)

∣∣∣∣∣ ≤

≤ 1

Ea(s) + α

∑

s′∈S

Ra(s, s′)‖u− v‖∞ =
Ea(s)

Ea(s) + α
‖u− v‖∞ =

=

(
1− α

Ea(s) + α

)
‖u− v‖∞ ≤ (1− ε)‖u− v‖∞. (0b)
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Then let au be the action that maximizes 1
Ea(s)+α

∑
s′∈S R

a(s, s′)u(s′) and define av similarly. If

au = av, then (0a) follows from (0b) directly. Otherwise, we know that

D(u)(s) ≥ D(v)(s) =
1

Eav (s) + α

∑

s′∈S

Rav (s, s′)v(s′)

≥ 1

Eau(s) + α

∑

s′∈S

Rau(s, s′)v(s′)

by (0b)

≥ 1

Eau(s) + α

∑

s′∈S

Rau(s, s′)u(s′)− (1− ε)‖u− v‖∞

= D(u)(s)− (1− ε)‖u− v‖∞

and therefore, ‖D(u)−D(v)‖∞ ≤ (1− ε)‖u− v‖∞ in all cases.
The proofs for other operators are similar. ⊓⊔

Proposition 6 (Duality Laws). For all DCTL formulas ϕ and all CTMDPs M, we have

[[¬∃⋄α ϕ]]
f
M = [[∀�α¬ϕ]]fM [[¬∃�αϕ]]

f
M = [[∀⋄α ¬ϕ]]fM

[[¬∃△αϕ]]
f
M = [[∀△α¬ϕ]]fM

Proof. The operators were defined in a way that implies the duality laws. ⊓⊔

Theorem 7. Let M be a CTMDP and Munif be its uniformization. Then we have for all DCTL
formulas ϕ that [[ϕ]]

f
M = [[ϕ]]

f
Munif

.

Proof. The probability to be in a specific state at any given time, under a given scheduler, is the
same for M and Munif (Lemma 4). Only the number of times a state is reentered changes, and
so also the number of times that an action can be chosen. However, a positional scheduler has
to choose the same action whenever the same state is reentered, so the scheduler cannot make a
different choice in Munif than in M. ⊓⊔

We will see later that so-called late schedulers, that choose the action to take not when entering,
but when leaving a state, can deliver better results (higher values for ∃⋄α, lower values for ∀⋄α)
than positional schedulers. Late schedulers may decide the action not only on the current state,
but also on the sojourn time in this state. A scheduler that can distinguish between entering a
state for the first time and reentering a state can get an estimate of the sojourn time and improve
over a positional scheduler based on this estimate. This was a problem for model checking of
non-uniform CTMDPs in [3].

3.3 Path Semantics

Another way to define a CTL semantics is to look at the set of (maximal) paths. A path satisfies
⋄ϕ if it contains at least one ϕ-state; a state s satisfies ∃⋄ϕ if the set of paths starting in s contains
some path satisfying ⋄ϕ. If we lift this principle to a quantitative setting, we reinterpret “at least
one ϕ-state” as “the maximum of [[ϕ]]”, and we reinterpret “existence of a path” as “supremum
over all paths”. This leads to [[∃⋄ϕ]] = supσ∈Path maxs∈σ [[ϕ]] (s). In a Markov decision process,
one would additionally consider the probabilities of paths.

In the path semantics of DCTL, we give separate semantics to the operators ∃ and ⋄α. Let us
first look at ∃ and ∀: Assume given a class of schedulers D. Then, we define:

[[∃Ψ ]]pM (s) = sup
D∈D

E
D
σ∈C(s) [[Ψ ]]

p
M (σ)

[[∀Ψ ]]pM (s) = inf
D∈D

E
D
σ∈C(s) [[Ψ ]]

p
M (σ)

7



The expected value E in these formulas is of course taken over the probability space of paths,
under the mentioned scheduler.

The semantics of path formulas is:

[[⋄α ϕ]]
p
M (σ) = max

t≥0
e−αt [[ϕ]]

p
M (σ@t) (1)

[[�αϕ]]
p
M (σ) = min

t≥0
1− e−αt(1− [[ϕ]]

p
M (σ@t)) (2)

[[△αϕ]]
p
M (σ) =

∞∫

0

αe−αt [[ϕ]]
p
M (σ@t) dt

Existence of Maximum. In an undiscounted setting and with a finite LTS, [[ϕ]] can only take
a finite number of values on any path, so it is clear that [[⋄ϕ]] is not only a supremum, but really
a maximum. However, with continuous discounting, we have to prove existence of the maximum.

Lemma 8. The discounted maximum and minimum are well-defined, i. e., the maximum (1) and
minimum (2) actually do exist.

Proof. Assume given a path σ. For a fixed state s0, the function t 7→ e−αt [[ϕ]]
p
(s0) is continuous

and strictly falling. The set Ts0 := {t ∈ R≥0 | σ@t = s0} consists of left-closed intervals. Therefore,
ms0 := maxt∈Ts0

e−αt [[ϕ]]
p
(s0) is well-defined. Note that

⋃
s∈S Ts = R≥0. Now,

[[⋄α ϕ]]
p
(σ) = sup

t≥0
e−αt [[ϕ]]

p
(σ@t) = sup

s∈S
sup
t∈Ts

e−αt [[ϕ]]
p
(s) = sup

s∈S
ms

is the supremum of a finite set, and therefore its maximum. ⊓⊔

Example 9. Let us calculate [[∃⋄2 black ]]
p
(s) in the Markov chain of Fig. 1. As it does not contain

nondeterminism, there is only the trivial scheduler. There are two time-abstract maximal paths in
this Markov chain: s → u and s → t → u. We calculate Eσ∈C(s) [[⋄2 black ]]

p
(σ) by summing over

these two paths separately. For the path s→ u,

Eσ=(s→u) [[⋄2 black ]]
p
(σ) =

∞∫

0

[[⋄2 black ]]
p
(
s

t−→ u
)
pdf

(
s

t−→ u
)
dt

=

∞∫

0

max
τ≥0

e−2τ [[black ]]
p
([
s

t−→ u
]
@τ

)
R(s, u)e−E(s)t dt

=

∞∫

0

max
{
e−2t 9

10 ,
1
10

}
e−4t dt

∗
=

ln 3∫

0

e−2t 9
10e

−4t dt+

∞∫

ln 3

1
10e

−4t dt

= 9
10

1− e−6 ln 3

6
+ 1

10

e−4 ln 3

4
=

9(1− 3−6)

10 · 6 +
1 · 3−4

10 · 4
= 1459

9720 ≈ 0.15

The equality
∗
= holds because

9
10e

−2t ≥ 1
10 ⇔ e−2t ≥ 1

9 ⇔ −2t ≥ ln 1
9 = − ln 9 ⇔ t ≤ 1

2 ln 9 = ln 3

8



✲
t1

✻t2

ln 3

2

ln 2 ln 3

❅
❅
❅❅

e−2t1−2t2 9

10

e−2t1 4

10

1

10

Fig. 2a. Value of max
{

1

10
, e−2t1 4

10
, e−2t1−2t2 9

10

}

. Note that ln 3

2
= ln 3− ln 2.

Similarly, for the path s→ t→ u, we have that

Eσ=(s→t→u) [[⋄2 black ]]
p
(σ) =

∞∫

0

∞∫

0

[[⋄2 black ]]
p
(
s

t1−→ t
t2−→ u

)
pdf

(
s

t1−→ t
t2−→ u

)
dt1 dt2

=

∞∫

0

∞∫

0

max
τ≥0

e−2τ [[black]]
p
([
s

t1−→ t
t2−→ u

]
@τ

)
3
44e

−4t13e−3t2 dt1 dt2 =

=

∞∫

0

∞∫

0

max
{

1
10 , e

−2t1 4
10 , e

−2(t1+t2) 9
10

}
R(s, t)e−E(s)t1R(t, u)e−E(t)t2 dt1 dt2

Which of the terms is the maximum, depending on t1 and t2, is illustrated in figure 2a.

=

ln 3
2∫

0

(ln 3)−t2∫

0

e−2t1−2t2 9
109e

−4t1−3t2 dt1 dt2 +

ln 3
2∫

0

∞∫

(ln 3)−t2

1
109e

−4t1−3t2 dt1 dt2+

+

∞∫

ln 3
2

ln 2∫

0

e−2t1 4
109e

−4t1−3t2 dt1 dt2 +

∞∫

ln 3
2

∞∫

ln 2

1
109e

−4t1−3t2 dt1 dt2 =

= 81
10

ln 3
2∫

0

e−5t2 1
6 (1− e6t2−6 ln 3) dt2 +

9
10

ln 3
2∫

0

e−3t2 1
4e

4t2−4 ln 3 dt2+

+ 36
10

∞∫

ln 3
2

e−3t2 1
6 (1− e−6 ln 2) dt2 +

9
10

∞∫

ln 3
2

e−3t2 1
4e

−4 ln 2 dt2 =

= 27
20

[
1
5 (1− e−5 ln 3

2 )− 3−6(eln
3
2 − 1)

]
+ 9

403
−4(eln

3
2 − 1)+

+ 6
10 (1− 2−6) 13e

−3 ln 3
2 + 9

402
−4 1

3e
−3 ln 3

2 =

= 27
100 − 8

225 − 1
1080 + 1

720 + 16
270 − 1

1080 + 1
720 = 1591

5400 ≈ 0.29

So, in the end,
[[∃⋄2 black ]]

p
(s) = 1459

9720 + 1591
5400 = 10807

24300 ≈ 0.44.

Lemma 10.

[[⋄α ϕ]]
p
M (σ) = max

t≥0
[[0⊕e−αt ϕ]]

p
M (σ@t)

[[�αϕ]]
p
M (σ) = min

t≥0
[[1⊕e−αt ϕ]]

p
M (σ@t)

9



Proposition 11. The following dualities between ⋄α and �α hold. △α is its own dual.

[[∃⋄α ¬ϕ]]p = [[¬∀�αϕ]]
p

[[∀⋄α ¬ϕ]]p = [[¬∃�αϕ]]
p

[[∃△α¬ϕ]]p = [[¬∀△αϕ]]
p

Proposition 12. The fixpoint and path semantics of △α coincide.

Proof. The proof of this property exactly follows the lines of [1, Thm. 2]. ⊓⊔

4 Model Checking DCTL

The model checking problem for DCTL consists in computing the value of [[ϕ]]
f
M (s), given a

formula ϕ and a state s in a CTMDP M. Based on the equations found in the previous section,
we propose the following algorithms to solve this problem.

Finding the utility of the formulas 1 and p (for p ∈ AP) is trivial. Checking the formulas ¬ϕ,
ϕ ∧ ψ, and ϕ ⊕w ψ is easy and straightforward, if we have already found the truth values of the
subformulas. We will not treat them in the rest of the article, but concentrate on the operators
∃⋄α, ∃�α and ∃△α. The duality laws (Props. 6 and 11) can be used to check the operators ∀⋄α,
∀�α and ∀△α.

4.1 Model Checking the Fixpoint Semantics

Reduction to DCTL Semantics for MDPs. The fixpoint equations in Fig. 2, expressing the
semantics for DCTL over CTMDPs, are very similar to the fixpoint equations for discrete-time
MDPs. For example, in the discrete-time case, we have

[[∃�ρϕ]]
f
P (s) = µu. [[ϕ]]

f
P (s) ⊓

[
(1− ρ) + ρmax

a∈A

∑

s′∈S

P a(s, s′)u(s′)
]

In fact, they are so analogous that the DCTL model checking problem for CTMDPs reduces to the
DCTL model checking problem for MDPs: We can model check a DCTL formula ϕ over a uniform
CTMDP M by model checking a formula ϕ′ over the embedded Markov decision process. Here
ϕ′ arises from ϕ by changing the discount factors ⋄α etc. to ⋄ρ in ϕ, where ρ = EM/(EM + α).
Note that, as the fixpoint semantics only uses positional schedulers, it is possible to analyse other
CTMDPs after uniformising them.

Theorem 13. Let M be a CTMDP, let P be its embedded discrete-time MDP (possibly after
uniformisation) and let ρ = EM/(EM + α). Then we have for all DCTL formulas ϕ that

[[∃⋄α ϕ]]
f
M = [[∃⋄ρ ϕ

′]]
f

P [[∃�αϕ]]
f
M = [[∃�ρϕ

′]]
f

P [[∃△αϕ]]
f
M = [[∃△ρϕ

′]]
f

P

[[∀⋄α ϕ]]
f
M = [[∀⋄ρ ϕ

′]]
f

P [[∀�αϕ]]
f
M = [[∀�ρϕ

′]]
f

P [[∀△αϕ]]
f
M = [[∀△ρϕ

′]]
f

P

Since the reduction above is clearly linear in the size of M, the complexity of model checking the
DCTL fixpoint semantics is the same for CTMDPs and discrete-time MDPs. Thus, we obtain the
following corollary from [1, Thm. 7].

Corollary 14. The problem of model checking [[ϕ]]
f
M can be solved in nondeterministic polynomial

time in the size of M and exponential in |ϕ|.

10



4.2 Model Checking the Path Semantics

The article [1] proposes a model checking procedure for discrete-time Markov chains of ∃⋄α ϕ
that can be adapted to continuous-time Markov chains. (Note that we assume there is no nonde-
terminism here.) For any path σ, the value [[⋄α ϕ]]

p
(σ) is reached at a time when σ enters a state

that is better than σ@0 (i. e., e−αt [[ϕ]]
p
(σ@t) > [[ϕ]]

p
(σ@0) for some t). We therefore order the

states according to their value [[ϕ]]
p
:

[[ϕ]]
p
(s1) ≥ [[ϕ]]

p
(s2) ≥ · · · ≥ [[ϕ]]

p
(sn)

In state s1, no other state can improve [[ϕ]]
p
, so we know that [[∃⋄α ϕ]]

p
(s1) = [[ϕ]]

p
(s1).

In state s2, the only possible improvement is to reach s1 at some time t with [[ϕ]]
p
(s2) <

[[ϕ]]
p
(s1)e

−αt = [[∃⋄α ϕ]]
p
(s1)e

−αt. We calculate the probability that s1 is reached early enough
and the resulting discounted value of [[∃⋄α ϕ]]

p
(s2) via a variant of time-bounded reachability.

In general, if a path starts in si, improvements occur if some state sj is reached at a time
t such that [[ϕ]]

p
(si) < [[∃⋄α ϕ]]

p
(sj)e

−αt. We can base our algorithm on the observation that
after the first such state sj, no more improvement is possible: any further improvement is already
taken into account by [[∃⋄α ϕ]]

p
(sj). The second idea used in the algorithm is that of cutoff time:

After some time, the discount factor e−αt is so small that reaching si−1 will no longer improve
over si. From that moment on, we could as well presume that any state sj (for j = i, . . . , n) had
[[ϕ]]

p
(sj) = [[ϕ]]

p
(si−1). Therefore, it is enough to regard the current path until the cutoff time,

after which we can continue analysis in a simplified Markov chain.
This allows to use a sequence of CTMCs M1,M2, . . . ,Mn where Mi has the same structure

as M but change [[ϕ]]
p
to:

[[ϕ]]
p
Mi

(sj) := [[ϕ]]
p
M (smin{i,j}).

Note that one can easily prove that [[∃⋄α ϕ]]
p
Mi

(sj) = [[∃⋄α ϕ]]
p
M (sj) if j ≤ i. We now calculate

[[∃⋄α ϕ]]
p
Mi

recursively:

Base case. Trivial: [[∃⋄α ϕ]]
p
M1

(si) = [[ϕ]]
p
M (s1) for all 1 ≤ i ≤ n.

Iteration step. Assume that [[∃⋄α ϕ]]
p
Mi

(sj) has been calculated. We know that it is equal to

[[∃⋄α ϕ]]
p
M (sj) if j ≤ i.

One can calculate of [[∃⋄α ϕ]]
p
Mi+1

by solving a reachability problem in a (slightly modified)

CTMC M′
i+1. First, select some path σ through M′

i+1 and at a suitable moment titer take the
utility [[∃⋄α ϕ]]

p
Mi

(σ@titer). If σ starts in s1, . . . , si, we can pick titer = 0. To simplify the choice,
these states are absorbing in M′

i+1, so that any value for titer is equivalent to picking titer = 0.
Otherwise, we follow the transitions of σ until it reaches some state in s1, . . . , si; then, titer

is the time of reaching such a state for the first time. To take into account the discount factor,
we add an (absorbing) state s⊥ with [[ϕ]]

p
M′

i+1
(s⊥) := 0, and from each state in si+1, . . . , sn, we

add a transition with rate α to s⊥. However, we never wait longer than tcut := [ln [[ϕ]]
p
M (si) −

ln [[ϕ]]
p
M (si+1)]/α: If no such state is reached before tcut, we pick titer = tcut.

Overall, M′
i+1 has state space SM ∪ {s⊥}, rate matrix

RM′
i+1

=




0

0
...
0

(RM)i+1...n

α
...
α

0 . . . 0 0







i zero rows




n− i rows from RM = RMi+1

} zero row for s⊥

(3)

and the other parts of M′
i+1 coincide with Mi+1. This rate matrix has the additional property

that we can wait until tcut in all cases: one only chooses an earlier moment for titer if one has
reached s1, . . . , si, and these states are absorbing. This leads to the following lemma:

11



Lemma 15. With the sequence of Mi introduced above, and Q = RM −EM · I the infinitesimal
generator of M,

[[∃⋄α ϕ]]
p
Mi+1

= exp
(
(Q− αI)|i+1...n tcut

)
[[∃⋄α ϕ]]

p
Mi

Proof. We split the set of paths into two subsets, depending on whether {s1, . . . , si} is entered
before tcut or not. Then, we calculate the contribution to [[∃⋄α ϕ]]

p
Mi+1

(sj) of both subsets sepa-
rately; the total utility is the sum of the two contributions.

– Suppose σ enters some state s0 ∈ {s1, . . . , si} at time t < tcut (after being in si+1, . . . , sn); in
that case, [[⋄α ϕ]]

p
Mi+1

(σ) = e−αt [[∃⋄α ϕ]]
p
M (s0), which is already known.

The probability density to enter such a state can be written as

pdf
(
si+1 ∨ · · · ∨ sn U=t s0

)
= eQ|

i+1...n
t Q|i+1...n 1|s0

where Q is the infinitesimal generator matrix of the Markov chain, Q|i+1...n is the variant
of Q where the states s1, . . . , si are made absorbing, and 1|s0 is the vector containing a 1 in

position s0 and zeroes elsewhere. The contribution to [[∃⋄α ϕ]]
p
Mi+1

of these paths is therefore

[[∃⋄α ϕ]]
p
Mi+1

∣∣∣
 s0

=

tcut∫

0

eQ|
i+1...n

t Q|i+1...n e
−αt dt [[∃⋄α ϕ]]

p
Mi

∣∣
1...i

∗
=

tcut∫

0

e (Q−αI)|
i+1...n

t Q|i+1...n dt [[∃⋄α ϕ]]
p
Mi

∣∣
1...i

†
=

tcut∫

0

e (Q−αI)|
i+1...n

t (Q− αI)|i+1...n dt [[∃⋄α ϕ]]
p
Mi

∣∣
1...i

= (e (Q−αI)|
i+1...n

tcut − I) [[∃⋄α ϕ]]
p
Mi

∣∣
1...i

In the equality marked with
∗
=, we have used

eQ|
i+1...n

te−αt Q|i+1...n = e(Q|
i+1...n

−αI)t Q|i+1...n = e (Q−αI)|
i+1...n

t Q|i+1...n

and in the equality marked with
†
=:

Q|i+1...n [[∃⋄α ϕ]]
p
Mi

∣∣
1...i

= (Q− αI)|i+1...n [[∃⋄α ϕ]]
p
Mi

∣∣
1...i

.

In both cases, the columns that do change in the left factor (the first i and the last n − i
columns, respectively) correspond to rows that are 0 in the right factor (the first i matrix rows
and the last n− i vector entries, respectively).

– Now suppose σ stays in states {si+1, . . . , sn} until tcut; in that case, we can as well continue
(after tcut) the evaluation of the path in Mi, because the discount at that time (which is
e−αtcut = [[ϕ]]

p
M (si+1)/ [[ϕ]]

p
M (si)) ensures that the difference between Mi+1 and Mi will

not lead to a higher value of [[⋄α ϕ]]
p
(σ). Therefore, we can conclude that [[⋄α ϕ]]

p
Mi+1

(σ) =

e−αtcut [[⋄α ϕ]]
p
Mi

(σ@tcut . . .) = [[ϕ]]
p
M (si+1)/ [[ϕ]]

p
M (si) · [[⋄α ϕ]]

p
Mi

(σ@tcut . . .), which is easy
to calculate.
In this case, the discount e−αtcut does not depend on t, so we can use the cdf directly instead
of the pdf. The distribution over the states at tcut can be described by the matrix

Pr
(
si+1 ∨ · · · ∨ sn U=tcut ·

)
= eQ|

i+1...n
tcut .

Therefore, the contribution to [[∃⋄α ϕ]]
p
Mi+1

of these paths is

[[∃⋄α ϕ]]
p
Mi+1

∣∣∣
6 s1...i

= eQ|
i+1...n

tcute−αtcut [[∃⋄α ϕ]]
p
Mi

∣∣
i+1...n

= e(Q|
i+1...n

−αI)tcut [[∃⋄α ϕ]]
p
Mi

∣∣
i+1...n

∗
= e (Q−αI)|

i+1...n
tcut [[∃⋄α ϕ]]

p
Mi

∣∣
i+1...n
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The equality marked with ∗ holds for similar reasons as in the first case.

If we sum the two parts together, and also add the probability for the paths starting in {s1, . . . , si},
we get:

[[∃⋄α ϕ]]
p
Mi+1

= (e (Q−αI)|
i+1...n

tcut − I) [[∃⋄α ϕ]]
p
Mi

∣∣
1...i

+ e (Q−αI)|
i+1...n

tcut [[∃⋄α ϕ]]
p
Mi

∣∣
i+1...n

+ [[∃⋄α ϕ]]
p
Mi

∣∣
1...i

= e (Q−αI)|
i+1...n

tcut [[∃⋄α ϕ]]
p
Mi

⊓⊔

Time Complexity. Checking one ∃⋄α operator requires to solve a sequence of related CTMC
reachability problems. Using Jensen’s method (similar to checking CSL properties of CTMCs, see
[3, 9]), we know that it takes O((EM + α)t|R| · |S|) arithmetic operations, where t is the maximal
time bound. This is comparable to [1, Lemma 19]: The time bound for checking the corresponding
formula in a DTMC is in O(|S|3 ·K), where K is the maximal step bound. The time bound t is,
in principle, the total of all cutoff times; however, if it is very large, the discount e−αt becomes so
small that one can abort the calculation before all cutoff times have passed. For an error bound
ε, we have that e−αt < ε iff t > 1

α ln 1
ε .

Proposition 16. The problem of model checking [[ϕ]]
p
M (not containing △α operators) can be

solved in time O(|ϕ| · |R| · |S|E+α
α ln 1

ε ).

5 Other Scheduler Classes

The article [1] uses the best and worst history-dependent scheduler. In the above definitions, we
looked for the best and worst positional scheduler. In this section, we illustrate how the choice
of scheduler class influences the semantics. To make the scheduler class more clear, we will add a
subscript D to ∃, the main operator that chooses from the set of schedulers D. In the following,
we will give some examples for the ∃D operator for several classes of schedulers. The treatment of
the ∀D operator always follows the same lines and does not enlighten more.

We designate the (time-abstract) positional schedulers used above by P, and we will intro-
duce the classes TTP of total-time positional schedulers and LP of late time-abstract positional
schedulers.

5.1 Late Schedulers (LP)

A CTMDP is locally uniform if in every state, the exit rate does not depend on the action chosen
(i. e., ∀s ∈ S : ∀a, b ∈ A : Ea(s) = Eb(s)). In a locally uniform CTMDP, it is possible to delay
the choice for one action or another until the moment that the sojourn time in a state has passed.
So-called late schedulers, defined in [6], are functions from the current state and the sojourn time
in this state to an action that is enabled: D : S × R≥0 → A. As in time-bounded reachability [6],
a late scheduler can improve on the value of a formula.

Example 17. Consider the CTMDP in Fig. 3, with initial state s4. The best positional scheduler
for [[∃⋄1 black ]]

p
(s4) always chooses action b, as the expected utility is higher than when choosing

a. This can be seen by reusing (3a) and (3b) in Example 18 and letting t3 = 0:

[[∃{Da} ⋄1 ϕ]]
p
(s4) =

1
384e

2·0 + 1
3e

−0 + 1
8 = 59

128 = 0.4609375

[[∃{Db} ⋄1 ϕ]]
p
(s4) =

1
108e

2·0 + 1
2e

−0 = 55
108 ≈ 0.50926
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s3

L(s3, black) =
1

4

s4

L(s4, black) =
1

4

s1 L(s1, black) = 1

s5 L(s5, black) = 0

s2 L(s2, black) =
3

4

1

a, 1

a, 1

b, 2

Fig. 3. Timed schedulers are better than positional ones.

However, a late scheduler can base its choice also on t4, the sojourn time in state s4. For times t4 ∈
[ln 3, ln 4), choosing b will not improve [[∃⋄1 black ]]

p
(s4) because e

−t4 [[black ]]
p
(s2) ≤ [[black ]]

p
(s4),

but by choosing a, it improves with probability of 1
2 , because e

−t4 [[black ]]
p
(s1) > [[black ]]

p
(s4).

For very short sojourn times t4 ∈ [0, S), for some S ≤ ln 3, it is more advantageous to choose b.
To find S, one solves the integral:

[[∃LP ⋄1 black ]]
p
(s4) =

∞∫

0

pdf
(
s4

t4−→
) (

1
2

(
1
4 ⊔ e−t4

)
+ 1

2 · 1
4︸ ︷︷ ︸

action a is chosen

⊔ 3
4e

−t4

︸ ︷︷ ︸
action b

)
dt4

=

∞∫

0

pdf
(
s4

t4−→
) (

1
4 ⊔ ( 18 + 1

2e
−t4) ⊔ 3

4e
−t4

)
dt4

=

ln 2∫

0

2e−2t4 3
4e

−t4 dt4 +

ln 4∫

ln 2

2e−2t4( 18 + 1
2e

−t4) dt4 +

∞∫

ln 4

2e−2t4 1
4 dt4

= 1
2 (1− e−3 ln 2) + 1

8 (e
−2 ln 2 − e−2 ln 4) + 1

3 (e
−3 ln 2 − e−3 ln 4) + 1

4e
−2 ln 4

= 197
384 ≈ 0.51302 > 0.50926

The exact switching point is therefore S = ln 2.

5.2 Total-Time Positional Schedulers (TTP)

A total-time positional scheduler bases its choice not only on the current state, but also on the total
time that the path has taken until now. Formally, such a scheduler is a function D : S×R≥0 → A
but the real parameter now indicates the total time spent before entering the current state.

Example 18. Consider the CTMDP in Fig. 3 again. We now regard s3 as the initial state. Similar
to Example 17, the best positional scheduler would always choose b in s4, but a TTP-scheduler
can improve on this value because it bases its decision also on t3, the sojourn time in state s3. A
similar integral as above shows that an optimal scheduler chooses b for times t3 ∈ [0, R), where
R ≈ 0.41903, and chooses a for t3 ∈ (R, ln 4). Note that this scheduler has to estimate how long
the sojourn time in s4 will be when it makes its decision; therefore, it is less exact than the late
scheduler of Example 17.

To see this, let Da be the positional scheduler that always chooses a in s4, and let Db be the
scheduler that always chooses b. We then have:

[[∃{Da} ⋄1 ϕ]]
p
(s3) =

14



=

ln 4∫

0

e−t

[

C(s3,[0,ln 4),s4)
and reach s1 early︷ ︸︸ ︷

ln 4−t∫

0

1
22e

−2ue−(t+u) du +

C(s3,[0,ln 4),s4)
and reach s1 late︷ ︸︸ ︷
∞∫

ln 4−t

1
22e

−2u 1
4 du +

C(s3,[0,ln 4),s4,R≥0,s5)︷ ︸︸ ︷
∞∫

0

1
22e

−2u 1
4 du

]
dt+

C(s3,[ln 4,∞),s4)︷ ︸︸ ︷
∞∫

ln 4

e−t 1
4 dt

=

ln 4∫

0

e−t
[

− 1
3e

−3u
∣∣ln 4−t

0
· e−t − 1

2e
−2u

∣∣∞
ln 4−t

· 1
4− 1

2e
−2u

∣∣∞
0

· 1
4

]
dt− e−t|∞ln 4 · 1

4

=

ln 4∫

0

e−t
[

1
3 (1− e−3(ln 4−t))e−t + 1

2e
−2(ln 4−t) 1

4 + 1
2 · 1

4

]
dt+ e− ln 4 1

4

=

ln 4∫

0

e−t
[

1
3e

−t − 1
34

−3e2t+ 1
84

−2e2t + 1
8

]
dt+ 4−1 1

4

=

ln 4∫

0

[
1
3e

−2t +
(
− 1

192 + 1
128

)
et + 1

8e
−t

]
dt+ 1

16

=
[

− 1
3 · 1

2e
−2t + 1

384e
t − 1

8e
−t

]ln 4

0
+ 1

16

= 1
6 (1− e−2 ln 4)+ 1

384 (e
ln 4 − 1) + 1

8 (1− e− ln 4) + 1
16

= 123
384 = 41

128 = 0.3203125

and similarly

[[∃{Db} ⋄1 ϕ]]
p
(s3) =

=

ln 3∫

0

e−t

[

C(s3,[0,ln 3),s4)
and reach s2 early︷ ︸︸ ︷

ln 3−t∫

0

2e−2u 3
4e

−(t+u) du+

C(s3,[0,ln 3),s4)
and reach s2 late︷ ︸︸ ︷
∞∫

ln 3−t

2e−2u 1
4 du

]
dt+

C(s3,[ln 3,∞),s4)︷ ︸︸ ︷
∞∫

ln 3

e−t 1
4 dt

=

ln 3∫

0

e−t
[

2
4e

−t − 2
43

−3e2t + 3−2 1
4e

2t
]
dt+ 3−1 1

4

=

ln 3∫

0

[
1
2e

−2t + (− 1
54 + 1

36 )e
t

]
dt+ 1

12

= 35
108 ≈ 0.32407

So, [[∃P ⋄1 ϕ]]
p
(s3) =

35
108 . For the TTP-scheduler, we calculate:

[[∃TTP ⋄1 ϕ]]
p
(s3) =

∞∫

0

pdf
(
s3

t3−→ s4

)




∞∫

0

pdf
(
s4

t2−→
a
s1

)(
1
4 ⊔ 1e−(t3+t2)

)
+ pdf

(
s4

t2−→
a
s5

)
1
4 dt2

⊔
∞∫

0

pdf

(
s4

t2−→
b
s2

)(
1
4 ⊔ 3

4e
−(t3+t2)

)
dt2


 dt3

=

ln 3∫

0

e−t3
[
( 1
384e

2t3 + 1
3e

−t3 + 1
8 ) ⊔ ( 1

108e
2t3 + 1

2e
−t3)

]
dt3

15



+

ln 4∫

ln 3

e−t3
[
( 1
384e

2t3 + 1
3e

−t3 + 1
8 ) ⊔ 1

4

]
dt3

+

∞∫

ln 4

e−t3
[
1
4 ⊔ 1

4

]
dt3

For the integral
∫ ln 3

0
, the inequation 1

384e
2t3 + 1

3e
−t3 + 1

8 ≥ 1
108e

2t3 + 1
2e

−t3 is equivalent to

0 ≥ (e−t3)3 − 3
4 (e

−t3)2 + 23
576 . The relevant real root is at e−t3 = R := 1

24

3
√

−60 + 12
√
299i +

1
24

3
√
−60− 12

√
299i + 1

4 , i. e. the inequation is equivalent to t3 ≤ − lnR ≈ 0.41903. – For
∫ ln 4

ln 3
,

the inequation 1
384e

2t3 + 1
3e

−t3 + 1
8 ≥ 1

4 is equivalent to (e−t3 + 1
8 )(e

−t3 − 1
4 )

2 ≥ 0. This holds for

e−t3 ≥ − 1
8 , and therefore for all t3 ∈ R. We also aggregate

∫ ln 3

− lnR
with

∫ ln 4

ln 3
:

[[∃TTP ⋄1 ϕ]]
p
(s3) =

=

− lnR∫

0

1
108e

t3 + 1
2e

−2t3 dt3+

ln 4∫

− lnR

1
384e

t3 + 1
3e

−2t3 + 1
8e

−t3 dt3 +

∞∫

ln 4

e−t3 1
4 dt3

=
e− lnR − 1

108
+
1− e2 lnR

2 · 2 +
eln 4 − e− lnR

384
+
e2 lnR − e−2 ln 4

3 · 2 +
elnR − e− ln 4

8
+ e− ln 4 1

4

= 1
108R

−1 − 1
108+

1
4 − 1

4R
2 + 1

3844− 1
384R

−1+ 1
6R

2 − 1
64

−2 + 1
8R− 1

84
−1 + 1

16

= − 1
12R

2 + 1
8R+ 235

864 + 23
3456R

−1 ≈ 0.32827 > 0.32407

In the above calculations, we have used the following auxiliary equalities. If t3 ≤ ln 4, we have:

∞∫

0

pdf
(
s4

t2−→
a
s1

)(
1
4 ⊔ 1e−(t3+t2)

)
+ pdf

(
s4

t2−→
a
s5

)
1
4 dt2

=

ln 4−t3∫

0

e−2t2e−(t3+t2) + e−2t2 1
4 dt2 +

∞∫

ln 4−t3

e−2t2 1
4 + e−2t2 1

4 dt2

= 1
3 (1− e−3(ln 4−t3))e−t3 + 1

2 (1− e−2(ln 4−t3)) 14 + e−2(ln 4−t3) 1
4 = 1

384e
2t3 + 1

3e
−t3 + 1

8 (3a)

If t3 ≥ ln 4, we have:

∞∫

0

pdf
(
s4

t2−→
a
s1

)(
1
4 ⊔ 1e−(t3+t2)

)
+ pdf

(
s4

t2−→
a
s5

)
1
4 dt2 =

∞∫

0

e−2t2 1
4 + e−2t2 1

4 dt2 = 1
4

If t3 ≤ ln 3, we have:

∞∫

0

pdf

(
s4

t2−→
b
s2

)(
1
4 ⊔ 3

4e
−(t3+t2)

)
dt2 =

ln 3−t3∫

0

2e−2t2 3
4e

−(t3+t2) dt2 +

∞∫

ln 3−t3

2e−2t2 1
4 dt2

= 2
3 (1− e−3(ln 3−t3)) 34e

−t3 + e−2(ln 3−t3) 1
4 = 1

108e
2t3 + 1

2e
−t3 (3b)

If t3 ≥ ln 3, we have:

∞∫

0

pdf

(
s4

t2−→
b
s2

)(
1
4 ⊔ 3

4e
−(t3+t2)

)
dt2 =

∞∫

0

2e−2t2 1
4 dt2 = 1

4
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5.3 History-Dependent Schedulers (H)

A history-dependent scheduler, in principle, has access to the full history, i. e. to the complete
path to make a decision. In practice, it is enough to use the highest utility umax achieved until
now to decide which actions still could improve on the utility of [[∃H⋄α ϕ]]

p
. Additionally, similar

in Example 18, the decision should take into account the discount incurred between the time tmax

when that utility was achieved and the current time t. Therefore, a history-dependent scheduler
has enough information if it knows the value umaxe

α(t−tmax).

This is basically the idea used by [1] to find a model checking algorithm for the path semantics of
MDPs with history-dependent schedulers. Why can’t we use this idea for CTMDPs? The problem is
that in discrete-time systems, discount factors are powers of a constant ρ ∈ (0, 1). As a consequence,
only a finite number of the powers umax, ρ

−1umax, ρ
−2umax, . . . is relevant to find [[∃H⋄ρ ϕ]]

p
P . This

allows to define a linear program with finitely many variables to calculate the utilities. However, in
the continuous-time case, the corresponding linear program would have infinitely many variables,
so one cannot prove termination of the algorithm that solves the linear program.

To argue in more detail, I follow the construction given in [1]. To simplify notation, I assume that
the CTMDP is uniform. (If it isn’t, one can uniformise it following the uniformisation procedure
proposed in [3], by adding states that do not allow to change the decision. The form of our
schedulers does not allow to exploit the additional information provided by visiting these additional
states, because our schedulers do not count the number of transitions taken.) Let

h∃(s, x) = sup
D∈H

E
D
s

[
x ⊔max

t≥0
e−αt [[ϕ]]

p
(σ@t)

]
.

Obviously, [[∃H⋄α ϕ]]
p
(s) = h∃(s, 0). We now define an operator, which is a contraction with

fixpoint h∃, by:

H∃(h)(s, x) =




x if x ≥ 1

max
a∈A

∑
s′∈S

∞∫
0

pdf
(
s

t−→
a
s′ | a

)
e−αth(s′, eαt[x ⊔ [[ϕ]]

p
(s)]) dt otherwise

=





x if x ≥ 1

Emax
a∈A

∑
s′∈S

P a(s, s′)
∞∫
0

e−(E+α)th(s′, eαtx) dt if [[ϕ]]
p
(s) < x < 1

Emax
a∈A

∑
s′∈S

P a(s, s′)
∞∫
0

e−(E+α)th(s′, eαt [[ϕ]]
p
(s)) dt otherwise

Substitute u = eαtx (so t = ln(u/x)/α and dt = 1
α·udu) in the second case, and u = eαt [[ϕ]]

p
(s)

in the third case:

H∃(h)(s, x) =





x if x ≥ 1

Emax
a∈A

∑
s′∈S

P a(s, s′)
∞∫
x

(
u
x

)−(E+α)/α
h(s′, u) 1

αu du if [[ϕ]]
p
(s) < x < 1

Emax
a∈A

∑
s′∈S

P a(s, s′)
∞∫

[[ϕ]]p(s)

(
u

[[ϕ]]p(s)

)−(E+α)/α
h(s′, u) 1

αu du otherwise

=





x if x ≥ 1

E
α x

1+E/α max
a∈A

∑
s′∈S

P a(s, s′)
∞∫
x

u−2−E/αh(s′, u) du if [[ϕ]]
p
(s) < x < 1

E
α [[ϕ]]

p
(s)1+E/α max

a∈A

∑
s′∈S

P a(s, s′)
∞∫

[[ϕ]]p(s)

u−2−E/αh(s′, u) du otherwise
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Now assume that h(s, x) ≡ x if x ≥ 1. We then can evaluate the integral for u ≥ 1. This
leads to E

α x
1+E/α maxa∈A

∑
s′∈S P

a(s, s′)
∫∞

1
u−2−E/αh(s′, u) du = E

α x
1+E/α

∫∞

1
u−1−E/α du =

E
α x

1+E/α · 1
−E/αu

−E/α|∞1 = 0−−x1+E/α, and similarly for u [[ϕ]]
p
(s) ≥ 1.

H∃(h)(s, x) =





x if x ≥ 1

x1+E/α + E
α x

1+E/α max
a∈A

∑
s′∈S

P a(s, s′)
1∫
x

u−2−E/αh(s′, u) du if [[ϕ]]
p
(s) < x < 1

[[ϕ]]
p
(s)1+E/α+

E
α [[ϕ]]

p
(s)1+E/α max

a∈A

∑
s′∈S

P a(s, s′)
1∫

[[ϕ]]p(s)

u−2−E/αh(s′, u) du
otherwise

Now one can always choose the exit rate E such that

F := E/α ∈ N.

Then u−2−E/α has an integer exponent, and it almost looks as if h(s, x), for [[ϕ]]
p
(s) < x < 1, is

a polynomial in x: Let
h0(s, x) := x ⊔ [[ϕ]]

p
(s)

hi+1(s, x) := H∃(hi).
(3c)

However, h1(s, x) (for [[ϕ]]
p
(s) < x < 1) may include a term x1+F , and therefore when calculating

h2, we have to integrate over u−2−F [u1+F + · · · ] = u−1 + · · · . Therefore, h2 may include a term
lnx. Further integrals show that there may also be powers of lnx in h3 and higher approximations.

Proposition 18a. The hi(s, x) (for i ≥ 1) defined in (3c) have the form

hi(s, x) =





x if x ≥ 1

max
a∈A

1+F∑

j=0

i−1∑

k=0

casjk · xj(lnx)k if [[ϕ]]
p
(s) < x < 1

Cs otherwise

(3d)

where casjk and Cs are real numbers.

Proof. By induction on i.

Base case. h1 is defined to be H∃(h0). From the definition of H∃, it is easy to see that h1(s, x) = x
if x ≥ 1 and that for each s ∈ S, the restriction of h1(s, x) to x ≤ [[ϕ]]

p
(s) is constant, as required.

Now assume that [[ϕ]]
p
(s) < x < 1. Then,

h1(s, x) = x1+F + Fx1+F max
a∈A

∑

s′∈S

P a(s, s′)

1∫

x

u−2−F (u ⊔ [[ϕ]]
p
(s′))︸ ︷︷ ︸

h0(s′,u)

du

We now concentrate on calculating the integral I(x) :=
∫ 1

x
u−2−F (u ⊔ [[ϕ]]

p
(s′)) du. Note that if

the integral is a Laurent polynomial whose nonzero coefficients belong to x0, x−1, x−2, . . . , x−1−F ,
then h1 has the required form. Depending on whether x < [[ϕ]]

p
(s′) or not, one has to split the

integral.

1. x ≥ [[ϕ]]
p
(s′): There is no need to split the integral. Then,

I(x) =

1∫

x

u−2−Fu du =

[
u−F

−F

]1

x

=
x−F − 1

F
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2. x < [[ϕ]]
p
(s′): We split the integral into

∫ [[ϕ]]p(s′)

x
· · · du+

∫ 1

[[ϕ]]p(s′)
· · · du. Then,

I(x) =

[[ϕ]]p(s′)∫

x

u−2−F [[ϕ]]
p
(s′) du +

1∫

[[ϕ]]p(s′)

u−2−Fu du

= [[ϕ]]
p
(s′)

[
u−1−F

−1− F

][[ϕ]]p(s′)

x

+

[
u−F

−F

]1

[[ϕ]]p(s′)

= [[ϕ]]
p
(s′)

x−1−F − [[ϕ]]
p
(s′)−1−F

1 + F
+

[[ϕ]]
p
(s′)−F − 1

F

=
[[ϕ]]

p
(s′)

1 + F
x−1−F +

[[ϕ]]
p
(s′)−F

F (1 + F )
− 1

F

In both cases, we get Laurent polynomial of the required form, so h1 fits into the scheme prescribed
by (3d).

Iteration step. Assume that hi has the form described above. We are going to calculate hi+1 =
H∃(hi). Obviously, if x ≥ 1 or x ≤ [[ϕ]]

p
(s), then hi+1 has the required form. In the remaining

case, we have to solve the integral I(x) :=
∫ 1

x
u−2−Fhi(s′, u) du. Again, if this is a kind of Laurent

polynomial (now perhaps including coefficients for lnx), then hi+1 has the required form.
If x ≤ [[ϕ]]

p
(s′), we get a calculation that is very similar to the second part of the base case

above: one gets that I(x) = Ax−1−F + B, for some constants A,B ∈ R. Therefore, let us assume
that [[ϕ]]

p
(s′) < x < 1.

I(x) =

1∫

x

u−2−F max
a∈A

1+F∑

j=0

i−1∑

k=0

cas′jku
j(lnu)k du

We want to split this integral into pieces, such that only one action a ∈ A has to be considered
for every piece. For every piece, one calculates the related integral

Ja(x, y) :=

y∫

x

u−2−F
1+F∑

j=0

i−1∑

k=0

cas′jku
j(lnu)k du

Then, I(x) is a sum of the form Ja1(x, x1) + Ja2(x1, x2) + · · · + Jan(xn−1, 1). Note that only
Ja1(x, x1) depends on x directly; the other terms should be real constants. If Ja has a suitable
Laurent polynomial form (in the first variable), then hi+1 satisfies (3d). To calculate Ja, we use
the known integrals (for k ≥ 0):

∫
un(lnu)k du =

un+1(lnu)k

n+ 1
− k

n+ 1

∫
un(lnu)k−1 du if n 6= −1

=
k∑

l=0

(−1)lk!

(k − l)!
· u

n+1(lnu)k−l

(n+ 1)l+1

∫
u−1(lnu)k du =

(lnu)k+1

k + 1

and continue, by distinguishing the case j = 1 + F :

Ja(x, y) =




F∑

j=0

i−1∑

k=0

cas′jk

y∫

x

uj−2−F (lnu)k du


 +

i−1∑

k=0

cas′(1+F )k

y∫

x

u−1(lnu)k du

=
F∑

j=0

i−1∑

k=0

cas′jk

[
k∑

l=0

(−1)lk!

(k − l)!

uj−1−F (lnu)k−l

(j − 1− F )l+1

]y

x

+
i−1∑

k=0

cas′(1+F )k

[
(lnu)k+1

k + 1

]y

x

=

F∑

j=0

i−1∑

k=0

cas′jk

k∑

l=0

k!
yj−1−F (ln y)k−l − xj−1−F (lnx)k−l

(−1)l(k − l)!(j − 1− F )l+1
+

i−1∑

k=0

cas′(1+F )k

(ln y)k+1 − (lnx)k+1

k + 1
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As Ja(x, y) is multiplied with x1+F , it follows that the result is a polynomial of the required
form. ⊓⊔

Proposition 18a shows that – at least in principle –, there is a finite description of the approxi-
mations hi of h∃. Therefore, it is possible to devise an algorithm that approximates h∃; however,
the description and the calculations needed (as can be seen from the proof of Prop. 18a) are very
complex. Therefore, I consider calculating h∃ for history-dependent schedulers too difficult to be
used.

6 Conclusion

It is possible to extend the DCTL semantics with time, to continuous-time Markov chains and
MDPs. No big surprises have happened; the extension is pretty much straightforward. The distinc-
tion between the fixpoint and the path semantics known from the discrete-time case also applies
to the continuous-time case. Properties interpreted under the fixpoint semantics can be easily
checked using the same algorithms as in the discrete-time case; because fixpoint semantics do not
look further ahead than one step, a variation on the expected time to take a transition (the recip-
rocal of the exit rate) is the discount per step. Properties interpreted under the path semantics are
more difficult to verify; this article provides an algorithm for CTMCs (without nondeterminism).

To simplify the analysis, I have chosen to fix a single discount rate per property. This corresponds
to an exponential decay of utility over time. One can without much work extend the current
presentation and give each state its own discount rate (e. g. by adapting the matrix (3)).

Another way to make analysis of such temporal properties possible is taking a finite horizon.
Everything before the time limit is equally relevant, and everything after is equally irrelevant. For
example, time-bounded until formulas in CSL [3, 9] use a finite horizon. Depending on the situation,
one or the other way of giving more weight to the near future is better-suited. If one does not
want to predict for how long exactly a computer system will be used, it seems advantageous to
use an analysis method that does not completely ignore a possible breakdown shortly after some
deadline. Let me illustrate this point with an example: When a space agency writes its year report,
it has to decide which missions have finished successfully; to make this decision possible, selecting
a fixed deadline is unavoidable. However, one often sees that satellites continue working longer
than this deadline. It would be a pity if the software was the first part to break down, so a system
that lasts longer is preferred. How much longer? – Here, one cannot give a strict deadline, so a
discounted property seems more appropriate.

Rewards in Markov chains can also be used to express quantitative properties [2]. DCTL still
allows to combine multiple aspects of utility in ways that are not normally offered by analysis
methods for chains with (multiple) rewards.
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